ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP.pm
(Generate patch)

Comparing AnyEvent-MP/MP.pm (file contents):
Revision 1.27 by root, Tue Aug 4 22:13:45 2009 UTC vs.
Revision 1.130 by root, Fri Mar 9 17:05:26 2012 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent::MP - multi-processing/message-passing framework 3AnyEvent::MP - erlang-style multi-processing/message-passing framework
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use AnyEvent::MP; 7 use AnyEvent::MP;
8 8
9 $NODE # contains this node's noderef 9 $NODE # contains this node's node ID
10 NODE # returns this node's noderef 10 NODE # returns this node's node ID
11 NODE $port # returns the noderef of the port
12 11
12 $SELF # receiving/own port id in rcv callbacks
13
14 # initialise the node so it can send/receive messages
15 configure;
16
17 # ports are message destinations
18
19 # sending messages
13 snd $port, type => data...; 20 snd $port, type => data...;
21 snd $port, @msg;
22 snd @msg_with_first_element_being_a_port;
14 23
15 $SELF # receiving/own port id in rcv callbacks 24 # creating/using ports, the simple way
25 my $simple_port = port { my @msg = @_ };
16 26
17 rcv $port, smartmatch => $cb->($port, @msg); 27 # creating/using ports, tagged message matching
18 28 my $port = port;
19 # examples:
20 rcv $port2, ping => sub { snd $_[0], "pong"; 0 }; 29 rcv $port, ping => sub { snd $_[0], "pong" };
21 rcv $port1, pong => sub { warn "pong received\n" }; 30 rcv $port, pong => sub { warn "pong received\n" };
22 snd $port2, ping => $port1;
23 31
24 # more, smarter, matches (_any_ is exported by this module) 32 # create a port on another node
25 rcv $port, [child_died => $pid] => sub { ... 33 my $port = spawn $node, $initfunc, @initdata;
26 rcv $port, [_any_, _any_, 3] => sub { .. $_[2] is 3 34
35 # destroy a port again
36 kil $port; # "normal" kill
37 kil $port, my_error => "everything is broken"; # error kill
38
39 # monitoring
40 mon $port, $cb->(@msg) # callback is invoked on death
41 mon $port, $localport # kill localport on abnormal death
42 mon $port, $localport, @msg # send message on death
43
44 # temporarily execute code in port context
45 peval $port, sub { die "kill the port!" };
46
47 # execute callbacks in $SELF port context
48 my $timer = AE::timer 1, 0, psub {
49 die "kill the port, delayed";
50 };
51
52=head1 CURRENT STATUS
53
54 bin/aemp - stable.
55 AnyEvent::MP - stable API, should work.
56 AnyEvent::MP::Intro - explains most concepts.
57 AnyEvent::MP::Kernel - mostly stable API.
58 AnyEvent::MP::Global - stable API.
27 59
28=head1 DESCRIPTION 60=head1 DESCRIPTION
29 61
30This module (-family) implements a simple message passing framework. 62This module (-family) implements a simple message passing framework.
31 63
32Despite its simplicity, you can securely message other processes running 64Despite its simplicity, you can securely message other processes running
33on the same or other hosts. 65on the same or other hosts, and you can supervise entities remotely.
34 66
35For an introduction to this module family, see the L<AnyEvent::MP::Intro> 67For an introduction to this module family, see the L<AnyEvent::MP::Intro>
36manual page. 68manual page and the examples under F<eg/>.
37
38At the moment, this module family is severly broken and underdocumented,
39so do not use. This was uploaded mainly to reserve the CPAN namespace -
40stay tuned! The basic API should be finished, however.
41 69
42=head1 CONCEPTS 70=head1 CONCEPTS
43 71
44=over 4 72=over 4
45 73
46=item port 74=item port
47 75
48A port is something you can send messages to with the C<snd> function, and 76Not to be confused with a TCP port, a "port" is something you can send
49you can register C<rcv> handlers with. All C<rcv> handlers will receive 77messages to (with the C<snd> function).
50messages they match, messages will not be queued.
51 78
79Ports allow you to register C<rcv> handlers that can match all or just
80some messages. Messages send to ports will not be queued, regardless of
81anything was listening for them or not.
82
83Ports are represented by (printable) strings called "port IDs".
84
52=item port id - C<noderef#portname> 85=item port ID - C<nodeid#portname>
53 86
54A port id is always the noderef, a hash-mark (C<#>) as separator, followed 87A port ID is the concatenation of a node ID, a hash-mark (C<#>)
55by a port name (a printable string of unspecified format). 88as separator, and a port name (a printable string of unspecified
89format created by AnyEvent::MP).
56 90
57=item node 91=item node
58 92
59A node is a single process containing at least one port - the node 93A node is a single process containing at least one port - the node port,
60port. You can send messages to node ports to let them create new ports, 94which enables nodes to manage each other remotely, and to create new
61among other things. 95ports.
62 96
63Initially, nodes are either private (single-process only) or hidden 97Nodes are either public (have one or more listening ports) or private
64(connected to a master node only). Only when they epxlicitly "become 98(no listening ports). Private nodes cannot talk to other private nodes
65public" can you send them messages from unrelated other nodes. 99currently, but all nodes can talk to public nodes.
66 100
67=item noderef - C<host:port,host:port...>, C<id@noderef>, C<id> 101Nodes is represented by (printable) strings called "node IDs".
68 102
103=item node ID - C<[A-Za-z0-9_\-.:]*>
104
69A noderef is a string that either uniquely identifies a given node (for 105A node ID is a string that uniquely identifies the node within a
70private and hidden nodes), or contains a recipe on how to reach a given 106network. Depending on the configuration used, node IDs can look like a
71node (for public nodes). 107hostname, a hostname and a port, or a random string. AnyEvent::MP itself
108doesn't interpret node IDs in any way except to uniquely identify a node.
109
110=item binds - C<ip:port>
111
112Nodes can only talk to each other by creating some kind of connection to
113each other. To do this, nodes should listen on one or more local transport
114endpoints - binds.
115
116Currently, only standard C<ip:port> specifications can be used, which
117specify TCP ports to listen on. So a bind is basically just a tcp socket
118in listening mode thta accepts conenctions form other nodes.
119
120=item seed nodes
121
122When a node starts, it knows nothing about the network it is in - it
123needs to connect to at least one other node that is already in the
124network. These other nodes are called "seed nodes".
125
126Seed nodes themselves are not special - they are seed nodes only because
127some other node I<uses> them as such, but any node can be used as seed
128node for other nodes, and eahc node cna use a different set of seed nodes.
129
130In addition to discovering the network, seed nodes are also used to
131maintain the network - all nodes using the same seed node form are part of
132the same network. If a network is split into multiple subnets because e.g.
133the network link between the parts goes down, then using the same seed
134nodes for all nodes ensures that eventually the subnets get merged again.
135
136Seed nodes are expected to be long-running, and at least one seed node
137should always be available. They should also be relatively responsive - a
138seed node that blocks for long periods will slow down everybody else.
139
140For small networks, it's best if every node uses the same set of seed
141nodes. For large networks, it can be useful to specify "regional" seed
142nodes for most nodes in an area, and use all seed nodes as seed nodes for
143each other. What's important is that all seed nodes connections form a
144complete graph, so that the network cannot split into separate subnets
145forever.
146
147Seed nodes are represented by seed IDs.
148
149=item seed IDs - C<host:port>
150
151Seed IDs are transport endpoint(s) (usually a hostname/IP address and a
152TCP port) of nodes that should be used as seed nodes.
153
154=item global nodes
155
156An AEMP network needs a discovery service - nodes need to know how to
157connect to other nodes they only know by name. In addition, AEMP offers a
158distributed "group database", which maps group names to a list of strings
159- for example, to register worker ports.
160
161A network needs at least one global node to work, and allows every node to
162be a global node.
163
164Any node that loads the L<AnyEvent::MP::Global> module becomes a global
165node and tries to keep connections to all other nodes. So while it can
166make sense to make every node "global" in small networks, it usually makes
167sense to only make seed nodes into global nodes in large networks (nodes
168keep connections to seed nodes and global nodes, so makign them the same
169reduces overhead).
72 170
73=back 171=back
74 172
75=head1 VARIABLES/FUNCTIONS 173=head1 VARIABLES/FUNCTIONS
76 174
78 176
79=cut 177=cut
80 178
81package AnyEvent::MP; 179package AnyEvent::MP;
82 180
181use AnyEvent::MP::Config ();
83use AnyEvent::MP::Base; 182use AnyEvent::MP::Kernel;
183use AnyEvent::MP::Kernel qw(%NODE %PORT %PORT_DATA $UNIQ $RUNIQ $ID);
84 184
85use common::sense; 185use common::sense;
86 186
87use Carp (); 187use Carp ();
88 188
89use AE (); 189use AE ();
190use Guard ();
90 191
91use base "Exporter"; 192use base "Exporter";
92 193
93our $VERSION = '0.1'; 194our $VERSION = $AnyEvent::MP::Config::VERSION;
195
94our @EXPORT = qw( 196our @EXPORT = qw(
95 NODE $NODE *SELF node_of _any_ 197 NODE $NODE *SELF node_of after
96 become_slave become_public 198 configure
97 snd rcv mon kil reg psub 199 snd rcv mon mon_guard kil psub peval spawn cal
98 port 200 port
201 db_set db_del db_reg
202 db_mon db_family db_keys db_values
99); 203);
100 204
101our $SELF; 205our $SELF;
102 206
103sub _self_die() { 207sub _self_die() {
106 kil $SELF, die => $msg; 210 kil $SELF, die => $msg;
107} 211}
108 212
109=item $thisnode = NODE / $NODE 213=item $thisnode = NODE / $NODE
110 214
111The C<NODE> function returns, and the C<$NODE> variable contains 215The C<NODE> function returns, and the C<$NODE> variable contains, the node
112the noderef of the local node. The value is initialised by a call 216ID of the node running in the current process. This value is initialised by
113to C<become_public> or C<become_slave>, after which all local port 217a call to C<configure>.
114identifiers become invalid.
115 218
116=item $noderef = node_of $portid 219=item $nodeid = node_of $port
117 220
118Extracts and returns the noderef from a portid or a noderef. 221Extracts and returns the node ID from a port ID or a node ID.
222
223=item configure $profile, key => value...
224
225=item configure key => value...
226
227Before a node can talk to other nodes on the network (i.e. enter
228"distributed mode") it has to configure itself - the minimum a node needs
229to know is its own name, and optionally it should know the addresses of
230some other nodes in the network to discover other nodes.
231
232This function configures a node - it must be called exactly once (or
233never) before calling other AnyEvent::MP functions.
234
235The key/value pairs are basically the same ones as documented for the
236F<aemp> command line utility (sans the set/del prefix), with these additions:
237
238=over 4
239
240=item norc => $boolean (default false)
241
242If true, then the rc file (e.g. F<~/.perl-anyevent-mp>) will I<not>
243be consulted - all configuraiton options must be specified in the
244C<configure> call.
245
246=item force => $boolean (default false)
247
248IF true, then the values specified in the C<configure> will take
249precedence over any values configured via the rc file. The default is for
250the rc file to override any options specified in the program.
251
252=item secure => $pass->($nodeid)
253
254In addition to specifying a boolean, you can specify a code reference that
255is called for every remote execution attempt - the execution request is
256granted iff the callback returns a true value.
257
258See F<semp setsecure> for more info.
259
260=back
261
262=over 4
263
264=item step 1, gathering configuration from profiles
265
266The function first looks up a profile in the aemp configuration (see the
267L<aemp> commandline utility). The profile name can be specified via the
268named C<profile> parameter or can simply be the first parameter). If it is
269missing, then the nodename (F<uname -n>) will be used as profile name.
270
271The profile data is then gathered as follows:
272
273First, all remaining key => value pairs (all of which are conveniently
274undocumented at the moment) will be interpreted as configuration
275data. Then they will be overwritten by any values specified in the global
276default configuration (see the F<aemp> utility), then the chain of
277profiles chosen by the profile name (and any C<parent> attributes).
278
279That means that the values specified in the profile have highest priority
280and the values specified directly via C<configure> have lowest priority,
281and can only be used to specify defaults.
282
283If the profile specifies a node ID, then this will become the node ID of
284this process. If not, then the profile name will be used as node ID, with
285a unique randoms tring (C</%u>) appended.
286
287The node ID can contain some C<%> sequences that are expanded: C<%n>
288is expanded to the local nodename, C<%u> is replaced by a random
289strign to make the node unique. For example, the F<aemp> commandline
290utility uses C<aemp/%n/%u> as nodename, which might expand to
291C<aemp/cerebro/ZQDGSIkRhEZQDGSIkRhE>.
292
293=item step 2, bind listener sockets
294
295The next step is to look up the binds in the profile, followed by binding
296aemp protocol listeners on all binds specified (it is possible and valid
297to have no binds, meaning that the node cannot be contacted form the
298outside. This means the node cannot talk to other nodes that also have no
299binds, but it can still talk to all "normal" nodes).
300
301If the profile does not specify a binds list, then a default of C<*> is
302used, meaning the node will bind on a dynamically-assigned port on every
303local IP address it finds.
304
305=item step 3, connect to seed nodes
306
307As the last step, the seed ID list from the profile is passed to the
308L<AnyEvent::MP::Global> module, which will then use it to keep
309connectivity with at least one node at any point in time.
310
311=back
312
313Example: become a distributed node using the local node name as profile.
314This should be the most common form of invocation for "daemon"-type nodes.
315
316 configure
317
318Example: become a semi-anonymous node. This form is often used for
319commandline clients.
320
321 configure nodeid => "myscript/%n/%u";
322
323Example: configure a node using a profile called seed, which is suitable
324for a seed node as it binds on all local addresses on a fixed port (4040,
325customary for aemp).
326
327 # use the aemp commandline utility
328 # aemp profile seed binds '*:4040'
329
330 # then use it
331 configure profile => "seed";
332
333 # or simply use aemp from the shell again:
334 # aemp run profile seed
335
336 # or provide a nicer-to-remember nodeid
337 # aemp run profile seed nodeid "$(hostname)"
119 338
120=item $SELF 339=item $SELF
121 340
122Contains the current port id while executing C<rcv> callbacks or C<psub> 341Contains the current port id while executing C<rcv> callbacks or C<psub>
123blocks. 342blocks.
124 343
125=item SELF, %SELF, @SELF... 344=item *SELF, SELF, %SELF, @SELF...
126 345
127Due to some quirks in how perl exports variables, it is impossible to 346Due to some quirks in how perl exports variables, it is impossible to
128just export C<$SELF>, all the symbols called C<SELF> are exported by this 347just export C<$SELF>, all the symbols named C<SELF> are exported by this
129module, but only C<$SELF> is currently used. 348module, but only C<$SELF> is currently used.
130 349
131=item snd $portid, type => @data 350=item snd $port, type => @data
132 351
133=item snd $portid, @msg 352=item snd $port, @msg
134 353
135Send the given message to the given port ID, which can identify either 354Send the given message to the given port, which can identify either a
136a local or a remote port, and can be either a string or soemthignt hat 355local or a remote port, and must be a port ID.
137stringifies a sa port ID (such as a port object :).
138 356
139While the message can be about anything, it is highly recommended to use a 357While the message can be almost anything, it is highly recommended to
140string as first element (a portid, or some word that indicates a request 358use a string as first element (a port ID, or some word that indicates a
141type etc.). 359request type etc.) and to consist if only simple perl values (scalars,
360arrays, hashes) - if you think you need to pass an object, think again.
142 361
143The message data effectively becomes read-only after a call to this 362The message data logically becomes read-only after a call to this
144function: modifying any argument is not allowed and can cause many 363function: modifying any argument (or values referenced by them) is
145problems. 364forbidden, as there can be considerable time between the call to C<snd>
365and the time the message is actually being serialised - in fact, it might
366never be copied as within the same process it is simply handed to the
367receiving port.
146 368
147The type of data you can transfer depends on the transport protocol: when 369The type of data you can transfer depends on the transport protocol: when
148JSON is used, then only strings, numbers and arrays and hashes consisting 370JSON is used, then only strings, numbers and arrays and hashes consisting
149of those are allowed (no objects). When Storable is used, then anything 371of those are allowed (no objects). When Storable is used, then anything
150that Storable can serialise and deserialise is allowed, and for the local 372that Storable can serialise and deserialise is allowed, and for the local
151node, anything can be passed. 373node, anything can be passed. Best rely only on the common denominator of
374these.
152 375
153=item kil $portid[, @reason] 376=item $local_port = port
154 377
155Kill the specified port with the given C<@reason>. 378Create a new local port object and returns its port ID. Initially it has
379no callbacks set and will throw an error when it receives messages.
156 380
157If no C<@reason> is specified, then the port is killed "normally" (linked 381=item $local_port = port { my @msg = @_ }
158ports will not be kileld, or even notified).
159 382
160Otherwise, linked ports get killed with the same reason (second form of 383Creates a new local port, and returns its ID. Semantically the same as
161C<mon>, see below). 384creating a port and calling C<rcv $port, $callback> on it.
162 385
163Runtime errors while evaluating C<rcv> callbacks or inside C<psub> blocks 386The block will be called for every message received on the port, with the
164will be reported as reason C<< die => $@ >>. 387global variable C<$SELF> set to the port ID. Runtime errors will cause the
388port to be C<kil>ed. The message will be passed as-is, no extra argument
389(i.e. no port ID) will be passed to the callback.
165 390
166Transport/communication errors are reported as C<< transport_error => 391If you want to stop/destroy the port, simply C<kil> it:
167$message >>.
168 392
169=item $guard = mon $portid, $cb->(@reason) 393 my $port = port {
170 394 my @msg = @_;
171=item $guard = mon $portid, $otherport 395 ...
172 396 kil $SELF;
173=item $guard = mon $portid, $otherport, @msg 397 };
174
175Monitor the given port and do something when the port is killed.
176
177In the first form, the callback is simply called with any number
178of C<@reason> elements (no @reason means that the port was deleted
179"normally"). Note also that I<< the callback B<must> never die >>, so use
180C<eval> if unsure.
181
182In the second form, the other port will be C<kil>'ed with C<@reason>, iff
183a @reason was specified, i.e. on "normal" kils nothing happens, while
184under all other conditions, the other port is killed with the same reason.
185
186In the last form, a message of the form C<@msg, @reason> will be C<snd>.
187
188Example: call a given callback when C<$port> is killed.
189
190 mon $port, sub { warn "port died because of <@_>\n" };
191
192Example: kill ourselves when C<$port> is killed abnormally.
193
194 mon $port, $self;
195
196Example: send us a restart message another C<$port> is killed.
197
198 mon $port, $self => "restart";
199 398
200=cut 399=cut
201 400
202sub mon { 401sub rcv($@);
203 my ($noderef, $port, $cb) = ((split /#/, shift, 2), shift);
204 402
205 my $node = $NODE{$noderef} || add_node $noderef; 403sub _kilme {
404 die "received message on port without callback";
405}
206 406
207 #TODO: ports must not be references 407sub port(;&) {
208 if (!ref $cb or "AnyEvent::MP::Port" eq ref $cb) { 408 my $id = $UNIQ . ++$ID;
409 my $port = "$NODE#$id";
410
411 rcv $port, shift || \&_kilme;
412
413 $port
414}
415
416=item rcv $local_port, $callback->(@msg)
417
418Replaces the default callback on the specified port. There is no way to
419remove the default callback: use C<sub { }> to disable it, or better
420C<kil> the port when it is no longer needed.
421
422The global C<$SELF> (exported by this module) contains C<$port> while
423executing the callback. Runtime errors during callback execution will
424result in the port being C<kil>ed.
425
426The default callback received all messages not matched by a more specific
427C<tag> match.
428
429=item rcv $local_port, tag => $callback->(@msg_without_tag), ...
430
431Register (or replace) callbacks to be called on messages starting with the
432given tag on the given port (and return the port), or unregister it (when
433C<$callback> is C<$undef> or missing). There can only be one callback
434registered for each tag.
435
436The original message will be passed to the callback, after the first
437element (the tag) has been removed. The callback will use the same
438environment as the default callback (see above).
439
440Example: create a port and bind receivers on it in one go.
441
442 my $port = rcv port,
443 msg1 => sub { ... },
444 msg2 => sub { ... },
445 ;
446
447Example: create a port, bind receivers and send it in a message elsewhere
448in one go:
449
450 snd $otherport, reply =>
451 rcv port,
452 msg1 => sub { ... },
453 ...
454 ;
455
456Example: temporarily register a rcv callback for a tag matching some port
457(e.g. for an rpc reply) and unregister it after a message was received.
458
459 rcv $port, $otherport => sub {
460 my @reply = @_;
461
462 rcv $SELF, $otherport;
463 };
464
465=cut
466
467sub rcv($@) {
468 my $port = shift;
469 my ($nodeid, $portid) = split /#/, $port, 2;
470
471 $NODE{$nodeid} == $NODE{""}
472 or Carp::croak "$port: rcv can only be called on local ports, caught";
473
474 while (@_) {
209 if (@_) { 475 if (ref $_[0]) {
210 # send a kill info message 476 if (my $self = $PORT_DATA{$portid}) {
211 my (@msg) = ($cb, @_); 477 "AnyEvent::MP::Port" eq ref $self
212 $cb = sub { snd @msg, @_ }; 478 or Carp::croak "$port: rcv can only be called on message matching ports, caught";
479
480 $self->[0] = shift;
213 } else { 481 } else {
214 # simply kill other port 482 my $cb = shift;
215 my $port = $cb; 483 $PORT{$portid} = sub {
216 $cb = sub { kil $port, @_ if @_ }; 484 local $SELF = $port;
485 eval { &$cb }; _self_die if $@;
486 };
487 }
488 } elsif (defined $_[0]) {
489 my $self = $PORT_DATA{$portid} ||= do {
490 my $self = bless [$PORT{$portid} || sub { }, { }, $port], "AnyEvent::MP::Port";
491
492 $PORT{$portid} = sub {
493 local $SELF = $port;
494
495 if (my $cb = $self->[1]{$_[0]}) {
496 shift;
497 eval { &$cb }; _self_die if $@;
498 } else {
499 &{ $self->[0] };
500 }
501 };
502
503 $self
504 };
505
506 "AnyEvent::MP::Port" eq ref $self
507 or Carp::croak "$port: rcv can only be called on message matching ports, caught";
508
509 my ($tag, $cb) = splice @_, 0, 2;
510
511 if (defined $cb) {
512 $self->[1]{$tag} = $cb;
513 } else {
514 delete $self->[1]{$tag};
515 }
217 } 516 }
218 } 517 }
219 518
220 $node->monitor ($port, $cb);
221
222 defined wantarray
223 and AnyEvent::Util::guard { $node->unmonitor ($port, $cb) }
224}
225
226=item $guard = mon_guard $port, $ref, $ref...
227
228Monitors the given C<$port> and keeps the passed references. When the port
229is killed, the references will be freed.
230
231Optionally returns a guard that will stop the monitoring.
232
233This function is useful when you create e.g. timers or other watchers and
234want to free them when the port gets killed:
235
236 $port->rcv (start => sub {
237 my $timer; $timer = mon_guard $port, AE::timer 1, 1, sub {
238 undef $timer if 0.9 < rand;
239 });
240 });
241
242=cut
243
244sub mon_guard {
245 my ($port, @refs) = @_;
246
247 mon $port, sub { 0 && @refs }
248}
249
250=item lnk $port1, $port2
251
252Link two ports. This is simply a shorthand for:
253
254 mon $port1, $port2;
255 mon $port2, $port1;
256
257It means that if either one is killed abnormally, the other one gets
258killed as well.
259
260=item $local_port = port
261
262Create a new local port object that supports message matching.
263
264=item $portid = port { my @msg = @_; $finished }
265
266Creates a "mini port", that is, a very lightweight port without any
267pattern matching behind it, and returns its ID.
268
269The block will be called for every message received on the port. When the
270callback returns a true value its job is considered "done" and the port
271will be destroyed. Otherwise it will stay alive.
272
273The message will be passed as-is, no extra argument (i.e. no port id) will
274be passed to the callback.
275
276If you need the local port id in the callback, this works nicely:
277
278 my $port; $port = miniport {
279 snd $otherport, reply => $port;
280 };
281
282=cut
283
284sub port(;&) {
285 my $id = "$UNIQ." . $ID++;
286 my $port = "$NODE#$id";
287
288 if (@_) {
289 my $cb = shift;
290 $PORT{$id} = sub {
291 local $SELF = $port;
292 eval {
293 &$cb
294 and kil $id;
295 };
296 _self_die if $@;
297 };
298 } else {
299 my $self = bless {
300 id => "$NODE#$id",
301 }, "AnyEvent::MP::Port";
302
303 $PORT_DATA{$id} = $self;
304 $PORT{$id} = sub {
305 local $SELF = $port;
306
307 eval {
308 for (@{ $self->{rc0}{$_[0]} }) {
309 $_ && &{$_->[0]}
310 && undef $_;
311 }
312
313 for (@{ $self->{rcv}{$_[0]} }) {
314 $_ && [@_[1 .. @{$_->[1]}]] ~~ $_->[1]
315 && &{$_->[0]}
316 && undef $_;
317 }
318
319 for (@{ $self->{any} }) {
320 $_ && [@_[0 .. $#{$_->[1]}]] ~~ $_->[1]
321 && &{$_->[0]}
322 && undef $_;
323 }
324 };
325 _self_die if $@;
326 };
327 }
328
329 $port 519 $port
330} 520}
331 521
332=item reg $portid, $name 522=item peval $port, $coderef[, @args]
333 523
334Registers the given port under the name C<$name>. If the name already 524Evaluates the given C<$codref> within the contetx of C<$port>, that is,
335exists it is replaced. 525when the code throews an exception the C<$port> will be killed.
336 526
337A port can only be registered under one well known name. 527Any remaining args will be passed to the callback. Any return values will
528be returned to the caller.
338 529
339A port automatically becomes unregistered when it is killed. 530This is useful when you temporarily want to execute code in the context of
531a port.
532
533Example: create a port and run some initialisation code in it's context.
534
535 my $port = port { ... };
536
537 peval $port, sub {
538 init
539 or die "unable to init";
540 };
340 541
341=cut 542=cut
342 543
343sub reg(@) { 544sub peval($$) {
344 my ($portid, $name) = @_; 545 local $SELF = shift;
546 my $cb = shift;
345 547
346 $REG{$name} = $portid; 548 if (wantarray) {
347} 549 my @res = eval { &$cb };
348 550 _self_die if $@;
349=item rcv $portid, tagstring => $callback->(@msg), ... 551 @res
350
351=item rcv $portid, $smartmatch => $callback->(@msg), ...
352
353=item rcv $portid, [$smartmatch...] => $callback->(@msg), ...
354
355Register callbacks to be called on matching messages on the given port.
356
357The callback has to return a true value when its work is done, after
358which is will be removed, or a false value in which case it will stay
359registered.
360
361The global C<$SELF> (exported by this module) contains C<$portid> while
362executing the callback.
363
364Runtime errors wdurign callback execution will result in the port being
365C<kil>ed.
366
367If the match is an array reference, then it will be matched against the
368first elements of the message, otherwise only the first element is being
369matched.
370
371Any element in the match that is specified as C<_any_> (a function
372exported by this module) matches any single element of the message.
373
374While not required, it is highly recommended that the first matching
375element is a string identifying the message. The one-string-only match is
376also the most efficient match (by far).
377
378=cut
379
380sub rcv($@) {
381 my ($noderef, $port) = split /#/, shift, 2;
382
383 ($NODE{$noderef} || add_node $noderef) == $NODE{""}
384 or Carp::croak "$noderef#$port: rcv can only be called on local ports, caught";
385
386 my $self = $PORT_DATA{$port}
387 or Carp::croak "$noderef#$port: rcv can only be called on message matching ports, caught";
388
389 "AnyEvent::MP::Port" eq ref $self
390 or Carp::croak "$noderef#$port: rcv can only be called on message matching ports, caught";
391
392 while (@_) {
393 my ($match, $cb) = splice @_, 0, 2;
394
395 if (!ref $match) {
396 push @{ $self->{rc0}{$match} }, [$cb];
397 } elsif (("ARRAY" eq ref $match && !ref $match->[0])) {
398 my ($type, @match) = @$match;
399 @match
400 ? push @{ $self->{rcv}{$match->[0]} }, [$cb, \@match]
401 : push @{ $self->{rc0}{$match->[0]} }, [$cb];
402 } else { 552 } else {
403 push @{ $self->{any} }, [$cb, $match]; 553 my $res = eval { &$cb };
404 } 554 _self_die if $@;
555 $res
405 } 556 }
406} 557}
407 558
408=item $closure = psub { BLOCK } 559=item $closure = psub { BLOCK }
409 560
410Remembers C<$SELF> and creates a closure out of the BLOCK. When the 561Remembers C<$SELF> and creates a closure out of the BLOCK. When the
411closure is executed, sets up the environment in the same way as in C<rcv> 562closure is executed, sets up the environment in the same way as in C<rcv>
412callbacks, i.e. runtime errors will cause the port to get C<kil>ed. 563callbacks, i.e. runtime errors will cause the port to get C<kil>ed.
564
565The effect is basically as if it returned C<< sub { peval $SELF, sub {
566BLOCK }, @_ } >>.
413 567
414This is useful when you register callbacks from C<rcv> callbacks: 568This is useful when you register callbacks from C<rcv> callbacks:
415 569
416 rcv delayed_reply => sub { 570 rcv delayed_reply => sub {
417 my ($delay, @reply) = @_; 571 my ($delay, @reply) = @_;
441 $res 595 $res
442 } 596 }
443 } 597 }
444} 598}
445 599
600=item $guard = mon $port, $cb->(@reason) # call $cb when $port dies
601
602=item $guard = mon $port, $rcvport # kill $rcvport when $port dies
603
604=item $guard = mon $port # kill $SELF when $port dies
605
606=item $guard = mon $port, $rcvport, @msg # send a message when $port dies
607
608Monitor the given port and do something when the port is killed or
609messages to it were lost, and optionally return a guard that can be used
610to stop monitoring again.
611
612In the first form (callback), the callback is simply called with any
613number of C<@reason> elements (no @reason means that the port was deleted
614"normally"). Note also that I<< the callback B<must> never die >>, so use
615C<eval> if unsure.
616
617In the second form (another port given), the other port (C<$rcvport>)
618will be C<kil>'ed with C<@reason>, if a @reason was specified, i.e. on
619"normal" kils nothing happens, while under all other conditions, the other
620port is killed with the same reason.
621
622The third form (kill self) is the same as the second form, except that
623C<$rvport> defaults to C<$SELF>.
624
625In the last form (message), a message of the form C<@msg, @reason> will be
626C<snd>.
627
628Monitoring-actions are one-shot: once messages are lost (and a monitoring
629alert was raised), they are removed and will not trigger again.
630
631As a rule of thumb, monitoring requests should always monitor a port from
632a local port (or callback). The reason is that kill messages might get
633lost, just like any other message. Another less obvious reason is that
634even monitoring requests can get lost (for example, when the connection
635to the other node goes down permanently). When monitoring a port locally
636these problems do not exist.
637
638C<mon> effectively guarantees that, in the absence of hardware failures,
639after starting the monitor, either all messages sent to the port will
640arrive, or the monitoring action will be invoked after possible message
641loss has been detected. No messages will be lost "in between" (after
642the first lost message no further messages will be received by the
643port). After the monitoring action was invoked, further messages might get
644delivered again.
645
646Inter-host-connection timeouts and monitoring depend on the transport
647used. The only transport currently implemented is TCP, and AnyEvent::MP
648relies on TCP to detect node-downs (this can take 10-15 minutes on a
649non-idle connection, and usually around two hours for idle connections).
650
651This means that monitoring is good for program errors and cleaning up
652stuff eventually, but they are no replacement for a timeout when you need
653to ensure some maximum latency.
654
655Example: call a given callback when C<$port> is killed.
656
657 mon $port, sub { warn "port died because of <@_>\n" };
658
659Example: kill ourselves when C<$port> is killed abnormally.
660
661 mon $port;
662
663Example: send us a restart message when another C<$port> is killed.
664
665 mon $port, $self => "restart";
666
667=cut
668
669sub mon {
670 my ($nodeid, $port) = split /#/, shift, 2;
671
672 my $node = $NODE{$nodeid} || add_node $nodeid;
673
674 my $cb = @_ ? shift : $SELF || Carp::croak 'mon: called with one argument only, but $SELF not set,';
675
676 unless (ref $cb) {
677 if (@_) {
678 # send a kill info message
679 my (@msg) = ($cb, @_);
680 $cb = sub { snd @msg, @_ };
681 } else {
682 # simply kill other port
683 my $port = $cb;
684 $cb = sub { kil $port, @_ if @_ };
685 }
686 }
687
688 $node->monitor ($port, $cb);
689
690 defined wantarray
691 and ($cb += 0, Guard::guard { $node->unmonitor ($port, $cb) })
692}
693
694=item $guard = mon_guard $port, $ref, $ref...
695
696Monitors the given C<$port> and keeps the passed references. When the port
697is killed, the references will be freed.
698
699Optionally returns a guard that will stop the monitoring.
700
701This function is useful when you create e.g. timers or other watchers and
702want to free them when the port gets killed (note the use of C<psub>):
703
704 $port->rcv (start => sub {
705 my $timer; $timer = mon_guard $port, AE::timer 1, 1, psub {
706 undef $timer if 0.9 < rand;
707 });
708 });
709
710=cut
711
712sub mon_guard {
713 my ($port, @refs) = @_;
714
715 #TODO: mon-less form?
716
717 mon $port, sub { 0 && @refs }
718}
719
720=item kil $port[, @reason]
721
722Kill the specified port with the given C<@reason>.
723
724If no C<@reason> is specified, then the port is killed "normally" -
725monitor callback will be invoked, but the kil will not cause linked ports
726(C<mon $mport, $lport> form) to get killed.
727
728If a C<@reason> is specified, then linked ports (C<mon $mport, $lport>
729form) get killed with the same reason.
730
731Runtime errors while evaluating C<rcv> callbacks or inside C<psub> blocks
732will be reported as reason C<< die => $@ >>.
733
734Transport/communication errors are reported as C<< transport_error =>
735$message >>.
736
737=cut
738
739=item $port = spawn $node, $initfunc[, @initdata]
740
741Creates a port on the node C<$node> (which can also be a port ID, in which
742case it's the node where that port resides).
743
744The port ID of the newly created port is returned immediately, and it is
745possible to immediately start sending messages or to monitor the port.
746
747After the port has been created, the init function is called on the remote
748node, in the same context as a C<rcv> callback. This function must be a
749fully-qualified function name (e.g. C<MyApp::Chat::Server::init>). To
750specify a function in the main program, use C<::name>.
751
752If the function doesn't exist, then the node tries to C<require>
753the package, then the package above the package and so on (e.g.
754C<MyApp::Chat::Server>, C<MyApp::Chat>, C<MyApp>) until the function
755exists or it runs out of package names.
756
757The init function is then called with the newly-created port as context
758object (C<$SELF>) and the C<@initdata> values as arguments. It I<must>
759call one of the C<rcv> functions to set callbacks on C<$SELF>, otherwise
760the port might not get created.
761
762A common idiom is to pass a local port, immediately monitor the spawned
763port, and in the remote init function, immediately monitor the passed
764local port. This two-way monitoring ensures that both ports get cleaned up
765when there is a problem.
766
767C<spawn> guarantees that the C<$initfunc> has no visible effects on the
768caller before C<spawn> returns (by delaying invocation when spawn is
769called for the local node).
770
771Example: spawn a chat server port on C<$othernode>.
772
773 # this node, executed from within a port context:
774 my $server = spawn $othernode, "MyApp::Chat::Server::connect", $SELF;
775 mon $server;
776
777 # init function on C<$othernode>
778 sub connect {
779 my ($srcport) = @_;
780
781 mon $srcport;
782
783 rcv $SELF, sub {
784 ...
785 };
786 }
787
788=cut
789
790sub _spawn {
791 my $port = shift;
792 my $init = shift;
793
794 # rcv will create the actual port
795 local $SELF = "$NODE#$port";
796 eval {
797 &{ load_func $init }
798 };
799 _self_die if $@;
800}
801
802sub spawn(@) {
803 my ($nodeid, undef) = split /#/, shift, 2;
804
805 my $id = $RUNIQ . ++$ID;
806
807 $_[0] =~ /::/
808 or Carp::croak "spawn init function must be a fully-qualified name, caught";
809
810 snd_to_func $nodeid, "AnyEvent::MP::_spawn" => $id, @_;
811
812 "$nodeid#$id"
813}
814
815
816=item after $timeout, @msg
817
818=item after $timeout, $callback
819
820Either sends the given message, or call the given callback, after the
821specified number of seconds.
822
823This is simply a utility function that comes in handy at times - the
824AnyEvent::MP author is not convinced of the wisdom of having it, though,
825so it may go away in the future.
826
827=cut
828
829sub after($@) {
830 my ($timeout, @action) = @_;
831
832 my $t; $t = AE::timer $timeout, 0, sub {
833 undef $t;
834 ref $action[0]
835 ? $action[0]()
836 : snd @action;
837 };
838}
839
840#=item $cb2 = timeout $seconds, $cb[, @args]
841
842=item cal $port, @msg, $callback[, $timeout]
843
844A simple form of RPC - sends a message to the given C<$port> with the
845given contents (C<@msg>), but adds a reply port to the message.
846
847The reply port is created temporarily just for the purpose of receiving
848the reply, and will be C<kil>ed when no longer needed.
849
850A reply message sent to the port is passed to the C<$callback> as-is.
851
852If an optional time-out (in seconds) is given and it is not C<undef>,
853then the callback will be called without any arguments after the time-out
854elapsed and the port is C<kil>ed.
855
856If no time-out is given (or it is C<undef>), then the local port will
857monitor the remote port instead, so it eventually gets cleaned-up.
858
859Currently this function returns the temporary port, but this "feature"
860might go in future versions unless you can make a convincing case that
861this is indeed useful for something.
862
863=cut
864
865sub cal(@) {
866 my $timeout = ref $_[-1] ? undef : pop;
867 my $cb = pop;
868
869 my $port = port {
870 undef $timeout;
871 kil $SELF;
872 &$cb;
873 };
874
875 if (defined $timeout) {
876 $timeout = AE::timer $timeout, 0, sub {
877 undef $timeout;
878 kil $port;
879 $cb->();
880 };
881 } else {
882 mon $_[0], sub {
883 kil $port;
884 $cb->();
885 };
886 }
887
888 push @_, $port;
889 &snd;
890
891 $port
892}
893
446=back 894=back
447 895
448=head1 FUNCTIONS FOR NODES 896=head1 DISTRIBUTED DATABASE
449 897
898AnyEvent::MP comes with a simple distributed database. The database will
899be mirrored asynchronously at all global nodes. Other nodes bind to one of
900the global nodes for their needs.
901
902The database consists of a two-level hash - a hash contains a hash which
903contains values.
904
905The top level hash key is called "family", and the second-level hash key
906is called "subkey" or simply "key".
907
908The family must be alphanumeric, i.e. start with a letter and consist
909of letters, digits, underscores and colons (C<[A-Za-z][A-Za-z0-9_:]*>,
910pretty much like Perl module names.
911
912As the family namespace is global, it is recommended to prefix family names
913with the name of the application or module using it.
914
915The subkeys must be non-empty strings, with no further restrictions.
916
917The values should preferably be strings, but other perl scalars should
918work as well (such as undef, arrays and hashes).
919
920Every database entry is owned by one node - adding the same family/subkey
921combination on multiple nodes will not cause discomfort for AnyEvent::MP,
922but the result might be nondeterministic, i.e. the key might have
923different values on different nodes.
924
925Different subkeys in the same family can be owned by different nodes
926without problems, and in fact, this is the common method to create worker
927pools. For example, a worker port for image scaling might do this:
928
929 db_set my_image_scalers => $port;
930
931And clients looking for an image scaler will want to get the
932C<my_image_scalers> keys from time to time:
933
934 db_keys my_image_scalers => sub {
935 @ports = @{ $_[0] };
936 };
937
938Or better yet, they want to monitor the database family, so they always
939have a reasonable up-to-date copy:
940
941 db_mon my_image_scalers => sub {
942 @ports = keys %{ $_[0] };
943 };
944
945In general, you can set or delete single subkeys, but query and monitor
946whole families only.
947
948If you feel the need to monitor or query a single subkey, try giving it
949it's own family.
950
450=over 4 951=over
451 952
452=item become_public endpoint... 953=item db_set $family => $subkey [=> $value]
453 954
454Tells the node to become a public node, i.e. reachable from other nodes. 955Sets (or replaces) a key to the database - if C<$value> is omitted,
956C<undef> is used instead.
455 957
456If no arguments are given, or the first argument is C<undef>, then 958=item db_del $family => $subkey...
457AnyEvent::MP tries to bind on port C<4040> on all IP addresses that the
458local nodename resolves to.
459 959
460Otherwise the first argument must be an array-reference with transport 960Deletes one or more subkeys from the database family.
461endpoints ("ip:port", "hostname:port") or port numbers (in which case the 961
462local nodename is used as hostname). The endpoints are all resolved and 962=item $guard = db_reg $family => $subkey [=> $value]
463will become the node reference. 963
964Sets the key on the database and returns a guard. When the guard is
965destroyed, the key is deleted from the database. If C<$value> is missing,
966then C<undef> is used.
967
968=item db_family $family => $cb->(\%familyhash)
969
970Queries the named database C<$family> and call the callback with the
971family represented as a hash. You can keep and freely modify the hash.
972
973=item db_keys $family => $cb->(\@keys)
974
975Same as C<db_family>, except it only queries the family I<subkeys> and passes
976them as array reference to the callback.
977
978=item db_values $family => $cb->(\@values)
979
980Same as C<db_family>, except it only queries the family I<values> and passes them
981as array reference to the callback.
982
983=item $guard = db_mon $family => $cb->($familyhash, \@added, \@changed, \@deleted)
984
985Creates a monitor on the given database family. Each time a key is set
986or or is deleted the callback is called with a hash containing the
987database family and three lists of added, changed and deleted subkeys,
988respectively. If no keys have changed then the array reference might be
989C<undef> or even missing.
990
991The family hash reference and the key arrays belong to AnyEvent::MP and
992B<must not be modified or stored> by the callback. When in doubt, make a
993copy.
994
995As soon as possible after the monitoring starts, the callback will be
996called with the intiial contents of the family, even if it is empty,
997i.e. there will always be a timely call to the callback with the current
998contents.
999
1000It is possible that the callback is called with a change event even though
1001the subkey is already present and the value has not changed.
1002
1003The monitoring stops when the guard object is destroyed.
1004
1005Example: on every change to the family "mygroup", print out all keys.
1006
1007 my $guard = db_mon mygroup => sub {
1008 my ($family, $a, $c, $d) = @_;
1009 print "mygroup members: ", (join " ", keys %$family), "\n";
1010 };
1011
1012Exmaple: wait until the family "My::Module::workers" is non-empty.
1013
1014 my $guard; $guard = db_mon My::Module::workers => sub {
1015 my ($family, $a, $c, $d) = @_;
1016 return unless %$family;
1017 undef $guard;
1018 print "My::Module::workers now nonempty\n";
1019 };
1020
1021Example: print all changes to the family "AnyRvent::Fantasy::Module".
1022
1023 my $guard = db_mon AnyRvent::Fantasy::Module => sub {
1024 my ($family, $a, $c, $d) = @_;
1025
1026 print "+$_=$family->{$_}\n" for @$a;
1027 print "*$_=$family->{$_}\n" for @$c;
1028 print "-$_=$family->{$_}\n" for @$d;
1029 };
464 1030
465=cut 1031=cut
466 1032
467=back 1033=back
468 1034
469=head1 NODE MESSAGES
470
471Nodes understand the following messages sent to them. Many of them take
472arguments called C<@reply>, which will simply be used to compose a reply
473message - C<$reply[0]> is the port to reply to, C<$reply[1]> the type and
474the remaining arguments are simply the message data.
475
476=over 4
477
478=cut
479
480=item lookup => $name, @reply
481
482Replies with the port ID of the specified well-known port, or C<undef>.
483
484=item devnull => ...
485
486Generic data sink/CPU heat conversion.
487
488=item relay => $port, @msg
489
490Simply forwards the message to the given port.
491
492=item eval => $string[ @reply]
493
494Evaluates the given string. If C<@reply> is given, then a message of the
495form C<@reply, $@, @evalres> is sent.
496
497Example: crash another node.
498
499 snd $othernode, eval => "exit";
500
501=item time => @reply
502
503Replies the the current node time to C<@reply>.
504
505Example: tell the current node to send the current time to C<$myport> in a
506C<timereply> message.
507
508 snd $NODE, time => $myport, timereply => 1, 2;
509 # => snd $myport, timereply => 1, 2, <time>
510
511=back
512
513=head1 AnyEvent::MP vs. Distributed Erlang 1035=head1 AnyEvent::MP vs. Distributed Erlang
514 1036
515AnyEvent::MP got lots of its ideas from distributed erlang (erlang node 1037AnyEvent::MP got lots of its ideas from distributed Erlang (Erlang node
516== aemp node, erlang process == aemp port), so many of the documents and 1038== aemp node, Erlang process == aemp port), so many of the documents and
517programming techniques employed by erlang apply to AnyEvent::MP. Here is a 1039programming techniques employed by Erlang apply to AnyEvent::MP. Here is a
518sample: 1040sample:
519 1041
520 http://www.erlang.se/doc/programming_rules.shtml 1042 http://www.erlang.se/doc/programming_rules.shtml
521 http://erlang.org/doc/getting_started/part_frame.html # chapters 3 and 4 1043 http://erlang.org/doc/getting_started/part_frame.html # chapters 3 and 4
522 http://erlang.org/download/erlang-book-part1.pdf # chapters 5 and 6 1044 http://erlang.org/download/erlang-book-part1.pdf # chapters 5 and 6
524 1046
525Despite the similarities, there are also some important differences: 1047Despite the similarities, there are also some important differences:
526 1048
527=over 4 1049=over 4
528 1050
529=item * Node references contain the recipe on how to contact them. 1051=item * Node IDs are arbitrary strings in AEMP.
530 1052
531Erlang relies on special naming and DNS to work everywhere in the 1053Erlang relies on special naming and DNS to work everywhere in the same
532same way. AEMP relies on each node knowing it's own address(es), with 1054way. AEMP relies on each node somehow knowing its own address(es) (e.g. by
533convenience functionality. 1055configuration or DNS), and possibly the addresses of some seed nodes, but
1056will otherwise discover other nodes (and their IDs) itself.
534 1057
535This means that AEMP requires a less tightly controlled environment at the 1058=item * Erlang has a "remote ports are like local ports" philosophy, AEMP
536cost of longer node references and a slightly higher management overhead. 1059uses "local ports are like remote ports".
1060
1061The failure modes for local ports are quite different (runtime errors
1062only) then for remote ports - when a local port dies, you I<know> it dies,
1063when a connection to another node dies, you know nothing about the other
1064port.
1065
1066Erlang pretends remote ports are as reliable as local ports, even when
1067they are not.
1068
1069AEMP encourages a "treat remote ports differently" philosophy, with local
1070ports being the special case/exception, where transport errors cannot
1071occur.
537 1072
538=item * Erlang uses processes and a mailbox, AEMP does not queue. 1073=item * Erlang uses processes and a mailbox, AEMP does not queue.
539 1074
540Erlang uses processes that selctively receive messages, and therefore 1075Erlang uses processes that selectively receive messages out of order, and
541needs a queue. AEMP is event based, queuing messages would serve no useful 1076therefore needs a queue. AEMP is event based, queuing messages would serve
542purpose. 1077no useful purpose. For the same reason the pattern-matching abilities
1078of AnyEvent::MP are more limited, as there is little need to be able to
1079filter messages without dequeuing them.
543 1080
544(But see L<Coro::MP> for a more erlang-like process model on top of AEMP). 1081This is not a philosophical difference, but simply stems from AnyEvent::MP
1082being event-based, while Erlang is process-based.
1083
1084You cna have a look at L<Coro::MP> for a more Erlang-like process model on
1085top of AEMP and Coro threads.
545 1086
546=item * Erlang sends are synchronous, AEMP sends are asynchronous. 1087=item * Erlang sends are synchronous, AEMP sends are asynchronous.
547 1088
548Sending messages in erlang is synchronous and blocks the process. AEMP 1089Sending messages in Erlang is synchronous and blocks the process until
549sends are immediate, connection establishment is handled in the 1090a conenction has been established and the message sent (and so does not
550background. 1091need a queue that can overflow). AEMP sends return immediately, connection
1092establishment is handled in the background.
551 1093
552=item * Erlang can silently lose messages, AEMP cannot. 1094=item * Erlang suffers from silent message loss, AEMP does not.
553 1095
554Erlang makes few guarantees on messages delivery - messages can get lost 1096Erlang implements few guarantees on messages delivery - messages can get
555without any of the processes realising it (i.e. you send messages a, b, 1097lost without any of the processes realising it (i.e. you send messages a,
556and c, and the other side only receives messages a and c). 1098b, and c, and the other side only receives messages a and c).
557 1099
558AEMP guarantees correct ordering, and the guarantee that there are no 1100AEMP guarantees (modulo hardware errors) correct ordering, and the
1101guarantee that after one message is lost, all following ones sent to the
1102same port are lost as well, until monitoring raises an error, so there are
559holes in the message sequence. 1103no silent "holes" in the message sequence.
560 1104
561=item * In erlang, processes can be declared dead and later be found to be 1105If you want your software to be very reliable, you have to cope with
562alive. 1106corrupted and even out-of-order messages in both Erlang and AEMP. AEMP
563 1107simply tries to work better in common error cases, such as when a network
564In erlang it can happen that a monitored process is declared dead and 1108link goes down.
565linked processes get killed, but later it turns out that the process is
566still alive - and can receive messages.
567
568In AEMP, when port monitoring detects a port as dead, then that port will
569eventually be killed - it cannot happen that a node detects a port as dead
570and then later sends messages to it, finding it is still alive.
571 1109
572=item * Erlang can send messages to the wrong port, AEMP does not. 1110=item * Erlang can send messages to the wrong port, AEMP does not.
573 1111
574In erlang it is quite possible that a node that restarts reuses a process 1112In Erlang it is quite likely that a node that restarts reuses an Erlang
575ID known to other nodes for a completely different process, causing 1113process ID known to other nodes for a completely different process,
576messages destined for that process to end up in an unrelated process. 1114causing messages destined for that process to end up in an unrelated
1115process.
577 1116
578AEMP never reuses port IDs, so old messages or old port IDs floating 1117AEMP does not reuse port IDs, so old messages or old port IDs floating
579around in the network will not be sent to an unrelated port. 1118around in the network will not be sent to an unrelated port.
580 1119
581=item * Erlang uses unprotected connections, AEMP uses secure 1120=item * Erlang uses unprotected connections, AEMP uses secure
582authentication and can use TLS. 1121authentication and can use TLS.
583 1122
584AEMP can use a proven protocol - SSL/TLS - to protect connections and 1123AEMP can use a proven protocol - TLS - to protect connections and
585securely authenticate nodes. 1124securely authenticate nodes.
586 1125
1126=item * The AEMP protocol is optimised for both text-based and binary
1127communications.
1128
1129The AEMP protocol, unlike the Erlang protocol, supports both programming
1130language independent text-only protocols (good for debugging), and binary,
1131language-specific serialisers (e.g. Storable). By default, unless TLS is
1132used, the protocol is actually completely text-based.
1133
1134It has also been carefully designed to be implementable in other languages
1135with a minimum of work while gracefully degrading functionality to make the
1136protocol simple.
1137
1138=item * AEMP has more flexible monitoring options than Erlang.
1139
1140In Erlang, you can chose to receive I<all> exit signals as messages or
1141I<none>, there is no in-between, so monitoring single Erlang processes is
1142difficult to implement.
1143
1144Monitoring in AEMP is more flexible than in Erlang, as one can choose
1145between automatic kill, exit message or callback on a per-port basis.
1146
1147=item * Erlang tries to hide remote/local connections, AEMP does not.
1148
1149Monitoring in Erlang is not an indicator of process death/crashes, in the
1150same way as linking is (except linking is unreliable in Erlang).
1151
1152In AEMP, you don't "look up" registered port names or send to named ports
1153that might or might not be persistent. Instead, you normally spawn a port
1154on the remote node. The init function monitors you, and you monitor the
1155remote port. Since both monitors are local to the node, they are much more
1156reliable (no need for C<spawn_link>).
1157
1158This also saves round-trips and avoids sending messages to the wrong port
1159(hard to do in Erlang).
1160
587=back 1161=back
588 1162
1163=head1 RATIONALE
1164
1165=over 4
1166
1167=item Why strings for port and node IDs, why not objects?
1168
1169We considered "objects", but found that the actual number of methods
1170that can be called are quite low. Since port and node IDs travel over
1171the network frequently, the serialising/deserialising would add lots of
1172overhead, as well as having to keep a proxy object everywhere.
1173
1174Strings can easily be printed, easily serialised etc. and need no special
1175procedures to be "valid".
1176
1177And as a result, a port with just a default receiver consists of a single
1178code reference stored in a global hash - it can't become much cheaper.
1179
1180=item Why favour JSON, why not a real serialising format such as Storable?
1181
1182In fact, any AnyEvent::MP node will happily accept Storable as framing
1183format, but currently there is no way to make a node use Storable by
1184default (although all nodes will accept it).
1185
1186The default framing protocol is JSON because a) JSON::XS is many times
1187faster for small messages and b) most importantly, after years of
1188experience we found that object serialisation is causing more problems
1189than it solves: Just like function calls, objects simply do not travel
1190easily over the network, mostly because they will always be a copy, so you
1191always have to re-think your design.
1192
1193Keeping your messages simple, concentrating on data structures rather than
1194objects, will keep your messages clean, tidy and efficient.
1195
1196=back
1197
589=head1 SEE ALSO 1198=head1 SEE ALSO
1199
1200L<AnyEvent::MP::Intro> - a gentle introduction.
1201
1202L<AnyEvent::MP::Kernel> - more, lower-level, stuff.
1203
1204L<AnyEvent::MP::Global> - network maintenance and port groups, to find
1205your applications.
1206
1207L<AnyEvent::MP::DataConn> - establish data connections between nodes.
1208
1209L<AnyEvent::MP::LogCatcher> - simple service to display log messages from
1210all nodes.
590 1211
591L<AnyEvent>. 1212L<AnyEvent>.
592 1213
593=head1 AUTHOR 1214=head1 AUTHOR
594 1215

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines