ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-Fork-RPC/RPC.pm
(Generate patch)

Comparing AnyEvent-Fork-RPC/RPC.pm (file contents):
Revision 1.15 by root, Thu Apr 18 13:15:23 2013 UTC vs.
Revision 1.36 by root, Sat Nov 30 17:41:46 2013 UTC

2 2
3AnyEvent::Fork::RPC - simple RPC extension for AnyEvent::Fork 3AnyEvent::Fork::RPC - simple RPC extension for AnyEvent::Fork
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use AnyEvent::Fork;
7 use AnyEvent::Fork::RPC; 8 use AnyEvent::Fork::RPC;
8 # use AnyEvent::Fork is not needed
9 9
10 my $rpc = AnyEvent::Fork 10 my $rpc = AnyEvent::Fork
11 ->new 11 ->new
12 ->require ("MyModule") 12 ->require ("MyModule")
13 ->AnyEvent::Fork::RPC::run ( 13 ->AnyEvent::Fork::RPC::run (
14 "MyModule::server", 14 "MyModule::server",
15 ); 15 );
16 16
17 use AnyEvent;
18
17 my $cv = AE::cv; 19 my $cv = AE::cv;
18 20
19 $rpc->(1, 2, 3, sub { 21 $rpc->(1, 2, 3, sub {
20 print "MyModule::server returned @_\n"; 22 print "MyModule::server returned @_\n";
21 $cv->send; 23 $cv->send;
24 $cv->recv; 26 $cv->recv;
25 27
26=head1 DESCRIPTION 28=head1 DESCRIPTION
27 29
28This module implements a simple RPC protocol and backend for processes 30This module implements a simple RPC protocol and backend for processes
29created via L<AnyEvent::Fork>, allowing you to call a function in the 31created via L<AnyEvent::Fork> or L<AnyEvent::Fork::Remote>, allowing you
30child process and receive its return values (up to 4GB serialised). 32to call a function in the child process and receive its return values (up
33to 4GB serialised).
31 34
32It implements two different backends: a synchronous one that works like a 35It implements two different backends: a synchronous one that works like a
33normal function call, and an asynchronous one that can run multiple jobs 36normal function call, and an asynchronous one that can run multiple jobs
34concurrently in the child, using AnyEvent. 37concurrently in the child, using AnyEvent.
35 38
36It also implements an asynchronous event mechanism from the child to the 39It also implements an asynchronous event mechanism from the child to the
37parent, that could be used for progress indications or other information. 40parent, that could be used for progress indications or other information.
38
39Loading this module also always loads L<AnyEvent::Fork>, so you can make a
40separate C<use AnyEvent::Fork> if you wish, but you don't have to.
41 41
42=head1 EXAMPLES 42=head1 EXAMPLES
43 43
44=head2 Example 1: Synchronous Backend 44=head2 Example 1: Synchronous Backend
45 45
49silly, but illustrates the use of events. 49silly, but illustrates the use of events.
50 50
51First the parent process: 51First the parent process:
52 52
53 use AnyEvent; 53 use AnyEvent;
54 use AnyEvent::Fork;
54 use AnyEvent::Fork::RPC; 55 use AnyEvent::Fork::RPC;
55 56
56 my $done = AE::cv; 57 my $done = AE::cv;
57 58
58 my $rpc = AnyEvent::Fork 59 my $rpc = AnyEvent::Fork
59 ->new 60 ->new
60 ->require ("MyWorker") 61 ->require ("MyWorker")
61 ->AnyEvent::Fork::RPC::run ("MyWorker::run", 62 ->AnyEvent::Fork::RPC::run ("MyWorker::run",
62 on_error => sub { warn "FATAL: $_[0]"; exit 1 }, 63 on_error => sub { warn "ERROR: $_[0]"; exit 1 },
63 on_event => sub { warn "$_[0] requests handled\n" }, 64 on_event => sub { warn "$_[0] requests handled\n" },
64 on_destroy => $done, 65 on_destroy => $done,
65 ); 66 );
66 67
67 for my $id (1..6) { 68 for my $id (1..6) {
174you really I<are> done. 175you really I<are> done.
175 176
176=head2 Example 2: Asynchronous Backend 177=head2 Example 2: Asynchronous Backend
177 178
178This example implements multiple count-downs in the child, using 179This example implements multiple count-downs in the child, using
179L<AnyEvent> timers. While this is a bit silly (one could use timers in te 180L<AnyEvent> timers. While this is a bit silly (one could use timers in the
180parent just as well), it illustrates the ability to use AnyEvent in the 181parent just as well), it illustrates the ability to use AnyEvent in the
181child and the fact that responses can arrive in a different order then the 182child and the fact that responses can arrive in a different order then the
182requests. 183requests.
183 184
184It also shows how to embed the actual child code into a C<__DATA__> 185It also shows how to embed the actual child code into a C<__DATA__>
189so silly anymore. 190so silly anymore.
190 191
191Without further ado, here is the code: 192Without further ado, here is the code:
192 193
193 use AnyEvent; 194 use AnyEvent;
195 use AnyEvent::Fork;
194 use AnyEvent::Fork::RPC; 196 use AnyEvent::Fork::RPC;
195 197
196 my $done = AE::cv; 198 my $done = AE::cv;
197 199
198 my $rpc = AnyEvent::Fork 200 my $rpc = AnyEvent::Fork
199 ->new 201 ->new
200 ->require ("AnyEvent::Fork::RPC::Async") 202 ->require ("AnyEvent::Fork::RPC::Async")
201 ->eval (do { local $/; <DATA> }) 203 ->eval (do { local $/; <DATA> })
202 ->AnyEvent::Fork::RPC::run ("run", 204 ->AnyEvent::Fork::RPC::run ("run",
203 async => 1, 205 async => 1,
204 on_error => sub { warn "FATAL: $_[0]"; exit 1 }, 206 on_error => sub { warn "ERROR: $_[0]"; exit 1 },
205 on_event => sub { print $_[0] }, 207 on_event => sub { print $_[0] },
206 on_destroy => $done, 208 on_destroy => $done,
207 ); 209 );
208 210
209 for my $count (3, 2, 1) { 211 for my $count (3, 2, 1) {
285 287
286This concludes the async example. Since L<AnyEvent::Fork> does not 288This concludes the async example. Since L<AnyEvent::Fork> does not
287actually fork, you are free to use about any module in the child, not just 289actually fork, you are free to use about any module in the child, not just
288L<AnyEvent>, but also L<IO::AIO>, or L<Tk> for example. 290L<AnyEvent>, but also L<IO::AIO>, or L<Tk> for example.
289 291
292=head2 Example 3: Asynchronous backend with Coro
293
294With L<Coro> you can create a nice asynchronous backend implementation by
295defining an rpc server function that creates a new Coro thread for every
296request that calls a function "normally", i.e. the parameters from the
297parent process are passed to it, and any return values are returned to the
298parent process, e.g.:
299
300 package My::Arith;
301
302 sub add {
303 return $_[0] + $_[1];
304 }
305
306 sub mul {
307 return $_[0] * $_[1];
308 }
309
310 sub run {
311 my ($done, $func, @arg) = @_;
312
313 Coro::async_pool {
314 $done->($func->(@arg));
315 };
316 }
317
318The C<run> function creates a new thread for every invocation, using the
319first argument as function name, and calls the C<$done> callback on it's
320return values. This makes it quite natural to define the C<add> and C<mul>
321functions to add or multiply two numbers and return the result.
322
323Since this is the asynchronous backend, it's quite possible to define RPC
324function that do I/O or wait for external events - their execution will
325overlap as needed.
326
327The above could be used like this:
328
329 my $rpc = AnyEvent::Fork
330 ->new
331 ->require ("MyWorker")
332 ->AnyEvent::Fork::RPC::run ("My::Arith::run",
333 on_error => ..., on_event => ..., on_destroy => ...,
334 );
335
336 $rpc->(add => 1, 3, Coro::rouse_cb); say Coro::rouse_wait;
337 $rpc->(mul => 3, 2, Coro::rouse_cb); say Coro::rouse_wait;
338
339The C<say>'s will print C<4> and C<6>.
340
341=head2 Example 4: Forward AnyEvent::Log messages using C<on_event>
342
343This partial example shows how to use the C<event> function to forward
344L<AnyEvent::Log> messages to the parent.
345
346For this, the parent needs to provide a suitable C<on_event>:
347
348 ->AnyEvent::Fork::RPC::run (
349 on_event => sub {
350 if ($_[0] eq "ae_log") {
351 my (undef, $level, $message) = @_;
352 AE::log $level, $message;
353 } else {
354 # other event types
355 }
356 },
357 )
358
359In the child, as early as possible, the following code should reconfigure
360L<AnyEvent::Log> to log via C<AnyEvent::Fork::RPC::event>:
361
362 $AnyEvent::Log::LOG->log_cb (sub {
363 my ($timestamp, $orig_ctx, $level, $message) = @{+shift};
364
365 if (defined &AnyEvent::Fork::RPC::event) {
366 AnyEvent::Fork::RPC::event (ae_log => $level, $message);
367 } else {
368 warn "[$$ before init] $message\n";
369 }
370 });
371
372There is an important twist - the C<AnyEvent::Fork::RPC::event> function
373is only defined when the child is fully initialised. If you redirect the
374log messages in your C<init> function for example, then the C<event>
375function might not yet be available. This is why the log callback checks
376whether the fucntion is there using C<defined>, and only then uses it to
377log the message.
378
290=head1 PARENT PROCESS USAGE 379=head1 PARENT PROCESS USAGE
291 380
292This module exports nothing, and only implements a single function: 381This module exports nothing, and only implements a single function:
293 382
294=over 4 383=over 4
301 390
302use Errno (); 391use Errno ();
303use Guard (); 392use Guard ();
304 393
305use AnyEvent; 394use AnyEvent;
306use AnyEvent::Fork; # we don't actually depend on it, this is for convenience
307 395
308our $VERSION = 0.1; 396our $VERSION = 1.21;
309 397
310=item my $rpc = AnyEvent::Fork::RPC::run $fork, $function, [key => value...] 398=item my $rpc = AnyEvent::Fork::RPC::run $fork, $function, [key => value...]
311 399
312The traditional way to call it. But it is way cooler to call it in the 400The traditional way to call it. But it is way cooler to call it in the
313following way: 401following way:
333Called on (fatal) errors, with a descriptive (hopefully) message. If 421Called on (fatal) errors, with a descriptive (hopefully) message. If
334this callback is not provided, but C<on_event> is, then the C<on_event> 422this callback is not provided, but C<on_event> is, then the C<on_event>
335callback is called with the first argument being the string C<error>, 423callback is called with the first argument being the string C<error>,
336followed by the error message. 424followed by the error message.
337 425
338If neither handler is provided it prints the error to STDERR and will 426If neither handler is provided, then the error is reported with loglevel
339start failing badly. 427C<error> via C<AE::log>.
340 428
341=item on_event => $cb->(...) 429=item on_event => $cb->(...)
342 430
343Called for every call to the C<AnyEvent::Fork::RPC::event> function in the 431Called for every call to the C<AnyEvent::Fork::RPC::event> function in the
344child, with the arguments of that function passed to the callback. 432child, with the arguments of that function passed to the callback.
366It is called very early - before the serialisers are created or the 454It is called very early - before the serialisers are created or the
367C<$function> name is resolved into a function reference, so it could be 455C<$function> name is resolved into a function reference, so it could be
368used to load any modules that provide the serialiser or function. It can 456used to load any modules that provide the serialiser or function. It can
369not, however, create events. 457not, however, create events.
370 458
459=item done => $function (default C<CORE::exit>)
460
461The function to call when the asynchronous backend detects an end of file
462condition when reading from the communications socket I<and> there are no
463outstanding requests. It's ignored by the synchronous backend.
464
465By overriding this you can prolong the life of a RPC process after e.g.
466the parent has exited by running the event loop in the provided function
467(or simply calling it, for example, when your child process uses L<EV> you
468could provide L<EV::loop> as C<done> function).
