ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Algorithm-FEC/fec_imp.h
Revision: 1.3
Committed: Tue Sep 9 23:21:54 2003 UTC (20 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-1_1, rel-1_0, HEAD
Changes since 1.2: +1 -6 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * fec.c -- forward error correction based on Vandermonde matrices
3 * 980624
4 * (C) 1997-98 Luigi Rizzo (luigi@iet.unipi.it)
5 *
6 * Portions derived from code by Phil Karn (karn@ka9q.ampr.org),
7 * Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari
8 * Thirumoorthy (harit@spectra.eng.hawaii.edu), Aug 1995
9 * modified by Marc Lehmann <fec@schmorp.de>, Sep 2003.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
27 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
28 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
29 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
31 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
33 * OF SUCH DAMAGE.
34 */
35
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <stdint.h>
40
41 #define MSDOS /* LEAVE THIS IN PLACE EVEN ON UNIX! */
42
43 /*
44 * compatibility stuff
45 */
46 #ifdef MSDOS /* but also for others, e.g. sun... */
47 #define NEED_BCOPY
48 #define bcmp(a,b,n) memcmp(a,b,n)
49 #endif
50
51 #ifdef NEED_BCOPY
52 #define bcopy(s, d, siz) memcpy((d), (s), (siz))
53 #define bzero(d, siz) memset((d), '\0', (siz))
54 #endif
55
56 /*
57 * stuff used for testing purposes only
58 */
59
60 #ifdef TEST
61 #define DEB(x)
62 #define DDB(x) x
63 #define DEBUG 0 /* minimal debugging */
64
65 #ifdef MSDOS
66 #include <time.h>
67 struct timeval {
68 unsigned long ticks;
69 };
70 #define gettimeofday(x, dummy) { (x)->ticks = clock() ; }
71 #define DIFF_T(a,b) (1+ 1000000*(a.ticks - b.ticks) / CLOCKS_PER_SEC )
72 typedef unsigned long u_long ;
73 typedef unsigned short u_short ;
74 #else /* typically, unix systems */
75 #include <sys/time.h>
76 #define DIFF_T(a,b) \
77 (1+ 1000000*(a.tv_sec - b.tv_sec) + (a.tv_usec - b.tv_usec) )
78 #endif
79
80 #define TICK(t) \
81 {struct timeval x ; \
82 gettimeofday(&x, NULL) ; \
83 t = x.tv_usec + 1000000* (x.tv_sec & 0xff ) ; \
84 }
85 #define TOCK(t) \
86 { u_long t1 ; TICK(t1) ; \
87 if (t1 < t) t = 256000000 + t1 - t ; \
88 else t = t1 - t ; \
89 if (t == 0) t = 1 ;}
90
91 u_long ticks[10]; /* vars for timekeeping */
92 #else
93 #define DEB(x)
94 #define DDB(x)
95 #define TICK(x)
96 #define TOCK(x)
97 #endif /* TEST */
98
99 /*
100 * You should not need to change anything beyond this point.
101 * The first part of the file implements linear algebra in GF.
102 *
103 * gf is the type used to store an element of the Galois Field.
104 * Must constain at least GF_BITS bits.
105 *
106 * Note: unsigned char will work up to GF(256) but int seems to run
107 * faster on the Pentium. We use int whenever have to deal with an
108 * index, since they are generally faster.
109 */
110 #if (GF_BITS < 2 && GF_BITS >16)
111 #error "GF_BITS must be 2 .. 16"
112 #endif
113 #if (GF_BITS <= 8)
114 typedef uint8_t gf;
115 #else
116 typedef uint16_t gf;
117 #endif
118
119 #define GF_SIZE ((1 << GF_BITS) - 1) /* powers of \alpha */
120
121 /*
122 * Primitive polynomials - see Lin & Costello, Appendix A,
123 * and Lee & Messerschmitt, p. 453.
