ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP/Transport.pm
Revision: 1.74
Committed: Sun Feb 26 10:29:59 2012 UTC (12 years, 3 months ago) by root
Branch: MAIN
Changes since 1.73: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 =head1 NAME
2
3 AnyEvent::MP::Transport - actual transport protocol handler
4
5 =head1 SYNOPSIS
6
7 use AnyEvent::MP::Transport;
8
9 =head1 DESCRIPTION
10
11 This module implements (and documents) the actual transport protocol for
12 AEMP.
13
14 See the "PROTOCOL" section below if you want to write another client for
15 this protocol.
16
17 =head1 FUNCTIONS/METHODS
18
19 =over 4
20
21 =cut
22
23 package AnyEvent::MP::Transport;
24
25 use common::sense;
26
27 use Scalar::Util ();
28 use List::Util ();
29 use MIME::Base64 ();
30 use Storable ();
31 use JSON::XS ();
32
33 use Digest::MD6 ();
34 use Digest::HMAC_MD6 ();
35
36 use AE ();
37 use AnyEvent::Socket ();
38 use AnyEvent::Handle 4.92 ();
39
40 use AnyEvent::MP::Config ();
41
42 our $PROTOCOL_VERSION = 1;
43
44 our @HOOK_CONNECT; # called at connect/accept time
45 our @HOOK_GREETING; # called at greeting1 time
46 our @HOOK_CONNECTED; # called at data phase
47 our @HOOK_DESTROY; # called at destroy time
48 our %HOOK_PROTOCOL = (
49 "aemp-dataconn" => sub {
50 require AnyEvent::MP::DataConn;
51 &AnyEvent::MP::DataConn::_inject;
52 },
53 );
54
55 =item $listener = mp_listener $host, $port, <constructor-args>
56
57 Creates a listener on the given host/port using
58 C<AnyEvent::Socket::tcp_server>.
59
60 See C<new>, below, for constructor arguments.
61
62 Defaults for peerhost, peerport and fh are provided.
63
64 =cut
65
66 sub mp_server($$;%) {
67 my ($host, $port, %arg) = @_;
68
69 AnyEvent::Socket::tcp_server $host, $port, sub {
70 my ($fh, $host, $port) = @_;
71
72 my $tp = new AnyEvent::MP::Transport
73 fh => $fh,
74 peerhost => $host,
75 peerport => $port,
76 %arg,
77 ;
78 $tp->{keepalive} = $tp;
79 }, delete $arg{prepare}
80 }
81
82 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83
84 =cut
85
86 sub mp_connect {
87 my $release = pop;
88 my ($host, $port, @args) = @_;
89
90 new AnyEvent::MP::Transport
91 connect => [$host, $port],
92 peerhost => $host,
93 peerport => $port,
94 release => $release,
95 @args,
96 ;
97 }
98
99 =item new AnyEvent::MP::Transport
100
101 # immediately starts negotiation
102 my $transport = new AnyEvent::MP::Transport
103 # mandatory
104 fh => $filehandle,
105 local_id => $identifier,
106 on_recv => sub { receive-callback },
107 on_error => sub { error-callback },
108
109 # optional
110 on_eof => sub { clean-close-callback },
111 on_connect => sub { successful-connect-callback },
112 greeting => { key => value },
113
114 # tls support
115 tls_ctx => AnyEvent::TLS,
116 peername => $peername, # for verification
117 ;
118
119 =cut
120
121 sub new {
122 my ($class, %arg) = @_;
123
124 my $self = bless \%arg, $class;
125
126 {
127 Scalar::Util::weaken (my $self = $self);
128
129 my $config = $AnyEvent::MP::Kernel::CONFIG;
130
131 my $timeout = $config->{monitor_timeout};
132 my $lframing = $config->{framing_format};
133 my $auth_snd = $config->{auth_offer};
134 my $auth_rcv = $config->{auth_accept};
135
136 $self->{secret} = $config->{secret}
137 unless exists $self->{secret};
138
139 my $secret = $self->{secret};
140
141 if (exists $config->{cert}) {
142 $self->{tls_ctx} = {
143 sslv2 => 0,
144 sslv3 => 0,
145 tlsv1 => 1,
146 verify => 1,
147 cert => $config->{cert},
148 ca_cert => $config->{cert},
149 verify_require_client_cert => 1,
150 };
151 }
152
153 $self->{hdl} = new AnyEvent::Handle
154 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
155 autocork => $config->{autocork},
156 no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
157 keepalive => 1,
158 on_error => sub {
159 $self->error ($_[2]);
160 },
161 rtimeout => $timeout,
162 ;
163
164 my $greeting_kv = $self->{local_greeting} ||= {};
165
166 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
167 $greeting_kv->{provider} = "AE-$AnyEvent::MP::VERSION"; # MP.pm might not be loaded, so best effort :(
168 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
169
170 my $protocol = $self->{protocol} || "aemp";
171
172 # can modify greeting_kv
173 $_->($self) for $protocol eq "aemp" ? @HOOK_CONNECT : ();
174
175 # send greeting
176 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
177 . ";$AnyEvent::MP::Kernel::NODE"
178 . ";" . (join ",", @$auth_rcv)
179 . ";" . (join ",", @$lframing)
180 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
181
182 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
183
184 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
185 return unless $self;
186
187 # expect greeting
188 $self->{hdl}->rbuf_max (4 * 1024);
189 $self->{hdl}->push_read (line => sub {
190 my $rgreeting1 = $_[1];
191
192 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
193
194 $self->{remote_node} = $rnode;
195
196 $self->{remote_greeting} = {
197 map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
198 @kv
199 };
200
201 # maybe upgrade the protocol
202 if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
203 # maybe check for existence of the protocol handler?
204 $self->{protocol} = $protocol = $aemp;
205 }
206
207 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETING : ();
208
209 if ($aemp ne $protocol and $aemp ne "aemp") {
210 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
211 } elsif ($version != $PROTOCOL_VERSION) {
212 return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
213 } elsif ($protocol eq "aemp") {
214 if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
215 return $self->error ("I refuse to talk to myself");
216 } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
217 return $self->error ("$rnode already connected, not connecting again.");
218 }
219 }
220
221 # read nonce
222 $self->{hdl}->push_read (line => sub {
223 my $rgreeting2 = $_[1];
224
225 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
226 or return $self->error ("authentication error, echo attack?");
227
228 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
229
230 my $s_auth;
231 for my $auth_ (split /,/, $auths) {
232 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
233 $s_auth = $auth_;
234 last;
235 }
236 }
237
238 defined $s_auth
239 or return $self->error ("$auths: no common auth type supported");
240
241 my $s_framing;
242 for my $framing_ (split /,/, $framings) {
243 if (grep $framing_ eq $_, @$lframing) {
244 $s_framing = $framing_;
245 last;
246 }
247 }
248
249 defined $s_framing
250 or return $self->error ("$framings: no common framing method supported");
251
252 my $key;
253 my $lauth;
254
255 if ($tls) {
256 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
257 $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
258 return unless $self->{hdl}; # starttls might destruct us
259
260 $lauth =
261 $s_auth eq "tls_anon" ? ""
262 : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
263 : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
264
265 } elsif (length $secret) {
266 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
267 unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
268
269 $key = Digest::MD6::md6 $secret;
270 # we currently only support hmac_md6_64_256
271 $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
272
273 } else {
274 return $self->error ("unable to handshake TLS and no shared secret configured");
275 }
276
277 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
278 return unless $self;
279
280 # read the authentication response
281 $self->{hdl}->push_read (line => sub {
282 my ($hdl, $rline) = @_;
283
284 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
285
286 my $rauth =
287 $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
288 : $auth_method eq "cleartext" ? unpack "H*", $secret
289 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
290 : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
291 : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
292
293 if ($rauth2 ne $rauth) {
294 return $self->error ("authentication failure/shared secret mismatch");
295 }
296
297 $self->{s_framing} = $s_framing;
298
299 $hdl->rbuf_max (undef);
300
301 # we rely on TCP retransmit timeouts and keepalives
302 $self->{hdl}->rtimeout (undef);
303
304 $self->{remote_greeting}{untrusted} = 1
305 if $auth_method eq "tls_anon";
306
307 if ($protocol eq "aemp" and $self->{hdl}) {
308 # listener-less node need to continuously probe