469
470Of course, in that case you are responsible for exiting at the appropriate
471time and not returning from
472
371=item async => $boolean (default: 0) 473=item async => $boolean (default: 0)
372 474
373The default server used in the child does all I/O blockingly, and only 475The default server used in the child does all I/O blockingly, and only
374allows a single RPC call to execute concurrently. 476allows a single RPC call to execute concurrently.
375 477
392 494
393All arguments, result data and event data have to be serialised to be 495All arguments, result data and event data have to be serialised to be
394transferred between the processes. For this, they have to be frozen and 496transferred between the processes. For this, they have to be frozen and
395thawed in both parent and child processes. 497thawed in both parent and child processes.
396 498
397By default, only octet strings can be passed between the processes, which 499By default, only octet strings can be passed between the processes,
398is reasonably fast and efficient and requires no extra modules. 500which is reasonably fast and efficient and requires no extra modules
501(the C<AnyEvent::Fork::RPC> distribution does not provide these extra
502serialiser modules).
399 503
400For more complicated use cases, you can provide your own freeze and thaw 504For more complicated use cases, you can provide your own freeze and thaw
401functions, by specifying a string with perl source code. It's supposed to 505functions, by specifying a string with perl source code. It's supposed to
402return two code references when evaluated: the first receives a list of 506return two code references when evaluated: the first receives a list of
403perl values and must return an octet string. The second receives the octet 507perl values and must return an octet string. The second receives the octet
413=over 4 517=over 4
414 518
415=item octet strings - C<$AnyEvent::Fork::RPC::STRING_SERIALISER> 519=item octet strings - C<$AnyEvent::Fork::RPC::STRING_SERIALISER>
416 520
417This serialiser concatenates length-prefixes octet strings, and is the 521This serialiser concatenates length-prefixes octet strings, and is the
418default. 522default. That means you can only pass (and return) strings containing
523character codes 0-255.
419 524
420Implementation: 525Implementation:
421 526
422 ( 527 (
423 sub { pack "(w/a*)*", @_ }, 528 sub { pack "(w/a*)*", @_ },
424 sub { unpack "(w/a*)*", shift } 529 sub { unpack "(w/a*)*", shift }
530 )
531
532=item cbor - C<$AnyEvent::Fork::RPC::CBOR_XS_SERIALISER>
533
534This serialiser creates CBOR::XS arrays - you have to make sure the
535L<CBOR::XS> module is installed for this serialiser to work. It can be
536beneficial for sharing when you preload the L<CBOR::XS> module in a template
537process.
538
539L<CBOR::XS> is about as fast as the octet string serialiser, but supports
540complex data structures (similar to JSON) and is faster than any of the
541other serialisers. If you have the L<CBOR::XS> module available, it's the
542best choice.
543
544The encoder enables C<allow_sharing> (so this serialisation method can
545encode cyclic and self-referencing data structures).
546
547Implementation:
548
549 use CBOR::XS ();
550 (
551 sub { CBOR::XS::encode_cbor_sharing \@_ },
552 sub { @{ CBOR::XS::decode_cbor shift } }
425 ) 553 )
426 554
427=item json - C<$AnyEvent::Fork::RPC::JSON_SERIALISER> 555=item json - C<$AnyEvent::Fork::RPC::JSON_SERIALISER>
428 556
429This serialiser creates JSON arrays - you have to make sure the L<JSON> 557This serialiser creates JSON arrays - you have to make sure the L<JSON>
444 572
445=item storable - C<$AnyEvent::Fork::RPC::STORABLE_SERIALISER> 573=item storable - C<$AnyEvent::Fork::RPC::STORABLE_SERIALISER>
446 574
447This serialiser uses L<Storable>, which means it has high chance of 575This serialiser uses L<Storable>, which means it has high chance of
448serialising just about anything you throw at it, at the cost of having 576serialising just about anything you throw at it, at the cost of having
449very high overhead per operation. It also comes with perl. 577very high overhead per operation. It also comes with perl. It should be
578used when you need to serialise complex data structures.
450 579
451Implementation: 580Implementation:
452 581
453 use Storable (); 582 use Storable ();
454 ( 583 (
455 sub { Storable::freeze \@_ }, 584 sub { Storable::freeze \@_ },
456 sub { @{ Storable::thaw shift } } 585 sub { @{ Storable::thaw shift } }
457 ) 586 )
458 587
588=item portable storable - C<$AnyEvent::Fork::RPC::NSTORABLE_SERIALISER>
589
590This serialiser also uses L<Storable>, but uses it's "network" format
591to serialise data, which makes it possible to talk to different
592perl binaries (for example, when talking to a process created with
593L<AnyEvent::Fork::Remote>).
594
595Implementation:
596
597 use Storable ();
598 (
599 sub { Storable::nfreeze \@_ },
600 sub { @{ Storable::thaw shift } }
601 )
602
459=back 603=back
460 604
461=back 605=back
462 606
463See the examples section earlier in this document for some actual 607See the examples section earlier in this document for some actual
464examples. 608examples.
465 609
466=cut 610=cut
467 611
468our $STRING_SERIALISER = '(sub { pack "(w/a*)*", @_ }, sub { unpack "(w/a*)*", shift })'; 612our $STRING_SERIALISER = '(sub { pack "(w/a*)*", @_ }, sub { unpack "(w/a*)*", shift })';
613our $CBOR_XS_SERIALISER = 'use CBOR::XS (); (sub { CBOR::XS::encode_cbor_sharing \@_ }, sub { @{ CBOR::XS::decode_cbor shift } })';
469our $JSON_SERIALISER = 'use JSON (); (sub { JSON::encode_json \@_ }, sub { @{ JSON::decode_json shift } })'; 614our $JSON_SERIALISER = 'use JSON (); (sub { JSON::encode_json \@_ }, sub { @{ JSON::decode_json shift } })';
470our $STORABLE_SERIALISER = 'use Storable (); (sub { Storable::freeze \@_ }, sub { @{ Storable::thaw shift } })'; 615our $STORABLE_SERIALISER = 'use Storable (); (sub { Storable::freeze \@_ }, sub { @{ Storable::thaw shift } })';
616our $NSTORABLE_SERIALISER = 'use Storable (); (sub { Storable::nfreeze \@_ }, sub { @{ Storable::thaw shift } })';
471 617
472sub run { 618sub run {
473 my ($self, $function, %arg) = @_; 619 my ($self, $function, %arg) = @_;
474 620
475 my $serialiser = delete $arg{serialiser} || $STRING_SERIALISER; 621 my $serialiser = delete $arg{serialiser} || $STRING_SERIALISER;
478 my $on_destroy = delete $arg{on_destroy}; 624 my $on_destroy = delete $arg{on_destroy};
479 625
480 # default for on_error is to on_event, if specified 626 # default for on_error is to on_event, if specified
481 $on_error ||= $on_event 627 $on_error ||= $on_event
482 ? sub { $on_event->(error => shift) } 628 ? sub { $on_event->(error => shift) }
483 : sub { die "AnyEvent::Fork::RPC: uncaught error: $_[0].\n" }; 629 : sub { AE::log die => "AnyEvent::Fork::RPC: uncaught error: $_[0]." };
484 630
485 # default for on_event is to raise an error 631 # default for on_event is to raise an error
486 $on_event ||= sub { $on_error->("event received, but no on_event handler") }; 632 $on_event ||= sub { $on_error->("event received, but no on_event handler") };
487 633
488 my ($f, $t) = eval $serialiser; die $@ if $@; 634 my ($f, $t) = eval $serialiser; die $@ if $@;
509 }; 655 };
510 656
511 my $module = "AnyEvent::Fork::RPC::" . ($arg{async} ? "Async" : "Sync"); 657 my $module = "AnyEvent::Fork::RPC::" . ($arg{async} ? "Async" : "Sync");
512 658
513 $self->require ($module) 659 $self->require ($module)
514 ->send_arg ($function, $arg{init}, $serialiser) 660 ->send_arg ($function, $arg{init}, $serialiser, $arg{done} || "$module\::do_exit")
515 ->run ("$module\::run", sub { 661 ->run ("$module\::run", sub {
516 $fh = shift; 662 $fh = shift;
517 663
518 my ($id, $len); 664 my ($id, $len);
519 $rw = AE::io $fh, 0, sub { 665 $rw = AE::io $fh, 0, sub {
520 $rlen = $rlen * 2 + 16 if $rlen - 128 < length $rbuf; 666 $rlen = $rlen * 2 + 16 if $rlen - 128 < length $rbuf;
521 $len = sysread $fh, $rbuf, $rlen - length $rbuf, length $rbuf; 667 $len = sysread $fh, $rbuf, $rlen - length $rbuf, length $rbuf;
522 668
523 if ($len) { 669 if ($len) {
524 while (8 <= length $rbuf) { 670 while (8 <= length $rbuf) {
525 ($id, $len) = unpack "LL", $rbuf; 671 ($id, $len) = unpack "NN", $rbuf;
526 8 + $len <= length $rbuf 672 8 + $len <= length $rbuf
527 or last; 673 or last;
528 674
529 my @r = $t->(substr $rbuf, 8, $len); 675 my @r = $t->(substr $rbuf, 8, $len);
530 substr $rbuf, 0, 8 + $len, ""; 676 substr $rbuf, 0, 8 + $len, "";
546 undef $rw; undef $ww; # it ends here 692 undef $rw; undef $ww; # it ends here
547 693
548 if (@rcb || %rcb) { 694 if (@rcb || %rcb) {
549 $on_error->("unexpected eof"); 695 $on_error->("unexpected eof");
550 } else { 696 } else {
551 $on_destroy->(); 697 $on_destroy->()
698 if $on_destroy;
552 } 699 }
553 } elsif ($! != Errno::EAGAIN && $! != Errno::EWOULDBLOCK) { 700 } elsif ($! != Errno::EAGAIN && $! != Errno::EWOULDBLOCK) {
554 undef $rw; undef $ww; # it ends here 701 undef $rw; undef $ww; # it ends here
555 $on_error->("read: $!"); 702 $on_error->("read: $!");
556 } 703 }
559 $ww ||= AE::io $fh, 1, $wcb; 706 $ww ||= AE::io $fh, 1, $wcb;
560 }); 707 });
561 708
562 my $guard = Guard::guard { 709 my $guard = Guard::guard {
563 $shutdown = 1; 710 $shutdown = 1;
564 $ww ||= $fh && AE::io $fh, 1, $wcb; 711
712 shutdown $fh, 1 if $fh && !$ww;
565 }; 713 };
566 714
567 my $id; 715 my $id;
568 716
569 $arg{async} 717 $arg{async}
571 $id = ($id == 0xffffffff ? 0 : $id) + 1; 719 $id = ($id == 0xffffffff ? 0 : $id) + 1;
572 $id = ($id == 0xffffffff ? 0 : $id) + 1 while exists $rcb{$id}; # rarely loops 720 $id = ($id == 0xffffffff ? 0 : $id) + 1 while exists $rcb{$id}; # rarely loops
573 721
574 $rcb{$id} = pop; 722 $rcb{$id} = pop;
575 723
576 $guard; # keep it alive 724 $guard if 0; # keep it alive
577 725
578 $wbuf .= pack "LL/a*", $id, &$f; 726 $wbuf .= pack "NN/a*", $id, &$f;
579 $ww ||= $fh && AE::io $fh, 1, $wcb; 727 $ww ||= $fh && AE::io $fh, 1, $wcb;
580 } 728 }
581 : sub { 729 : sub {
582 push @rcb, pop; 730 push @rcb, pop;
583 731
584 $guard; # keep it alive 732 $guard; # keep it alive
585 733
586 $wbuf .= pack "L/a*", &$f; 734 $wbuf .= pack "N/a*", &$f;
587 $ww ||= $fh && AE::io $fh, 1, $wcb; 735 $ww ||= $fh && AE::io $fh, 1, $wcb;
588 } 736 }
589} 737}
590 738
591=item $rpc->(..., $cb->(...)) 739=item $rpc->(..., $cb->(...))
630child process to the parent, except that there is no notion of return 778child process to the parent, except that there is no notion of return
631values. 779values.
632 780
633See the examples section earlier in this document for some actual 781See the examples section earlier in this document for some actual
634examples. 782examples.
783
784=back
785
786=head2 PROCESS EXIT
787
788If and when the child process exits depends on the backend and
789configuration. Apart from explicit exits (e.g. by calling C<exit>) or
790runtime conditions (uncaught exceptions, signals etc.), the backends exit
791under these conditions:
792
793=over 4
794
795=item Synchronous Backend
796
797The synchronous backend is very simple: when the process waits for another
798request to arrive and the writing side (usually in the parent) is closed,
799it will exit normally, i.e. as if your main program reached the end of the
800file.
801
802That means that if your parent process exits, the RPC process will usually
803exit as well, either because it is idle anyway, or because it executes a
804request. In the latter case, you will likely get an error when the RPc
805process tries to send the results to the parent (because agruably, you
806shouldn't exit your parent while there are still outstanding requests).
807
808The process is usually quiescent when it happens, so it should rarely be a
809problem, and C<END> handlers can be used to clean up.
810
811=item Asynchronous Backend
812
813For the asynchronous backend, things are more complicated: Whenever it
814listens for another request by the parent, it might detect that the socket
815was closed (e.g. because the parent exited). It will sotp listening for
816new requests and instead try to write out any remaining data (if any) or
817simply check whether the socket can be written to. After this, the RPC
818process is effectively done - no new requests are incoming, no outstanding
819request data can be written back.
820
821Since chances are high that there are event watchers that the RPC server
822knows nothing about (why else would one use the async backend if not for
823the ability to register watchers?), the event loop would often happily
824continue.
825
826This is why the asynchronous backend explicitly calls C<CORE::exit> when
827it is done (under other circumstances, such as when there is an I/O error
828and there is outstanding data to write, it will log a fatal message via
829L<AnyEvent::Log>, also causing the program to exit).
830
831You can override this by specifying a function name to call via the C<done>
832parameter instead.
635 833
636=back 834=back
637 835
638=head1 ADVANCED TOPICS 836=head1 ADVANCED TOPICS
639 837
722half it has passed earlier. 920half it has passed earlier.
723 921
724Here is some (untested) pseudocode to that effect: 922Here is some (untested) pseudocode to that effect:
725 923
726 use AnyEvent::Util; 924 use AnyEvent::Util;
925 use AnyEvent::Fork;
727 use AnyEvent::Fork::RPC; 926 use AnyEvent::Fork::RPC;
728 use IO::FDPass; 927 use IO::FDPass;
729 928
730 my ($s1, $s2) = AnyEvent::Util::portable_socketpair; 929 my ($s1, $s2) = AnyEvent::Util::portable_socketpair;
731 930
767 966
768Of course, this might be blocking if you pass a lot of file descriptors, 967Of course, this might be blocking if you pass a lot of file descriptors,
769so you might want to look into L<AnyEvent::FDpasser> which can handle the 968so you might want to look into L<AnyEvent::FDpasser> which can handle the
770gory details. 969gory details.
771 970
971=head1 EXCEPTIONS
972
973There are no provisions whatsoever for catching exceptions at this time -
974in the child, exeptions might kill the process, causing calls to be lost
975and the parent encountering a fatal error. In the parent, exceptions in
976the result callback will not be caught and cause undefined behaviour.
977
772=head1 SEE ALSO 978=head1 SEE ALSO
773 979
774L<AnyEvent::Fork> (to create the processes in the first place), 980L<AnyEvent::Fork>, to create the processes in the first place.
981
982L<AnyEvent::Fork::Remote>, likewise, but helpful for remote processes.
983
775L<AnyEvent::Fork::Pool> (to manage whole pools of processes). 984L<AnyEvent::Fork::Pool>, to manage whole pools of processes.
776 985
777=head1 AUTHOR AND CONTACT INFORMATION 986=head1 AUTHOR AND CONTACT INFORMATION
778 987
779 Marc Lehmann <schmorp@schmorp.de> 988 Marc Lehmann <schmorp@schmorp.de>
780 http://software.schmorp.de/pkg/AnyEvent-Fork-RPC 989 http://software.schmorp.de/pkg/AnyEvent-Fork-RPC

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines