ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-Fork-RPC/RPC.pm
Revision: 1.29
Committed: Sun Aug 25 21:52:15 2013 UTC (10 years, 9 months ago) by root
Branch: MAIN
Changes since 1.28: +61 -10 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     AnyEvent::Fork::RPC - simple RPC extension for AnyEvent::Fork
4    
5     =head1 SYNOPSIS
6    
7 root 1.27 use AnyEvent::Fork;
8 root 1.1 use AnyEvent::Fork::RPC;
9    
10     my $rpc = AnyEvent::Fork
11     ->new
12     ->require ("MyModule")
13     ->AnyEvent::Fork::RPC::run (
14     "MyModule::server",
15     );
16    
17 root 1.16 use AnyEvent;
18    
19 root 1.1 my $cv = AE::cv;
20    
21     $rpc->(1, 2, 3, sub {
22     print "MyModule::server returned @_\n";
23     $cv->send;
24     });
25    
26     $cv->recv;
27    
28     =head1 DESCRIPTION
29    
30     This module implements a simple RPC protocol and backend for processes
31 root 1.29 created via L<AnyEvent::Fork> or L<AnyEvent::Fork::Remote>, allowing you
32 root 1.26 to call a function in the child process and receive its return values (up
33     to 4GB serialised).
34 root 1.1
35     It implements two different backends: a synchronous one that works like a
36     normal function call, and an asynchronous one that can run multiple jobs
37     concurrently in the child, using AnyEvent.
38    
39     It also implements an asynchronous event mechanism from the child to the
40     parent, that could be used for progress indications or other information.
41    
42 root 1.4 =head1 EXAMPLES
43    
44 root 1.10 =head2 Example 1: Synchronous Backend
45 root 1.4
46     Here is a simple example that implements a backend that executes C<unlink>
47     and C<rmdir> calls, and reports their status back. It also reports the
48     number of requests it has processed every three requests, which is clearly
49     silly, but illustrates the use of events.
50    
51     First the parent process:
52    
53     use AnyEvent;
54 root 1.27 use AnyEvent::Fork;
55 root 1.4 use AnyEvent::Fork::RPC;
56    
57     my $done = AE::cv;
58    
59     my $rpc = AnyEvent::Fork
60     ->new
61     ->require ("MyWorker")
62     ->AnyEvent::Fork::RPC::run ("MyWorker::run",
63 root 1.29 on_error => sub { warn "ERROR: $_[0]"; exit 1 },
64 root 1.4 on_event => sub { warn "$_[0] requests handled\n" },
65     on_destroy => $done,
66     );
67    
68     for my $id (1..6) {
69     $rpc->(rmdir => "/tmp/somepath/$id", sub {
70     $_[0]
71     or warn "/tmp/somepath/$id: $_[1]\n";
72     });
73     }
74    
75     undef $rpc;
76    
77     $done->recv;
78    
79     The parent creates the process, queues a few rmdir's. It then forgets
80     about the C<$rpc> object, so that the child exits after it has handled the
81     requests, and then it waits till the requests have been handled.
82    
83     The child is implemented using a separate module, C<MyWorker>, shown here:
84    
85     package MyWorker;
86    
87     my $count;
88    
89     sub run {
90     my ($cmd, $path) = @_;
91    
92     AnyEvent::Fork::RPC::event ($count)
93     unless ++$count % 3;
94    
95     my $status = $cmd eq "rmdir" ? rmdir $path
96     : $cmd eq "unlink" ? unlink $path
97     : die "fatal error, illegal command '$cmd'";
98    
99     $status or (0, "$!")
100     }
101    
102     1
103    
104     The C<run> function first sends a "progress" event every three calls, and
105     then executes C<rmdir> or C<unlink>, depending on the first parameter (or
106     dies with a fatal error - obviously, you must never let this happen :).
107    
108     Eventually it returns the status value true if the command was successful,
109     or the status value 0 and the stringified error message.
110    
111 root 1.6 On my system, running the first code fragment with the given
112 root 1.4 F<MyWorker.pm> in the current directory yields:
113    
114     /tmp/somepath/1: No such file or directory
115     /tmp/somepath/2: No such file or directory
116     3 requests handled
117     /tmp/somepath/3: No such file or directory
118     /tmp/somepath/4: No such file or directory
119     /tmp/somepath/5: No such file or directory
120     6 requests handled
121     /tmp/somepath/6: No such file or directory
122    
123     Obviously, none of the directories I am trying to delete even exist. Also,
124     the events and responses are processed in exactly the same order as
125     they were created in the child, which is true for both synchronous and
126     asynchronous backends.
127    
128     Note that the parentheses in the call to C<AnyEvent::Fork::RPC::event> are
129     not optional. That is because the function isn't defined when the code is
130     compiled. You can make sure it is visible by pre-loading the correct
131     backend module in the call to C<require>:
132    
133     ->require ("AnyEvent::Fork::RPC::Sync", "MyWorker")
134    
135     Since the backend module declares the C<event> function, loading it first
136     ensures that perl will correctly interpret calls to it.
137    
138     And as a final remark, there is a fine module on CPAN that can
139     asynchronously C<rmdir> and C<unlink> and a lot more, and more efficiently
140     than this example, namely L<IO::AIO>.
141    
142 root 1.10 =head3 Example 1a: the same with the asynchronous backend
143    
144     This example only shows what needs to be changed to use the async backend
145     instead. Doing this is not very useful, the purpose of this example is
146     to show the minimum amount of change that is required to go from the
147     synchronous to the asynchronous backend.
148    
149     To use the async backend in the previous example, you need to add the
150     C<async> parameter to the C<AnyEvent::Fork::RPC::run> call:
151    
152     ->AnyEvent::Fork::RPC::run ("MyWorker::run",
153     async => 1,
154     ...
155    
156     And since the function call protocol is now changed, you need to adopt
157     C<MyWorker::run> to the async API.
158    
159     First, you need to accept the extra initial C<$done> callback:
160    
161     sub run {
162     my ($done, $cmd, $path) = @_;
163    
164     And since a response is now generated when C<$done> is called, as opposed
165     to when the function returns, we need to call the C<$done> function with
166     the status:
167    
168     $done->($status or (0, "$!"));
169    
170     A few remarks are in order. First, it's quite pointless to use the async
171     backend for this example - but it I<is> possible. Second, you can call
172     C<$done> before or after returning from the function. Third, having both
173     returned from the function and having called the C<$done> callback, the
174     child process may exit at any time, so you should call C<$done> only when
175     you really I<are> done.
176    
177     =head2 Example 2: Asynchronous Backend
178    
179 root 1.11 This example implements multiple count-downs in the child, using
180     L<AnyEvent> timers. While this is a bit silly (one could use timers in te
181     parent just as well), it illustrates the ability to use AnyEvent in the
182     child and the fact that responses can arrive in a different order then the
183     requests.
184    
185     It also shows how to embed the actual child code into a C<__DATA__>
186     section, so it doesn't need any external files at all.
187    
188     And when your parent process is often busy, and you have stricter timing
189     requirements, then running timers in a child process suddenly doesn't look
190     so silly anymore.
191    
192     Without further ado, here is the code:
193    
194     use AnyEvent;
195 root 1.27 use AnyEvent::Fork;
196 root 1.11 use AnyEvent::Fork::RPC;
197    
198     my $done = AE::cv;
199    
200     my $rpc = AnyEvent::Fork
201     ->new
202     ->require ("AnyEvent::Fork::RPC::Async")
203     ->eval (do { local $/; <DATA> })
204     ->AnyEvent::Fork::RPC::run ("run",
205     async => 1,
206 root 1.29 on_error => sub { warn "ERROR: $_[0]"; exit 1 },
207 root 1.11 on_event => sub { print $_[0] },
208     on_destroy => $done,
209     );
210    
211     for my $count (3, 2, 1) {
212     $rpc->($count, sub {
213     warn "job $count finished\n";
214     });
215     }
216    
217     undef $rpc;
218    
219     $done->recv;
220    
221     __DATA__
222    
223     # this ends up in main, as we don't use a package declaration
224    
225     use AnyEvent;
226    
227     sub run {
228     my ($done, $count) = @_;
229    
230     my $n;
231    
232     AnyEvent::Fork::RPC::event "starting to count up to $count\n";
233    
234     my $w; $w = AE::timer 1, 1, sub {
235     ++$n;
236    
237     AnyEvent::Fork::RPC::event "count $n of $count\n";
238    
239     if ($n == $count) {
240     undef $w;
241     $done->();
242     }
243     };
244     }
245    
246     The parent part (the one before the C<__DATA__> section) isn't very
247     different from the earlier examples. It sets async mode, preloads
248     the backend module (so the C<AnyEvent::Fork::RPC::event> function is
249     declared), uses a slightly different C<on_event> handler (which we use
250     simply for logging purposes) and then, instead of loading a module with
251     the actual worker code, it C<eval>'s the code from the data section in the
252     child process.
253    
254     It then starts three countdowns, from 3 to 1 seconds downwards, destroys
255     the rpc object so the example finishes eventually, and then just waits for
256     the stuff to trickle in.
257    
258     The worker code uses the event function to log some progress messages, but
259     mostly just creates a recurring one-second timer.
260    
261     The timer callback increments a counter, logs a message, and eventually,
262     when the count has been reached, calls the finish callback.
263    
264     On my system, this results in the following output. Since all timers fire
265     at roughly the same time, the actual order isn't guaranteed, but the order
266     shown is very likely what you would get, too.
267    
268     starting to count up to 3
269     starting to count up to 2
270     starting to count up to 1
271     count 1 of 3
272     count 1 of 2
273     count 1 of 1
274     job 1 finished
275     count 2 of 2
276     job 2 finished
277     count 2 of 3
278     count 3 of 3
279     job 3 finished
280    
281     While the overall ordering isn't guaranteed, the async backend still
282     guarantees that events and responses are delivered to the parent process
283     in the exact same ordering as they were generated in the child process.
284    
285     And unless your system is I<very> busy, it should clearly show that the
286     job started last will finish first, as it has the lowest count.
287    
288     This concludes the async example. Since L<AnyEvent::Fork> does not
289     actually fork, you are free to use about any module in the child, not just
290     L<AnyEvent>, but also L<IO::AIO>, or L<Tk> for example.
291 root 1.10
292 root 1.29 =head2 Example 3: Asynchronous backend with Coro
293    
294     With L<Coro> you can create a nice asynchronous backend implementation by
295     defining an rpc server function that creates a new Coro thread for every
296     request that calls a function "normally", i.e. the parameters from the
297     parent process are passed to it, and any return values are returned to the
298     parent process, e.g.:
299    
300     package My::Arith;
301    
302     sub add {
303     return $_[0] + $_[1];
304     }
305    
306     sub mul {
307     return $_[0] * $_[1];
308     }
309    
310     sub run {
311     my ($done, $func, @arg) = @_;
312    
313     Coro::async_pool {
314     $done->($func->(@arg));
315     };
316     }
317    
318     The C<run> function creates a new thread for every invocation, using the
319     first argument as function name, and calls the C<$done> callback on it's
320     return values. This makes it quite natural to define the C<add> and C<mul>
321     functions to add or multiply two numbers and return the result.
322    
323     Since this is the asynchronous backend, it's quite possible to define RPC
324     function that do I/O or wait for external events - their execution will
325     overlap as needed.
326    
327     The above could be used like this:
328    
329     my $rpc = AnyEvent::Fork
330     ->new
331     ->require ("MyWorker")
332     ->AnyEvent::Fork::RPC::run ("My::Arith::run",
333     on_error => ..., on_event => ..., on_destroy => ...,
334     );
335    
336     $rpc->(add => 1, 3, Coro::rouse_cb); say Coro::rouse_wait;
337     $rpc->(mul => 3, 2, Coro::rouse_cb); say Coro::rouse_wait;
338    
339     The C<say>'s will print C<4> and C<6>.
340    
341 root 1.1 =head1 PARENT PROCESS USAGE
342    
343     This module exports nothing, and only implements a single function:
344    
345     =over 4
346    
347     =cut
348    
349     package AnyEvent::Fork::RPC;
350    
351     use common::sense;
352    
353     use Errno ();
354     use Guard ();
355    
356     use AnyEvent;
357    
358 root 1.25 our $VERSION = 1.1;
359 root 1.1
360     =item my $rpc = AnyEvent::Fork::RPC::run $fork, $function, [key => value...]
361    
362     The traditional way to call it. But it is way cooler to call it in the
363     following way:
364    
365     =item my $rpc = $fork->AnyEvent::Fork::RPC::run ($function, [key => value...])
366    
367     This C<run> function/method can be used in place of the
368     L<AnyEvent::Fork::run> method. Just like that method, it takes over
369     the L<AnyEvent::Fork> process, but instead of calling the specified
370     C<$function> directly, it runs a server that accepts RPC calls and handles
371     responses.
372    
373     It returns a function reference that can be used to call the function in
374     the child process, handling serialisation and data transfers.
375    
376     The following key/value pairs are allowed. It is recommended to have at
377     least an C<on_error> or C<on_event> handler set.
378    
379     =over 4
380    
381     =item on_error => $cb->($msg)
382    
383     Called on (fatal) errors, with a descriptive (hopefully) message. If
384     this callback is not provided, but C<on_event> is, then the C<on_event>
385     callback is called with the first argument being the string C<error>,
386     followed by the error message.
387    
388 root 1.29 If neither handler is provided, then the error is reported with loglevel
389     C<error> via C<AE::log>.
390 root 1.1
391     =item on_event => $cb->(...)
392    
393     Called for every call to the C<AnyEvent::Fork::RPC::event> function in the
394     child, with the arguments of that function passed to the callback.
395    
396     Also called on errors when no C<on_error> handler is provided.
397    
398 root 1.4 =item on_destroy => $cb->()
399    
400     Called when the C<$rpc> object has been destroyed and all requests have
401     been successfully handled. This is useful when you queue some requests and
402     want the child to go away after it has handled them. The problem is that
403     the parent must not exit either until all requests have been handled, and
404 root 1.6 this can be accomplished by waiting for this callback.
405 root 1.4
406 root 1.1 =item init => $function (default none)
407    
408     When specified (by name), this function is called in the child as the very
409     first thing when taking over the process, with all the arguments normally
410     passed to the C<AnyEvent::Fork::run> function, except the communications
411     socket.
412    
413     It can be used to do one-time things in the child such as storing passed
414     parameters or opening database connections.
415    
416 root 1.4 It is called very early - before the serialisers are created or the
417     C<$function> name is resolved into a function reference, so it could be
418     used to load any modules that provide the serialiser or function. It can
419     not, however, create events.
420    
421 root 1.1 =item async => $boolean (default: 0)
422    
423     The default server used in the child does all I/O blockingly, and only
424     allows a single RPC call to execute concurrently.
425    
426     Setting C<async> to a true value switches to another implementation that
427 root 1.15 uses L<AnyEvent> in the child and allows multiple concurrent RPC calls (it
428     does not support recursion in the event loop however, blocking condvar
429     calls will fail).
430 root 1.1
431     The actual API in the child is documented in the section that describes
432     the calling semantics of the returned C<$rpc> function.
433    
434 root 1.2 If you want to pre-load the actual back-end modules to enable memory
435     sharing, then you should load C<AnyEvent::Fork::RPC::Sync> for
436     synchronous, and C<AnyEvent::Fork::RPC::Async> for asynchronous mode.
437    
438 root 1.4 If you use a template process and want to fork both sync and async
439 root 1.6 children, then it is permissible to load both modules.
440 root 1.4
441 root 1.14 =item serialiser => $string (default: $AnyEvent::Fork::RPC::STRING_SERIALISER)
442 root 1.1
443     All arguments, result data and event data have to be serialised to be
444     transferred between the processes. For this, they have to be frozen and
445     thawed in both parent and child processes.
446    
447     By default, only octet strings can be passed between the processes, which
448 root 1.14 is reasonably fast and efficient and requires no extra modules.
449 root 1.1
450     For more complicated use cases, you can provide your own freeze and thaw
451     functions, by specifying a string with perl source code. It's supposed to
452     return two code references when evaluated: the first receives a list of
453     perl values and must return an octet string. The second receives the octet
454     string and must return the original list of values.
455    
456 root 1.2 If you need an external module for serialisation, then you can either
457     pre-load it into your L<AnyEvent::Fork> process, or you can add a C<use>
458     or C<require> statement into the serialiser string. Or both.
459    
460 root 1.14 Here are some examples - some of them are also available as global
461     variables that make them easier to use.
462    
463     =over 4
464    
465     =item octet strings - C<$AnyEvent::Fork::RPC::STRING_SERIALISER>
466    
467     This serialiser concatenates length-prefixes octet strings, and is the
468 root 1.29 default. That means you can only pass (and return) strings containing
469     character codes 0-255.
470 root 1.14
471     Implementation:
472    
473     (
474     sub { pack "(w/a*)*", @_ },
475     sub { unpack "(w/a*)*", shift }
476     )
477    
478     =item json - C<$AnyEvent::Fork::RPC::JSON_SERIALISER>
479    
480     This serialiser creates JSON arrays - you have to make sure the L<JSON>
481     module is installed for this serialiser to work. It can be beneficial for
482     sharing when you preload the L<JSON> module in a template process.
483    
484     L<JSON> (with L<JSON::XS> installed) is slower than the octet string
485     serialiser, but usually much faster than L<Storable>, unless big chunks of
486     binary data need to be transferred.
487    
488     Implementation:
489    
490     use JSON ();
491     (
492     sub { JSON::encode_json \@_ },
493     sub { @{ JSON::decode_json shift } }
494     )
495    
496     =item storable - C<$AnyEvent::Fork::RPC::STORABLE_SERIALISER>
497    
498     This serialiser uses L<Storable>, which means it has high chance of
499     serialising just about anything you throw at it, at the cost of having
500 root 1.29 very high overhead per operation. It also comes with perl. It should be
501     used when you need to serialise complex data structures.
502 root 1.14
503     Implementation:
504    
505     use Storable ();
506     (
507     sub { Storable::freeze \@_ },
508     sub { @{ Storable::thaw shift } }
509     )
510    
511 root 1.28 =item portable storable - C<$AnyEvent::Fork::RPC::NSTORABLE_SERIALISER>
512    
513     This serialiser also uses L<Storable>, but uses it's "network" format
514 root 1.29 to serialise data, which makes it possible to talk to different
515     perl binaries (for example, when talking to a process created with
516 root 1.28 L<AnyEvent::Fork::Remote>).
517    
518     Implementation:
519    
520     use Storable ();
521     (
522     sub { Storable::nfreeze \@_ },
523     sub { @{ Storable::thaw shift } }
524     )
525    
526 root 1.14 =back
527    
528 root 1.1 =back
529    
530 root 1.9 See the examples section earlier in this document for some actual
531     examples.
532 root 1.8
533 root 1.1 =cut
534    
535 root 1.28 our $STRING_SERIALISER = '(sub { pack "(w/a*)*", @_ }, sub { unpack "(w/a*)*", shift })';
536     our $JSON_SERIALISER = 'use JSON (); (sub { JSON::encode_json \@_ }, sub { @{ JSON::decode_json shift } })';
537     our $STORABLE_SERIALISER = 'use Storable (); (sub { Storable::freeze \@_ }, sub { @{ Storable::thaw shift } })';
538     our $NSTORABLE_SERIALISER = 'use Storable (); (sub { Storable::nfreeze \@_ }, sub { @{ Storable::thaw shift } })';
539 root 1.2
540 root 1.1 sub run {
541     my ($self, $function, %arg) = @_;
542    
543 root 1.2 my $serialiser = delete $arg{serialiser} || $STRING_SERIALISER;
544 root 1.1 my $on_event = delete $arg{on_event};
545     my $on_error = delete $arg{on_error};
546 root 1.4 my $on_destroy = delete $arg{on_destroy};
547 root 1.1
548     # default for on_error is to on_event, if specified
549     $on_error ||= $on_event
550     ? sub { $on_event->(error => shift) }
551 root 1.29 : sub { AE::log die => "AnyEvent::Fork::RPC: uncaught error: $_[0]." };
552 root 1.1
553     # default for on_event is to raise an error
554     $on_event ||= sub { $on_error->("event received, but no on_event handler") };
555    
556     my ($f, $t) = eval $serialiser; die $@ if $@;
557    
558 root 1.9 my (@rcb, %rcb, $fh, $shutdown, $wbuf, $ww);
559     my ($rlen, $rbuf, $rw) = 512 - 16;
560 root 1.1
561     my $wcb = sub {
562     my $len = syswrite $fh, $wbuf;
563    
564 root 1.9 unless (defined $len) {
565 root 1.1 if ($! != Errno::EAGAIN && $! != Errno::EWOULDBLOCK) {
566     undef $rw; undef $ww; # it ends here
567     $on_error->("$!");
568     }
569     }
570    
571     substr $wbuf, 0, $len, "";
572    
573     unless (length $wbuf) {
574     undef $ww;
575     $shutdown and shutdown $fh, 1;
576     }
577     };
578    
579     my $module = "AnyEvent::Fork::RPC::" . ($arg{async} ? "Async" : "Sync");
580    
581     $self->require ($module)
582     ->send_arg ($function, $arg{init}, $serialiser)
583     ->run ("$module\::run", sub {
584     $fh = shift;
585 root 1.9
586     my ($id, $len);
587 root 1.1 $rw = AE::io $fh, 0, sub {
588 root 1.4 $rlen = $rlen * 2 + 16 if $rlen - 128 < length $rbuf;
589 root 1.9 $len = sysread $fh, $rbuf, $rlen - length $rbuf, length $rbuf;
590 root 1.1
591     if ($len) {
592 root 1.9 while (8 <= length $rbuf) {
593 root 1.24 ($id, $len) = unpack "NN", $rbuf;
594 root 1.9 8 + $len <= length $rbuf
595 root 1.2 or last;
596    
597 root 1.9 my @r = $t->(substr $rbuf, 8, $len);
598     substr $rbuf, 0, 8 + $len, "";
599    
600     if ($id) {
601     if (@rcb) {
602     (shift @rcb)->(@r);
603     } elsif (my $cb = delete $rcb{$id}) {
604     $cb->(@r);
605     } else {
606     undef $rw; undef $ww;
607     $on_error->("unexpected data from child");
608     }
609     } else {
610 root 1.2 $on_event->(@r);
611 root 1.1 }
612     }
613     } elsif (defined $len) {
614     undef $rw; undef $ww; # it ends here
615 root 1.4
616 root 1.9 if (@rcb || %rcb) {
617 root 1.4 $on_error->("unexpected eof");
618     } else {
619 root 1.20 $on_destroy->()
620     if $on_destroy;
621 root 1.4 }
622 root 1.1 } elsif ($! != Errno::EAGAIN && $! != Errno::EWOULDBLOCK) {
623     undef $rw; undef $ww; # it ends here
624     $on_error->("read: $!");
625     }
626     };
627    
628     $ww ||= AE::io $fh, 1, $wcb;
629     });
630    
631     my $guard = Guard::guard {
632     $shutdown = 1;
633 root 1.18
634 root 1.19 shutdown $fh, 1 if $fh && !$ww;
635 root 1.1 };
636    
637 root 1.9 my $id;
638 root 1.1
639 root 1.9 $arg{async}
640     ? sub {
641     $id = ($id == 0xffffffff ? 0 : $id) + 1;
642     $id = ($id == 0xffffffff ? 0 : $id) + 1 while exists $rcb{$id}; # rarely loops
643 root 1.1
644 root 1.9 $rcb{$id} = pop;
645    
646 root 1.20 $guard if 0; # keep it alive
647 root 1.9
648 root 1.24 $wbuf .= pack "NN/a*", $id, &$f;
649 root 1.9 $ww ||= $fh && AE::io $fh, 1, $wcb;
650     }
651     : sub {
652     push @rcb, pop;
653    
654     $guard; # keep it alive
655    
656 root 1.24 $wbuf .= pack "N/a*", &$f;
657 root 1.9 $ww ||= $fh && AE::io $fh, 1, $wcb;
658     }
659 root 1.1 }
660    
661 root 1.4 =item $rpc->(..., $cb->(...))
662    
663     The RPC object returned by C<AnyEvent::Fork::RPC::run> is actually a code
664     reference. There are two things you can do with it: call it, and let it go
665     out of scope (let it get destroyed).
666    
667     If C<async> was false when C<$rpc> was created (the default), then, if you
668     call C<$rpc>, the C<$function> is invoked with all arguments passed to
669     C<$rpc> except the last one (the callback). When the function returns, the
670     callback will be invoked with all the return values.
671    
672     If C<async> was true, then the C<$function> receives an additional
673     initial argument, the result callback. In this case, returning from
674     C<$function> does nothing - the function only counts as "done" when the
675     result callback is called, and any arguments passed to it are considered
676     the return values. This makes it possible to "return" from event handlers
677     or e.g. Coro threads.
678    
679     The other thing that can be done with the RPC object is to destroy it. In
680     this case, the child process will execute all remaining RPC calls, report
681     their results, and then exit.
682    
683 root 1.8 See the examples section earlier in this document for some actual
684     examples.
685    
686 root 1.1 =back
687    
688     =head1 CHILD PROCESS USAGE
689    
690 root 1.4 The following function is not available in this module. They are only
691     available in the namespace of this module when the child is running,
692     without having to load any extra modules. They are part of the child-side
693     API of L<AnyEvent::Fork::RPC>.
694 root 1.1
695     =over 4
696    
697     =item AnyEvent::Fork::RPC::event ...
698    
699     Send an event to the parent. Events are a bit like RPC calls made by the
700     child process to the parent, except that there is no notion of return
701     values.
702    
703 root 1.8 See the examples section earlier in this document for some actual
704     examples.
705    
706 root 1.1 =back
707    
708 root 1.12 =head1 ADVANCED TOPICS
709    
710     =head2 Choosing a backend
711    
712     So how do you decide which backend to use? Well, that's your problem to
713     solve, but here are some thoughts on the matter:
714    
715     =over 4
716    
717     =item Synchronous
718    
719     The synchronous backend does not rely on any external modules (well,
720     except L<common::sense>, which works around a bug in how perl's warning
721     system works). This keeps the process very small, for example, on my
722     system, an empty perl interpreter uses 1492kB RSS, which becomes 2020kB
723     after C<use warnings; use strict> (for people who grew up with C64s around
724     them this is probably shocking every single time they see it). The worker
725     process in the first example in this document uses 1792kB.
726    
727     Since the calls are done synchronously, slow jobs will keep newer jobs
728     from executing.
729    
730     The synchronous backend also has no overhead due to running an event loop
731     - reading requests is therefore very efficient, while writing responses is
732     less so, as every response results in a write syscall.
733    
734     If the parent process is busy and a bit slow reading responses, the child
735     waits instead of processing further requests. This also limits the amount
736     of memory needed for buffering, as never more than one response has to be
737     buffered.
738    
739     The API in the child is simple - you just have to define a function that
740     does something and returns something.
741    
742     It's hard to use modules or code that relies on an event loop, as the
743     child cannot execute anything while it waits for more input.
744    
745     =item Asynchronous
746    
747     The asynchronous backend relies on L<AnyEvent>, which tries to be small,
748     but still comes at a price: On my system, the worker from example 1a uses
749     3420kB RSS (for L<AnyEvent>, which loads L<EV>, which needs L<XSLoader>
750     which in turn loads a lot of other modules such as L<warnings>, L<strict>,
751     L<vars>, L<Exporter>...).
752    
753     It batches requests and responses reasonably efficiently, doing only as
754     few reads and writes as needed, but needs to poll for events via the event
755     loop.
756    
757     Responses are queued when the parent process is busy. This means the child
758     can continue to execute any queued requests. It also means that a child
759     might queue a lot of responses in memory when it generates them and the
760     parent process is slow accepting them.
761    
762     The API is not a straightforward RPC pattern - you have to call a
763     "done" callback to pass return values and signal completion. Also, more
764     importantly, the API starts jobs as fast as possible - when 1000 jobs
765     are queued and the jobs are slow, they will all run concurrently. The
766     child must implement some queueing/limiting mechanism if this causes
767     problems. Alternatively, the parent could limit the amount of rpc calls
768     that are outstanding.
769    
770 root 1.15 Blocking use of condvars is not supported.
771    
772 root 1.12 Using event-based modules such as L<IO::AIO>, L<Gtk2>, L<Tk> and so on is
773     easy.
774    
775     =back
776    
777     =head2 Passing file descriptors
778    
779     Unlike L<AnyEvent::Fork>, this module has no in-built file handle or file
780     descriptor passing abilities.
781    
782     The reason is that passing file descriptors is extraordinary tricky
783     business, and conflicts with efficient batching of messages.
784    
785     There still is a method you can use: Create a
786     C<AnyEvent::Util::portable_socketpair> and C<send_fh> one half of it to
787     the process before you pass control to C<AnyEvent::Fork::RPC::run>.
788    
789     Whenever you want to pass a file descriptor, send an rpc request to the
790     child process (so it expects the descriptor), then send it over the other
791     half of the socketpair. The child should fetch the descriptor from the
792     half it has passed earlier.
793    
794     Here is some (untested) pseudocode to that effect:
795    
796     use AnyEvent::Util;
797 root 1.27 use AnyEvent::Fork;
798 root 1.12 use AnyEvent::Fork::RPC;
799     use IO::FDPass;
800    
801     my ($s1, $s2) = AnyEvent::Util::portable_socketpair;
802    
803     my $rpc = AnyEvent::Fork
804     ->new
805     ->send_fh ($s2)
806     ->require ("MyWorker")
807     ->AnyEvent::Fork::RPC::run ("MyWorker::run"
808     init => "MyWorker::init",
809     );
810    
811     undef $s2; # no need to keep it around
812    
813     # pass an fd
814     $rpc->("i'll send some fd now, please expect it!", my $cv = AE::cv);
815    
816     IO::FDPass fileno $s1, fileno $handle_to_pass;
817    
818     $cv->recv;
819    
820     The MyWorker module could look like this:
821    
822     package MyWorker;
823    
824     use IO::FDPass;
825    
826     my $s2;
827    
828     sub init {
829     $s2 = $_[0];
830     }
831    
832     sub run {
833     if ($_[0] eq "i'll send some fd now, please expect it!") {
834     my $fd = IO::FDPass::recv fileno $s2;
835     ...
836     }
837     }
838    
839     Of course, this might be blocking if you pass a lot of file descriptors,
840     so you might want to look into L<AnyEvent::FDpasser> which can handle the
841     gory details.
842    
843 root 1.21 =head1 EXCEPTIONS
844    
845     There are no provisions whatsoever for catching exceptions at this time -
846     in the child, exeptions might kill the process, causing calls to be lost
847     and the parent encountering a fatal error. In the parent, exceptions in
848     the result callback will not be caught and cause undefined behaviour.
849    
850 root 1.1 =head1 SEE ALSO
851    
852 root 1.16 L<AnyEvent::Fork>, to create the processes in the first place.
853    
854 root 1.27 L<AnyEvent::Fork::Remote>, likewise, but helpful for remote processes.
855 root 1.26
856 root 1.16 L<AnyEvent::Fork::Pool>, to manage whole pools of processes.
857 root 1.1
858     =head1 AUTHOR AND CONTACT INFORMATION
859    
860     Marc Lehmann <schmorp@schmorp.de>
861     http://software.schmorp.de/pkg/AnyEvent-Fork-RPC
862    
863     =cut
864    
865     1
866