ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP/Transport.pm
Revision: 1.65
Committed: Sun Mar 7 19:29:07 2010 UTC (14 years, 3 months ago) by root
Branch: MAIN
Changes since 1.64: +60 -9 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 =head1 NAME
2
3 AnyEvent::MP::Transport - actual transport protocol handler
4
5 =head1 SYNOPSIS
6
7 use AnyEvent::MP::Transport;
8
9 =head1 DESCRIPTION
10
11 This module implements (and documents) the actual transport protocol for
12 AEMP.
13
14 See the "PROTOCOL" section below if you want to write another client for
15 this protocol.
16
17 =head1 FUNCTIONS/METHODS
18
19 =over 4
20
21 =cut
22
23 package AnyEvent::MP::Transport;
24
25 use common::sense;
26
27 use Scalar::Util ();
28 use List::Util ();
29 use MIME::Base64 ();
30 use Storable ();
31 use JSON::XS ();
32
33 use Digest::MD6 ();
34 use Digest::HMAC_MD6 ();
35
36 use AE ();
37 use AnyEvent::Socket ();
38 use AnyEvent::Handle 4.92 ();
39
40 use AnyEvent::MP::Config ();
41
42 our $PROTOCOL_VERSION = 1;
43
44 our @HOOK_CONNECT; # called at connect/accept time
45 our @HOOK_GREETING; # called at greeting1 time
46 our @HOOK_CONNECTED; # called at data phase
47 our @HOOK_DESTROY; # called at destroy time
48 our %HOOK_PROTOCOL = (
49 "aemp-dataconn" => sub {
50 require AnyEvent::MP::DataConn;
51 &AnyEvent::MP::DataConn::_inject;
52 },
53 );
54
55 =item $listener = mp_listener $host, $port, <constructor-args>
56
57 Creates a listener on the given host/port using
58 C<AnyEvent::Socket::tcp_server>.
59
60 See C<new>, below, for constructor arguments.
61
62 Defaults for peerhost, peerport and fh are provided.
63
64 =cut
65
66 sub mp_server($$;%) {
67 my ($host, $port, %arg) = @_;
68
69 AnyEvent::Socket::tcp_server $host, $port, sub {
70 my ($fh, $host, $port) = @_;
71
72 my $tp = new AnyEvent::MP::Transport
73 fh => $fh,
74 peerhost => $host,
75 peerport => $port,
76 %arg,
77 ;
78 $tp->{keepalive} = $tp;
79 }, delete $arg{prepare}
80 }
81
82 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83
84 =cut
85
86 sub mp_connect {
87 my $release = pop;
88 my ($host, $port, @args) = @_;
89
90 new AnyEvent::MP::Transport
91 connect => [$host, $port],
92 peerhost => $host,
93 peerport => $port,
94 release => $release,
95 @args,
96 ;
97 }
98
99 =item new AnyEvent::MP::Transport
100
101 # immediately starts negotiation
102 my $transport = new AnyEvent::MP::Transport
103 # mandatory
104 fh => $filehandle,
105 local_id => $identifier,
106 on_recv => sub { receive-callback },
107 on_error => sub { error-callback },
108
109 # optional
110 on_eof => sub { clean-close-callback },
111 on_connect => sub { successful-connect-callback },
112 greeting => { key => value },
113
114 # tls support
115 tls_ctx => AnyEvent::TLS,
116 peername => $peername, # for verification
117 ;
118
119 =cut
120
121 sub new {
122 my ($class, %arg) = @_;
123
124 my $self = bless \%arg, $class;
125
126 {
127 Scalar::Util::weaken (my $self = $self);
128
129 my $config = $AnyEvent::MP::Kernel::CONFIG;
130
131 my $timeout = $config->{monitor_timeout};
132 my $lframing = $config->{framing_format};
133 my $auth_snd = $config->{auth_offer};
134 my $auth_rcv = $config->{auth_accept};
135
136 $self->{secret} = $config->{secret}
137 unless exists $self->{secret};
138
139 my $secret = $self->{secret};
140
141 if (exists $config->{cert}) {
142 $self->{tls_ctx} = {
143 sslv2 => 0,
144 sslv3 => 0,
145 tlsv1 => 1,
146 verify => 1,
147 cert => $config->{cert},
148 ca_cert => $config->{cert},
149 verify_require_client_cert => 1,
150 };
151 }
152
153 $self->{hdl} = new AnyEvent::Handle
154 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
155 autocork => $config->{autocork},
156 no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
157 keepalive => 1,
158 on_error => sub {
159 $self->error ($_[2]);
160 },
161 rtimeout => $timeout,
162 ;
163
164 my $greeting_kv = $self->{local_greeting} ||= {};
165
166 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
167 $greeting_kv->{provider} = "AE-$AnyEvent::MP::VERSION"; # MP.pm might not be loaded, so best effort :(
168 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
169
170 my $protocol = $self->{protocol} || "aemp";
171
172 # can modify greeting_kv
173 $_->($self) for $protocol eq "aemp" ? @HOOK_CONNECT : ();
174
175 # send greeting
176 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
177 . ";$AnyEvent::MP::Kernel::NODE"
178 . ";" . (join ",", @$auth_rcv)
179 . ";" . (join ",", @$lframing)
180 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
181
182 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
183
184 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
185
186 # expect greeting
187 $self->{hdl}->rbuf_max (4 * 1024);
188 $self->{hdl}->push_read (line => sub {
189 my $rgreeting1 = $_[1];
190
191 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
192
193 $self->{remote_node} = $rnode;
194
195 $self->{remote_greeting} = {
196 map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
197 @kv
198 };
199
200 # maybe upgrade the protocol
201 if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
202 # maybe check for existence of the protocol handler?
203 $self->{protocol} = $protocol = $aemp;
204 }
205
206 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETING : ();
207
208 if ($aemp ne $protocol and $aemp ne "aemp") {
209 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
210 } elsif ($version != $PROTOCOL_VERSION) {
211 return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
212 } elsif ($protocol eq "aemp") {
213 if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
214 return $self->error ("I refuse to talk to myself");
215 } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
216 return $self->error ("$rnode already connected, not connecting again.");
217 }
218 }
219
220 # read nonce
221 $self->{hdl}->push_read (line => sub {
222 my $rgreeting2 = $_[1];
223
224 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
225 or return $self->error ("authentication error, echo attack?");
226
227 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
228
229 my $s_auth;
230 for my $auth_ (split /,/, $auths) {
231 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
232 $s_auth = $auth_;
233 last;
234 }
235 }
236
237 defined $s_auth
238 or return $self->error ("$auths: no common auth type supported");
239
240 my $s_framing;
241 for my $framing_ (split /,/, $framings) {
242 if (grep $framing_ eq $_, @$lframing) {
243 $s_framing = $framing_;
244 last;
245 }
246 }
247
248 defined $s_framing
249 or return $self->error ("$framings: no common framing method supported");
250
251 my $key;
252 my $lauth;
253
254 if ($tls) {
255 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
256 $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
257
258 $lauth =
259 $s_auth eq "tls_anon" ? ""
260 : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
261 : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
262
263 } elsif (length $secret) {
264 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
265 unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
266
267 $key = Digest::MD6::md6 $secret;
268 # we currently only support hmac_md6_64_256
269 $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
270
271 } else {
272 return $self->error ("unable to handshake TLS and no shared secret configured");
273 }
274
275 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
276
277 # read the authentication response
278 $self->{hdl}->push_read (line => sub {
279 my ($hdl, $rline) = @_;
280
281 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
282
283 my $rauth =
284 $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
285 : $auth_method eq "cleartext" ? unpack "H*", $secret
286 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
287 : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
288 : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
289
290 if ($rauth2 ne $rauth) {
291 return $self->error ("authentication failure/shared secret mismatch");
292 }
293
294 $self->{s_framing} = $s_framing;
295
296 $hdl->rbuf_max (undef);
297
298 # we rely on TCP retransmit timeouts and keepalives
299 $self->{hdl}->rtimeout (undef);
300
301 $self->{remote_greeting}{untrusted} = 1
302 if $auth_method eq "tls_anon";
303
304 $self->connected;
305
306 if ($protocol eq "aemp" and $self->{hdl}) {
307 # listener-less node need to continuously probe
308 unless (@$AnyEvent::MP::Kernel::LISTENER) {
309 $self->{hdl}->wtimeout ($timeout);
310 $self->{hdl}->on_wtimeout (sub { $self->send ([]) });
311 }
312
313 # receive handling
314 my $src_node = $self->{node};
315 Scalar::Util::weaken $src_node;
316
317 if ($r_framing eq "\njsonxyz") {#d#
318 } else {
319 my $rmsg; $rmsg = $self->{rmsg} = sub {
320 $_[0]->push_read ($r_framing => $rmsg);
321
322 local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
323 AnyEvent::MP::Kernel::_inject (@{ $_[1] });
324 };
325 eval {
326 $hdl->push_read ($r_framing => $rmsg);
327 };
328 Scalar::Util::weaken $rmsg;
329 return $self->error ("$r_framing: unusable remote framing")
330 if $@;
331 }
332 }
333 });
334 });
335 });
336 }
337
338 $self
339 }
340
341 sub error {
342 my ($self, $msg) = @_;
343
344 delete $self->{keepalive};
345
346 if ($self->{protocol}) {
347 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
348 } else {
349 $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
350
351 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
352 if $self->{node} && $self->{node}{transport} == $self;
353 }
354
355 (delete $self->{release})->()
356 if exists $self->{release};
357
358 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
359 $self->destroy;
360 }
361
362 sub connected {
363 my ($self) = @_;
364
365 delete $self->{keepalive};
366
367 if ($self->{protocol}) {
368 $self->{hdl}->on_error (undef);
369 $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
370 } else {
371 $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
372
373 my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
374 Scalar::Util::weaken ($self->{node} = $node);
375 $node->transport_connect ($self);
376
377 $_->($self) for @HOOK_CONNECTED;
378 }
379
380 (delete $self->{release})->()
381 if exists $self->{release};
382 }
383
384 sub send {
385 $_[0]{hdl}->push_write ($_[0]{s_framing} => $_[1]);
386 }
387
388 sub destroy {
389 my ($self) = @_;
390
391 (delete $self->{release})->()
392 if exists $self->{release};
393
394 $self->{hdl}->destroy
395 if $self->{hdl};
396
397 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
398 }
399
400 sub DESTROY {
401 my ($self) = @_;
402
403 $self->destroy;
404 }
405
406 =back
407
408 =head1 PROTOCOL
409
410 The AEMP protocol is comparatively simple, and consists of three phases
411 which are symmetrical for both sides: greeting (followed by optionally
412 switching to TLS mode), authentication and packet exchange.
413
414 The protocol is designed to allow both full-text and binary streams.
415
416 The greeting consists of two text lines that are ended by either an ASCII
417 CR LF pair, or a single ASCII LF (recommended).
418
419 =head2 GREETING
420
421 All the lines until after authentication must not exceed 4kb in length,
422 including line delimiter. Afterwards there is no limit on the packet size
423 that can be received.
424
425 =head3 First Greeting Line
426
427 Example:
428
429 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
430
431 The first line contains strings separated (not ended) by C<;>
432 characters. The first five strings are fixed by the protocol, the
433 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
434 characters themselves (when escaping is needed, use C<%3b> to represent
435 C<;> and C<%25> to represent C<%>)-
436
437 The fixed strings are:
438
439 =over 4
440
441 =item protocol identification
442
443 The constant C<aemp> to identify this protocol.
444
445 =item protocol version
446
447 The protocol version supported by this end, currently C<1>. If the
448 versions don't match then no communication is possible. Minor extensions
449 are supposed to be handled through additional key-value pairs.
450
451 =item the node ID
452
453 This is the node ID of the connecting node.
454
455 =item the acceptable authentication methods
456
457 A comma-separated list of authentication methods supported by the
458 node. Note that AnyEvent::MP supports a C<hex_secret> authentication
459 method that accepts a clear-text password (hex-encoded), but will not use
460 this authentication method itself.
461
462 The receiving side should choose the first authentication method it
463 supports.
464
465 =item the acceptable framing formats
466
467 A comma-separated list of packet encoding/framing formats understood. The
468 receiving side should choose the first framing format it supports for
469 sending packets (which might be different from the format it has to accept).
470
471 =back
472
473 The remaining arguments are C<KEY=VALUE> pairs. The following key-value
474 pairs are known at this time:
475
476 =over 4
477
478 =item provider=<module-version>
479
480 The software provider for this implementation. For AnyEvent::MP, this is
481 C<AE-0.0> or whatever version it currently is at.
482
483 =item peeraddr=<host>:<port>
484
485 The peer address (socket address of the other side) as seen locally.
486
487 =item tls=<major>.<minor>
488
489 Indicates that the other side supports TLS (version should be 1.0) and
490 wishes to do a TLS handshake.
491
492 =back
493
494 =head3 Second Greeting Line
495
496 After this greeting line there will be a second line containing a
497 cryptographic nonce, i.e. random data of high quality. To keep the
498 protocol text-only, these are usually 32 base64-encoded octets, but
499 it could be anything that doesn't contain any ASCII CR or ASCII LF
500 characters.
501
502 I<< The two nonces B<must> be different, and an aemp implementation
503 B<must> check and fail when they are identical >>.
504
505 Example of a nonce line (yes, it's random-looking because it is random
506 data):
507
508 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
509
510 =head2 TLS handshake
511
512 I<< If, after the handshake, both sides indicate interest in TLS, then the
513 connection B<must> use TLS, or fail to continue. >>
514
515 Both sides compare their nonces, and the side who sent the lower nonce
516 value ("string" comparison on the raw octet values) becomes the client,
517 and the one with the higher nonce the server.
518
519 =head2 AUTHENTICATION PHASE
520
521 After the greeting is received (and the optional TLS handshake),
522 the authentication phase begins, which consists of sending a single
523 C<;>-separated line with three fixed strings and any number of
524 C<KEY=VALUE> pairs.
525
526 The three fixed strings are:
527
528 =over 4
529
530 =item the authentication method chosen
531
532 This must be one of the methods offered by the other side in the greeting.
533
534 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
535 successfully handshaked (and to be secure the implementation must enforce
536 this).
537
538 The currently supported authentication methods are:
539
540 =over 4
541
542 =item cleartext
543
544 This is simply the shared secret, lowercase-hex-encoded. This method is of
545 course very insecure if TLS is not used (and not completely secure even
546 if TLS is used), which is why this module will accept, but not generate,
547 cleartext auth replies.
548
549 =item hmac_md6_64_256
550
551 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
552 requires a shared secret. It is the preferred auth method when a shared
553 secret is available.
554
555 First, the shared secret is hashed with MD6:
556
557 key = MD6 (secret)
558
559 This secret is then used to generate the "local auth reply", by taking
560 the two local greeting lines and the two remote greeting lines (without
561 line endings), appending \012 to all of them, concatenating them and
562 calculating the MD6 HMAC with the key:
563
564 lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
565
566 This authentication token is then lowercase-hex-encoded and sent to the
567 other side.
568
569 Then the remote auth reply is generated using the same method, but local
570 and remote greeting lines swapped:
571
572 rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
573
574 This is the token that is expected from the other side.
575
576 =item tls_anon
577
578 This type is only valid I<iff> TLS was enabled and the TLS handshake
579 was successful. It has no authentication data, as the server/client
580 certificate was successfully verified.
581
582 This authentication type is somewhat insecure, as it allows a
583 man-in-the-middle attacker to change some of the connection parameters
584 (such as the framing format), although there is no known attack that
585 exploits this in a way that is worse than just denying the service.
586
587 By default, this implementation accepts but never generates this auth
588 reply.
589
590 =item tls_md6_64_256
591
592 This type is only valid I<iff> TLS was enabled and the TLS handshake was
593 successful.
594
595 This authentication type simply calculates:
596
597 lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
598
599 and lowercase-hex encodes the result and sends it as authentication
600 data. No shared secret is required (authentication is done by TLS). The
601 checksum exists only to make tinkering with the greeting hard.
602
603 =back
604
605 =item the authentication data
606
607 The authentication data itself, usually base64 or hex-encoded data, see
608 above.
609
610 =item the framing protocol chosen
611
612 This must be one of the framing protocols offered by the other side in the
613 greeting. Each side must accept the choice of the other side, and generate
614 packets in the format it chose itself.
615
616 =back
617
618 Example of an authentication reply:
619
620 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
621
622 =head2 DATA PHASE
623
624 After this, packets get exchanged using the chosen framing protocol. It is
625 quite possible that both sides use a different framing protocol.
626
627 =head2 FULL EXAMPLE
628
629 This is an actual protocol dump of a handshake, followed by a single data
630 packet. The greater than/less than lines indicate the direction of the
631 transfer only.
632
633 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
634 > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
635
636 < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
637 < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
638
639 > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
640
641 < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
642 < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
643 ...
644
645 The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
646
647 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
648
649 Implementing the full set of options for handshaking can be a daunting
650 task.
651
652 If security is not so important (because you only connect locally and
653 control the host, a common case), and you want to interface with an AEMP
654 node from another programming language, then you can also implement a
655 simplified handshake.
656
657 For example, in a simple implementation you could decide to simply not
658 check the authenticity of the other side and use cleartext authentication
659 yourself. The the handshake is as simple as sending three lines of text,
660 reading three lines of text, and then you can exchange JSON-formatted
661 messages:
662
663 aemp;1;<nodename>;hmac_md6_64_256;json
664 <nonce>
665 cleartext;<hexencoded secret>;json
666
667 The nodename should be unique within the network, preferably unique with
668 every connection, the <nonce> could be empty or some random data, and the
669 hexencoded secret would be the shared secret, in lowercase hex (e.g. if
670 the secret is "geheim", the hex-encoded version would be "67656865696d").
671
672 Note that apart from the low-level handshake and framing protocol, there
673 is a high-level protocol, e.g. for monitoring, building the mesh or
674 spawning. All these messages are sent to the node port (the empty string)
675 and can safely be ignored if you do not need the relevant functionality.
676
677 =head3 USEFUL HINTS
678
679 Since taking part in the global protocol to find port groups is
680 nontrivial, hardcoding port names should be considered as well, i.e. the
681 non-Perl node could simply listen to messages for a few well-known ports.
682
683 Alternatively, the non-Perl node could call a (already loaded) function
684 in the Perl node by sending it a special message:
685
686 ["", "Some::Function::name", "myownport", 1, 2, 3]
687
688 This would call the function C<Some::Function::name> with the string
689 C<myownport> and some additional arguments.
690
691 =head2 MONITORING
692
693 Monitoring the connection itself is transport-specific. For TCP, all
694 connection monitoring is currently left to TCP retransmit time-outs
695 on a busy link, and TCP keepalive (which should be enabled) for idle
696 connections.
697
698 This is not sufficient for listener-less nodes, however: they need
699 to regularly send data (30 seconds, or the monitoring interval, is
700 recommended), so TCP actively probes.
701
702 Future implementations of AnyEvent::Transport might query the kernel TCP
703 buffer after a write timeout occurs, and if it is non-empty, shut down the
704 connections, but this is an area of future research :)
705
706 =head2 NODE PROTOCOL
707
708 The transport simply transfers messages, but to implement a full node, a
709 special node port must exist that understands a number of requests.
710
711 If you are interested in implementing this, drop us a note so we finish
712 the documentation.
713
714 =head1 SEE ALSO
715
716 L<AnyEvent::MP>.
717
718 =head1 AUTHOR
719
720 Marc Lehmann <schmorp@schmorp.de>
721 http://home.schmorp.de/
722
723 =cut
724
725 1
726