ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP.pm
(Generate patch)

Comparing AnyEvent-MP/MP.pm (file contents):
Revision 1.1 by root, Thu Jul 30 08:38:50 2009 UTC vs.
Revision 1.31 by root, Wed Aug 5 19:55:58 2009 UTC

4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use AnyEvent::MP; 7 use AnyEvent::MP;
8 8
9 $NODE # contains this node's noderef
10 NODE # returns this node's noderef
11 NODE $port # returns the noderef of the port
12
13 snd $port, type => data...;
14
15 $SELF # receiving/own port id in rcv callbacks
16
17 rcv $port, smartmatch => $cb->($port, @msg);
18
19 # examples:
20 rcv $port2, ping => sub { snd $_[0], "pong"; 0 };
21 rcv $port1, pong => sub { warn "pong received\n" };
22 snd $port2, ping => $port1;
23
24 # more, smarter, matches (_any_ is exported by this module)
25 rcv $port, [child_died => $pid] => sub { ...
26 rcv $port, [_any_, _any_, 3] => sub { .. $_[2] is 3
27
9=head1 DESCRIPTION 28=head1 DESCRIPTION
10 29
30This module (-family) implements a simple message passing framework.
31
32Despite its simplicity, you can securely message other processes running
33on the same or other hosts.
34
35For an introduction to this module family, see the L<AnyEvent::MP::Intro>
36manual page.
37
38At the moment, this module family is severly broken and underdocumented,
39so do not use. This was uploaded mainly to reserve the CPAN namespace -
40stay tuned! The basic API should be finished, however.
41
42=head1 CONCEPTS
43
44=over 4
45
46=item port
47
48A port is something you can send messages to (with the C<snd> function).
49
50Some ports allow you to register C<rcv> handlers that can match specific
51messages. All C<rcv> handlers will receive messages they match, messages
52will not be queued.
53
54=item port id - C<noderef#portname>
55
56A port id is normaly the concatenation of a noderef, a hash-mark (C<#>) as
57separator, and a port name (a printable string of unspecified format). An
58exception is the the node port, whose ID is identical to its node
59reference.
60
61=item node
62
63A node is a single process containing at least one port - the node
64port. You can send messages to node ports to find existing ports or to
65create new ports, among other things.
66
67Nodes are either private (single-process only), slaves (connected to a
68master node only) or public nodes (connectable from unrelated nodes).
69
70=item noderef - C<host:port,host:port...>, C<id@noderef>, C<id>
71
72A node reference is a string that either simply identifies the node (for
73private and slave nodes), or contains a recipe on how to reach a given
74node (for public nodes).
75
76This recipe is simply a comma-separated list of C<address:port> pairs (for
77TCP/IP, other protocols might look different).
78
79Node references come in two flavours: resolved (containing only numerical
80addresses) or unresolved (where hostnames are used instead of addresses).
81
82Before using an unresolved node reference in a message you first have to
83resolve it.
84
85=back
86
87=head1 VARIABLES/FUNCTIONS
88
89=over 4
90
11=cut 91=cut
12 92
13package AnyEvent::MP; 93package AnyEvent::MP;
14 94
95use AnyEvent::MP::Base;
96
15use common::sense; 97use common::sense;
16 98
99use Carp ();
100
17use AE (); 101use AE ();
18 102
103use base "Exporter";
104
19our $VERSION = '0.0'; 105our $VERSION = '0.1';
106our @EXPORT = qw(
107 NODE $NODE *SELF node_of _any_
108 resolve_node initialise_node
109 snd rcv mon kil reg psub
110 port
111);
20 112
21sub nonce($) { 113our $SELF;
22 my $nonce;
23 114
24 if (open my $fh, "</dev/urandom") { 115sub _self_die() {
25 sysread $fh, $nonce, $_[0]; 116 my $msg = $@;
26 } else { 117 $msg =~ s/\n+$// unless ref $msg;
27 # shit... 118 kil $SELF, die => $msg;
28 our $nonce_init;
29 unless ($nonce_init++) {
30 srand time ^ $$ ^ unpack "%L*", qx"ps -edalf" . qx"ipconfig /all";
31 }
32
33 $nonce = join "", map +(chr rand 256), 1 .. $_[0]
34 }
35
36 $nonce
37} 119}
38 120
39our $DEFAULT_SECRET; 121=item $thisnode = NODE / $NODE
40 122
41sub default_secret { 123The C<NODE> function returns, and the C<$NODE> variable contains
42 unless (defined $DEFAULT_SECRET) { 124the noderef of the local node. The value is initialised by a call
43 if (open my $fh, "<$ENV{HOME}/.aemp-secret") { 125to C<become_public> or C<become_slave>, after which all local port
44 sysread $fh, $DEFAULT_SECRET, -s $fh; 126identifiers become invalid.
