--- AnyEvent/lib/AnyEvent.pm 2008/04/25 01:55:25 1.61 +++ AnyEvent/lib/AnyEvent.pm 2008/05/26 03:27:52 1.137 @@ -1,8 +1,8 @@ -=head1 NAME +=head1 => NAME AnyEvent - provide framework for multiple event loops -EV, Event, Coro::EV, Coro::Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops +EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops =head1 SYNOPSIS @@ -17,8 +17,8 @@ }); my $w = AnyEvent->condvar; # stores whether a condition was flagged - $w->wait; # enters "main loop" till $condvar gets ->broadcast - $w->broadcast; # wake up current and all future wait's + $w->send; # wake up current and all future recv's + $w->recv; # enters "main loop" till $condvar gets ->send =head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) @@ -59,7 +59,7 @@ In addition to being free of having to use I, AnyEvent also is free of bloat and policy: with POE or similar -modules, you get an enourmous amount of code and strict rules you have to +modules, you get an enormous amount of code and strict rules you have to follow. AnyEvent, on the other hand, is lean and up to the point, by only offering the functionality that is necessary, in as thin as a wrapper as technically possible. @@ -68,7 +68,6 @@ useful) and you want to force your users to use the one and only event model, you should I use this module. - =head1 DESCRIPTION L provides an identical interface to multiple event loops. This @@ -81,10 +80,10 @@ During the first call of any watcher-creation method, the module tries to detect the currently loaded event loop by probing whether one of the -following modules is already loaded: L, L, L, -L, L, L, L, L, L, +following modules is already loaded: L, +L, L, L, L, L, L, L. The first one found is used. If none are found, the module tries -to load these modules (excluding Event::Lib, Qt and POE as the pure perl +to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl adaptor should always succeed) in the order given. The first one that can be successfully loaded will be used. If, after this, still none could be found, AnyEvent will fall back to a pure-perl event loop, which is not @@ -111,7 +110,7 @@ AnyEvent has the central concept of a I, which is an object that stores relevant data for each kind of event you are waiting for, such as -the callback to call, the filehandle to watch, etc. +the callback to call, the file handle to watch, etc. These watchers are normal Perl objects with normal Perl lifetime. After creating a watcher it will immediately "watch" for events and invoke the @@ -138,22 +137,24 @@ my variables are only visible after the statement in which they are declared. -=head2 IO WATCHERS +=head2 I/O WATCHERS You can create an I/O watcher by calling the C<< AnyEvent->io >> method with the following mandatory key-value pairs as arguments: -C the Perl I (I file descriptor) to watch for -events. C must be a string that is either C or C, which -creates a watcher waiting for "r"eadable or "w"ritable events, +C the Perl I (I file descriptor) to watch +for events. C must be a string that is either C or C, +which creates a watcher waiting for "r"eadable or "w"ritable events, respectively. C is the callback to invoke each time the file handle becomes ready. -As long as the I/O watcher exists it will keep the file descriptor or a -copy of it alive/open. - -It is not allowed to close a file handle as long as any watcher is active -on the underlying file descriptor. +Although the callback might get passed parameters, their value and +presence is undefined and you cannot rely on them. Portable AnyEvent +callbacks cannot use arguments passed to I/O watcher callbacks. + +The I/O watcher might use the underlying file descriptor or a copy of it. +You must not close a file handle as long as any watcher is active on the +underlying file descriptor. Some event loops issue spurious readyness notifications, so you should always use non-blocking calls when reading/writing from/to your file @@ -174,8 +175,12 @@ method with the following mandatory arguments: C specifies after how many seconds (fractional values are -supported) should the timer activate. C the callback to invoke in that -case. +supported) the callback should be invoked. C is the callback to invoke +in that case. + +Although the callback might get passed parameters, their value and +presence is undefined and you cannot rely on them. Portable AnyEvent +callbacks cannot use arguments passed to time watcher callbacks. The timer callback will be invoked at most once: if you want a repeating timer you have to create a new watcher (this is a limitation by both Tk @@ -230,10 +235,14 @@ I without any C prefix, C is the Perl callback to be invoked whenever a signal occurs. -Multiple signal occurances can be clumped together into one callback -invocation, and callback invocation will be synchronous. synchronous means +Although the callback might get passed parameters, their value and +presence is undefined and you cannot rely on them. Portable AnyEvent +callbacks cannot use arguments passed to signal watcher callbacks. + +Multiple signal occurrences can be clumped together into one callback +invocation, and callback invocation will be synchronous. Synchronous means that it might take a while until the signal gets handled by the process, -but it is guarenteed not to interrupt any other callbacks. +but it is guaranteed not to interrupt any other callbacks. The main advantage of using these watchers is that you can share a signal between multiple watchers. @@ -253,53 +262,232 @@ watches for any child process exit). The watcher will trigger as often as status change for the child are received. This works by installing a signal handler for C. The callback will be called with the pid -and exit status (as returned by waitpid). +and exit status (as returned by waitpid), so unlike other watcher types, +you I rely on child watcher callback arguments. + +There is a slight catch to child watchers, however: you usually start them +I the child process was created, and this means the process could +have exited already (and no SIGCHLD will be sent anymore). + +Not all event models handle this correctly (POE doesn't), but even for +event models that I handle this correctly, they usually need to be +loaded before the process exits (i.e. before you fork in the first place). + +This means you cannot create a child watcher as the very first thing in an +AnyEvent program, you I to create at least one watcher before you +C the child (alternatively, you can call C). -Example: wait for pid 1333 +Example: fork a process and wait for it + + my $done = AnyEvent->condvar; + + my $pid = fork or exit 5; my $w = AnyEvent->child ( - pid => 1333, + pid => $pid, cb => sub { my ($pid, $status) = @_; warn "pid $pid exited with status $status"; + $done->send; }, ); -=head2 CONDITION VARIABLES + # do something else, then wait for process exit + $done->recv; -Condition variables can be created by calling the C<< AnyEvent->condvar >> -method without any arguments. +=head2 CONDITION VARIABLES -A condition variable waits for a condition - precisely that the C<< -->broadcast >> method has been called. +If you are familiar with some event loops you will know that all of them +require you to run some blocking "loop", "run" or similar function that +will actively watch for new events and call your callbacks. + +AnyEvent is different, it expects somebody else to run the event loop and +will only block when necessary (usually when told by the user). + +The instrument to do that is called a "condition variable", so called +because they represent a condition that must become true. + +Condition variables can be created by calling the C<< AnyEvent->condvar +>> method, usually without arguments. The only argument pair allowed is +C, which specifies a callback to be called when the condition variable +becomes true. + +After creation, the condition variable is "false" until it becomes "true" +by calling the C method (or calling the condition variable as if it +were a callback, read about the caveats in the description for the C<< +->send >> method). + +Condition variables are similar to callbacks, except that you can +optionally wait for them. They can also be called merge points - points +in time where multiple outstanding events have been processed. And yet +another way to call them is transactions - each condition variable can be +used to represent a transaction, which finishes at some point and delivers +a result. -They are very useful to signal that a condition has been fulfilled, for -example, if you write a module that does asynchronous http requests, +Condition variables are very useful to signal that something has finished, +for example, if you write a module that does asynchronous http requests, then a condition variable would be the ideal candidate to signal the -availability of results. +availability of results. The user can either act when the callback is +called or can synchronously C<< ->recv >> for the results. -You can also use condition variables to block your main program until -an event occurs - for example, you could C<< ->wait >> in your main -program until the user clicks the Quit button in your app, which would C<< -->broadcast >> the "quit" event. +You can also use them to simulate traditional event loops - for example, +you can block your main program until an event occurs - for example, you +could C<< ->recv >> in your main program until the user clicks the Quit +button of your app, which would C<< ->send >> the "quit" event. Note that condition variables recurse into the event loop - if you have -two pirces of code that call C<< ->wait >> in a round-robbin fashion, you +two pieces of code that call C<< ->recv >> in a round-robin fashion, you lose. Therefore, condition variables are good to export to your caller, but you should avoid making a blocking wait yourself, at least in callbacks, as this asks for trouble. -This object has two methods: +Condition variables are represented by hash refs in perl, and the keys +used by AnyEvent itself are all named C<_ae_XXX> to make subclassing +easy (it is often useful to build your own transaction class on top of +AnyEvent). To subclass, use C as base class and call +it's C method in your own C method. + +There are two "sides" to a condition variable - the "producer side" which +eventually calls C<< -> send >>, and the "consumer side", which waits +for the send to occur. + +Example: wait for a timer. + + # wait till the result is ready + my $result_ready = AnyEvent->condvar; + + # do something such as adding a timer + # or socket watcher the calls $result_ready->send + # when the "result" is ready. + # in this case, we simply use a timer: + my $w = AnyEvent->timer ( + after => 1, + cb => sub { $result_ready->send }, + ); + + # this "blocks" (while handling events) till the callback + # calls send + $result_ready->recv; + +Example: wait for a timer, but take advantage of the fact that +condition variables are also code references. + + my $done = AnyEvent->condvar; + my $delay = AnyEvent->timer (after => 5, cb => $done); + $done->recv; + +=head3 METHODS FOR PRODUCERS + +These methods should only be used by the producing side, i.e. the +code/module that eventually sends the signal. Note that it is also +the producer side which creates the condvar in most cases, but it isn't +uncommon for the consumer to create it as well. + +=over 4 + +=item $cv->send (...) + +Flag the condition as ready - a running C<< ->recv >> and all further +calls to C will (eventually) return after this method has been +called. If nobody is waiting the send will be remembered. + +If a callback has been set on the condition variable, it is called +immediately from within send. + +Any arguments passed to the C call will be returned by all +future C<< ->recv >> calls. + +Condition variables are overloaded so one can call them directly +(as a code reference). Calling them directly is the same as calling +C. Note, however, that many C-based event loops do not handle +overloading, so as tempting as it may be, passing a condition variable +instead of a callback does not work. Both the pure perl and EV loops +support overloading, however, as well as all functions that use perl to +invoke a callback (as in L and L for +example). + +=item $cv->croak ($error) + +Similar to send, but causes all call's to C<< ->recv >> to invoke +C with the given error message/object/scalar. + +This can be used to signal any errors to the condition variable +user/consumer. + +=item $cv->begin ([group callback]) + +=item $cv->end + +These two methods are EXPERIMENTAL and MIGHT CHANGE. + +These two methods can be used to combine many transactions/events into +one. For example, a function that pings many hosts in parallel might want +to use a condition variable for the whole process. + +Every call to C<< ->begin >> will increment a counter, and every call to +C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end +>>, the (last) callback passed to C will be executed. That callback +is I to call C<< ->send >>, but that is not required. If no +callback was set, C will be called without any arguments. + +Let's clarify this with the ping example: + + my $cv = AnyEvent->condvar; + + my %result; + $cv->begin (sub { $cv->send (\%result) }); + + for my $host (@list_of_hosts) { + $cv->begin; + ping_host_then_call_callback $host, sub { + $result{$host} = ...; + $cv->end; + }; + } + + $cv->end; + +This code fragment supposedly pings a number of hosts and calls +C after results for all then have have been gathered - in any +order. To achieve this, the code issues a call to C when it starts +each ping request and calls C when it has received some result for +it. Since C and C only maintain a counter, the order in which +results arrive is not relevant. + +There is an additional bracketing call to C and C outside the +loop, which serves two important purposes: first, it sets the callback +to be called once the counter reaches C<0>, and second, it ensures that +C is called even when C hosts are being pinged (the loop +doesn't execute once). + +This is the general pattern when you "fan out" into multiple subrequests: +use an outer C/C pair to set the callback and ensure C +is called at least once, and then, for each subrequest you start, call +C and for each subrequest you finish, call C. + +=back + +=head3 METHODS FOR CONSUMERS + +These methods should only be used by the consuming side, i.e. the +code awaits the condition. =over 4 -=item $cv->wait +=item $cv->recv + +Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak +>> methods have been called on c<$cv>, while servicing other watchers +normally. -Wait (blocking if necessary) until the C<< ->broadcast >> method has been -called on c<$cv>, while servicing other watchers normally. +You can only wait once on a condition - additional calls are valid but +will return immediately. -You can only wait once on a condition - additional calls will return -immediately. +If an error condition has been set by calling C<< ->croak >>, then this +function will call C. + +In list context, all parameters passed to C will be returned, +in scalar context only the first one will be returned. Not all event models support a blocking wait - some die in that case (programs might want to do that to stay interactive), so I to C<< ->wait >> in a module is that you cannot -sensibly have two C<< ->wait >>'s in parallel, as that would require +Another reason I to C<< ->recv >> in a module is that you cannot +sensibly have two C<< ->recv >>'s in parallel, as that would require multiple interpreters or coroutines/threads, none of which C -can supply (the coroutine-aware backends L and -L explicitly support concurrent C<< ->wait >>'s -from different coroutines, however). - -=item $cv->broadcast - -Flag the condition as ready - a running C<< ->wait >> and all further -calls to C will (eventually) return after this method has been -called. If nobody is waiting the broadcast will be remembered.. +can supply. -=back +The L module, however, I and I supply coroutines and, in +fact, L replaces AnyEvent's condvars by coroutine-safe +versions and also integrates coroutines into AnyEvent, making blocking +C<< ->recv >> calls perfectly safe as long as they are done from another +coroutine (one that doesn't run the event loop). -Example: +You can ensure that C<< -recv >> never blocks by setting a callback and +only calling C<< ->recv >> from within that callback (or at a later +time). This will work even when the event loop does not support blocking +waits otherwise. - # wait till the result is ready - my $result_ready = AnyEvent->condvar; +=item $bool = $cv->ready - # do something such as adding a timer - # or socket watcher the calls $result_ready->broadcast - # when the "result" is ready. - # in this case, we simply use a timer: - my $w = AnyEvent->timer ( - after => 1, - cb => sub { $result_ready->broadcast }, - ); +Returns true when the condition is "true", i.e. whether C or +C have been called. + +=item $cb = $cv->cb ([new callback]) - # this "blocks" (while handling events) till the watcher - # calls broadcast - $result_ready->wait; +This is a mutator function that returns the callback set and optionally +replaces it before doing so. + +The callback will be called when the condition becomes "true", i.e. when +C or C are called. Calling C inside the callback +or at any later time is guaranteed not to block. + +=back =head1 GLOBAL VARIABLES AND FUNCTIONS @@ -356,13 +543,11 @@ The known classes so far are: - AnyEvent::Impl::CoroEV based on Coro::EV, best choice. - AnyEvent::Impl::CoroEvent based on Coro::Event, second best choice. AnyEvent::Impl::EV based on EV (an interface to libev, best choice). AnyEvent::Impl::Event based on Event, second best choice. + AnyEvent::Impl::Perl pure-perl implementation, fast and portable. AnyEvent::Impl::Glib based on Glib, third-best choice. AnyEvent::Impl::Tk based on Tk, very bad choice. - AnyEvent::Impl::Perl pure-perl implementation, inefficient but portable. AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs). AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse. AnyEvent::Impl::POE based on POE, not generic enough for full support. @@ -371,9 +556,12 @@ watching file handles. However, you can use WxWidgets through the POE Adaptor, as POE has a Wx backend that simply polls 20 times per second, which was considered to be too horrible to even consider for -AnyEvent. Likewise, other POE backends can be used by Anyevent by using +AnyEvent. Likewise, other POE backends can be used by AnyEvent by using it's adaptor. +AnyEvent knows about L and L and will try to use L when +autodetecting them. + =item AnyEvent::detect Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model @@ -381,6 +569,27 @@ have created an AnyEvent watcher anyway, that is, as late as possible at runtime. +=item $guard = AnyEvent::post_detect { BLOCK } + +Arranges for the code block to be executed as soon as the event model is +autodetected (or immediately if this has already happened). + +If called in scalar or list context, then it creates and returns an object +that automatically removes the callback again when it is destroyed. See +L for a case where this is useful. + +=item @AnyEvent::post_detect + +If there are any code references in this array (you can C to it +before or after loading AnyEvent), then they will called directly after +the event loop has been chosen. + +You should check C<$AnyEvent::MODEL> before adding to this array, though: +if it contains a true value then the event loop has already been detected, +and the array will be ignored. + +Best use C instead. + =back =head1 WHAT TO DO IN A MODULE @@ -393,14 +602,14 @@ by calling AnyEvent in your module body you force the user of your module to load the event module first. -Never call C<< ->wait >> on a condition variable unless you I that -the C<< ->broadcast >> method has been called on it already. This is +Never call C<< ->recv >> on a condition variable unless you I that +the C<< ->send >> method has been called on it already. This is because it will stall the whole program, and the whole point of using events is to stay interactive. -It is fine, however, to call C<< ->wait >> when the user of your module +It is fine, however, to call C<< ->recv >> when the user of your module requests it (i.e. if you create a http request object ad have a method -called C that returns the results, it should call C<< ->wait >> +called C that returns the results, it should call C<< ->recv >> freely, as the user of your module knows what she is doing. always). =head1 WHAT TO DO IN THE MAIN PROGRAM @@ -412,17 +621,108 @@ do anything special (it does not need to be event-based) and let AnyEvent decide which implementation to chose if some module relies on it. -If the main program relies on a specific event model. For example, in -Gtk2 programs you have to rely on the Glib module. You should load the +If the main program relies on a specific event model - for example, in +Gtk2 programs you have to rely on the Glib module - you should load the event module before loading AnyEvent or any module that uses it: generally speaking, you should load it as early as possible. The reason is that modules might create watchers when they are loaded, and AnyEvent will decide on the event model to use as soon as it creates watchers, and it might chose the wrong one unless you load the correct one yourself. -You can chose to use a rather inefficient pure-perl implementation by -loading the C module, which gives you similar -behaviour everywhere, but letting AnyEvent chose is generally better. +You can chose to use a pure-perl implementation by loading the +C module, which gives you similar behaviour +everywhere, but letting AnyEvent chose the model is generally better. + +=head2 MAINLOOP EMULATION + +Sometimes (often for short test scripts, or even standalone programs who +only want to use AnyEvent), you do not want to run a specific event loop. + +In that case, you can use a condition variable like this: + + AnyEvent->condvar->recv; + +This has the effect of entering the event loop and looping forever. + +Note that usually your program has some exit condition, in which case +it is better to use the "traditional" approach of storing a condition +variable somewhere, waiting for it, and sending it when the program should +exit cleanly. + + +=head1 OTHER MODULES + +The following is a non-exhaustive list of additional modules that use +AnyEvent and can therefore be mixed easily with other AnyEvent modules +in the same program. Some of the modules come with AnyEvent, some are +available via CPAN. + +=over 4 + +=item L + +Contains various utility functions that replace often-used but blocking +functions such as C by event-/callback-based versions. + +=item L + +Provide read and write buffers and manages watchers for reads and writes. + +=item L + +Provides various utility functions for (internet protocol) sockets, +addresses and name resolution. Also functions to create non-blocking tcp +connections or tcp servers, with IPv6 and SRV record support and more. + +=item L + +Provides rich asynchronous DNS resolver capabilities. + +=item L + +Provides a simple web application server framework. + +=item L + +The fastest ping in the west. + +=item L + +AnyEvent based IRC client module family. + +=item L + +AnyEvent based XMPP (Jabber protocol) module family. + +=item L + +AnyEvent-based implementation of the Freenet Client Protocol, birthplace +of AnyEvent. + +=item L + +High level API for event-based execution flow control. + +=item L + +Has special support for AnyEvent via L. + +=item L, L + +Truly asynchronous I/O, should be in the toolbox of every event +programmer. AnyEvent::AIO transparently fuses IO::AIO and AnyEvent +together. + +=item L, L + +Truly asynchronous Berkeley DB access. AnyEvent::AIO transparently fuses +IO::AIO and AnyEvent together. + +=item L + +The lambda approach to I/O - don't ask, look there. Can use AnyEvent. + +=back =cut @@ -433,35 +733,69 @@ use Carp; -our $VERSION = '3.2'; +our $VERSION = '4.03'; our $MODEL; our $AUTOLOAD; our @ISA; +our @REGISTRY; + our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; -our @REGISTRY; +our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred + +{ + my $idx; + $PROTOCOL{$_} = ++$idx + for reverse split /\s*,\s*/, + $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; +} my @models = ( - [Coro::EV:: => AnyEvent::Impl::CoroEV::], - [Coro::Event:: => AnyEvent::Impl::CoroEvent::], [EV:: => AnyEvent::Impl::EV::], [Event:: => AnyEvent::Impl::Event::], - [Glib:: => AnyEvent::Impl::Glib::], - [Tk:: => AnyEvent::Impl::Tk::], [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::], - # everything below here will not be autoprobed as the pureperl backend should work everywhere + # everything below here will not be autoprobed + # as the pureperl backend should work everywhere + # and is usually faster + [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles + [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy [Qt:: => AnyEvent::Impl::Qt::], # requires special main program [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza + [Wx:: => AnyEvent::Impl::POE::], + [Prima:: => AnyEvent::Impl::POE::], ); -our %method = map +($_ => 1), qw(io timer signal child condvar broadcast wait one_event DESTROY); +our %method = map +($_ => 1), qw(io timer signal child condvar one_event DESTROY); + +our @post_detect; + +sub post_detect(&) { + my ($cb) = @_; + + if ($MODEL) { + $cb->(); + + 1 + } else { + push @post_detect, $cb; + + defined wantarray + ? bless \$cb, "AnyEvent::Util::PostDetect" + : () + } +} + +sub AnyEvent::Util::PostDetect::DESTROY { + @post_detect = grep $_ != ${$_[0]}, @post_detect; +} sub detect() { unless ($MODEL) { no strict 'refs'; + local $SIG{__DIE__}; if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) { my $model = "AnyEvent::Impl::$1"; @@ -501,12 +835,14 @@ } $MODEL - or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV (or Coro+EV), Event (or Coro+Event) or Glib."; + or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib."; } } unshift @ISA, $MODEL; push @{"$MODEL\::ISA"}, "AnyEvent::Base"; + + (shift @post_detect)->() while @post_detect; } $MODEL @@ -526,18 +862,10 @@ package AnyEvent::Base; -# default implementation for ->condvar, ->wait, ->broadcast +# default implementation for ->condvar sub condvar { - bless \my $flag, "AnyEvent::Base::CondVar" -} - -sub AnyEvent::Base::CondVar::broadcast { - ${$_[0]}++; -} - -sub AnyEvent::Base::CondVar::wait { - AnyEvent->one_event while !${$_[0]}; + bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar:: } # default implementation for ->signal @@ -600,7 +928,7 @@ $PID_CB{$pid}{$arg{cb}} = $arg{cb}; unless ($WNOHANG) { - $WNOHANG = eval { require POSIX; &POSIX::WNOHANG } || 1; + $WNOHANG = eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1; } unless ($CHLD_W) { @@ -621,6 +949,66 @@ undef $CHLD_W unless keys %PID_CB; } +package AnyEvent::CondVar; + +our @ISA = AnyEvent::CondVar::Base::; + +package AnyEvent::CondVar::Base; + +use overload + '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, + fallback => 1; + +sub _send { + # nop +} + +sub send { + my $cv = shift; + $cv->{_ae_sent} = [@_]; + (delete $cv->{_ae_cb})->($cv) if $cv->{_ae_cb}; + $cv->_send; +} + +sub croak { + $_[0]{_ae_croak} = $_[1]; + $_[0]->send; +} + +sub ready { + $_[0]{_ae_sent} +} + +sub _wait { + AnyEvent->one_event while !$_[0]{_ae_sent}; +} + +sub recv { + $_[0]->_wait; + + Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; + wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] +} + +sub cb { + $_[0]{_ae_cb} = $_[1] if @_ > 1; + $_[0]{_ae_cb} +} + +sub begin { + ++$_[0]{_ae_counter}; + $_[0]{_ae_end_cb} = $_[1] if @_ > 1; +} + +sub end { + return if --$_[0]{_ae_counter}; + &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } }; +} + +# undocumented/compatibility with pre-3.4 +*broadcast = \&send; +*wait = \&_wait; + =head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE This is an advanced topic that you do not normally need to use AnyEvent in @@ -686,11 +1074,11 @@ =item C This can be used to specify the event model to be used by AnyEvent, before -autodetection and -probing kicks in. It must be a string consisting +auto detection and -probing kicks in. It must be a string consisting entirely of ASCII letters. The string C gets prepended and the resulting module name is loaded and if the load was successful, used as event model. If it fails to load AnyEvent will proceed with -autodetection and -probing. +auto detection and -probing. This functionality might change in future versions. @@ -699,11 +1087,42 @@ PERL_ANYEVENT_MODEL=Perl perl ... +=item C + +Used by both L and L to determine preferences +for IPv4 or IPv6. The default is unspecified (and might change, or be the result +of auto probing). + +Must be set to a comma-separated list of protocols or address families, +current supported: C and C. Only protocols mentioned will be +used, and preference will be given to protocols mentioned earlier in the +list. + +This variable can effectively be used for denial-of-service attacks +against local programs (e.g. when setuid), although the impact is likely +small, as the program has to handle connection errors already- + +Examples: C - prefer IPv4 over IPv6, +but support both and try to use both. C +- only support IPv4, never try to resolve or contact IPv6 +addresses. C support either IPv4 or +IPv6, but prefer IPv6 over IPv4. + +=item C + +Used by L to decide whether to use the EDNS0 extension +for DNS. This extension is generally useful to reduce DNS traffic, but +some (broken) firewalls drop such DNS packets, which is why it is off by +default. + +Setting this variable to C<1> will cause L to announce +EDNS0 in its DNS requests. + =back =head1 EXAMPLE PROGRAM -The following program uses an IO watcher to read data from STDIN, a timer +The following program uses an I/O watcher to read data from STDIN, a timer to display a message once per second, and a condition variable to quit the program when the user enters quit: @@ -718,7 +1137,7 @@ warn "io event <$_[0]>\n"; # will always output chomp (my $input = ); # read a line warn "read: $input\n"; # output what has been read - $cv->broadcast if $input =~ /^q/i; # quit program if /^q/i + $cv->send if $input =~ /^q/i; # quit program if /^q/i }, ); @@ -733,7 +1152,7 @@ new_timer; # create first timer - $cv->wait; # wait until user enters /^q/i + $cv->recv; # wait until user enters /^q/i =head1 REAL-WORLD EXAMPLE @@ -793,13 +1212,13 @@ $txn->{w} = AnyEvent->io (fh => $txn->{fh}, poll => 'r', cb => sub { $txn->fh_ready_r }); Again, C waits till all data has arrived, and then stores the -result and signals any possible waiters that the request ahs finished: +result and signals any possible waiters that the request has finished: sysread $txn->{fh}, $txn->{buf}, length $txn->{$buf}; if (end-of-file or data complete) { $txn->{result} = $txn->{buf}; - $txn->{finished}->broadcast; + $txn->{finished}->send; $txb->{cb}->($txn) of $txn->{cb}; # also call callback } @@ -807,11 +1226,11 @@ request was already finished, it doesn't wait, of course, and returns the data: - $txn->{finished}->wait; + $txn->{finished}->recv; return $txn->{result}; The actual code goes further and collects all errors (Cs, exceptions) -that occured during request processing. The C method detects +that occurred during request processing. The C method detects whether an exception as thrown (it is stored inside the $txn object) and just throws the exception, which means connection errors and other problems get reported tot he code that tries to use the result, not in a @@ -852,19 +1271,288 @@ $fcp->txn_client_get ($url)->cb (sub { ... - $quit->broadcast; + $quit->send; }); - $quit->wait; + $quit->recv; + + +=head1 BENCHMARKS + +To give you an idea of the performance and overheads that AnyEvent adds +over the event loops themselves and to give you an impression of the speed +of various event loops I prepared some benchmarks. + +=head2 BENCHMARKING ANYEVENT OVERHEAD + +Here is a benchmark of various supported event models used natively and +through AnyEvent. The benchmark creates a lot of timers (with a zero +timeout) and I/O watchers (watching STDOUT, a pty, to become writable, +which it is), lets them fire exactly once and destroys them again. + +Source code for this benchmark is found as F in the AnyEvent +distribution. + +=head3 Explanation of the columns + +I is the number of event watchers created/destroyed. Since +different event models feature vastly different performances, each event +loop was given a number of watchers so that overall runtime is acceptable +and similar between tested event loop (and keep them from crashing): Glib +would probably take thousands of years if asked to process the same number +of watchers as EV in this benchmark. + +I is the number of bytes (as measured by the resident set size, +RSS) consumed by each watcher. This method of measuring captures both C +and Perl-based overheads. + +I is the time, in microseconds (millionths of seconds), that it +takes to create a single watcher. The callback is a closure shared between +all watchers, to avoid adding memory overhead. That means closure creation +and memory usage is not included in the figures. + +I is the time, in microseconds, used to invoke a simple +callback. The callback simply counts down a Perl variable and after it was +invoked "watcher" times, it would C<< ->send >> a condvar once to +signal the end of this phase. + +I is the time, in microseconds, that it takes to destroy a single +watcher. + +=head3 Results + + name watchers bytes create invoke destroy comment + EV/EV 400000 244 0.56 0.46 0.31 EV native interface + EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers + CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal + Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation + Event/Event 16000 516 31.88 31.30 0.85 Event native interface + Event/Any 16000 590 35.75 31.42 1.08 Event + AnyEvent watchers + Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour + Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers + POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event + POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select + +=head3 Discussion + +The benchmark does I measure scalability of the event loop very +well. For example, a select-based event loop (such as the pure perl one) +can never compete with an event loop that uses epoll when the number of +file descriptors grows high. In this benchmark, all events become ready at +the same time, so select/poll-based implementations get an unnatural speed +boost. + +Also, note that the number of watchers usually has a nonlinear effect on +overall speed, that is, creating twice as many watchers doesn't take twice +the time - usually it takes longer. This puts event loops tested with a +higher number of watchers at a disadvantage. + +To put the range of results into perspective, consider that on the +benchmark machine, handling an event takes roughly 1600 CPU cycles with +EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU +cycles with POE. + +C is the sole leader regarding speed and memory use, which are both +maximal/minimal, respectively. Even when going through AnyEvent, it uses +far less memory than any other event loop and is still faster than Event +natively. + +The pure perl implementation is hit in a few sweet spots (both the +constant timeout and the use of a single fd hit optimisations in the perl +interpreter and the backend itself). Nevertheless this shows that it +adds very little overhead in itself. Like any select-based backend its +performance becomes really bad with lots of file descriptors (and few of +them active), of course, but this was not subject of this benchmark. + +The C module has a relatively high setup and callback invocation +cost, but overall scores in on the third place. + +C's memory usage is quite a bit higher, but it features a +faster callback invocation and overall ends up in the same class as +C. However, Glib scales extremely badly, doubling the number of +watchers increases the processing time by more than a factor of four, +making it completely unusable when using larger numbers of watchers +(note that only a single file descriptor was used in the benchmark, so +inefficiencies of C do not account for this). + +The C adaptor works relatively well. The fact that it crashes with +more than 2000 watchers is a big setback, however, as correctness takes +precedence over speed. Nevertheless, its performance is surprising, as the +file descriptor is dup()ed for each watcher. This shows that the dup() +employed by some adaptors is not a big performance issue (it does incur a +hidden memory cost inside the kernel which is not reflected in the figures +above). + +C, regardless of underlying event loop (whether using its pure perl +select-based backend or the Event module, the POE-EV backend couldn't +be tested because it wasn't working) shows abysmal performance and +memory usage with AnyEvent: Watchers use almost 30 times as much memory +as EV watchers, and 10 times as much memory as Event (the high memory +requirements are caused by requiring a session for each watcher). Watcher +invocation speed is almost 900 times slower than with AnyEvent's pure perl +implementation. + +The design of the POE adaptor class in AnyEvent can not really account +for the performance issues, though, as session creation overhead is +small compared to execution of the state machine, which is coded pretty +optimally within L (and while everybody agrees that +using multiple sessions is not a good approach, especially regarding +memory usage, even the author of POE could not come up with a faster +design). + +=head3 Summary + +=over 4 + +=item * Using EV through AnyEvent is faster than any other event loop +(even when used without AnyEvent), but most event loops have acceptable +performance with or without AnyEvent. + +=item * The overhead AnyEvent adds is usually much smaller than the overhead of +the actual event loop, only with extremely fast event loops such as EV +adds AnyEvent significant overhead. + +=item * You should avoid POE like the plague if you want performance or +reasonable memory usage. + +=back + +=head2 BENCHMARKING THE LARGE SERVER CASE + +This benchmark actually benchmarks the event loop itself. It works by +creating a number of "servers": each server consists of a socket pair, a +timeout watcher that gets reset on activity (but never fires), and an I/O +watcher waiting for input on one side of the socket. Each time the socket +watcher reads a byte it will write that byte to a random other "server". + +The effect is that there will be a lot of I/O watchers, only part of which +are active at any one point (so there is a constant number of active +fds for each loop iteration, but which fds these are is random). The +timeout is reset each time something is read because that reflects how +most timeouts work (and puts extra pressure on the event loops). + +In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 +(1%) are active. This mirrors the activity of large servers with many +connections, most of which are idle at any one point in time. + +Source code for this benchmark is found as F in the AnyEvent +distribution. + +=head3 Explanation of the columns + +I is the number of sockets, and twice the number of "servers" (as +each server has a read and write socket end). + +I is the time it takes to create a socket pair (which is +nontrivial) and two watchers: an I/O watcher and a timeout watcher. + +I, the most important value, is the time it takes to handle a +single "request", that is, reading the token from the pipe and forwarding +it to another server. This includes deleting the old timeout and creating +a new one that moves the timeout into the future. + +=head3 Results + + name sockets create request + EV 20000 69.01 11.16 + Perl 20000 73.32 35.87 + Event 20000 212.62 257.32 + Glib 20000 651.16 1896.30 + POE 20000 349.67 12317.24 uses POE::Loop::Event + +=head3 Discussion + +This benchmark I measure scalability and overall performance of the +particular event loop. + +EV is again fastest. Since it is using epoll on my system, the setup time +is relatively high, though. + +Perl surprisingly comes second. It is much faster than the C-based event +loops Event and Glib. + +Event suffers from high setup time as well (look at its code and you will +understand why). Callback invocation also has a high overhead compared to +the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event +uses select or poll in basically all documented configurations. + +Glib is hit hard by its quadratic behaviour w.r.t. many watchers. It +clearly fails to perform with many filehandles or in busy servers. + +POE is still completely out of the picture, taking over 1000 times as long +as EV, and over 100 times as long as the Perl implementation, even though +it uses a C-based event loop in this case. + +=head3 Summary + +=over 4 + +=item * The pure perl implementation performs extremely well. + +=item * Avoid Glib or POE in large projects where performance matters. + +=back + +=head2 BENCHMARKING SMALL SERVERS + +While event loops should scale (and select-based ones do not...) even to +large servers, most programs we (or I :) actually write have only a few +I/O watchers. + +In this benchmark, I use the same benchmark program as in the large server +case, but it uses only eight "servers", of which three are active at any +one time. This should reflect performance for a small server relatively +well. + +The columns are identical to the previous table. + +=head3 Results + + name sockets create request + EV 16 20.00 6.54 + Perl 16 25.75 12.62 + Event 16 81.27 35.86 + Glib 16 32.63 15.48 + POE 16 261.87 276.28 uses POE::Loop::Event + +=head3 Discussion + +The benchmark tries to test the performance of a typical small +server. While knowing how various event loops perform is interesting, keep +in mind that their overhead in this case is usually not as important, due +to the small absolute number of watchers (that is, you need efficiency and +speed most when you have lots of watchers, not when you only have a few of +them). + +EV is again fastest. + +Perl again comes second. It is noticeably faster than the C-based event +loops Event and Glib, although the difference is too small to really +matter. + +POE also performs much better in this case, but is is still far behind the +others. + +=head3 Summary + +=over 4 + +=item * C-based event loops perform very well with small number of +watchers, as the management overhead dominates. + +=back + =head1 FORK Most event libraries are not fork-safe. The ones who are usually are -because they are so inefficient. Only L is fully fork-aware. +because they rely on inefficient but fork-safe C