309 unless (@$AnyEvent::MP::Kernel::LISTENER) {
310 $self->{hdl}->wtimeout ($timeout);
311 $self->{hdl}->on_wtimeout (sub { $self->{send}->([]) });
312 }
313
314 # receive handling
315
316 my $push_write = $hdl->can ("push_write");
317 my $push_read = $hdl->can ("push_read");
318
319 if ($s_framing eq "json") {
320 $self->{send} = sub {
321 $push_write->($hdl, JSON::XS::encode_json $_[0]);
322 };
323 } else {
324 $self->{send} = sub {
325 $push_write->($hdl, $s_framing => $_[0]);
326 };
327 }
328
329 if ($r_framing eq "json") {
330 my $coder = JSON::XS->new->utf8;
331
332 $hdl->on_read (sub {
333 local $AnyEvent::MP::Kernel::SRCNODE = $self->{node};
334
335 AnyEvent::MP::Kernel::_inject (@$_)
336 for $coder->incr_parse (delete $_[0]{rbuf});
337
338 ()
339 });
340 } else {
341 my $rmsg; $rmsg = $self->{rmsg} = sub {
342 $push_read->($_[0], $r_framing => $rmsg);
343
344 local $AnyEvent::MP::Kernel::SRCNODE = $self->{node};
345 AnyEvent::MP::Kernel::_inject (@{ $_[1] });
346 };
347 eval {
348 $push_read->($_[0], $r_framing => $rmsg);
349 };
350 Scalar::Util::weaken $rmsg;
351 return $self->error ("$r_framing: unusable remote framing")
352 if $@;
353 }
354 }
355
356 $self->connected;
357 });
358 });
359 });
360 }
361
362 $self
363 }
364
365 sub error {
366 my ($self, $msg) = @_;
367
368 delete $self->{keepalive};
369
370 if ($self->{protocol}) {
371 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
372 } else {
373 $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
374
375 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
376 if $self->{node} && $self->{node}{transport} == $self;
377 }
378
379 (delete $self->{release})->()
380 if exists $self->{release};
381
382 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
383 $self->destroy;
384 }
385
386 sub connected {
387 my ($self) = @_;
388
389 delete $self->{keepalive};
390
391 if ($self->{protocol}) {
392 $self->{hdl}->on_error (undef);
393 $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
394 } else {
395 $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
396
397 my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
398 Scalar::Util::weaken ($self->{node} = $node);
399 $node->transport_connect ($self);
400
401 $_->($self) for @HOOK_CONNECTED;
402 }
403
404 (delete $self->{release})->()
405 if exists $self->{release};
406 }
407
408 sub destroy {
409 my ($self) = @_;
410
411 (delete $self->{release})->()
412 if exists $self->{release};
413
414 $self->{hdl}->destroy
415 if $self->{hdl};
416
417 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
418
419 $self->{protocol} = "destroyed"; # to keep hooks from invoked twice.
420 }
421
422 sub DESTROY {
423 my ($self) = @_;
424
425 $self->destroy;
426 }
427
428 =back
429
430 =head1 PROTOCOL
431
432 The AEMP protocol is comparatively simple, and consists of three phases
433 which are symmetrical for both sides: greeting (followed by optionally
434 switching to TLS mode), authentication and packet exchange.
435
436 The protocol is designed to allow both full-text and binary streams.
437
438 The greeting consists of two text lines that are ended by either an ASCII
439 CR LF pair, or a single ASCII LF (recommended).
440
441 =head2 GREETING
442
443 All the lines until after authentication must not exceed 4kb in length,
444 including line delimiter. Afterwards there is no limit on the packet size
445 that can be received.
446
447 =head3 First Greeting Line
448
449 Example:
450
451 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
452
453 The first line contains strings separated (not ended) by C<;>
454 characters. The first five strings are fixed by the protocol, the
455 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
456 characters themselves (when escaping is needed, use C<%3b> to represent
457 C<;> and C<%25> to represent C<%>)-
458
459 The fixed strings are:
460
461 =over 4
462
463 =item protocol identification
464
465 The constant C<aemp> to identify this protocol.
466
467 =item protocol version
468
469 The protocol version supported by this end, currently C<1>. If the
470 versions don't match then no communication is possible. Minor extensions
471 are supposed to be handled through additional key-value pairs.
472
473 =item the node ID
474
475 This is the node ID of the connecting node.
476
477 =item the acceptable authentication methods
478
479 A comma-separated list of authentication methods supported by the
480 node. Note that AnyEvent::MP supports a C<hex_secret> authentication
481 method that accepts a clear-text password (hex-encoded), but will not use
482 this authentication method itself.
483
484 The receiving side should choose the first authentication method it
485 supports.
486
487 =item the acceptable framing formats
488
489 A comma-separated list of packet encoding/framing formats understood. The
490 receiving side should choose the first framing format it supports for
491 sending packets (which might be different from the format it has to accept).
492
493 =back
494
495 The remaining arguments are C<KEY=VALUE> pairs. The following key-value
496 pairs are known at this time:
497
498 =over 4
499
500 =item provider=<module-version>
501
502 The software provider for this implementation. For AnyEvent::MP, this is
503 C<AE-0.0> or whatever version it currently is at.
504
505 =item peeraddr=<host>:<port>
506
507 The peer address (socket address of the other side) as seen locally.
508
509 =item tls=<major>.<minor>
510
511 Indicates that the other side supports TLS (version should be 1.0) and
512 wishes to do a TLS handshake.
513
514 =back
515
516 =head3 Second Greeting Line
517
518 After this greeting line there will be a second line containing a
519 cryptographic nonce, i.e. random data of high quality. To keep the
520 protocol text-only, these are usually 32 base64-encoded octets, but
521 it could be anything that doesn't contain any ASCII CR or ASCII LF
522 characters.
523
524 I<< The two nonces B<must> be different, and an aemp implementation
525 B<must> check and fail when they are identical >>.
526
527 Example of a nonce line (yes, it's random-looking because it is random
528 data):
529
530 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
531
532 =head2 TLS handshake
533
534 I<< If, after the handshake, both sides indicate interest in TLS, then the
535 connection B<must> use TLS, or fail to continue. >>
536
537 Both sides compare their nonces, and the side who sent the lower nonce
538 value ("string" comparison on the raw octet values) becomes the client,
539 and the one with the higher nonce the server.
540
541 =head2 AUTHENTICATION PHASE
542
543 After the greeting is received (and the optional TLS handshake),
544 the authentication phase begins, which consists of sending a single
545 C<;>-separated line with three fixed strings and any number of
546 C<KEY=VALUE> pairs.
547
548 The three fixed strings are:
549
550 =over 4
551
552 =item the authentication method chosen
553
554 This must be one of the methods offered by the other side in the greeting.
555
556 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
557 successfully handshaked (and to be secure the implementation must enforce
558 this).
559
560 The currently supported authentication methods are:
561
562 =over 4
563
564 =item cleartext
565
566 This is simply the shared secret, lowercase-hex-encoded. This method is of
567 course very insecure if TLS is not used (and not completely secure even
568 if TLS is used), which is why this module will accept, but not generate,
569 cleartext auth replies.
570
571 =item hmac_md6_64_256
572
573 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
574 requires a shared secret. It is the preferred auth method when a shared
575 secret is available.
576
577 First, the shared secret is hashed with MD6:
578
579 key = MD6 (secret)
580
581 This secret is then used to generate the "local auth reply", by taking
582 the two local greeting lines and the two remote greeting lines (without
583 line endings), appending \012 to all of them, concatenating them and
584 calculating the MD6 HMAC with the key:
585
586 lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
587
588 This authentication token is then lowercase-hex-encoded and sent to the
589 other side.
590
591 Then the remote auth reply is generated using the same method, but local
592 and remote greeting lines swapped:
593
594 rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
595
596 This is the token that is expected from the other side.
597
598 =item tls_anon
599
600 This type is only valid I<iff> TLS was enabled and the TLS handshake
601 was successful. It has no authentication data, as the server/client
602 certificate was successfully verified.
603
604 This authentication type is somewhat insecure, as it allows a
605 man-in-the-middle attacker to change some of the connection parameters
606 (such as the framing format), although there is no known attack that
607 exploits this in a way that is worse than just denying the service.
608
609 By default, this implementation accepts but never generates this auth
610 reply.
611
612 =item tls_md6_64_256
613
614 This type is only valid I<iff> TLS was enabled and the TLS handshake was
615 successful.
616
617 This authentication type simply calculates:
618
619 lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
620
621 and lowercase-hex encodes the result and sends it as authentication
622 data. No shared secret is required (authentication is done by TLS). The
623 checksum exists only to make tinkering with the greeting hard.
624
625 =back
626
627 =item the authentication data
628
629 The authentication data itself, usually base64 or hex-encoded data, see
630 above.
631
632 =item the framing protocol chosen
633
634 This must be one of the framing protocols offered by the other side in the
635 greeting. Each side must accept the choice of the other side, and generate
636 packets in the format it chose itself.
637
638 =back
639
640 Example of an authentication reply:
641
642 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
643
644 =head2 DATA PHASE
645
646 After this, packets get exchanged using the chosen framing protocol. It is
647 quite possible that both sides use a different framing protocol.
648
649 =head2 FULL EXAMPLE
650
651 This is an actual protocol dump of a handshake, followed by a single data
652 packet. The greater than/less than lines indicate the direction of the
653 transfer only.
654
655 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
656 > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
657
658 < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
659 < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
660
661 > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
662
663 < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
664 < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
665 ...
666
667 The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
668
669 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
670
671 Implementing the full set of options for handshaking can be a daunting
672 task.
673
674 If security is not so important (because you only connect locally and
675 control the host, a common case), and you want to interface with an AEMP
676 node from another programming language, then you can also implement a
677 simplified handshake.
678
679 For example, in a simple implementation you could decide to simply not
680 check the authenticity of the other side and use cleartext authentication
681 yourself. The the handshake is as simple as sending three lines of text,
682 reading three lines of text, and then you can exchange JSON-formatted
683 messages:
684
685 aemp;1;<nodename>;hmac_md6_64_256;json
686 <nonce>
687 cleartext;<hexencoded secret>;json
688
689 The nodename should be unique within the network, preferably unique with
690 every connection, the <nonce> could be empty or some random data, and the
691 hexencoded secret would be the shared secret, in lowercase hex (e.g. if
692 the secret is "geheim", the hex-encoded version would be "67656865696d").
693
694 Note that apart from the low-level handshake and framing protocol, there
695 is a high-level protocol, e.g. for monitoring, building the mesh or
696 spawning. All these messages are sent to the node port (the empty string)
697 and can safely be ignored if you do not need the relevant functionality.
698
699 =head3 USEFUL HINTS
700
701 Since taking part in the global protocol to find port groups is
702 nontrivial, hardcoding port names should be considered as well, i.e. the
703 non-Perl node could simply listen to messages for a few well-known ports.
704
705 Alternatively, the non-Perl node could call a (already loaded) function
706 in the Perl node by sending it a special message:
707
708 ["", "Some::Function::name", "myownport", 1, 2, 3]
709
710 This would call the function C<Some::Function::name> with the string
711 C<myownport> and some additional arguments.
712
713 =head2 MONITORING
714
715 Monitoring the connection itself is transport-specific. For TCP, all
716 connection monitoring is currently left to TCP retransmit time-outs
717 on a busy link, and TCP keepalive (which should be enabled) for idle
718 connections.
719
720 This is not sufficient for listener-less nodes, however: they need
721 to regularly send data (30 seconds, or the monitoring interval, is
722 recommended), so TCP actively probes.
723
724 Future implementations of AnyEvent::MP::Transport might query the kernel TCP
725 buffer after a write timeout occurs, and if it is non-empty, shut down the
726 connections, but this is an area of future research :)
727
728 =head2 NODE PROTOCOL
729
730 The transport simply transfers messages, but to implement a full node, a
731 special node port must exist that understands a number of requests.
732
733 If you are interested in implementing this, drop us a note so we finish
734 the documentation.
735
736 =head1 SEE ALSO
737
738 L<AnyEvent::MP>.
739
740 =head1 AUTHOR
741
742 Marc Lehmann <schmorp@schmorp.de>
743 http://home.schmorp.de/
744
745 =cut
746
747 1
748