127
128=item $noderef = node_of $portid
129
130Extracts and returns the noderef from a portid or a noderef.
131
132=item $cv = resolve_node $noderef
133
134Takes an unresolved node reference that may contain hostnames and
135abbreviated IDs, resolves all of them and returns a resolved node
136reference.
137
138In addition to C<address:port> pairs allowed in resolved noderefs, the
139following forms are supported:
140
141=over 4
142
143=item the empty string
144
145An empty-string component gets resolved as if the default port (4040) was
146specified.
147
148=item naked port numbers (e.g. C<1234>)
149
150These are resolved by prepending the local nodename and a colon, to be
151further resolved.
152
153=item hostnames (e.g. C<localhost:1234>, C<localhost>)
154
155These are resolved by using AnyEvent::DNS to resolve them, optionally
156looking up SRV records for the C<aemp=4040> port, if no port was
157specified.
158
159=back
160
161=item $SELF
162
163Contains the current port id while executing C<rcv> callbacks or C<psub>
164blocks.
165
166=item SELF, %SELF, @SELF...
167
168Due to some quirks in how perl exports variables, it is impossible to
169just export C<$SELF>, all the symbols called C<SELF> are exported by this
170module, but only C<$SELF> is currently used.
171
172=item snd $portid, type => @data
173
174=item snd $portid, @msg
175
176Send the given message to the given port ID, which can identify either
177a local or a remote port, and can be either a string or soemthignt hat
178stringifies a sa port ID (such as a port object :).
179
180While the message can be about anything, it is highly recommended to use a
181string as first element (a portid, or some word that indicates a request
182type etc.).
183
184The message data effectively becomes read-only after a call to this
185function: modifying any argument is not allowed and can cause many
186problems.
187
188The type of data you can transfer depends on the transport protocol: when
189JSON is used, then only strings, numbers and arrays and hashes consisting
190of those are allowed (no objects). When Storable is used, then anything
191that Storable can serialise and deserialise is allowed, and for the local
192node, anything can be passed.
193
194=item kil $portid[, @reason]
195
196Kill the specified port with the given C<@reason>.
197
198If no C<@reason> is specified, then the port is killed "normally" (linked
199ports will not be kileld, or even notified).
200
201Otherwise, linked ports get killed with the same reason (second form of
202C<mon>, see below).
203
204Runtime errors while evaluating C<rcv> callbacks or inside C<psub> blocks
205will be reported as reason C<< die => $@ >>.
206
207Transport/communication errors are reported as C<< transport_error =>
208$message >>.
209
210=item $guard = mon $portid, $cb->(@reason)
211
212=item $guard = mon $portid, $otherport
213
214=item $guard = mon $portid, $otherport, @msg
215
216Monitor the given port and do something when the port is killed.
217
218In the first form, the callback is simply called with any number
219of C<@reason> elements (no @reason means that the port was deleted
220"normally"). Note also that I<< the callback B<must> never die >>, so use
221C<eval> if unsure.
222
223In the second form, the other port will be C<kil>'ed with C<@reason>, iff
224a @reason was specified, i.e. on "normal" kils nothing happens, while
225under all other conditions, the other port is killed with the same reason.
226
227In the last form, a message of the form C<@msg, @reason> will be C<snd>.
228
229Example: call a given callback when C<$port> is killed.
230
231 mon $port, sub { warn "port died because of <@_>\n" };
232
233Example: kill ourselves when C<$port> is killed abnormally.
234
235 mon $port, $self;
236
237Example: send us a restart message another C<$port> is killed.
238
239 mon $port, $self => "restart";
240
241=cut
242
243sub mon {
244 my ($noderef, $port) = split /#/, shift, 2;
245
246 my $node = $NODE{$noderef} || add_node $noderef;
247
248 my $cb = shift;
249
250 unless (ref $cb) {
251 if (@_) {
252 # send a kill info message
253 my (@msg) = ($cb, @_);
254 $cb = sub { snd @msg, @_ };
45 } else { 255 } else {
46 $DEFAULT_SECRET = nonce 32; 256 # simply kill other port
257 my $port = $cb;
258 $cb = sub { kil $port, @_ if @_ };
47 } 259 }
48 } 260 }
49 261
50 $DEFAULT_SECRET 262 $node->monitor ($port, $cb);
263
264 defined wantarray
265 and AnyEvent::Util::guard { $node->unmonitor ($port, $cb) }
51} 266}
267
268=item $guard = mon_guard $port, $ref, $ref...
269
270Monitors the given C<$port> and keeps the passed references. When the port
271is killed, the references will be freed.
272
273Optionally returns a guard that will stop the monitoring.
274
275This function is useful when you create e.g. timers or other watchers and
276want to free them when the port gets killed:
277
278 $port->rcv (start => sub {
279 my $timer; $timer = mon_guard $port, AE::timer 1, 1, sub {
280 undef $timer if 0.9 < rand;
281 });
282 });
283
284=cut
285
286sub mon_guard {
287 my ($port, @refs) = @_;
288
289 mon $port, sub { 0 && @refs }
290}
291
292=item lnk $port1, $port2
293
294Link two ports. This is simply a shorthand for:
295
296 mon $port1, $port2;
297 mon $port2, $port1;
298
299It means that if either one is killed abnormally, the other one gets
300killed as well.
301
302=item $local_port = port
303
304Create a new local port object that can be used either as a pattern
305matching port ("full port") or a single-callback port ("miniport"),
306depending on how C<rcv> callbacks are bound to the object.
307
308=item $portid = port { my @msg = @_; $finished }
309
310Creates a "mini port", that is, a very lightweight port without any
311pattern matching behind it, and returns its ID.
312
313The block will be called for every message received on the port. When the
314callback returns a true value its job is considered "done" and the port
315will be destroyed. Otherwise it will stay alive.
316
317The message will be passed as-is, no extra argument (i.e. no port id) will
318be passed to the callback.
319
320If you need the local port id in the callback, this works nicely:
321
322 my $port; $port = port {
323 snd $otherport, reply => $port;
324 };
325
326=cut
327
328sub port(;&) {
329 my $id = "$UNIQ." . $ID++;
330 my $port = "$NODE#$id";
331
332 if (@_) {
333 my $cb = shift;
334 $PORT{$id} = sub {
335 local $SELF = $port;
336 eval {
337 &$cb
338 and kil $id;
339 };
340 _self_die if $@;
341 };
342 } else {
343 my $self = bless {
344 id => "$NODE#$id",
345 }, "AnyEvent::MP::Port";
346
347 $PORT_DATA{$id} = $self;
348 $PORT{$id} = sub {
349 local $SELF = $port;
350
351 eval {
352 for (@{ $self->{rc0}{$_[0]} }) {
353 $_ && &{$_->[0]}
354 && undef $_;
355 }
356
357 for (@{ $self->{rcv}{$_[0]} }) {
358 $_ && [@_[1 .. @{$_->[1]}]] ~~ $_->[1]
359 && &{$_->[0]}
360 && undef $_;
361 }
362
363 for (@{ $self->{any} }) {
364 $_ && [@_[0 .. $#{$_->[1]}]] ~~ $_->[1]
365 && &{$_->[0]}
366 && undef $_;
367 }
368 };
369 _self_die if $@;
370 };
371 }
372
373 $port
374}
375
376=item reg $portid, $name
377
378Registers the given port under the name C<$name>. If the name already
379exists it is replaced.
380
381A port can only be registered under one well known name.
382
383A port automatically becomes unregistered when it is killed.
384
385=cut
386
387sub reg(@) {
388 my ($portid, $name) = @_;
389
390 $REG{$name} = $portid;
391}
392
393=item rcv $portid, $callback->(@msg)
394
395Replaces the callback on the specified miniport (or newly created port
396object, see C<port>). Full ports are configured with the following calls:
397
398=item rcv $portid, tagstring => $callback->(@msg), ...
399
400=item rcv $portid, $smartmatch => $callback->(@msg), ...
401
402=item rcv $portid, [$smartmatch...] => $callback->(@msg), ...
403
404Register callbacks to be called on matching messages on the given port.
405
406The callback has to return a true value when its work is done, after
407which is will be removed, or a false value in which case it will stay
408registered.
409
410The global C<$SELF> (exported by this module) contains C<$portid> while
411executing the callback.
412
413Runtime errors wdurign callback execution will result in the port being
414C<kil>ed.
415
416If the match is an array reference, then it will be matched against the
417first elements of the message, otherwise only the first element is being
418matched.
419
420Any element in the match that is specified as C<_any_> (a function
421exported by this module) matches any single element of the message.
422
423While not required, it is highly recommended that the first matching
424element is a string identifying the message. The one-string-only match is
425also the most efficient match (by far).
426
427=cut
428
429sub rcv($@) {
430 my $portid = shift;
431 my ($noderef, $port) = split /#/, $port, 2;
432
433 ($NODE{$noderef} || add_node $noderef) == $NODE{""}
434 or Carp::croak "$noderef#$port: rcv can only be called on local ports, caught";
435
436 my $self = $PORT_DATA{$port}
437 or Carp::croak "$noderef#$port: rcv can only be called on message matching ports, caught";
438
439 "AnyEvent::MP::Port" eq ref $self
440 or Carp::croak "$noderef#$port: rcv can only be called on message matching ports, caught";
441
442 while (@_) {
443 my ($match, $cb) = splice @_, 0, 2;
444
445 if (!ref $match) {
446 push @{ $self->{rc0}{$match} }, [$cb];
447 } elsif (("ARRAY" eq ref $match && !ref $match->[0])) {
448 my ($type, @match) = @$match;
449 @match
450 ? push @{ $self->{rcv}{$match->[0]} }, [$cb, \@match]
451 : push @{ $self->{rc0}{$match->[0]} }, [$cb];
452 } else {
453 push @{ $self->{any} }, [$cb, $match];
454 }
455 }
456
457 $portid
458}
459
460=item $closure = psub { BLOCK }
461
462Remembers C<$SELF> and creates a closure out of the BLOCK. When the
463closure is executed, sets up the environment in the same way as in C<rcv>
464callbacks, i.e. runtime errors will cause the port to get C<kil>ed.
465
466This is useful when you register callbacks from C<rcv> callbacks:
467
468 rcv delayed_reply => sub {
469 my ($delay, @reply) = @_;
470 my $timer = AE::timer $delay, 0, psub {
471 snd @reply, $SELF;
472 };
473 };
474
475=cut
476
477sub psub(&) {
478 my $cb = shift;
479
480 my $port = $SELF
481 or Carp::croak "psub can only be called from within rcv or psub callbacks, not";
482
483 sub {
484 local $SELF = $port;
485
486 if (wantarray) {
487 my @res = eval { &$cb };
488 _self_die if $@;
489 @res
490 } else {
491 my $res = eval { &$cb };
492 _self_die if $@;
493 $res
494 }
495 }
496}
497
498=back
499
500=head1 FUNCTIONS FOR NODES
501
502=over 4
503
504=item become_public $noderef
505
506Tells the node to become a public node, i.e. reachable from other nodes.
507
508The first argument is the (unresolved) node reference of the local node
509(if missing then the empty string is used).
510
511It is quite common to not specify anything, in which case the local node
512tries to listen on the default port, or to only specify a port number, in
513which case AnyEvent::MP tries to guess the local addresses.
514
515=cut
516
517=back
518
519=head1 NODE MESSAGES
520
521Nodes understand the following messages sent to them. Many of them take
522arguments called C<@reply>, which will simply be used to compose a reply
523message - C<$reply[0]> is the port to reply to, C<$reply[1]> the type and
524the remaining arguments are simply the message data.
525
526While other messages exist, they are not public and subject to change.
527
528=over 4
529
530=cut
531
532=item lookup => $name, @reply
533
534Replies with the port ID of the specified well-known port, or C<undef>.
535
536=item devnull => ...
537
538Generic data sink/CPU heat conversion.
539
540=item relay => $port, @msg
541
542Simply forwards the message to the given port.
543
544=item eval => $string[ @reply]
545
546Evaluates the given string. If C<@reply> is given, then a message of the
547form C<@reply, $@, @evalres> is sent.
548
549Example: crash another node.
550
551 snd $othernode, eval => "exit";
552
553=item time => @reply
554
555Replies the the current node time to C<@reply>.
556
557Example: tell the current node to send the current time to C<$myport> in a
558C<timereply> message.
559
560 snd $NODE, time => $myport, timereply => 1, 2;
561 # => snd $myport, timereply => 1, 2, <time>
562
563=back
564
565=head1 AnyEvent::MP vs. Distributed Erlang
566
567AnyEvent::MP got lots of its ideas from distributed erlang (erlang node
568== aemp node, erlang process == aemp port), so many of the documents and
569programming techniques employed by erlang apply to AnyEvent::MP. Here is a
570sample:
571
572 http://www.erlang.se/doc/programming_rules.shtml
573 http://erlang.org/doc/getting_started/part_frame.html # chapters 3 and 4
574 http://erlang.org/download/erlang-book-part1.pdf # chapters 5 and 6
575 http://erlang.org/download/armstrong_thesis_2003.pdf # chapters 4 and 5
576
577Despite the similarities, there are also some important differences:
578
579=over 4
580
581=item * Node references contain the recipe on how to contact them.
582
583Erlang relies on special naming and DNS to work everywhere in the
584same way. AEMP relies on each node knowing it's own address(es), with
585convenience functionality.
586
587This means that AEMP requires a less tightly controlled environment at the
588cost of longer node references and a slightly higher management overhead.
589
590=item * Erlang uses processes and a mailbox, AEMP does not queue.
591
592Erlang uses processes that selctively receive messages, and therefore
593needs a queue. AEMP is event based, queuing messages would serve no useful
594purpose.
595
596(But see L<Coro::MP> for a more erlang-like process model on top of AEMP).
597
598=item * Erlang sends are synchronous, AEMP sends are asynchronous.
599
600Sending messages in erlang is synchronous and blocks the process. AEMP
601sends are immediate, connection establishment is handled in the
602background.
603
604=item * Erlang can silently lose messages, AEMP cannot.
605
606Erlang makes few guarantees on messages delivery - messages can get lost
607without any of the processes realising it (i.e. you send messages a, b,
608and c, and the other side only receives messages a and c).
609
610AEMP guarantees correct ordering, and the guarantee that there are no
611holes in the message sequence.
612
613=item * In erlang, processes can be declared dead and later be found to be
614alive.
615
616In erlang it can happen that a monitored process is declared dead and
617linked processes get killed, but later it turns out that the process is
618still alive - and can receive messages.
619
620In AEMP, when port monitoring detects a port as dead, then that port will
621eventually be killed - it cannot happen that a node detects a port as dead
622and then later sends messages to it, finding it is still alive.
623
624=item * Erlang can send messages to the wrong port, AEMP does not.
625
626In erlang it is quite possible that a node that restarts reuses a process
627ID known to other nodes for a completely different process, causing
628messages destined for that process to end up in an unrelated process.
629
630AEMP never reuses port IDs, so old messages or old port IDs floating
631around in the network will not be sent to an unrelated port.
632
633=item * Erlang uses unprotected connections, AEMP uses secure
634authentication and can use TLS.
635
636AEMP can use a proven protocol - SSL/TLS - to protect connections and
637securely authenticate nodes.
638
639=item * The AEMP protocol is optimised for both text-based and binary
640communications.
641
642The AEMP protocol, unlike the erlang protocol, supports both
643language-independent text-only protocols (good for debugging) and binary,
644language-specific serialisers (e.g. Storable).
645
646It has also been carefully designed to be implementable in other languages
647with a minimum of work while gracefully degrading fucntionality to make the
648protocol simple.
649
650=back
52 651
53=head1 SEE ALSO 652=head1 SEE ALSO
54 653
55L<AnyEvent>. 654L<AnyEvent>.
56 655

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines