ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP/Transport.pm
Revision: 1.68
Committed: Sat Mar 13 21:15:31 2010 UTC (14 years, 2 months ago) by root
Branch: MAIN
Changes since 1.67: +22 -8 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 =head1 NAME
2
3 AnyEvent::MP::Transport - actual transport protocol handler
4
5 =head1 SYNOPSIS
6
7 use AnyEvent::MP::Transport;
8
9 =head1 DESCRIPTION
10
11 This module implements (and documents) the actual transport protocol for
12 AEMP.
13
14 See the "PROTOCOL" section below if you want to write another client for
15 this protocol.
16
17 =head1 FUNCTIONS/METHODS
18
19 =over 4
20
21 =cut
22
23 package AnyEvent::MP::Transport;
24
25 use common::sense;
26
27 use Scalar::Util ();
28 use List::Util ();
29 use MIME::Base64 ();
30 use Storable ();
31 use JSON::XS ();
32
33 use Digest::MD6 ();
34 use Digest::HMAC_MD6 ();
35
36 use AE ();
37 use AnyEvent::Socket ();
38 use AnyEvent::Handle 4.92 ();
39
40 use AnyEvent::MP::Config ();
41
42 our $PROTOCOL_VERSION = 1;
43
44 our @HOOK_CONNECT; # called at connect/accept time
45 our @HOOK_GREETING; # called at greeting1 time
46 our @HOOK_CONNECTED; # called at data phase
47 our @HOOK_DESTROY; # called at destroy time
48 our %HOOK_PROTOCOL = (
49 "aemp-dataconn" => sub {
50 require AnyEvent::MP::DataConn;
51 &AnyEvent::MP::DataConn::_inject;
52 },
53 );
54
55 =item $listener = mp_listener $host, $port, <constructor-args>
56
57 Creates a listener on the given host/port using
58 C<AnyEvent::Socket::tcp_server>.
59
60 See C<new>, below, for constructor arguments.
61
62 Defaults for peerhost, peerport and fh are provided.
63
64 =cut
65
66 sub mp_server($$;%) {
67 my ($host, $port, %arg) = @_;
68
69 AnyEvent::Socket::tcp_server $host, $port, sub {
70 my ($fh, $host, $port) = @_;
71
72 my $tp = new AnyEvent::MP::Transport
73 fh => $fh,
74 peerhost => $host,
75 peerport => $port,
76 %arg,
77 ;
78 $tp->{keepalive} = $tp;
79 }, delete $arg{prepare}
80 }
81
82 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83
84 =cut
85
86 sub mp_connect {
87 my $release = pop;
88 my ($host, $port, @args) = @_;
89
90 new AnyEvent::MP::Transport
91 connect => [$host, $port],
92 peerhost => $host,
93 peerport => $port,
94 release => $release,
95 @args,
96 ;
97 }
98
99 =item new AnyEvent::MP::Transport
100
101 # immediately starts negotiation
102 my $transport = new AnyEvent::MP::Transport
103 # mandatory
104 fh => $filehandle,
105 local_id => $identifier,
106 on_recv => sub { receive-callback },
107 on_error => sub { error-callback },
108
109 # optional
110 on_eof => sub { clean-close-callback },
111 on_connect => sub { successful-connect-callback },
112 greeting => { key => value },
113
114 # tls support
115 tls_ctx => AnyEvent::TLS,
116 peername => $peername, # for verification
117 ;
118
119 =cut
120
121 sub new {
122 my ($class, %arg) = @_;
123
124 my $self = bless \%arg, $class;
125
126 {
127 Scalar::Util::weaken (my $self = $self);
128
129 my $config = $AnyEvent::MP::Kernel::CONFIG;
130
131 my $timeout = $config->{monitor_timeout};
132 my $lframing = $config->{framing_format};
133 my $auth_snd = $config->{auth_offer};
134 my $auth_rcv = $config->{auth_accept};
135
136 $self->{secret} = $config->{secret}
137 unless exists $self->{secret};
138
139 my $secret = $self->{secret};
140
141 if (exists $config->{cert}) {
142 $self->{tls_ctx} = {
143 sslv2 => 0,
144 sslv3 => 0,
145 tlsv1 => 1,
146 verify => 1,
147 cert => $config->{cert},
148 ca_cert => $config->{cert},
149 verify_require_client_cert => 1,
150 };
151 }
152
153 $self->{hdl} = new AnyEvent::Handle
154 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
155 autocork => $config->{autocork},
156 no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
157 keepalive => 1,
158 on_error => sub {
159 $self->error ($_[2]);
160 },
161 rtimeout => $timeout,
162 ;
163
164 my $greeting_kv = $self->{local_greeting} ||= {};
165
166 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
167 $greeting_kv->{provider} = "AE-$AnyEvent::MP::VERSION"; # MP.pm might not be loaded, so best effort :(
168 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
169
170 my $protocol = $self->{protocol} || "aemp";
171
172 # can modify greeting_kv
173 $_->($self) for $protocol eq "aemp" ? @HOOK_CONNECT : ();
174
175 # send greeting
176 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
177 . ";$AnyEvent::MP::Kernel::NODE"
178 . ";" . (join ",", @$auth_rcv)
179 . ";" . (join ",", @$lframing)
180 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
181
182 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
183
184 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
185
186 # expect greeting
187 $self->{hdl}->rbuf_max (4 * 1024);
188 $self->{hdl}->push_read (line => sub {
189 my $rgreeting1 = $_[1];
190
191 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
192
193 $self->{remote_node} = $rnode;
194
195 $self->{remote_greeting} = {
196 map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
197 @kv
198 };
199
200 # maybe upgrade the protocol
201 if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
202 # maybe check for existence of the protocol handler?
203 $self->{protocol} = $protocol = $aemp;
204 }
205
206 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETING : ();
207
208 if ($aemp ne $protocol and $aemp ne "aemp") {
209 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
210 } elsif ($version != $PROTOCOL_VERSION) {
211 return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
212 } elsif ($protocol eq "aemp") {
213 if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
214 return $self->error ("I refuse to talk to myself");
215 } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
216 return $self->error ("$rnode already connected, not connecting again.");
217 }
218 }
219
220 # read nonce
221 $self->{hdl}->push_read (line => sub {
222 my $rgreeting2 = $_[1];
223
224 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
225 or return $self->error ("authentication error, echo attack?");
226
227 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
228
229 my $s_auth;
230 for my $auth_ (split /,/, $auths) {
231 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
232 $s_auth = $auth_;
233 last;
234 }
235 }
236
237 defined $s_auth
238 or return $self->error ("$auths: no common auth type supported");
239
240 my $s_framing;
241 for my $framing_ (split /,/, $framings) {
242 if (grep $framing_ eq $_, @$lframing) {
243 $s_framing = $framing_;
244 last;
245 }
246 }
247
248 defined $s_framing
249 or return $self->error ("$framings: no common framing method supported");
250
251 my $key;
252 my $lauth;
253
254 if ($tls) {
255 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
256 $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
257 return unless $self->{hdl}; # starttls might destruct us
258
259 $lauth =
260 $s_auth eq "tls_anon" ? ""
261 : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
262 : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
263
264 } elsif (length $secret) {
265 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
266 unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
267
268 $key = Digest::MD6::md6 $secret;
269 # we currently only support hmac_md6_64_256
270 $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
271
272 } else {
273 return $self->error ("unable to handshake TLS and no shared secret configured");
274 }
275
276 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
277
278 # read the authentication response
279 $self->{hdl}->push_read (line => sub {
280 my ($hdl, $rline) = @_;
281
282 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
283
284 my $rauth =
285 $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
286 : $auth_method eq "cleartext" ? unpack "H*", $secret
287 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
288 : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
289 : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
290
291 if ($rauth2 ne $rauth) {
292 return $self->error ("authentication failure/shared secret mismatch");
293 }
294
295 $self->{s_framing} = $s_framing;
296
297 $hdl->rbuf_max (undef);
298
299 # we rely on TCP retransmit timeouts and keepalives
300 $self->{hdl}->rtimeout (undef);
301
302 $self->{remote_greeting}{untrusted} = 1
303 if $auth_method eq "tls_anon";
304
305 if ($protocol eq "aemp" and $self->{hdl}) {
306 # listener-less node need to continuously probe
307 unless (@$AnyEvent::MP::Kernel::LISTENER) {
308 $self->{hdl}->wtimeout ($timeout);
309 $self->{hdl}->on_wtimeout (sub { $self->send ([]) });
310 }
311
312 # receive handling
313 my $src_node = $self->{node};
314 Scalar::Util::weaken $src_node;
315
316 # optimisation
317 my $push_write = $hdl->can ("push_write");
318 my $push_read = $hdl->can ("push_read");
319
320 if ($r_framing eq "json") {
321 my $coder = JSON::XS->new->utf8;
322
323 $self->{send} = sub {
324 $push_write->($hdl, JSON::XS::encode_json $_[0]);
325 };
326
327 $hdl->on_read (sub {
328 local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
329
330 AnyEvent::MP::Kernel::_inject (@$_)
331 for $coder->incr_parse (delete $_[0]{rbuf});
332
333 ()
334 });
335 } else {
336 $self->{send} = sub {
337 $push_write->($hdl, $s_framing => $_[0]);
338 };
339
340 my $rmsg; $rmsg = $self->{rmsg} = sub {
341 $push_read->($_[0], $r_framing => $rmsg);
342
343 local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
344 AnyEvent::MP::Kernel::_inject (@{ $_[1] });
345 };
346 eval {
347 $push_read->($_[0], $r_framing => $rmsg);
348 };
349 Scalar::Util::weaken $rmsg;
350 return $self->error ("$r_framing: unusable remote framing")
351 if $@;
352 }
353 }
354
355 $self->connected;
356 });
357 });
358 });
359 }
360
361 $self
362 }
363
364 sub error {
365 my ($self, $msg) = @_;
366
367 delete $self->{keepalive};
368
369 if ($self->{protocol}) {
370 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
371 } else {
372 $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
373
374 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
375 if $self->{node} && $self->{node}{transport} == $self;
376 }
377
378 (delete $self->{release})->()
379 if exists $self->{release};
380
381 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
382 $self->destroy;
383 }
384
385 sub connected {
386 my ($self) = @_;
387
388 delete $self->{keepalive};
389
390 if ($self->{protocol}) {
391 $self->{hdl}->on_error (undef);
392 $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
393 } else {
394 $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
395
396 my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
397 Scalar::Util::weaken ($self->{node} = $node);
398 $node->transport_connect ($self);
399
400 $_->($self) for @HOOK_CONNECTED;
401 }
402
403 (delete $self->{release})->()
404 if exists $self->{release};
405 }
406
407 sub destroy {
408 my ($self) = @_;
409
410 (delete $self->{release})->()
411 if exists $self->{release};
412
413 $self->{hdl}->destroy
414 if $self->{hdl};
415
416 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
417 }
418
419 sub DESTROY {
420 my ($self) = @_;
421
422 $self->destroy;
423 }
424
425 =back
426
427 =head1 PROTOCOL
428
429 The AEMP protocol is comparatively simple, and consists of three phases
430 which are symmetrical for both sides: greeting (followed by optionally
431 switching to TLS mode), authentication and packet exchange.
432
433 The protocol is designed to allow both full-text and binary streams.
434
435 The greeting consists of two text lines that are ended by either an ASCII
436 CR LF pair, or a single ASCII LF (recommended).
437
438 =head2 GREETING
439
440 All the lines until after authentication must not exceed 4kb in length,
441 including line delimiter. Afterwards there is no limit on the packet size
442 that can be received.
443
444 =head3 First Greeting Line
445
446 Example:
447
448 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
449
450 The first line contains strings separated (not ended) by C<;>
451 characters. The first five strings are fixed by the protocol, the
452 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
453 characters themselves (when escaping is needed, use C<%3b> to represent
454 C<;> and C<%25> to represent C<%>)-
455
456 The fixed strings are:
457
458 =over 4
459
460 =item protocol identification
461
462 The constant C<aemp> to identify this protocol.
463
464 =item protocol version
465
466 The protocol version supported by this end, currently C<1>. If the
467 versions don't match then no communication is possible. Minor extensions
468 are supposed to be handled through additional key-value pairs.
469
470 =item the node ID
471
472 This is the node ID of the connecting node.
473
474 =item the acceptable authentication methods
475
476 A comma-separated list of authentication methods supported by the
477 node. Note that AnyEvent::MP supports a C<hex_secret> authentication
478 method that accepts a clear-text password (hex-encoded), but will not use
479 this authentication method itself.
480
481 The receiving side should choose the first authentication method it
482 supports.
483
484 =item the acceptable framing formats
485
486 A comma-separated list of packet encoding/framing formats understood. The
487 receiving side should choose the first framing format it supports for
488 sending packets (which might be different from the format it has to accept).
489
490 =back
491
492 The remaining arguments are C<KEY=VALUE> pairs. The following key-value
493 pairs are known at this time:
494
495 =over 4
496
497 =item provider=<module-version>
498
499 The software provider for this implementation. For AnyEvent::MP, this is
500 C<AE-0.0> or whatever version it currently is at.
501
502 =item peeraddr=<host>:<port>
503
504 The peer address (socket address of the other side) as seen locally.
505
506 =item tls=<major>.<minor>
507
508 Indicates that the other side supports TLS (version should be 1.0) and
509 wishes to do a TLS handshake.
510
511 =back
512
513 =head3 Second Greeting Line
514
515 After this greeting line there will be a second line containing a
516 cryptographic nonce, i.e. random data of high quality. To keep the
517 protocol text-only, these are usually 32 base64-encoded octets, but
518 it could be anything that doesn't contain any ASCII CR or ASCII LF
519 characters.
520
521 I<< The two nonces B<must> be different, and an aemp implementation
522 B<must> check and fail when they are identical >>.
523
524 Example of a nonce line (yes, it's random-looking because it is random
525 data):
526
527 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
528
529 =head2 TLS handshake
530
531 I<< If, after the handshake, both sides indicate interest in TLS, then the
532 connection B<must> use TLS, or fail to continue. >>
533
534 Both sides compare their nonces, and the side who sent the lower nonce
535 value ("string" comparison on the raw octet values) becomes the client,
536 and the one with the higher nonce the server.
537
538 =head2 AUTHENTICATION PHASE
539
540 After the greeting is received (and the optional TLS handshake),
541 the authentication phase begins, which consists of sending a single
542 C<;>-separated line with three fixed strings and any number of
543 C<KEY=VALUE> pairs.
544
545 The three fixed strings are:
546
547 =over 4
548
549 =item the authentication method chosen
550
551 This must be one of the methods offered by the other side in the greeting.
552
553 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
554 successfully handshaked (and to be secure the implementation must enforce
555 this).
556
557 The currently supported authentication methods are:
558
559 =over 4
560
561 =item cleartext
562
563 This is simply the shared secret, lowercase-hex-encoded. This method is of
564 course very insecure if TLS is not used (and not completely secure even
565 if TLS is used), which is why this module will accept, but not generate,
566 cleartext auth replies.
567
568 =item hmac_md6_64_256
569
570 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
571 requires a shared secret. It is the preferred auth method when a shared
572 secret is available.
573
574 First, the shared secret is hashed with MD6:
575
576 key = MD6 (secret)
577
578 This secret is then used to generate the "local auth reply", by taking
579 the two local greeting lines and the two remote greeting lines (without
580 line endings), appending \012 to all of them, concatenating them and
581 calculating the MD6 HMAC with the key:
582
583 lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
584
585 This authentication token is then lowercase-hex-encoded and sent to the
586 other side.
587
588 Then the remote auth reply is generated using the same method, but local
589 and remote greeting lines swapped:
590
591 rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
592
593 This is the token that is expected from the other side.
594
595 =item tls_anon
596
597 This type is only valid I<iff> TLS was enabled and the TLS handshake
598 was successful. It has no authentication data, as the server/client
599 certificate was successfully verified.
600
601 This authentication type is somewhat insecure, as it allows a
602 man-in-the-middle attacker to change some of the connection parameters
603 (such as the framing format), although there is no known attack that
604 exploits this in a way that is worse than just denying the service.
605
606 By default, this implementation accepts but never generates this auth
607 reply.
608
609 =item tls_md6_64_256
610
611 This type is only valid I<iff> TLS was enabled and the TLS handshake was
612 successful.
613
614 This authentication type simply calculates:
615
616 lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
617
618 and lowercase-hex encodes the result and sends it as authentication
619 data. No shared secret is required (authentication is done by TLS). The
620 checksum exists only to make tinkering with the greeting hard.
621
622 =back
623
624 =item the authentication data
625
626 The authentication data itself, usually base64 or hex-encoded data, see
627 above.
628
629 =item the framing protocol chosen
630
631 This must be one of the framing protocols offered by the other side in the
632 greeting. Each side must accept the choice of the other side, and generate
633 packets in the format it chose itself.
634
635 =back
636
637 Example of an authentication reply:
638
639 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
640
641 =head2 DATA PHASE
642
643 After this, packets get exchanged using the chosen framing protocol. It is
644 quite possible that both sides use a different framing protocol.
645
646 =head2 FULL EXAMPLE
647
648 This is an actual protocol dump of a handshake, followed by a single data
649 packet. The greater than/less than lines indicate the direction of the
650 transfer only.
651
652 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
653 > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
654
655 < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
656 < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
657
658 > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
659
660 < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
661 < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
662 ...
663
664 The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
665
666 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
667
668 Implementing the full set of options for handshaking can be a daunting
669 task.
670
671 If security is not so important (because you only connect locally and
672 control the host, a common case), and you want to interface with an AEMP
673 node from another programming language, then you can also implement a
674 simplified handshake.
675
676 For example, in a simple implementation you could decide to simply not
677 check the authenticity of the other side and use cleartext authentication
678 yourself. The the handshake is as simple as sending three lines of text,
679 reading three lines of text, and then you can exchange JSON-formatted
680 messages:
681
682 aemp;1;<nodename>;hmac_md6_64_256;json
683 <nonce>
684 cleartext;<hexencoded secret>;json
685
686 The nodename should be unique within the network, preferably unique with
687 every connection, the <nonce> could be empty or some random data, and the
688 hexencoded secret would be the shared secret, in lowercase hex (e.g. if
689 the secret is "geheim", the hex-encoded version would be "67656865696d").
690
691 Note that apart from the low-level handshake and framing protocol, there
692 is a high-level protocol, e.g. for monitoring, building the mesh or
693 spawning. All these messages are sent to the node port (the empty string)
694 and can safely be ignored if you do not need the relevant functionality.
695
696 =head3 USEFUL HINTS
697
698 Since taking part in the global protocol to find port groups is
699 nontrivial, hardcoding port names should be considered as well, i.e. the
700 non-Perl node could simply listen to messages for a few well-known ports.
701
702 Alternatively, the non-Perl node could call a (already loaded) function
703 in the Perl node by sending it a special message:
704
705 ["", "Some::Function::name", "myownport", 1, 2, 3]
706
707 This would call the function C<Some::Function::name> with the string
708 C<myownport> and some additional arguments.
709
710 =head2 MONITORING
711
712 Monitoring the connection itself is transport-specific. For TCP, all
713 connection monitoring is currently left to TCP retransmit time-outs
714 on a busy link, and TCP keepalive (which should be enabled) for idle
715 connections.
716
717 This is not sufficient for listener-less nodes, however: they need
718 to regularly send data (30 seconds, or the monitoring interval, is
719 recommended), so TCP actively probes.
720
721 Future implementations of AnyEvent::Transport might query the kernel TCP
722 buffer after a write timeout occurs, and if it is non-empty, shut down the
723 connections, but this is an area of future research :)
724
725 =head2 NODE PROTOCOL
726
727 The transport simply transfers messages, but to implement a full node, a
728 special node port must exist that understands a number of requests.
729
730 If you are interested in implementing this, drop us a note so we finish
731 the documentation.
732
733 =head1 SEE ALSO
734
735 L<AnyEvent::MP>.
736
737 =head1 AUTHOR
738
739 Marc Lehmann <schmorp@schmorp.de>
740 http://home.schmorp.de/
741
742 =cut
743
744 1
745