124 */
125 static char *allPp[] = { /* GF_BITS polynomial */
126 NULL, /* 0 no code */
127 NULL, /* 1 no code */
128 "111", /* 2 1+x+x^2 */
129 "1101", /* 3 1+x+x^3 */
130 "11001", /* 4 1+x+x^4 */
131 "101001", /* 5 1+x^2+x^5 */
132 "1100001", /* 6 1+x+x^6 */
133 "10010001", /* 7 1 + x^3 + x^7 */
134 "101110001", /* 8 1+x^2+x^3+x^4+x^8 */
135 "1000100001", /* 9 1+x^4+x^9 */
136 "10010000001", /* 10 1+x^3+x^10 */
137 "101000000001", /* 11 1+x^2+x^11 */
138 "1100101000001", /* 12 1+x+x^4+x^6+x^12 */
139 "11011000000001", /* 13 1+x+x^3+x^4+x^13 */
140 "110000100010001", /* 14 1+x+x^6+x^10+x^14 */
141 "1100000000000001", /* 15 1+x+x^15 */
142 "11010000000010001" /* 16 1+x+x^3+x^12+x^16 */
143 };
144
145
146 /*
147 * To speed up computations, we have tables for logarithm, exponent
148 * and inverse of a number. If GF_BITS <= 8, we use a table for
149 * multiplication as well (it takes 64K, no big deal even on a PDA,
150 * especially because it can be pre-initialized an put into a ROM!),
151 * otherwhise we use a table of logarithms.
152 * In any case the macro gf_mul(x,y) takes care of multiplications.
153 */
154
155 static gf gf_exp[2*GF_SIZE]; /* index->poly form conversion table */
156 static int gf_log[GF_SIZE + 1]; /* Poly->index form conversion table */
157 static gf inverse[GF_SIZE+1]; /* inverse of field elem. */
158 /* inv[\alpha**i]=\alpha**(GF_SIZE-i-1) */
159
160 /*
161 * modnn(x) computes x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1,
162 * without a slow divide.
163 */
164 static inline gf
165 modnn(int x)
166 {
167 while (x >= GF_SIZE) {
168 x -= GF_SIZE;
169 x = (x >> GF_BITS) + (x & GF_SIZE);
170 }
171 return x;
172 }
173
174 #define SWAP(a,b,t) {t tmp; tmp=a; a=b; b=tmp;}
175
176 /*
177 * gf_mul(x,y) multiplies two numbers. If GF_BITS<=8, it is much
178 * faster to use a multiplication table.
179 *
180 * USE_GF_MULC, GF_MULC0(c) and GF_ADDMULC(x) can be used when multiplying
181 * many numbers by the same constant. In this case the first
182 * call sets the constant, and others perform the multiplications.
183 * A value related to the multiplication is held in a local variable
184 * declared with USE_GF_MULC . See usage in addmul1().
185 */
186 #if (GF_BITS <= 8)
187 static gf gf_mul_table[GF_SIZE + 1][GF_SIZE + 1];
188
189 #define gf_mul(x,y) gf_mul_table[x][y]
190
191 #define USE_GF_MULC register gf * __gf_mulc_
192 #define GF_MULC0(c) __gf_mulc_ = gf_mul_table[c]
193 #define GF_ADDMULC(dst, x) dst ^= __gf_mulc_[x]
194
195 static void
196 init_mul_table()
197 {
198 int i, j;
199 for (i=0; i< GF_SIZE+1; i++)
200 for (j=0; j< GF_SIZE+1; j++)
201 gf_mul_table[i][j] = gf_exp[modnn(gf_log[i] + gf_log[j]) ] ;
202
203 for (j=0; j< GF_SIZE+1; j++)
204 gf_mul_table[0][j] = gf_mul_table[j][0] = 0;
205 }
206 #else /* GF_BITS > 8 */
207 static inline gf
208 gf_mul(x,y)
209 {
210 if ( (x) == 0 || (y)==0 ) return 0;
211
212 return gf_exp[gf_log[x] + gf_log[y] ] ;
213 }
214 #define init_mul_table()
215
216 #define USE_GF_MULC register gf * __gf_mulc_
217 #define GF_MULC0(c) __gf_mulc_ = &gf_exp[ gf_log[c] ]
218 #define GF_ADDMULC(dst, x) { if (x) dst ^= __gf_mulc_[ gf_log[x] ] ; }
219 #endif
220
221 /*
222 * Generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
223 * Lookup tables:
224 * index->polynomial form gf_exp[] contains j= \alpha^i;
225 * polynomial form -> index form gf_log[ j = \alpha^i ] = i
226 * \alpha=x is the primitive element of GF(2^m)
227 *
228 * For efficiency, gf_exp[] has size 2*GF_SIZE, so that a simple
229 * multiplication of two numbers can be resolved without calling modnn
230 */
231
232 /*
233 * i use malloc so many times, it is easier to put checks all in
234 * one place.
235 */
236 static void *
237 my_malloc(int sz, char *err_string)
238 {
239 void *p = malloc( sz );
240 if (p == NULL) {
241 fprintf(stderr, "-- malloc failure allocating %s\n", err_string);
242 exit(1) ;
243 }
244 return p ;
245 }
246
247 #define NEW_GF_MATRIX(rows, cols) \
248 (gf *)my_malloc(rows * cols * sizeof(gf), " ## __LINE__ ## " )
249
250 /*
251 * initialize the data structures used for computations in GF.
252 */
253 static void
254 generate_gf(void)
255 {
256 int i;
257 gf mask;
258 char *Pp = allPp[GF_BITS] ;
259
260 mask = 1; /* x ** 0 = 1 */
261 gf_exp[GF_BITS] = 0; /* will be updated at the end of the 1st loop */
262 /*
263 * first, generate the (polynomial representation of) powers of \alpha,
264 * which are stored in gf_exp[i] = \alpha ** i .
265 * At the same time build gf_log[gf_exp[i]] = i .
266 * The first GF_BITS powers are simply bits shifted to the left.
267 */
268 for (i = 0; i < GF_BITS; i++, mask <<= 1 ) {
269 gf_exp[i] = mask;
270 gf_log[gf_exp[i]] = i;
271 /*
272 * If Pp[i] == 1 then \alpha ** i occurs in poly-repr
273 * gf_exp[GF_BITS] = \alpha ** GF_BITS
274 */
275 if ( Pp[i] == '1' )
276 gf_exp[GF_BITS] ^= mask;
277 }
278 /*
279 * now gf_exp[GF_BITS] = \alpha ** GF_BITS is complete, so can als
280 * compute its inverse.
281 */
282 gf_log[gf_exp[GF_BITS]] = GF_BITS;
283 /*
284 * Poly-repr of \alpha ** (i+1) is given by poly-repr of
285 * \alpha ** i shifted left one-bit and accounting for any
286 * \alpha ** GF_BITS term that may occur when poly-repr of
287 * \alpha ** i is shifted.
288 */
289 mask = 1 << (GF_BITS - 1 ) ;
290 for (i = GF_BITS + 1; i < GF_SIZE; i++) {
291 if (gf_exp[i - 1] >= mask)
292 gf_exp[i] = gf_exp[GF_BITS] ^ ((gf_exp[i - 1] ^ mask) << 1);
293 else
294 gf_exp[i] = gf_exp[i - 1] << 1;
295 gf_log[gf_exp[i]] = i;
296 }
297 /*
298 * log(0) is not defined, so use a special value
299 */
300 gf_log[0] = GF_SIZE ;
301 /* set the extended gf_exp values for fast multiply */
302 for (i = 0 ; i < GF_SIZE ; i++)
303 gf_exp[i + GF_SIZE] = gf_exp[i] ;
304
305 /*
306 * again special cases. 0 has no inverse. This used to
307 * be initialized to GF_SIZE, but it should make no difference
308 * since noone is supposed to read from here.
309 */
310 inverse[0] = 0 ;
311 inverse[1] = 1;
312 for (i=2; i<=GF_SIZE; i++)
313 inverse[i] = gf_exp[GF_SIZE-gf_log[i]];
314 }
315
316 /*
317 * Various linear algebra operations that i use often.
318 */
319
320 /*
321 * addmul() computes dst[] = dst[] + c * src[]
322 * This is used often, so better optimize it! Currently the loop is
323 * unrolled 16 times, a good value for 486 and pentium-class machines.
324 * The case c=0 is also optimized, whereas c=1 is not. These
325 * calls are unfrequent in my typical apps so I did not bother.
326 *
327 * Note that gcc on
328 */
329 #define addmul(dst, src, c, sz) \
330 if (c != 0) addmul1(dst, src, c, sz)
331
332 #define UNROLL 16 /* 1, 4, 8, 16 */
333 static void
334 addmul1(gf *dst1, gf *src1, gf c, int sz)
335 {
336 USE_GF_MULC ;
337 register gf *dst = dst1, *src = src1 ;
338 gf *lim = &dst[sz - UNROLL + 1] ;
339
340 GF_MULC0(c) ;
341
342 #if (UNROLL > 1) /* unrolling by 8/16 is quite effective on the pentium */
343 for (; dst < lim ; dst += UNROLL, src += UNROLL ) {
344 GF_ADDMULC( dst[0] , src[0] );
345 GF_ADDMULC( dst[1] , src[1] );
346 GF_ADDMULC( dst[2] , src[2] );
347 GF_ADDMULC( dst[3] , src[3] );
348 #if (UNROLL > 4)
349 GF_ADDMULC( dst[4] , src[4] );
350 GF_ADDMULC( dst[5] , src[5] );
351 GF_ADDMULC( dst[6] , src[6] );
352 GF_ADDMULC( dst[7] , src[7] );
353 #endif
354 #if (UNROLL > 8)
355 GF_ADDMULC( dst[8] , src[8] );
356 GF_ADDMULC( dst[9] , src[9] );
357 GF_ADDMULC( dst[10] , src[10] );
358 GF_ADDMULC( dst[11] , src[11] );
359 GF_ADDMULC( dst[12] , src[12] );
360 GF_ADDMULC( dst[13] , src[13] );
361 GF_ADDMULC( dst[14] , src[14] );
362 GF_ADDMULC( dst[15] , src[15] );
363 #endif
364 }
365 #endif
366 lim += UNROLL - 1 ;
367 for (; dst < lim; dst++, src++ ) /* final components */
368 GF_ADDMULC( *dst , *src );
369 }
370
371 /*
372 * computes C = AB where A is n*k, B is k*m, C is n*m
373 */
374 static void
375 matmul(gf *a, gf *b, gf *c, int n, int k, int m)
376 {
377 int row, col, i ;
378
379 for (row = 0; row < n ; row++) {
380 for (col = 0; col < m ; col++) {
381 gf *pa = &a[ row * k ];
382 gf *pb = &b[ col ];
383 gf acc = 0 ;
384 for (i = 0; i < k ; i++, pa++, pb += m )
385 acc ^= gf_mul( *pa, *pb ) ;
386 c[ row * m + col ] = acc ;
387 }
388 }
389 }
390
391 #ifdef DEBUG
392 /*
393 * returns 1 if the square matrix is identiy
394 * (only for test)
395 */
396 static int
397 is_identity(gf *m, int k)
398 {
399 int row, col ;
400 for (row=0; row<k; row++)
401 for (col=0; col<k; col++)
402 if ( (row==col && *m != 1) ||
403 (row!=col && *m != 0) )
404 return 0 ;
405 else
406 m++ ;
407 return 1 ;
408 }
409 #endif /* debug */
410
411 /*
412 * invert_mat() takes a matrix and produces its inverse
413 * k is the size of the matrix.
414 * (Gauss-Jordan, adapted from Numerical Recipes in C)
415 * Return non-zero if singular.
416 */
417 DEB( int pivloops=0; int pivswaps=0 ; /* diagnostic */)
418 static int
419 invert_mat(gf *src, int k)
420 {
421 gf c, *p ;
422 int irow, icol, row, col, i, ix ;
423
424 int error = 1 ;
425 int *indxc = my_malloc(k*sizeof(int), "indxc");
426 int *indxr = my_malloc(k*sizeof(int), "indxr");
427 int *ipiv = my_malloc(k*sizeof(int), "ipiv");
428 gf *id_row = NEW_GF_MATRIX(1, k);
429 gf *temp_row = NEW_GF_MATRIX(1, k);
430
431 bzero(id_row, k*sizeof(gf));
432 DEB( pivloops=0; pivswaps=0 ; /* diagnostic */ )
433 /*
434 * ipiv marks elements already used as pivots.
435 */
436 for (i = 0; i < k ; i++)
437 ipiv[i] = 0 ;
438
439 for (col = 0; col < k ; col++) {
440 gf *pivot_row ;
441 /*
442 * Zeroing column 'col', look for a non-zero element.
443 * First try on the diagonal, if it fails, look elsewhere.
444 */
445 irow = icol = -1 ;
446 if (ipiv[col] != 1 && src[col*k + col] != 0) {
447 irow = col ;
448 icol = col ;
449 goto found_piv ;
450 }
451 for (row = 0 ; row < k ; row++) {
452 if (ipiv[row] != 1) {
453 for (ix = 0 ; ix < k ; ix++) {
454 DEB( pivloops++ ; )
455 if (ipiv[ix] == 0) {
456 if (src[row*k + ix] != 0) {
457 irow = row ;
458 icol = ix ;
459 goto found_piv ;
460 }
461 } else if (ipiv[ix] > 1) {
462 fprintf(stderr, "singular matrix\n");
463 goto fail ;
464 }
465 }
466 }
467 }
468 if (icol == -1) {
469 fprintf(stderr, "XXX pivot not found!\n");
470 goto fail ;
471 }
472 found_piv:
473 ++(ipiv[icol]) ;
474 /*
475 * swap rows irow and icol, so afterwards the diagonal
476 * element will be correct. Rarely done, not worth
477 * optimizing.
478 */
479 if (irow != icol) {
480 for (ix = 0 ; ix < k ; ix++ ) {
481 SWAP( src[irow*k + ix], src[icol*k + ix], gf) ;
482 }
483 }
484 indxr[col] = irow ;
485 indxc[col] = icol ;
486 pivot_row = &src[icol*k] ;
487 c = pivot_row[icol] ;
488 if (c == 0) {
489 fprintf(stderr, "singular matrix 2\n");
490 goto fail ;
491 }
492 if (c != 1 ) { /* otherwhise this is a NOP */
493 /*
494 * this is done often , but optimizing is not so
495 * fruitful, at least in the obvious ways (unrolling)
496 */
497 DEB( pivswaps++ ; )
498 c = inverse[ c ] ;
499 pivot_row[icol] = 1 ;
500 for (ix = 0 ; ix < k ; ix++ )
501 pivot_row[ix] = gf_mul(c, pivot_row[ix] );
502 }
503 /*
504 * from all rows, remove multiples of the selected row
505 * to zero the relevant entry (in fact, the entry is not zero
506 * because we know it must be zero).
507 * (Here, if we know that the pivot_row is the identity,
508 * we can optimize the addmul).
509 */
510 id_row[icol] = 1;
511 if (bcmp(pivot_row, id_row, k*sizeof(gf)) != 0) {
512 for (p = src, ix = 0 ; ix < k ; ix++, p += k ) {
513 if (ix != icol) {
514 c = p[icol] ;
515 p[icol] = 0 ;
516 addmul(p, pivot_row, c, k );
517 }
518 }
519 }
520 id_row[icol] = 0;
521 } /* done all columns */
522 for (col = k-1 ; col >= 0 ; col-- ) {
523 if (indxr[col] <0 || indxr[col] >= k)
524 fprintf(stderr, "AARGH, indxr[col] %d\n", indxr[col]);
525 else if (indxc[col] <0 || indxc[col] >= k)
526 fprintf(stderr, "AARGH, indxc[col] %d\n", indxc[col]);
527 else
528 if (indxr[col] != indxc[col] ) {
529 for (row = 0 ; row < k ; row++ ) {
530 SWAP( src[row*k + indxr[col]], src[row*k + indxc[col]], gf) ;
531 }
532 }
533 }
534 error = 0 ;
535 fail:
536 free(indxc);
537 free(indxr);
538 free(ipiv);
539 free(id_row);
540 free(temp_row);
541 return error ;
542 }
543
544 /*
545 * fast code for inverting a vandermonde matrix.
546 * XXX NOTE: It assumes that the matrix
547 * is not singular and _IS_ a vandermonde matrix. Only uses
548 * the second column of the matrix, containing the p_i's.
549 *
550 * Algorithm borrowed from "Numerical recipes in C" -- sec.2.8, but
551 * largely revised for my purposes.
552 * p = coefficients of the matrix (p_i)
553 * q = values of the polynomial (known)
554 */
555
556 static int
557 invert_vdm(gf *src, int k)
558 {
559 int i, j, row, col ;
560 gf *b, *c, *p;
561 gf t, xx ;
562
563 if (k == 1) /* degenerate case, matrix must be p^0 = 1 */
564 return 0 ;
565 /*
566 * c holds the coefficient of P(x) = Prod (x - p_i), i=0..k-1
567 * b holds the coefficient for the matrix inversion
568 */
569 c = NEW_GF_MATRIX(1, k);
570 b = NEW_GF_MATRIX(1, k);
571
572 p = NEW_GF_MATRIX(1, k);
573
574 for ( j=1, i = 0 ; i < k ; i++, j+=k ) {
575 c[i] = 0 ;
576 p[i] = src[j] ; /* p[i] */
577 }
578 /*
579 * construct coeffs. recursively. We know c[k] = 1 (implicit)
580 * and start P_0 = x - p_0, then at each stage multiply by
581 * x - p_i generating P_i = x P_{i-1} - p_i P_{i-1}
582 * After k steps we are done.
583 */
584 c[k-1] = p[0] ; /* really -p(0), but x = -x in GF(2^m) */
585 for (i = 1 ; i < k ; i++ ) {
586 gf p_i = p[i] ; /* see above comment */
587 for (j = k-1 - ( i - 1 ) ; j < k-1 ; j++ )
588 c[j] ^= gf_mul( p_i, c[j+1] ) ;
589 c[k-1] ^= p_i ;
590 }
591
592 for (row = 0 ; row < k ; row++ ) {
593 /*
594 * synthetic division etc.
595 */
596 xx = p[row] ;
597 t = 1 ;
598 b[k-1] = 1 ; /* this is in fact c[k] */
599 for (i = k-2 ; i >= 0 ; i-- ) {
600 b[i] = c[i+1] ^ gf_mul(xx, b[i+1]) ;
601 t = gf_mul(xx, t) ^ b[i] ;
602 }
603 for (col = 0 ; col < k ; col++ )
604 src[col*k + row] = gf_mul(inverse[t], b[col] );
605 }
606 free(c) ;
607 free(b) ;
608 free(p) ;
609 return 0 ;
610 }
611
612 static int fec_initialized = 0 ;
613
614 static void init_fec()
615 {
616 TICK(ticks[0]);
617 generate_gf();
618 TOCK(ticks[0]);
619 DDB(fprintf(stderr, "generate_gf took %ldus\n", ticks[0]);)
620 TICK(ticks[0]);
621 init_mul_table();
622 TOCK(ticks[0]);
623 DDB(fprintf(stderr, "init_mul_table took %ldus\n", ticks[0]);)
624 fec_initialized = 1 ;
625 }
626
627 /*
628 * This section contains the proper FEC encoding/decoding routines.
629 * The encoding matrix is computed starting with a Vandermonde matrix,
630 * and then transforming it into a systematic matrix.
631 */
632
633 struct fec_parms {
634 int k, n ; /* parameters of the code */
635 gf *enc_matrix ;
636 } ;
637
638 void
639 fec_free(struct fec_parms *p)
640 {
641 if (p==NULL) {
642 fprintf(stderr, "bad parameters to fec_free\n");
643 return ;
644 }
645 free(p->enc_matrix);
646 free(p);
647 }
648
649 /*
650 * create a new encoder, returning a descriptor. This contains k,n and
651 * the encoding matrix.
652 */
653 struct fec_parms *
654 fec_new(int k, int n)
655 {
656 int row, col ;
657 gf *p, *tmp_m ;
658
659 struct fec_parms *retval ;
660
661 if (fec_initialized == 0)
662 init_fec();
663
664 if (k > GF_SIZE + 1 || n > GF_SIZE + 1 || k > n ) {
665 fprintf(stderr, "Invalid parameters k %d n %d GF_SIZE %d\n",
666 k, n, GF_SIZE );
667 return NULL ;
668 }
669 retval = my_malloc(sizeof(struct fec_parms), "new_code");
670 retval->k = k ;
671 retval->n = n ;
672 retval->enc_matrix = NEW_GF_MATRIX(n, k);
673 tmp_m = NEW_GF_MATRIX(n, k);
674 /*
675 * fill the matrix with powers of field elements, starting from 0.
676 * The first row is special, cannot be computed with exp. table.
677 */
678 tmp_m[0] = 1 ;
679 for (col = 1; col < k ; col++)
680 tmp_m[col] = 0 ;
681 for (p = tmp_m + k, row = 0; row < n-1 ; row++, p += k) {
682 for ( col = 0 ; col < k ; col ++ )
683 p[col] = gf_exp[modnn(row*col)];
684 }
685
686 /*
687 * quick code to build systematic matrix: invert the top
688 * k*k vandermonde matrix, multiply right the bottom n-k rows
689 * by the inverse, and construct the identity matrix at the top.
690 */
691 TICK(ticks[3]);
692 invert_vdm(tmp_m, k); /* much faster than invert_mat */
693 matmul(tmp_m + k*k, tmp_m, retval->enc_matrix + k*k, n - k, k, k);
694 /*
695 * the upper matrix is I so do not bother with a slow multiply
696 */
697 bzero(retval->enc_matrix, k*k*sizeof(gf) );
698 for (p = retval->enc_matrix, col = 0 ; col < k ; col++, p += k+1 )
699 *p = 1 ;
700 free(tmp_m);
701 TOCK(ticks[3]);
702
703 DDB(fprintf(stderr, "--- %ld us to build encoding matrix\n",
704 ticks[3]);)
705 DEB(pr_matrix(retval->enc_matrix, n, k, "encoding_matrix");)
706 return retval ;
707 }
708
709 /*
710 * fec_encode accepts as input pointers to n data packets of size sz,
711 * and produces as output a packet pointed to by fec, computed
712 * with index "index".
713 */
714 void
715 fec_encode(struct fec_parms *code, gf *src[], gf *fec, int index, int sz)
716 {
717 int i, k = code->k ;
718 gf *p ;
719
720 if (GF_BITS > 8)
721 sz /= 2 ;
722
723 if (index < k)
724 bcopy(src[index], fec, sz*sizeof(gf) ) ;
725 else if (index < code->n) {
726 p = &(code->enc_matrix[index*k] );
727 bzero(fec, sz*sizeof(gf));
728 for (i = 0; i < k ; i++)
729 addmul(fec, src[i], p[i], sz ) ;
730 } else
731 fprintf(stderr, "Invalid index %d (max %d)\n",
732 index, code->n - 1 );
733 }
734
735 /*
736 * shuffle move src packets in their position
737 */
738 static int
739 shuffle(gf *pkt[], int index[], int k)
740 {
741 int i;
742
743 for ( i = 0 ; i < k ; ) {
744 if (index[i] >= k || index[i] == i)
745 i++ ;
746 else {
747 /*
748 * put pkt in the right position (first check for conflicts).
749 */
750 int c = index[i] ;
751
752 if (index[c] == c) {
753 DEB(fprintf(stderr, "\nshuffle, error at %d\n", i);)
754 return 1 ;
755 }
756 SWAP(index[i], index[c], int) ;
757 SWAP(pkt[i], pkt[c], gf *) ;
758 }
759 }
760 DEB( /* just test that it works... */
761 for ( i = 0 ; i < k ; i++ ) {
762 if (index[i] < k && index[i] != i) {
763 fprintf(stderr, "shuffle: after\n");
764 for (i=0; i<k ; i++) fprintf(stderr, "%3d ", index[i]);
765 fprintf(stderr, "\n");
766 return 1 ;
767 }
768 }
769 )
770 return 0 ;
771 }
772
773 /*
774 * build_decode_matrix constructs the encoding matrix given the
775 * indexes. The matrix must be already allocated as
776 * a vector of k*k elements, in row-major order
777 */
778 static gf *
779 build_decode_matrix(struct fec_parms *code, gf *pkt[], int index[])
780 {
781 int i , k = code->k ;
782 gf *p, *matrix = NEW_GF_MATRIX(k, k);
783
784 TICK(ticks[9]);
785 for (i = 0, p = matrix ; i < k ; i++, p += k ) {
786 #if 1 /* this is simply an optimization, not very useful indeed */
787 if (index[i] < k) {
788 bzero(p, k*sizeof(gf) );
789 p[i] = 1 ;
790 } else
791 #endif
792 if (index[i] < code->n )
793 bcopy( &(code->enc_matrix[index[i]*k]), p, k*sizeof(gf) );
794 else {
795 fprintf(stderr, "decode: invalid index %d (max %d)\n",
796 index[i], code->n - 1 );
797 free(matrix) ;
798 return NULL ;
799 }
800 }
801 TICK(ticks[9]);
802 if (invert_mat(matrix, k)) {
803 free(matrix);
804 matrix = NULL ;
805 }
806 TOCK(ticks[9]);
807 return matrix ;
808 }
809
810 /*
811 * fec_decode receives as input a vector of packets, the indexes of
812 * packets, and produces the correct vector as output.
813 *
814 * Input:
815 * code: pointer to code descriptor
816 * pkt: pointers to received packets. They are modified
817 * to store the output packets (in place)
818 * index: pointer to packet indexes (modified)
819 * sz: size of each packet
820 */
821 int
822 fec_decode(struct fec_parms *code, gf *pkt[], int index[], int sz)
823 {
824 gf *m_dec ;
825 gf **new_pkt ;
826 int row, col , k = code->k ;
827
828 if (GF_BITS > 8)
829 sz /= 2 ;
830
831 if (shuffle(pkt, index, k)) /* error if true */
832 return 1 ;
833 m_dec = build_decode_matrix(code, pkt, index);
834
835 if (m_dec == NULL)
836 return 1 ; /* error */
837 /*
838 * do the actual decoding
839 */
840 new_pkt = my_malloc (k * sizeof (gf * ), "new pkt pointers" );
841 for (row = 0 ; row < k ; row++ ) {
842 if (index[row] >= k) {
843 new_pkt[row] = my_malloc (sz * sizeof (gf), "new pkt buffer" );
844 bzero(new_pkt[row], sz * sizeof(gf) ) ;
845 for (col = 0 ; col < k ; col++ )
846 addmul(new_pkt[row], pkt[col], m_dec[row*k + col], sz) ;
847 }
848 }
849 /*
850 * move pkts to their final destination
851 */
852 for (row = 0 ; row < k ; row++ ) {
853 if (index[row] >= k) {
854 bcopy(new_pkt[row], pkt[row], sz*sizeof(gf));
855 free(new_pkt[row]);
856 index[row] = row;
857 }
858 }
859 free(new_pkt);
860 free(m_dec);
861
862 return 0;
863 }
864
865 /*********** end of FEC code -- beginning of test code ************/
866
867 #if (TEST || DEBUG)
868 void
869 test_gf()
870 {
871 int i ;
872 /*
873 * test gf tables. Sufficiently tested...
874 */
875 for (i=0; i<= GF_SIZE; i++) {
876 if (gf_exp[gf_log[i]] != i)
877 fprintf(stderr, "bad exp/log i %d log %d exp(log) %d\n",
878 i, gf_log[i], gf_exp[gf_log[i]]);
879
880 if (i != 0 && gf_mul(i, inverse[i]) != 1)
881 fprintf(stderr, "bad mul/inv i %d inv %d i*inv(i) %d\n",
882 i, inverse[i], gf_mul(i, inverse[i]) );
883 if (gf_mul(0,i) != 0)
884 fprintf(stderr, "bad mul table 0,%d\n",i);
885 if (gf_mul(i,0) != 0)
886 fprintf(stderr, "bad mul table %d,0\n",i);
887 }
888 }
889 #endif /* TEST */