--- AnyEvent/README 2008/07/12 20:45:27 1.28 +++ AnyEvent/README 2008/11/21 01:36:22 1.34 @@ -7,17 +7,26 @@ SYNOPSIS use AnyEvent; - my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { - ... - }); + my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { ... }); + + my $w = AnyEvent->timer (after => $seconds, cb => sub { ... }); + my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ... + + print AnyEvent->now; # prints current event loop time + print AnyEvent->time; # think Time::HiRes::time or simply CORE::time. - my $w = AnyEvent->timer (after => $seconds, cb => sub { + my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... }); + + my $w = AnyEvent->child (pid => $pid, cb => sub { + my ($pid, $status) = @_; ... }); my $w = AnyEvent->condvar; # stores whether a condition was flagged $w->send; # wake up current and all future recv's $w->recv; # enters "main loop" till $condvar gets ->send + # use a condvar in callback mode: + $w->cb (sub { $_[0]->recv }); INTRODUCTION/TUTORIAL This manpage is mainly a reference manual. If you are interested in a @@ -323,11 +332,18 @@ You can also watch on a child process exit and catch its exit status. The child process is specified by the "pid" argument (if set to 0, it - watches for any child process exit). The watcher will trigger as often - as status change for the child are received. This works by installing a - signal handler for "SIGCHLD". The callback will be called with the pid - and exit status (as returned by waitpid), so unlike other watcher types, - you *can* rely on child watcher callback arguments. + watches for any child process exit). The watcher will triggered only + when the child process has finished and an exit status is available, not + on any trace events (stopped/continued). + + The callback will be called with the pid and exit status (as returned by + waitpid), so unlike other watcher types, you *can* rely on child watcher + callback arguments. + + This watcher type works by installing a signal handler for "SIGCHLD", + and since it cannot be shared, nothing else should use SIGCHLD or reap + random child processes (waiting for specific child processes, e.g. + inside "system", is just fine). There is a slight catch to child watchers, however: you usually start them *after* the child process was created, and this means the process @@ -373,8 +389,10 @@ Condition variables can be created by calling the "AnyEvent->condvar" method, usually without arguments. The only argument pair allowed is + "cb", which specifies a callback to be called when the condition - variable becomes true. + variable becomes true, with the condition variable as the first argument + (but not the results). After creation, the condition variable is "false" until it becomes "true" by calling the "send" method (or calling the condition variable @@ -440,6 +458,23 @@ my $delay = AnyEvent->timer (after => 5, cb => $done); $done->recv; + Example: Imagine an API that returns a condvar and doesn't support + callbacks. This is how you make a synchronous call, for example from the + main program: + + use AnyEvent::CouchDB; + + ... + + my @info = $couchdb->info->recv; + + And this is how you would just ste a callback to be called whenever the + results are available: + + $couchdb->info->cb (sub { + my @info = $_[0]->recv; + }); + METHODS FOR PRODUCERS These methods should only be used by the producing side, i.e. the code/module that eventually sends the signal. Note that it is also the @@ -569,7 +604,7 @@ Returns true when the condition is "true", i.e. whether "send" or "croak" have been called. - $cb = $cv->cb ([new callback]) + $cb = $cv->cb ($cb->($cv)) This is a mutator function that returns the callback set and optionally replaces it before doing so. @@ -744,8 +779,9 @@ A non-blocking interface to the Internet Go Server protocol (used by App::IGS). - Net::IRC3 - AnyEvent based IRC client module family. + AnyEvent::IRC + AnyEvent based IRC client module family (replacing the older + Net::IRC3). Net::XMPP2 AnyEvent based XMPP (Jabber protocol) module family. @@ -764,51 +800,25 @@ The lambda approach to I/O - don't ask, look there. Can use AnyEvent. -SUPPLYING YOUR OWN EVENT MODEL INTERFACE - This is an advanced topic that you do not normally need to use AnyEvent - in a module. This section is only of use to event loop authors who want - to provide AnyEvent compatibility. - - If you need to support another event library which isn't directly - supported by AnyEvent, you can supply your own interface to it by - pushing, before the first watcher gets created, the package name of the - event module and the package name of the interface to use onto - @AnyEvent::REGISTRY. You can do that before and even without loading - AnyEvent, so it is reasonably cheap. - - Example: - - push @AnyEvent::REGISTRY, [urxvt => urxvt::anyevent::]; - - This tells AnyEvent to (literally) use the "urxvt::anyevent::" - package/class when it finds the "urxvt" package/module is already - loaded. - - When AnyEvent is loaded and asked to find a suitable event model, it - will first check for the presence of urxvt by trying to "use" the - "urxvt::anyevent" module. - - The class should provide implementations for all watcher types. See - AnyEvent::Impl::EV (source code), AnyEvent::Impl::Glib (Source code) and - so on for actual examples. Use "perldoc -m AnyEvent::Impl::Glib" to see - the sources. - - If you don't provide "signal" and "child" watchers than AnyEvent will - provide suitable (hopefully) replacements. - - The above example isn't fictitious, the *rxvt-unicode* (a.k.a. urxvt) - terminal emulator uses the above line as-is. An interface isn't included - in AnyEvent because it doesn't make sense outside the embedded - interpreter inside *rxvt-unicode*, and it is updated and maintained as - part of the *rxvt-unicode* distribution. - - *rxvt-unicode* also cheats a bit by not providing blocking access to - condition variables: code blocking while waiting for a condition will - "die". This still works with most modules/usages, and blocking calls - must not be done in an interactive application, so it makes sense. +ERROR AND EXCEPTION HANDLING + In general, AnyEvent does not do any error handling - it relies on the + caller to do that if required. The AnyEvent::Strict module (see also the + "PERL_ANYEVENT_STRICT" environment variable, below) provides strict + checking of all AnyEvent methods, however, which is highly useful during + development. + + As for exception handling (i.e. runtime errors and exceptions thrown + while executing a callback), this is not only highly event-loop + specific, but also not in any way wrapped by this module, as this is the + job of the main program. + + The pure perl event loop simply re-throws the exception (usually within + "condvar->recv"), the Event and EV modules call "$Event/EV::DIED->()", + Glib uses "install_exception_handler" and so on. ENVIRONMENT VARIABLES - The following environment variables are used by this module: + The following environment variables are used by this module or its + submodules: "PERL_ANYEVENT_VERBOSE" By default, AnyEvent will be completely silent except in fatal @@ -831,8 +841,9 @@ In other words, enables "strict" mode. - Unlike "use strict" it is definitely recommended ot keep it off in - production. + Unlike "use strict", it is definitely recommended ot keep it off in + production. Keeping "PERL_ANYEVENT_STRICT=1" in your environment + while developing programs can be very useful, however. "PERL_ANYEVENT_MODEL" This can be used to specify the event model to be used by AnyEvent, @@ -884,6 +895,49 @@ The maximum number of child processes that "AnyEvent::Util::fork_call" will create in parallel. +SUPPLYING YOUR OWN EVENT MODEL INTERFACE + This is an advanced topic that you do not normally need to use AnyEvent + in a module. This section is only of use to event loop authors who want + to provide AnyEvent compatibility. + + If you need to support another event library which isn't directly + supported by AnyEvent, you can supply your own interface to it by + pushing, before the first watcher gets created, the package name of the + event module and the package name of the interface to use onto + @AnyEvent::REGISTRY. You can do that before and even without loading + AnyEvent, so it is reasonably cheap. + + Example: + + push @AnyEvent::REGISTRY, [urxvt => urxvt::anyevent::]; + + This tells AnyEvent to (literally) use the "urxvt::anyevent::" + package/class when it finds the "urxvt" package/module is already + loaded. + + When AnyEvent is loaded and asked to find a suitable event model, it + will first check for the presence of urxvt by trying to "use" the + "urxvt::anyevent" module. + + The class should provide implementations for all watcher types. See + AnyEvent::Impl::EV (source code), AnyEvent::Impl::Glib (Source code) and + so on for actual examples. Use "perldoc -m AnyEvent::Impl::Glib" to see + the sources. + + If you don't provide "signal" and "child" watchers than AnyEvent will + provide suitable (hopefully) replacements. + + The above example isn't fictitious, the *rxvt-unicode* (a.k.a. urxvt) + terminal emulator uses the above line as-is. An interface isn't included + in AnyEvent because it doesn't make sense outside the embedded + interpreter inside *rxvt-unicode*, and it is updated and maintained as + part of the *rxvt-unicode* distribution. + + *rxvt-unicode* also cheats a bit by not providing blocking access to + condition variables: code blocking while waiting for a condition will + "die". This still works with most modules/usages, and blocking calls + must not be done in an interactive application, so it makes sense. + EXAMPLE PROGRAM The following program uses an I/O watcher to read data from STDIN, a timer to display a message once per second, and a condition variable to @@ -1079,16 +1133,16 @@ Results name watchers bytes create invoke destroy comment - EV/EV 400000 244 0.56 0.46 0.31 EV native interface - EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers - CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal - Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation - Event/Event 16000 516 31.88 31.30 0.85 Event native interface - Event/Any 16000 590 35.75 31.42 1.08 Event + AnyEvent watchers - Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour - Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers - POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event - POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select + EV/EV 400000 224 0.47 0.35 0.27 EV native interface + EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers + CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal + Perl/Any 100000 452 4.13 0.73 0.95 pure perl implementation + Event/Event 16000 517 32.20 31.80 0.81 Event native interface + Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers + Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour + Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers + POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event + POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select Discussion The benchmark does *not* measure scalability of the event loop very @@ -1279,6 +1333,30 @@ * C-based event loops perform very well with small number of watchers, as the management overhead dominates. +SIGNALS + AnyEvent currently installs handlers for these signals: + + SIGCHLD + A handler for "SIGCHLD" is installed by AnyEvent's child watcher + emulation for event loops that do not support them natively. Also, + some event loops install a similar handler. + + SIGPIPE + A no-op handler is installed for "SIGPIPE" when $SIG{PIPE} is + "undef" when AnyEvent gets loaded. + + The rationale for this is that AnyEvent users usually do not really + depend on SIGPIPE delivery (which is purely an optimisation for + shell use, or badly-written programs), but "SIGPIPE" can cause + spurious and rare program exits as a lot of people do not expect + "SIGPIPE" when writing to some random socket. + + The rationale for installing a no-op handler as opposed to ignoring + it is that this way, the handler will be restored to defaults on + exec. + + Feel free to install your own handler, or reset it to defaults. + FORK Most event libraries are not fork-safe. The ones who are usually are because they rely on inefficient but fork-safe "select" or "poll" calls.