ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.208 by root, Sun Apr 26 18:12:53 2009 UTC vs.
Revision 1.386 by root, Mon Sep 26 11:32:19 2011 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt,
6FLTK and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
11 # file descriptor readable 15 # file handle or descriptor readable
12 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... }); 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
13 17
14 # one-shot or repeating timers 18 # one-shot or repeating timers
15 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... }); 19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
16 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ... 20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
17 21
18 print AnyEvent->now; # prints current event loop time 22 print AnyEvent->now; # prints current event loop time
19 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time. 23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
20 24
21 # POSIX signal 25 # POSIX signal
39=head1 INTRODUCTION/TUTORIAL 43=head1 INTRODUCTION/TUTORIAL
40 44
41This manpage is mainly a reference manual. If you are interested 45This manpage is mainly a reference manual. If you are interested
42in a tutorial or some gentle introduction, have a look at the 46in a tutorial or some gentle introduction, have a look at the
43L<AnyEvent::Intro> manpage. 47L<AnyEvent::Intro> manpage.
48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
44 58
45=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
46 60
47Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
48nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
64module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
65model you use. 79model you use.
66 80
67For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
68actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
69like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
70cannot use anything else, as they are simply incompatible to everything 84cannot use anything else, as they are simply incompatible to everything
71that isn't them. What's worse, all the potential users of your 85that isn't them. What's worse, all the potential users of your
72module are I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
73 87
74AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
75fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
76with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if 90with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module
77your module uses one of those, every user of your module has to use it, 91uses one of those, every user of your module has to use it, too. But if
78too. But if your module uses AnyEvent, it works transparently with all 92your module uses AnyEvent, it works transparently with all event models it
79event models it supports (including stuff like IO::Async, as long as those 93supports (including stuff like IO::Async, as long as those use one of the
80use one of the supported event loops. It is trivial to add new event loops 94supported event loops. It is easy to add new event loops to AnyEvent, too,
81to AnyEvent, too, so it is future-proof). 95so it is future-proof).
82 96
83In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
84model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
85modules, you get an enormous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
86follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
87offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
88technically possible. 102technically possible.
89 103
90Of course, AnyEvent comes with a big (and fully optional!) toolbox 104Of course, AnyEvent comes with a big (and fully optional!) toolbox
91of useful functionality, such as an asynchronous DNS resolver, 100% 105of useful functionality, such as an asynchronous DNS resolver, 100%
97useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
98model, you should I<not> use this module. 112model, you should I<not> use this module.
99 113
100=head1 DESCRIPTION 114=head1 DESCRIPTION
101 115
102L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
103allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
104users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
105peacefully at any one time). 119than one event loop cannot coexist peacefully).
106 120
107The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
108module. 122module.
109 123
110During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
111to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
112following modules is already loaded: L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Loop>,
113L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
114L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
115to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
116adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Loop> should always work, so
117be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
118found, AnyEvent will fall back to a pure-perl event loop, which is not
119very efficient, but should work everywhere.
120 132
121Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
122an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
123that model the default. For example: 135that model the default. For example:
124 136
126 use AnyEvent; 138 use AnyEvent;
127 139
128 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
129 141
130The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
131starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
132use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
133 146
134The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called C<AnyEvent::Loop>. Like
135C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148other event modules you can load it explicitly and enjoy the high
136explicitly and enjoy the high availability of that event loop :) 149availability of that event loop :)
137 150
138=head1 WATCHERS 151=head1 WATCHERS
139 152
140AnyEvent has the central concept of a I<watcher>, which is an object that 153AnyEvent has the central concept of a I<watcher>, which is an object that
141stores relevant data for each kind of event you are waiting for, such as 154stores relevant data for each kind of event you are waiting for, such as
146callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
147is in control). 160is in control).
148 161
149Note that B<callbacks must not permanently change global variables> 162Note that B<callbacks must not permanently change global variables>
150potentially in use by the event loop (such as C<$_> or C<$[>) and that B<< 163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
151callbacks must not C<die> >>. The former is good programming practise in 164callbacks must not C<die> >>. The former is good programming practice in
152Perl and the latter stems from the fact that exception handling differs 165Perl and the latter stems from the fact that exception handling differs
153widely between event loops. 166widely between event loops.
154 167
155To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
156variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
157to it). 170to it).
158 171
159All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
160 173
161Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
162example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
163 176
164An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
165 178
166 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
167 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
168 undef $w; 181 undef $w;
169 }); 182 });
172my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
173declared. 186declared.
174 187
175=head2 I/O WATCHERS 188=head2 I/O WATCHERS
176 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
177You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
178with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
179 198
180C<fh> is the Perl I<file handle> (I<not> file descriptor) to watch 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
181for events (AnyEvent might or might not keep a reference to this file 200for events (AnyEvent might or might not keep a reference to this file
182handle). Note that only file handles pointing to things for which 201handle). Note that only file handles pointing to things for which
183non-blocking operation makes sense are allowed. This includes sockets, 202non-blocking operation makes sense are allowed. This includes sockets,
184most character devices, pipes, fifos and so on, but not for example files 203most character devices, pipes, fifos and so on, but not for example files
185or block devices. 204or block devices.
195 214
196The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
197You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
198underlying file descriptor. 217underlying file descriptor.
199 218
200Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
201always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
202handles. 221handles.
203 222
204Example: wait for readability of STDIN, then read a line and disable the 223Example: wait for readability of STDIN, then read a line and disable the
205watcher. 224watcher.
210 undef $w; 229 undef $w;
211 }); 230 });
212 231
213=head2 TIME WATCHERS 232=head2 TIME WATCHERS
214 233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
241
215You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
216method with the following mandatory arguments: 243method with the following mandatory arguments:
217 244
218C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
219supported) the callback should be invoked. C<cb> is the callback to invoke 246supported) the callback should be invoked. C<cb> is the callback to invoke
221 248
222Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
223presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
224callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
225 252
226The callback will normally be invoked once only. If you specify another 253The callback will normally be invoked only once. If you specify another
227parameter, C<interval>, as a strictly positive number (> 0), then the 254parameter, C<interval>, as a strictly positive number (> 0), then the
228callback will be invoked regularly at that interval (in fractional 255callback will be invoked regularly at that interval (in fractional
229seconds) after the first invocation. If C<interval> is specified with a 256seconds) after the first invocation. If C<interval> is specified with a
230false value, then it is treated as if it were missing. 257false value, then it is treated as if it were not specified at all.
231 258
232The callback will be rescheduled before invoking the callback, but no 259The callback will be rescheduled before invoking the callback, but no
233attempt is done to avoid timer drift in most backends, so the interval is 260attempt is made to avoid timer drift in most backends, so the interval is
234only approximate. 261only approximate.
235 262
236Example: fire an event after 7.7 seconds. 263Example: fire an event after 7.7 seconds.
237 264
238 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
256 283
257While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
258use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
259"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
260the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
261fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
262 289
263AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
264about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
265on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
266timers. 293timers.
267 294
268AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
269AnyEvent API. 296AnyEvent API.
291I<In almost all cases (in all cases if you don't care), this is the 318I<In almost all cases (in all cases if you don't care), this is the
292function to call when you want to know the current time.> 319function to call when you want to know the current time.>
293 320
294This function is also often faster then C<< AnyEvent->time >>, and 321This function is also often faster then C<< AnyEvent->time >>, and
295thus the preferred method if you want some timestamp (for example, 322thus the preferred method if you want some timestamp (for example,
296L<AnyEvent::Handle> uses this to update it's activity timeouts). 323L<AnyEvent::Handle> uses this to update its activity timeouts).
297 324
298The rest of this section is only of relevance if you try to be very exact 325The rest of this section is only of relevance if you try to be very exact
299with your timing, you can skip it without bad conscience. 326with your timing; you can skip it without a bad conscience.
300 327
301For a practical example of when these times differ, consider L<Event::Lib> 328For a practical example of when these times differ, consider L<Event::Lib>
302and L<EV> and the following set-up: 329and L<EV> and the following set-up:
303 330
304The event loop is running and has just invoked one of your callback at 331The event loop is running and has just invoked one of your callbacks at
305time=500 (assume no other callbacks delay processing). In your callback, 332time=500 (assume no other callbacks delay processing). In your callback,
306you wait a second by executing C<sleep 1> (blocking the process for a 333you wait a second by executing C<sleep 1> (blocking the process for a
307second) and then (at time=501) you create a relative timer that fires 334second) and then (at time=501) you create a relative timer that fires
308after three seconds. 335after three seconds.
309 336
329difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into 356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
330account. 357account.
331 358
332=item AnyEvent->now_update 359=item AnyEvent->now_update
333 360
334Some event loops (such as L<EV> or L<AnyEvent::Impl::Perl>) cache 361Some event loops (such as L<EV> or L<AnyEvent::Loop>) cache the current
335the current time for each loop iteration (see the discussion of L<< 362time for each loop iteration (see the discussion of L<< AnyEvent->now >>,
336AnyEvent->now >>, above). 363above).
337 364
338When a callback runs for a long time (or when the process sleeps), then 365When a callback runs for a long time (or when the process sleeps), then
339this "current" time will differ substantially from the real time, which 366this "current" time will differ substantially from the real time, which
340might affect timers and time-outs. 367might affect timers and time-outs.
341 368
342When this is the case, you can call this method, which will update the 369When this is the case, you can call this method, which will update the
343event loop's idea of "current time". 370event loop's idea of "current time".
344 371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
345Note that updating the time I<might> cause some events to be handled. 379Note that updating the time I<might> cause some events to be handled.
346 380
347=back 381=back
348 382
349=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
350 386
351You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
352I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
353callback to be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
354 390
360invocation, and callback invocation will be synchronous. Synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
361that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
362but it is guaranteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
363 399
364The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
365between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
366 403
367This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
368directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
369 407
370Example: exit on SIGINT 408Example: exit on SIGINT
371 409
372 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
373 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling) or
421"unsafe" (asynchronous) - the former might get delayed indefinitely, the
422latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
432callbacks to signals in a generic way, which is a pity, as you cannot
433do race-free signal handling in perl, requiring C libraries for
434this. AnyEvent will try to do its best, which means in some cases,
435signals will be delayed. The maximum time a signal might be delayed is
436specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
437variable can be changed only before the first signal watcher is created,
438and should be left alone otherwise. This variable determines how often
439AnyEvent polls for signals (in case a wake-up was missed). Higher values
440will cause fewer spurious wake-ups, which is better for power and CPU
441saving.
442
443All these problems can be avoided by installing the optional
444L<Async::Interrupt> module, which works with most event loops. It will not
445work with inherently broken event loops such as L<Event> or L<Event::Lib>
446(and not with L<POE> currently, as POE does its own workaround with
447one-second latency). For those, you just have to suffer the delays.
448
374=head2 CHILD PROCESS WATCHERS 449=head2 CHILD PROCESS WATCHERS
375 450
451 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
452
376You can also watch on a child process exit and catch its exit status. 453You can also watch for a child process exit and catch its exit status.
377 454
378The child process is specified by the C<pid> argument (if set to C<0>, it 455The child process is specified by the C<pid> argument (on some backends,
379watches for any child process exit). The watcher will triggered only when 456using C<0> watches for any child process exit, on others this will
380the child process has finished and an exit status is available, not on 457croak). The watcher will be triggered only when the child process has
381any trace events (stopped/continued). 458finished and an exit status is available, not on any trace events
459(stopped/continued).
382 460
383The callback will be called with the pid and exit status (as returned by 461The callback will be called with the pid and exit status (as returned by
384waitpid), so unlike other watcher types, you I<can> rely on child watcher 462waitpid), so unlike other watcher types, you I<can> rely on child watcher
385callback arguments. 463callback arguments.
386 464
391 469
392There is a slight catch to child watchers, however: you usually start them 470There is a slight catch to child watchers, however: you usually start them
393I<after> the child process was created, and this means the process could 471I<after> the child process was created, and this means the process could
394have exited already (and no SIGCHLD will be sent anymore). 472have exited already (and no SIGCHLD will be sent anymore).
395 473
396Not all event models handle this correctly (POE doesn't), but even for 474Not all event models handle this correctly (neither POE nor IO::Async do,
475see their AnyEvent::Impl manpages for details), but even for event models
397event models that I<do> handle this correctly, they usually need to be 476that I<do> handle this correctly, they usually need to be loaded before
398loaded before the process exits (i.e. before you fork in the first place). 477the process exits (i.e. before you fork in the first place). AnyEvent's
478pure perl event loop handles all cases correctly regardless of when you
479start the watcher.
399 480
400This means you cannot create a child watcher as the very first thing in an 481This means you cannot create a child watcher as the very first
401AnyEvent program, you I<have> to create at least one watcher before you 482thing in an AnyEvent program, you I<have> to create at least one
402C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 483watcher before you C<fork> the child (alternatively, you can call
484C<AnyEvent::detect>).
485
486As most event loops do not support waiting for child events, they will be
487emulated by AnyEvent in most cases, in which case the latency and race
488problems mentioned in the description of signal watchers apply.
403 489
404Example: fork a process and wait for it 490Example: fork a process and wait for it
405 491
406 my $done = AnyEvent->condvar; 492 my $done = AnyEvent->condvar;
407 493
419 # do something else, then wait for process exit 505 # do something else, then wait for process exit
420 $done->recv; 506 $done->recv;
421 507
422=head2 IDLE WATCHERS 508=head2 IDLE WATCHERS
423 509
424Sometimes there is a need to do something, but it is not so important 510 $w = AnyEvent->idle (cb => <callback>);
425to do it instantly, but only when there is nothing better to do. This
426"nothing better to do" is usually defined to be "no other events need
427attention by the event loop".
428 511
429Idle watchers ideally get invoked when the event loop has nothing 512This will repeatedly invoke the callback after the process becomes idle,
430better to do, just before it would block the process to wait for new 513until either the watcher is destroyed or new events have been detected.
431events. Instead of blocking, the idle watcher is invoked.
432 514
433Most event loops unfortunately do not really support idle watchers (only 515Idle watchers are useful when there is a need to do something, but it
516is not so important (or wise) to do it instantly. The callback will be
517invoked only when there is "nothing better to do", which is usually
518defined as "all outstanding events have been handled and no new events
519have been detected". That means that idle watchers ideally get invoked
520when the event loop has just polled for new events but none have been
521detected. Instead of blocking to wait for more events, the idle watchers
522will be invoked.
523
524Unfortunately, most event loops do not really support idle watchers (only
434EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent 525EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
435will simply call the callback "from time to time". 526will simply call the callback "from time to time".
436 527
437Example: read lines from STDIN, but only process them when the 528Example: read lines from STDIN, but only process them when the
438program is otherwise idle: 529program is otherwise idle:
454 }); 545 });
455 }); 546 });
456 547
457=head2 CONDITION VARIABLES 548=head2 CONDITION VARIABLES
458 549
550 $cv = AnyEvent->condvar;
551
552 $cv->send (<list>);
553 my @res = $cv->recv;
554
459If you are familiar with some event loops you will know that all of them 555If you are familiar with some event loops you will know that all of them
460require you to run some blocking "loop", "run" or similar function that 556require you to run some blocking "loop", "run" or similar function that
461will actively watch for new events and call your callbacks. 557will actively watch for new events and call your callbacks.
462 558
463AnyEvent is different, it expects somebody else to run the event loop and 559AnyEvent is slightly different: it expects somebody else to run the event
464will only block when necessary (usually when told by the user). 560loop and will only block when necessary (usually when told by the user).
465 561
466The instrument to do that is called a "condition variable", so called 562The tool to do that is called a "condition variable", so called because
467because they represent a condition that must become true. 563they represent a condition that must become true.
564
565Now is probably a good time to look at the examples further below.
468 566
469Condition variables can be created by calling the C<< AnyEvent->condvar 567Condition variables can be created by calling the C<< AnyEvent->condvar
470>> method, usually without arguments. The only argument pair allowed is 568>> method, usually without arguments. The only argument pair allowed is
471
472C<cb>, which specifies a callback to be called when the condition variable 569C<cb>, which specifies a callback to be called when the condition variable
473becomes true, with the condition variable as the first argument (but not 570becomes true, with the condition variable as the first argument (but not
474the results). 571the results).
475 572
476After creation, the condition variable is "false" until it becomes "true" 573After creation, the condition variable is "false" until it becomes "true"
477by calling the C<send> method (or calling the condition variable as if it 574by calling the C<send> method (or calling the condition variable as if it
478were a callback, read about the caveats in the description for the C<< 575were a callback, read about the caveats in the description for the C<<
479->send >> method). 576->send >> method).
480 577
481Condition variables are similar to callbacks, except that you can 578Since condition variables are the most complex part of the AnyEvent API, here are
482optionally wait for them. They can also be called merge points - points 579some different mental models of what they are - pick the ones you can connect to:
483in time where multiple outstanding events have been processed. And yet 580
484another way to call them is transactions - each condition variable can be 581=over 4
485used to represent a transaction, which finishes at some point and delivers 582
486a result. 583=item * Condition variables are like callbacks - you can call them (and pass them instead
584of callbacks). Unlike callbacks however, you can also wait for them to be called.
585
586=item * Condition variables are signals - one side can emit or send them,
587the other side can wait for them, or install a handler that is called when
588the signal fires.
589
590=item * Condition variables are like "Merge Points" - points in your program
591where you merge multiple independent results/control flows into one.
592
593=item * Condition variables represent a transaction - functions that start
594some kind of transaction can return them, leaving the caller the choice
595between waiting in a blocking fashion, or setting a callback.
596
597=item * Condition variables represent future values, or promises to deliver
598some result, long before the result is available.
599
600=back
487 601
488Condition variables are very useful to signal that something has finished, 602Condition variables are very useful to signal that something has finished,
489for example, if you write a module that does asynchronous http requests, 603for example, if you write a module that does asynchronous http requests,
490then a condition variable would be the ideal candidate to signal the 604then a condition variable would be the ideal candidate to signal the
491availability of results. The user can either act when the callback is 605availability of results. The user can either act when the callback is
504 618
505Condition variables are represented by hash refs in perl, and the keys 619Condition variables are represented by hash refs in perl, and the keys
506used by AnyEvent itself are all named C<_ae_XXX> to make subclassing 620used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
507easy (it is often useful to build your own transaction class on top of 621easy (it is often useful to build your own transaction class on top of
508AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call 622AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
509it's C<new> method in your own C<new> method. 623its C<new> method in your own C<new> method.
510 624
511There are two "sides" to a condition variable - the "producer side" which 625There are two "sides" to a condition variable - the "producer side" which
512eventually calls C<< -> send >>, and the "consumer side", which waits 626eventually calls C<< -> send >>, and the "consumer side", which waits
513for the send to occur. 627for the send to occur.
514 628
515Example: wait for a timer. 629Example: wait for a timer.
516 630
517 # wait till the result is ready 631 # condition: "wait till the timer is fired"
518 my $result_ready = AnyEvent->condvar; 632 my $timer_fired = AnyEvent->condvar;
519 633
520 # do something such as adding a timer 634 # create the timer - we could wait for, say
521 # or socket watcher the calls $result_ready->send 635 # a handle becomign ready, or even an
522 # when the "result" is ready. 636 # AnyEvent::HTTP request to finish, but
523 # in this case, we simply use a timer: 637 # in this case, we simply use a timer:
524 my $w = AnyEvent->timer ( 638 my $w = AnyEvent->timer (
525 after => 1, 639 after => 1,
526 cb => sub { $result_ready->send }, 640 cb => sub { $timer_fired->send },
527 ); 641 );
528 642
529 # this "blocks" (while handling events) till the callback 643 # this "blocks" (while handling events) till the callback
530 # calls send 644 # calls ->send
531 $result_ready->recv; 645 $timer_fired->recv;
532 646
533Example: wait for a timer, but take advantage of the fact that 647Example: wait for a timer, but take advantage of the fact that condition
534condition variables are also code references. 648variables are also callable directly.
535 649
536 my $done = AnyEvent->condvar; 650 my $done = AnyEvent->condvar;
537 my $delay = AnyEvent->timer (after => 5, cb => $done); 651 my $delay = AnyEvent->timer (after => 5, cb => $done);
538 $done->recv; 652 $done->recv;
539 653
545 659
546 ... 660 ...
547 661
548 my @info = $couchdb->info->recv; 662 my @info = $couchdb->info->recv;
549 663
550And this is how you would just ste a callback to be called whenever the 664And this is how you would just set a callback to be called whenever the
551results are available: 665results are available:
552 666
553 $couchdb->info->cb (sub { 667 $couchdb->info->cb (sub {
554 my @info = $_[0]->recv; 668 my @info = $_[0]->recv;
555 }); 669 });
573immediately from within send. 687immediately from within send.
574 688
575Any arguments passed to the C<send> call will be returned by all 689Any arguments passed to the C<send> call will be returned by all
576future C<< ->recv >> calls. 690future C<< ->recv >> calls.
577 691
578Condition variables are overloaded so one can call them directly 692Condition variables are overloaded so one can call them directly (as if
579(as a code reference). Calling them directly is the same as calling 693they were a code reference). Calling them directly is the same as calling
580C<send>. Note, however, that many C-based event loops do not handle 694C<send>.
581overloading, so as tempting as it may be, passing a condition variable
582instead of a callback does not work. Both the pure perl and EV loops
583support overloading, however, as well as all functions that use perl to
584invoke a callback (as in L<AnyEvent::Socket> and L<AnyEvent::DNS> for
585example).
586 695
587=item $cv->croak ($error) 696=item $cv->croak ($error)
588 697
589Similar to send, but causes all call's to C<< ->recv >> to invoke 698Similar to send, but causes all calls to C<< ->recv >> to invoke
590C<Carp::croak> with the given error message/object/scalar. 699C<Carp::croak> with the given error message/object/scalar.
591 700
592This can be used to signal any errors to the condition variable 701This can be used to signal any errors to the condition variable
593user/consumer. 702user/consumer. Doing it this way instead of calling C<croak> directly
703delays the error detection, but has the overwhelming advantage that it
704diagnoses the error at the place where the result is expected, and not
705deep in some event callback with no connection to the actual code causing
706the problem.
594 707
595=item $cv->begin ([group callback]) 708=item $cv->begin ([group callback])
596 709
597=item $cv->end 710=item $cv->end
598
599These two methods are EXPERIMENTAL and MIGHT CHANGE.
600 711
601These two methods can be used to combine many transactions/events into 712These two methods can be used to combine many transactions/events into
602one. For example, a function that pings many hosts in parallel might want 713one. For example, a function that pings many hosts in parallel might want
603to use a condition variable for the whole process. 714to use a condition variable for the whole process.
604 715
605Every call to C<< ->begin >> will increment a counter, and every call to 716Every call to C<< ->begin >> will increment a counter, and every call to
606C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 717C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
607>>, the (last) callback passed to C<begin> will be executed. That callback 718>>, the (last) callback passed to C<begin> will be executed, passing the
608is I<supposed> to call C<< ->send >>, but that is not required. If no 719condvar as first argument. That callback is I<supposed> to call C<< ->send
609callback was set, C<send> will be called without any arguments. 720>>, but that is not required. If no group callback was set, C<send> will
721be called without any arguments.
610 722
611Let's clarify this with the ping example: 723You can think of C<< $cv->send >> giving you an OR condition (one call
724sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
725condition (all C<begin> calls must be C<end>'ed before the condvar sends).
726
727Let's start with a simple example: you have two I/O watchers (for example,
728STDOUT and STDERR for a program), and you want to wait for both streams to
729close before activating a condvar:
612 730
613 my $cv = AnyEvent->condvar; 731 my $cv = AnyEvent->condvar;
614 732
733 $cv->begin; # first watcher
734 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
735 defined sysread $fh1, my $buf, 4096
736 or $cv->end;
737 });
738
739 $cv->begin; # second watcher
740 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
741 defined sysread $fh2, my $buf, 4096
742 or $cv->end;
743 });
744
745 $cv->recv;
746
747This works because for every event source (EOF on file handle), there is
748one call to C<begin>, so the condvar waits for all calls to C<end> before
749sending.
750
751The ping example mentioned above is slightly more complicated, as the
752there are results to be passwd back, and the number of tasks that are
753begun can potentially be zero:
754
755 my $cv = AnyEvent->condvar;
756
615 my %result; 757 my %result;
616 $cv->begin (sub { $cv->send (\%result) }); 758 $cv->begin (sub { shift->send (\%result) });
617 759
618 for my $host (@list_of_hosts) { 760 for my $host (@list_of_hosts) {
619 $cv->begin; 761 $cv->begin;
620 ping_host_then_call_callback $host, sub { 762 ping_host_then_call_callback $host, sub {
621 $result{$host} = ...; 763 $result{$host} = ...;
636loop, which serves two important purposes: first, it sets the callback 778loop, which serves two important purposes: first, it sets the callback
637to be called once the counter reaches C<0>, and second, it ensures that 779to be called once the counter reaches C<0>, and second, it ensures that
638C<send> is called even when C<no> hosts are being pinged (the loop 780C<send> is called even when C<no> hosts are being pinged (the loop
639doesn't execute once). 781doesn't execute once).
640 782
641This is the general pattern when you "fan out" into multiple subrequests: 783This is the general pattern when you "fan out" into multiple (but
642use an outer C<begin>/C<end> pair to set the callback and ensure C<end> 784potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
643is called at least once, and then, for each subrequest you start, call 785the callback and ensure C<end> is called at least once, and then, for each
644C<begin> and for each subrequest you finish, call C<end>. 786subrequest you start, call C<begin> and for each subrequest you finish,
787call C<end>.
645 788
646=back 789=back
647 790
648=head3 METHODS FOR CONSUMERS 791=head3 METHODS FOR CONSUMERS
649 792
653=over 4 796=over 4
654 797
655=item $cv->recv 798=item $cv->recv
656 799
657Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak 800Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
658>> methods have been called on c<$cv>, while servicing other watchers 801>> methods have been called on C<$cv>, while servicing other watchers
659normally. 802normally.
660 803
661You can only wait once on a condition - additional calls are valid but 804You can only wait once on a condition - additional calls are valid but
662will return immediately. 805will return immediately.
663 806
665function will call C<croak>. 808function will call C<croak>.
666 809
667In list context, all parameters passed to C<send> will be returned, 810In list context, all parameters passed to C<send> will be returned,
668in scalar context only the first one will be returned. 811in scalar context only the first one will be returned.
669 812
813Note that doing a blocking wait in a callback is not supported by any
814event loop, that is, recursive invocation of a blocking C<< ->recv
815>> is not allowed, and the C<recv> call will C<croak> if such a
816condition is detected. This condition can be slightly loosened by using
817L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
818any thread that doesn't run the event loop itself.
819
670Not all event models support a blocking wait - some die in that case 820Not all event models support a blocking wait - some die in that case
671(programs might want to do that to stay interactive), so I<if you are 821(programs might want to do that to stay interactive), so I<if you are
672using this from a module, never require a blocking wait>, but let the 822using this from a module, never require a blocking wait>. Instead, let the
673caller decide whether the call will block or not (for example, by coupling 823caller decide whether the call will block or not (for example, by coupling
674condition variables with some kind of request results and supporting 824condition variables with some kind of request results and supporting
675callbacks so the caller knows that getting the result will not block, 825callbacks so the caller knows that getting the result will not block,
676while still supporting blocking waits if the caller so desires). 826while still supporting blocking waits if the caller so desires).
677 827
678Another reason I<never> to C<< ->recv >> in a module is that you cannot
679sensibly have two C<< ->recv >>'s in parallel, as that would require
680multiple interpreters or coroutines/threads, none of which C<AnyEvent>
681can supply.
682
683The L<Coro> module, however, I<can> and I<does> supply coroutines and, in
684fact, L<Coro::AnyEvent> replaces AnyEvent's condvars by coroutine-safe
685versions and also integrates coroutines into AnyEvent, making blocking
686C<< ->recv >> calls perfectly safe as long as they are done from another
687coroutine (one that doesn't run the event loop).
688
689You can ensure that C<< -recv >> never blocks by setting a callback and 828You can ensure that C<< ->recv >> never blocks by setting a callback and
690only calling C<< ->recv >> from within that callback (or at a later 829only calling C<< ->recv >> from within that callback (or at a later
691time). This will work even when the event loop does not support blocking 830time). This will work even when the event loop does not support blocking
692waits otherwise. 831waits otherwise.
693 832
694=item $bool = $cv->ready 833=item $bool = $cv->ready
700 839
701This is a mutator function that returns the callback set and optionally 840This is a mutator function that returns the callback set and optionally
702replaces it before doing so. 841replaces it before doing so.
703 842
704The callback will be called when the condition becomes "true", i.e. when 843The callback will be called when the condition becomes "true", i.e. when
705C<send> or C<croak> are called, with the only argument being the condition 844C<send> or C<croak> are called, with the only argument being the
706variable itself. Calling C<recv> inside the callback or at any later time 845condition variable itself. If the condition is already true, the
707is guaranteed not to block. 846callback is called immediately when it is set. Calling C<recv> inside
847the callback or at any later time is guaranteed not to block.
708 848
709=back 849=back
710 850
851=head1 SUPPORTED EVENT LOOPS/BACKENDS
852
853The available backend classes are (every class has its own manpage):
854
855=over 4
856
857=item Backends that are autoprobed when no other event loop can be found.
858
859EV is the preferred backend when no other event loop seems to be in
860use. If EV is not installed, then AnyEvent will fall back to its own
861pure-perl implementation, which is available everywhere as it comes with
862AnyEvent itself.
863
864 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
865 AnyEvent::Impl::Perl pure-perl AnyEvent::Loop, fast and portable.
866
867=item Backends that are transparently being picked up when they are used.
868
869These will be used if they are already loaded when the first watcher
870is created, in which case it is assumed that the application is using
871them. This means that AnyEvent will automatically pick the right backend
872when the main program loads an event module before anything starts to
873create watchers. Nothing special needs to be done by the main program.
874
875 AnyEvent::Impl::Event based on Event, very stable, few glitches.
876 AnyEvent::Impl::Glib based on Glib, slow but very stable.
877 AnyEvent::Impl::Tk based on Tk, very broken.
878 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
879 AnyEvent::Impl::POE based on POE, very slow, some limitations.
880 AnyEvent::Impl::Irssi used when running within irssi.
881 AnyEvent::Impl::IOAsync based on IO::Async.
882 AnyEvent::Impl::Cocoa based on Cocoa::EventLoop.
883 AnyEvent::Impl::FLTK based on FLTK (fltk 2 binding).
884
885=item Backends with special needs.
886
887Qt requires the Qt::Application to be instantiated first, but will
888otherwise be picked up automatically. As long as the main program
889instantiates the application before any AnyEvent watchers are created,
890everything should just work.
891
892 AnyEvent::Impl::Qt based on Qt.
893
894=item Event loops that are indirectly supported via other backends.
895
896Some event loops can be supported via other modules:
897
898There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
899
900B<WxWidgets> has no support for watching file handles. However, you can
901use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
902polls 20 times per second, which was considered to be too horrible to even
903consider for AnyEvent.
904
905B<Prima> is not supported as nobody seems to be using it, but it has a POE
906backend, so it can be supported through POE.
907
908AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
909load L<POE> when detecting them, in the hope that POE will pick them up,
910in which case everything will be automatic.
911
912=back
913
711=head1 GLOBAL VARIABLES AND FUNCTIONS 914=head1 GLOBAL VARIABLES AND FUNCTIONS
712 915
916These are not normally required to use AnyEvent, but can be useful to
917write AnyEvent extension modules.
918
713=over 4 919=over 4
714 920
715=item $AnyEvent::MODEL 921=item $AnyEvent::MODEL
716 922
717Contains C<undef> until the first watcher is being created. Then it 923Contains C<undef> until the first watcher is being created, before the
924backend has been autodetected.
925
718contains the event model that is being used, which is the name of the 926Afterwards it contains the event model that is being used, which is the
719Perl class implementing the model. This class is usually one of the 927name of the Perl class implementing the model. This class is usually one
720C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 928of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
721AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 929case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
722 930will be C<urxvt::anyevent>).
723The known classes so far are:
724
725 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
726 AnyEvent::Impl::Event based on Event, second best choice.
727 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
728 AnyEvent::Impl::Glib based on Glib, third-best choice.
729 AnyEvent::Impl::Tk based on Tk, very bad choice.
730 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
731 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
732 AnyEvent::Impl::POE based on POE, not generic enough for full support.
733
734There is no support for WxWidgets, as WxWidgets has no support for
735watching file handles. However, you can use WxWidgets through the
736POE Adaptor, as POE has a Wx backend that simply polls 20 times per
737second, which was considered to be too horrible to even consider for
738AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
739it's adaptor.
740
741AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
742autodetecting them.
743 931
744=item AnyEvent::detect 932=item AnyEvent::detect
745 933
746Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 934Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
747if necessary. You should only call this function right before you would 935if necessary. You should only call this function right before you would
748have created an AnyEvent watcher anyway, that is, as late as possible at 936have created an AnyEvent watcher anyway, that is, as late as possible at
749runtime. 937runtime, and not e.g. during initialisation of your module.
938
939The effect of calling this function is as if a watcher had been created
940(specifically, actions that happen "when the first watcher is created"
941happen when calling detetc as well).
942
943If you need to do some initialisation before AnyEvent watchers are
944created, use C<post_detect>.
750 945
751=item $guard = AnyEvent::post_detect { BLOCK } 946=item $guard = AnyEvent::post_detect { BLOCK }
752 947
753Arranges for the code block to be executed as soon as the event model is 948Arranges for the code block to be executed as soon as the event model is
754autodetected (or immediately if this has already happened). 949autodetected (or immediately if that has already happened).
950
951The block will be executed I<after> the actual backend has been detected
952(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
953created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
954other initialisations - see the sources of L<AnyEvent::Strict> or
955L<AnyEvent::AIO> to see how this is used.
956
957The most common usage is to create some global watchers, without forcing
958event module detection too early, for example, L<AnyEvent::AIO> creates
959and installs the global L<IO::AIO> watcher in a C<post_detect> block to
960avoid autodetecting the event module at load time.
755 961
756If called in scalar or list context, then it creates and returns an object 962If called in scalar or list context, then it creates and returns an object
757that automatically removes the callback again when it is destroyed. See 963that automatically removes the callback again when it is destroyed (or
964C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
758L<Coro::BDB> for a case where this is useful. 965a case where this is useful.
966
967Example: Create a watcher for the IO::AIO module and store it in
968C<$WATCHER>, but do so only do so after the event loop is initialised.
969
970 our WATCHER;
971
972 my $guard = AnyEvent::post_detect {
973 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
974 };
975
976 # the ||= is important in case post_detect immediately runs the block,
977 # as to not clobber the newly-created watcher. assigning both watcher and
978 # post_detect guard to the same variable has the advantage of users being
979 # able to just C<undef $WATCHER> if the watcher causes them grief.
980
981 $WATCHER ||= $guard;
759 982
760=item @AnyEvent::post_detect 983=item @AnyEvent::post_detect
761 984
762If there are any code references in this array (you can C<push> to it 985If there are any code references in this array (you can C<push> to it
763before or after loading AnyEvent), then they will called directly after 986before or after loading AnyEvent), then they will be called directly
764the event loop has been chosen. 987after the event loop has been chosen.
765 988
766You should check C<$AnyEvent::MODEL> before adding to this array, though: 989You should check C<$AnyEvent::MODEL> before adding to this array, though:
767if it contains a true value then the event loop has already been detected, 990if it is defined then the event loop has already been detected, and the
768and the array will be ignored. 991array will be ignored.
769 992
770Best use C<AnyEvent::post_detect { BLOCK }> instead. 993Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
994it, as it takes care of these details.
995
996This variable is mainly useful for modules that can do something useful
997when AnyEvent is used and thus want to know when it is initialised, but do
998not need to even load it by default. This array provides the means to hook
999into AnyEvent passively, without loading it.
1000
1001Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
1002together, you could put this into Coro (this is the actual code used by
1003Coro to accomplish this):
1004
1005 if (defined $AnyEvent::MODEL) {
1006 # AnyEvent already initialised, so load Coro::AnyEvent
1007 require Coro::AnyEvent;
1008 } else {
1009 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1010 # as soon as it is
1011 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1012 }
1013
1014=item AnyEvent::postpone { BLOCK }
1015
1016Arranges for the block to be executed as soon as possible, but not before
1017the call itself returns. In practise, the block will be executed just
1018before the event loop polls for new events, or shortly afterwards.
1019
1020This function never returns anything (to make the C<return postpone { ...
1021}> idiom more useful.
1022
1023To understand the usefulness of this function, consider a function that
1024asynchronously does something for you and returns some transaction
1025object or guard to let you cancel the operation. For example,
1026C<AnyEvent::Socket::tcp_connect>:
1027
1028 # start a conenction attempt unless one is active
1029 $self->{connect_guard} ||= AnyEvent::Socket::tcp_connect "www.example.net", 80, sub {
1030 delete $self->{connect_guard};
1031 ...
1032 };
1033
1034Imagine that this function could instantly call the callback, for
1035example, because it detects an obvious error such as a negative port
1036number. Invoking the callback before the function returns causes problems
1037however: the callback will be called and will try to delete the guard
1038object. But since the function hasn't returned yet, there is nothing to
1039delete. When the function eventually returns it will assign the guard
1040object to C<< $self->{connect_guard} >>, where it will likely never be
1041deleted, so the program thinks it is still trying to connect.
1042
1043This is where C<AnyEvent::postpone> should be used. Instead of calling the
1044callback directly on error:
1045
1046 $cb->(undef), return # signal error to callback, BAD!
1047 if $some_error_condition;
1048
1049It should use C<postpone>:
1050
1051 AnyEvent::postpone { $cb->(undef) }, return # signal error to callback, later
1052 if $some_error_condition;
1053
1054=item AnyEvent::log $level, $msg[, @args]
1055
1056Log the given C<$msg> at the given C<$level>.
1057
1058If L<AnyEvent::Log> is not loaded then this function makes a simple test
1059to see whether the message will be logged. If the test succeeds it will
1060load AnyEvent::Log and call C<AnyEvent::Log::log> - consequently, look at
1061the L<AnyEvent::Log> documentation for details.
1062
1063If the test fails it will simply return. Right now this happens when a
1064numerical loglevel is used and it is larger than the level specified via
1065C<$ENV{PERL_ANYEVENT_VERBOSE}>.
1066
1067If you want to sprinkle loads of logging calls around your code, consider
1068creating a logger callback with the C<AnyEvent::Log::logger> function,
1069which can reduce typing, codesize and can reduce the logging overhead
1070enourmously.
771 1071
772=back 1072=back
773 1073
774=head1 WHAT TO DO IN A MODULE 1074=head1 WHAT TO DO IN A MODULE
775 1075
786because it will stall the whole program, and the whole point of using 1086because it will stall the whole program, and the whole point of using
787events is to stay interactive. 1087events is to stay interactive.
788 1088
789It is fine, however, to call C<< ->recv >> when the user of your module 1089It is fine, however, to call C<< ->recv >> when the user of your module
790requests it (i.e. if you create a http request object ad have a method 1090requests it (i.e. if you create a http request object ad have a method
791called C<results> that returns the results, it should call C<< ->recv >> 1091called C<results> that returns the results, it may call C<< ->recv >>
792freely, as the user of your module knows what she is doing. always). 1092freely, as the user of your module knows what she is doing. Always).
793 1093
794=head1 WHAT TO DO IN THE MAIN PROGRAM 1094=head1 WHAT TO DO IN THE MAIN PROGRAM
795 1095
796There will always be a single main program - the only place that should 1096There will always be a single main program - the only place that should
797dictate which event model to use. 1097dictate which event model to use.
798 1098
799If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1099If the program is not event-based, it need not do anything special, even
800do anything special (it does not need to be event-based) and let AnyEvent 1100when it depends on a module that uses an AnyEvent. If the program itself
801decide which implementation to chose if some module relies on it. 1101uses AnyEvent, but does not care which event loop is used, all it needs
1102to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1103available loop implementation.
802 1104
803If the main program relies on a specific event model - for example, in 1105If the main program relies on a specific event model - for example, in
804Gtk2 programs you have to rely on the Glib module - you should load the 1106Gtk2 programs you have to rely on the Glib module - you should load the
805event module before loading AnyEvent or any module that uses it: generally 1107event module before loading AnyEvent or any module that uses it: generally
806speaking, you should load it as early as possible. The reason is that 1108speaking, you should load it as early as possible. The reason is that
807modules might create watchers when they are loaded, and AnyEvent will 1109modules might create watchers when they are loaded, and AnyEvent will
808decide on the event model to use as soon as it creates watchers, and it 1110decide on the event model to use as soon as it creates watchers, and it
809might chose the wrong one unless you load the correct one yourself. 1111might choose the wrong one unless you load the correct one yourself.
810 1112
811You can chose to use a pure-perl implementation by loading the 1113You can chose to use a pure-perl implementation by loading the
812C<AnyEvent::Impl::Perl> module, which gives you similar behaviour 1114C<AnyEvent::Loop> module, which gives you similar behaviour
813everywhere, but letting AnyEvent chose the model is generally better. 1115everywhere, but letting AnyEvent chose the model is generally better.
814 1116
815=head2 MAINLOOP EMULATION 1117=head2 MAINLOOP EMULATION
816 1118
817Sometimes (often for short test scripts, or even standalone programs who 1119Sometimes (often for short test scripts, or even standalone programs who
830 1132
831 1133
832=head1 OTHER MODULES 1134=head1 OTHER MODULES
833 1135
834The following is a non-exhaustive list of additional modules that use 1136The following is a non-exhaustive list of additional modules that use
835AnyEvent and can therefore be mixed easily with other AnyEvent modules 1137AnyEvent as a client and can therefore be mixed easily with other
836in the same program. Some of the modules come with AnyEvent, some are 1138AnyEvent modules and other event loops in the same program. Some of the
837available via CPAN. 1139modules come as part of AnyEvent, the others are available via CPAN (see
1140L<http://search.cpan.org/search?m=module&q=anyevent%3A%3A*> for
1141a longer non-exhaustive list), and the list is heavily biased towards
1142modules of the AnyEvent author himself :)
838 1143
839=over 4 1144=over 4
840 1145
841=item L<AnyEvent::Util> 1146=item L<AnyEvent::Util>
842 1147
843Contains various utility functions that replace often-used but blocking 1148Contains various utility functions that replace often-used blocking
844functions such as C<inet_aton> by event-/callback-based versions. 1149functions such as C<inet_aton> with event/callback-based versions.
845 1150
846=item L<AnyEvent::Socket> 1151=item L<AnyEvent::Socket>
847 1152
848Provides various utility functions for (internet protocol) sockets, 1153Provides various utility functions for (internet protocol) sockets,
849addresses and name resolution. Also functions to create non-blocking tcp 1154addresses and name resolution. Also functions to create non-blocking tcp
851 1156
852=item L<AnyEvent::Handle> 1157=item L<AnyEvent::Handle>
853 1158
854Provide read and write buffers, manages watchers for reads and writes, 1159Provide read and write buffers, manages watchers for reads and writes,
855supports raw and formatted I/O, I/O queued and fully transparent and 1160supports raw and formatted I/O, I/O queued and fully transparent and
856non-blocking SSL/TLS. 1161non-blocking SSL/TLS (via L<AnyEvent::TLS>).
857 1162
858=item L<AnyEvent::DNS> 1163=item L<AnyEvent::DNS>
859 1164
860Provides rich asynchronous DNS resolver capabilities. 1165Provides rich asynchronous DNS resolver capabilities.
861 1166
1167=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1168
1169Implement event-based interfaces to the protocols of the same name (for
1170the curious, IGS is the International Go Server and FCP is the Freenet
1171Client Protocol).
1172
862=item L<AnyEvent::HTTP> 1173=item L<AnyEvent::AIO>
863 1174
864A simple-to-use HTTP library that is capable of making a lot of concurrent 1175Truly asynchronous (as opposed to non-blocking) I/O, should be in the
865HTTP requests. 1176toolbox of every event programmer. AnyEvent::AIO transparently fuses
1177L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1178file I/O, and much more.
1179
1180=item L<AnyEvent::Filesys::Notify>
1181
1182AnyEvent is good for non-blocking stuff, but it can't detect file or
1183path changes (e.g. "watch this directory for new files", "watch this
1184file for changes"). The L<AnyEvent::Filesys::Notify> module promises to
1185do just that in a portbale fashion, supporting inotify on GNU/Linux and
1186some weird, without doubt broken, stuff on OS X to monitor files. It can
1187fall back to blocking scans at regular intervals transparently on other
1188platforms, so it's about as portable as it gets.
1189
1190(I haven't used it myself, but I haven't heard anybody complaining about
1191it yet).
1192
1193=item L<AnyEvent::DBI>
1194
1195Executes L<DBI> requests asynchronously in a proxy process for you,
1196notifying you in an event-based way when the operation is finished.
866 1197
867=item L<AnyEvent::HTTPD> 1198=item L<AnyEvent::HTTPD>
868 1199
869Provides a simple web application server framework. 1200A simple embedded webserver.
870 1201
871=item L<AnyEvent::FastPing> 1202=item L<AnyEvent::FastPing>
872 1203
873The fastest ping in the west. 1204The fastest ping in the west.
874 1205
875=item L<AnyEvent::DBI>
876
877Executes L<DBI> requests asynchronously in a proxy process.
878
879=item L<AnyEvent::AIO>
880
881Truly asynchronous I/O, should be in the toolbox of every event
882programmer. AnyEvent::AIO transparently fuses L<IO::AIO> and AnyEvent
883together.
884
885=item L<AnyEvent::BDB>
886
887Truly asynchronous Berkeley DB access. AnyEvent::BDB transparently fuses
888L<BDB> and AnyEvent together.
889
890=item L<AnyEvent::GPSD>
891
892A non-blocking interface to gpsd, a daemon delivering GPS information.
893
894=item L<AnyEvent::IGS>
895
896A non-blocking interface to the Internet Go Server protocol (used by
897L<App::IGS>).
898
899=item L<AnyEvent::IRC>
900
901AnyEvent based IRC client module family (replacing the older Net::IRC3).
902
903=item L<Net::XMPP2>
904
905AnyEvent based XMPP (Jabber protocol) module family.
906
907=item L<Net::FCP>
908
909AnyEvent-based implementation of the Freenet Client Protocol, birthplace
910of AnyEvent.
911
912=item L<Event::ExecFlow>
913
914High level API for event-based execution flow control.
915
916=item L<Coro> 1206=item L<Coro>
917 1207
918Has special support for AnyEvent via L<Coro::AnyEvent>. 1208Has special support for AnyEvent via L<Coro::AnyEvent>, which allows you
1209to simply invert the flow control - don't call us, we will call you:
919 1210
920=item L<IO::Lambda> 1211 async {
1212 Coro::AnyEvent::sleep 5; # creates a 5s timer and waits for it
1213 print "5 seconds later!\n";
921 1214
922The lambda approach to I/O - don't ask, look there. Can use AnyEvent. 1215 Coro::AnyEvent::readable *STDIN; # uses an I/O watcher
1216 my $line = <STDIN>; # works for ttys
1217
1218 AnyEvent::HTTP::http_get "url", Coro::rouse_cb;
1219 my ($body, $hdr) = Coro::rouse_wait;
1220 };
923 1221
924=back 1222=back
925 1223
926=cut 1224=cut
927 1225
928package AnyEvent; 1226package AnyEvent;
929 1227
930no warnings; 1228# basically a tuned-down version of common::sense
931use strict qw(vars subs); 1229sub common_sense {
1230 # from common:.sense 3.4
1231 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf0\x0f\xc0\xf0\xfc\x33\x00";
1232 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1233 $^H |= 0x00000600;
1234}
932 1235
1236BEGIN { AnyEvent::common_sense }
1237
933use Carp; 1238use Carp ();
934 1239
935our $VERSION = 4.4; 1240our $VERSION = '6.02';
936our $MODEL; 1241our $MODEL;
937
938our $AUTOLOAD;
939our @ISA; 1242our @ISA;
940
941our @REGISTRY; 1243our @REGISTRY;
942 1244our $VERBOSE;
943our $WIN32; 1245our $MAX_SIGNAL_LATENCY = 10;
1246our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
944 1247
945BEGIN { 1248BEGIN {
946 my $win32 = ! ! ($^O =~ /mswin32/i); 1249 require "AnyEvent/constants.pl";
947 eval "sub WIN32(){ $win32 }";
948}
949 1250
950our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; 1251 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
951 1252
952our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred 1253 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1254 if ${^TAINT};
953 1255
954{ 1256 $ENV{"PERL_ANYEVENT_$_"} = $ENV{"AE_$_"}
1257 for grep s/^AE_// && !exists $ENV{"PERL_ANYEVENT_$_"}, keys %ENV;
1258
1259 @ENV{grep /^PERL_ANYEVENT_/, keys %ENV} = ()
1260 if ${^TAINT};
1261
1262 # $ENV{PERL_ANYEVENT_xxx} now valid
1263
1264 $VERBOSE = length $ENV{PERL_ANYEVENT_VERBOSE} ? $ENV{PERL_ANYEVENT_VERBOSE}*1 : 4;
1265
955 my $idx; 1266 my $idx;
956 $PROTOCOL{$_} = ++$idx 1267 $PROTOCOL{$_} = ++$idx
957 for reverse split /\s*,\s*/, 1268 for reverse split /\s*,\s*/,
958 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1269 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
959} 1270}
960 1271
1272our @post_detect;
1273
1274sub post_detect(&) {
1275 my ($cb) = @_;
1276
1277 push @post_detect, $cb;
1278
1279 defined wantarray
1280 ? bless \$cb, "AnyEvent::Util::postdetect"
1281 : ()
1282}
1283
1284sub AnyEvent::Util::postdetect::DESTROY {
1285 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1286}
1287
1288our $POSTPONE_W;
1289our @POSTPONE;
1290
1291sub _postpone_exec {
1292 undef $POSTPONE_W;
1293
1294 &{ shift @POSTPONE }
1295 while @POSTPONE;
1296}
1297
1298sub postpone(&) {
1299 push @POSTPONE, shift;
1300
1301 $POSTPONE_W ||= AE::timer (0, 0, \&_postpone_exec);
1302
1303 ()
1304}
1305
1306sub log($$;@) {
1307 # only load the big bloated module when we actually are about to log something
1308 if ($_[0] <= ($VERBOSE || 1)) { # also catches non-numeric levels(!) and fatal
1309 require AnyEvent::Log; # among other things, sets $VERBOSE to 9
1310 # AnyEvent::Log overwrites this function
1311 goto &log;
1312 }
1313
1314 0 # not logged
1315}
1316
1317sub logger($;$) {
1318 package AnyEvent::Log;
1319
1320 my ($level, $renabled) = @_;
1321
1322 $$renabled = $level <= $VERBOSE;
1323
1324 my $pkg = (caller)[0];
1325
1326 my $logger = [$pkg, $level, $renabled];
1327
1328 our %LOGGER;
1329 $LOGGER{$logger+0} = $logger;
1330
1331 require AnyEvent::Util;
1332 my $guard = AnyEvent::Util::guard (sub {
1333 # "clean up"
1334 delete $LOGGER{$logger+0};
1335 });
1336
1337 sub {
1338 return 0 unless $$renabled;
1339
1340 $guard if 0; # keep guard alive, but don't cause runtime overhead
1341 require AnyEvent::Log unless $AnyEvent::Log::VERSION;
1342 package AnyEvent::Log;
1343 _log ($logger->[0], $level, @_) # logger->[0] has been converted at load time
1344 }
1345}
1346
1347if (length $ENV{PERL_ANYEVENT_LOG}) {
1348 require AnyEvent::Log; # AnyEvent::Log does the thing for us
1349}
1350
961my @models = ( 1351our @models = (
962 [EV:: => AnyEvent::Impl::EV::], 1352 [EV:: => AnyEvent::Impl::EV::],
963 [Event:: => AnyEvent::Impl::Event::],
964 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::], 1353 [AnyEvent::Loop:: => AnyEvent::Impl::Perl::],
965 # everything below here will not be autoprobed 1354 # everything below here will not (normally) be autoprobed
966 # as the pureperl backend should work everywhere 1355 # as the pure perl backend should work everywhere
967 # and is usually faster 1356 # and is usually faster
1357 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package, so msut be near the top
1358 [Event:: => AnyEvent::Impl::Event::], # slow, stable
1359 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
1360 # everything below here should not be autoloaded
1361 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
968 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles 1362 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
969 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
970 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
971 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 1363 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
972 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 1364 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
973 [Wx:: => AnyEvent::Impl::POE::], 1365 [Wx:: => AnyEvent::Impl::POE::],
974 [Prima:: => AnyEvent::Impl::POE::], 1366 [Prima:: => AnyEvent::Impl::POE::],
1367 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # a bitch to autodetect
1368 [Cocoa::EventLoop:: => AnyEvent::Impl::Cocoa::],
1369 [FLTK:: => AnyEvent::Impl::FLTK::],
975); 1370);
976 1371
977our %method = map +($_ => 1), 1372our @isa_hook;
1373
1374sub _isa_set {
1375 my @pkg = ("AnyEvent", (map $_->[0], grep defined, @isa_hook), $MODEL);
1376
1377 @{"$pkg[$_-1]::ISA"} = $pkg[$_]
1378 for 1 .. $#pkg;
1379
1380 grep $_ && $_->[1], @isa_hook
1381 and AE::_reset ();
1382}
1383
1384# used for hooking AnyEvent::Strict and AnyEvent::Debug::Wrap into the class hierarchy
1385sub _isa_hook($$;$) {
1386 my ($i, $pkg, $reset_ae) = @_;
1387
1388 $isa_hook[$i] = $pkg ? [$pkg, $reset_ae] : undef;
1389
1390 _isa_set;
1391}
1392
1393# all autoloaded methods reserve the complete glob, not just the method slot.
1394# due to bugs in perls method cache implementation.
978 qw(io timer time now now_update signal child idle condvar one_event DESTROY); 1395our @methods = qw(io timer time now now_update signal child idle condvar);
979 1396
980our @post_detect;
981
982sub post_detect(&) { 1397sub detect() {
983 my ($cb) = @_; 1398 return $MODEL if $MODEL; # some programs keep references to detect
984 1399
985 if ($MODEL) { 1400 # IO::Async::Loop::AnyEvent is extremely evil, refuse to work with it
986 $cb->(); 1401 # the author knows about the problems and what it does to AnyEvent as a whole
1402 # (and the ability of others to use AnyEvent), but simply wants to abuse AnyEvent
1403 # anyway.
1404 AnyEvent::log fatal => "AnyEvent: IO::Async::Loop::AnyEvent detected - this module is broken by design,\n"
1405 . "abuses internals and breaks AnyEvent, will not continue."
1406 if exists $INC{"IO/Async/Loop/AnyEvent.pm"};
987 1407
988 1 1408 local $!; # for good measure
1409 local $SIG{__DIE__}; # we use eval
1410
1411 # free some memory
1412 *detect = sub () { $MODEL };
1413 # undef &func doesn't correctly update the method cache. grmbl.
1414 # so we delete the whole glob. grmbl.
1415 # otoh, perl doesn't let me undef an active usb, but it lets me free
1416 # a glob with an active sub. hrm. i hope it works, but perl is
1417 # usually buggy in this department. sigh.
1418 delete @{"AnyEvent::"}{@methods};
1419 undef @methods;
1420
1421 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z0-9:]+)$/) {
1422 my $model = $1;
1423 $model = "AnyEvent::Impl::$model" unless $model =~ s/::$//;
1424 if (eval "require $model") {
1425 AnyEvent::log 7 => "loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.";
1426 $MODEL = $model;
989 } else { 1427 } else {
990 push @post_detect, $cb; 1428 AnyEvent::log 4 => "unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@";
991 1429 }
992 defined wantarray
993 ? bless \$cb, "AnyEvent::Util::postdetect"
994 : ()
995 } 1430 }
996}
997 1431
998sub AnyEvent::Util::postdetect::DESTROY { 1432 # check for already loaded models
999 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1000}
1001
1002sub detect() {
1003 unless ($MODEL) { 1433 unless ($MODEL) {
1004 no strict 'refs'; 1434 for (@REGISTRY, @models) {
1005 local $SIG{__DIE__}; 1435 my ($package, $model) = @$_;
1006 1436 if (${"$package\::VERSION"} > 0) {
1007 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
1008 my $model = "AnyEvent::Impl::$1";
1009 if (eval "require $model") { 1437 if (eval "require $model") {
1438 AnyEvent::log 7 => "autodetected model '$model', using it.";
1010 $MODEL = $model; 1439 $MODEL = $model;
1011 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1440 last;
1012 } else { 1441 }
1013 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose;
1014 } 1442 }
1015 } 1443 }
1016 1444
1017 # check for already loaded models
1018 unless ($MODEL) { 1445 unless ($MODEL) {
1446 # try to autoload a model
1019 for (@REGISTRY, @models) { 1447 for (@REGISTRY, @models) {
1020 my ($package, $model) = @$_; 1448 my ($package, $model) = @$_;
1449 if (
1450 eval "require $package"
1021 if (${"$package\::VERSION"} > 0) { 1451 and ${"$package\::VERSION"} > 0
1022 if (eval "require $model") { 1452 and eval "require $model"
1453 ) {
1454 AnyEvent::log 7 => "autoloaded model '$model', using it.";
1023 $MODEL = $model; 1455 $MODEL = $model;
1024 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1;
1025 last; 1456 last;
1026 }
1027 } 1457 }
1028 } 1458 }
1029 1459
1030 unless ($MODEL) {
1031 # try to load a model
1032
1033 for (@REGISTRY, @models) {
1034 my ($package, $model) = @$_;
1035 if (eval "require $package"
1036 and ${"$package\::VERSION"} > 0
1037 and eval "require $model") {
1038 $MODEL = $model;
1039 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1;
1040 last;
1041 }
1042 }
1043
1044 $MODEL 1460 $MODEL
1045 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib.\n"; 1461 or AnyEvent::log fatal => "AnyEvent: backend autodetection failed - did you properly install AnyEvent?";
1046 }
1047 } 1462 }
1048
1049 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1050
1051 unshift @ISA, $MODEL;
1052
1053 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
1054
1055 (shift @post_detect)->() while @post_detect;
1056 } 1463 }
1057 1464
1465 # free memory only needed for probing
1466 undef @models;
1467 undef @REGISTRY;
1468
1469 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1470
1471 # now nuke some methods that are overridden by the backend.
1472 # SUPER usage is not allowed in these.
1473 for (qw(time signal child idle)) {
1474 undef &{"AnyEvent::Base::$_"}
1475 if defined &{"$MODEL\::$_"};
1476 }
1477
1478 _isa_set;
1479
1480 # we're officially open!
1481
1482 if ($ENV{PERL_ANYEVENT_STRICT}) {
1483 require AnyEvent::Strict;
1484 }
1485
1486 if ($ENV{PERL_ANYEVENT_DEBUG_WRAP}) {
1487 require AnyEvent::Debug;
1488 AnyEvent::Debug::wrap ($ENV{PERL_ANYEVENT_DEBUG_WRAP});
1489 }
1490
1491 if (length $ENV{PERL_ANYEVENT_DEBUG_SHELL}) {
1492 require AnyEvent::Socket;
1493 require AnyEvent::Debug;
1494
1495 my $shell = $ENV{PERL_ANYEVENT_DEBUG_SHELL};
1496 $shell =~ s/\$\$/$$/g;
1497
1498 my ($host, $service) = AnyEvent::Socket::parse_hostport ($shell);
1499 $AnyEvent::Debug::SHELL = AnyEvent::Debug::shell ($host, $service);
1500 }
1501
1502 # now the anyevent environment is set up as the user told us to, so
1503 # call the actual user code - post detects
1504
1505 (shift @post_detect)->() while @post_detect;
1506 undef @post_detect;
1507
1508 *post_detect = sub(&) {
1509 shift->();
1510
1511 undef
1512 };
1513
1058 $MODEL 1514 $MODEL
1059} 1515}
1060 1516
1061sub AUTOLOAD { 1517for my $name (@methods) {
1062 (my $func = $AUTOLOAD) =~ s/.*://; 1518 *$name = sub {
1063 1519 detect;
1064 $method{$func} 1520 # we use goto because
1065 or croak "$func: not a valid method for AnyEvent objects"; 1521 # a) it makes the thunk more transparent
1066 1522 # b) it allows us to delete the thunk later
1067 detect unless $MODEL; 1523 goto &{ UNIVERSAL::can AnyEvent => "SUPER::$name" }
1068 1524 };
1069 my $class = shift;
1070 $class->$func (@_);
1071} 1525}
1072 1526
1073# utility function to dup a filehandle. this is used by many backends 1527# utility function to dup a filehandle. this is used by many backends
1074# to support binding more than one watcher per filehandle (they usually 1528# to support binding more than one watcher per filehandle (they usually
1075# allow only one watcher per fd, so we dup it to get a different one). 1529# allow only one watcher per fd, so we dup it to get a different one).
1076sub _dupfh($$$$) { 1530sub _dupfh($$;$$) {
1077 my ($poll, $fh, $r, $w) = @_; 1531 my ($poll, $fh, $r, $w) = @_;
1078 1532
1079 # cygwin requires the fh mode to be matching, unix doesn't 1533 # cygwin requires the fh mode to be matching, unix doesn't
1080 my ($rw, $mode) = $poll eq "r" ? ($r, "<") 1534 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1081 : $poll eq "w" ? ($w, ">")
1082 : Carp::croak "AnyEvent->io requires poll set to either 'r' or 'w'";
1083 1535
1084 open my $fh2, "$mode&" . fileno $fh 1536 open my $fh2, $mode, $fh
1085 or die "cannot dup() filehandle: $!,"; 1537 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1086 1538
1087 # we assume CLOEXEC is already set by perl in all important cases 1539 # we assume CLOEXEC is already set by perl in all important cases
1088 1540
1089 ($fh2, $rw) 1541 ($fh2, $rw)
1090} 1542}
1091 1543
1544=head1 SIMPLIFIED AE API
1545
1546Starting with version 5.0, AnyEvent officially supports a second, much
1547simpler, API that is designed to reduce the calling, typing and memory
1548overhead by using function call syntax and a fixed number of parameters.
1549
1550See the L<AE> manpage for details.
1551
1552=cut
1553
1554package AE;
1555
1556our $VERSION = $AnyEvent::VERSION;
1557
1558sub _reset() {
1559 eval q{
1560 # fall back to the main API by default - backends and AnyEvent::Base
1561 # implementations can overwrite these.
1562
1563 sub io($$$) {
1564 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1565 }
1566
1567 sub timer($$$) {
1568 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1569 }
1570
1571 sub signal($$) {
1572 AnyEvent->signal (signal => $_[0], cb => $_[1])
1573 }
1574
1575 sub child($$) {
1576 AnyEvent->child (pid => $_[0], cb => $_[1])
1577 }
1578
1579 sub idle($) {
1580 AnyEvent->idle (cb => $_[0]);
1581 }
1582
1583 sub cv(;&) {
1584 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1585 }
1586
1587 sub now() {
1588 AnyEvent->now
1589 }
1590
1591 sub now_update() {
1592 AnyEvent->now_update
1593 }
1594
1595 sub time() {
1596 AnyEvent->time
1597 }
1598
1599 *postpone = \&AnyEvent::postpone;
1600 *log = \&AnyEvent::log;
1601 };
1602 die if $@;
1603}
1604
1605BEGIN { _reset }
1606
1092package AnyEvent::Base; 1607package AnyEvent::Base;
1093 1608
1094# default implementations for many methods 1609# default implementations for many methods
1095 1610
1096BEGIN { 1611sub time {
1612 eval q{ # poor man's autoloading {}
1613 # probe for availability of Time::HiRes
1097 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") { 1614 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1615 *time = sub { Time::HiRes::time () };
1098 *_time = \&Time::HiRes::time; 1616 *AE::time = \& Time::HiRes::time ;
1617 *now = \&time;
1618 AnyEvent::log 8 => "AnyEvent: using Time::HiRes for sub-second timing accuracy.";
1099 # if (eval "use POSIX (); (POSIX::times())... 1619 # if (eval "use POSIX (); (POSIX::times())...
1100 } else { 1620 } else {
1101 *_time = sub { time }; # epic fail 1621 *time = sub { CORE::time };
1622 *AE::time = sub (){ CORE::time };
1623 *now = \&time;
1624 AnyEvent::log 3 => "using built-in time(), WARNING, no sub-second resolution!";
1625 }
1626 };
1627 die if $@;
1628
1629 &time
1630}
1631
1632*now = \&time;
1633sub now_update { }
1634
1635sub _poll {
1636 Carp::croak "$AnyEvent::MODEL does not support blocking waits. Caught";
1637}
1638
1639# default implementation for ->condvar
1640# in fact, the default should not be overwritten
1641
1642sub condvar {
1643 eval q{ # poor man's autoloading {}
1644 *condvar = sub {
1645 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1646 };
1647
1648 *AE::cv = sub (;&) {
1649 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
1650 };
1651 };
1652 die if $@;
1653
1654 &condvar
1655}
1656
1657# default implementation for ->signal
1658
1659our $HAVE_ASYNC_INTERRUPT;
1660
1661sub _have_async_interrupt() {
1662 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1663 && eval "use Async::Interrupt 1.02 (); 1")
1664 unless defined $HAVE_ASYNC_INTERRUPT;
1665
1666 $HAVE_ASYNC_INTERRUPT
1667}
1668
1669our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1670our (%SIG_ASY, %SIG_ASY_W);
1671our ($SIG_COUNT, $SIG_TW);
1672
1673# install a dummy wakeup watcher to reduce signal catching latency
1674# used by Impls
1675sub _sig_add() {
1676 unless ($SIG_COUNT++) {
1677 # try to align timer on a full-second boundary, if possible
1678 my $NOW = AE::now;
1679
1680 $SIG_TW = AE::timer
1681 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1682 $MAX_SIGNAL_LATENCY,
1683 sub { } # just for the PERL_ASYNC_CHECK
1684 ;
1102 } 1685 }
1103} 1686}
1104 1687
1105sub time { _time } 1688sub _sig_del {
1106sub now { _time } 1689 undef $SIG_TW
1107sub now_update { } 1690 unless --$SIG_COUNT;
1108
1109# default implementation for ->condvar
1110
1111sub condvar {
1112 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1113} 1691}
1114 1692
1115# default implementation for ->signal 1693our $_sig_name_init; $_sig_name_init = sub {
1694 eval q{ # poor man's autoloading {}
1695 undef $_sig_name_init;
1116 1696
1117our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO); 1697 if (_have_async_interrupt) {
1698 *sig2num = \&Async::Interrupt::sig2num;
1699 *sig2name = \&Async::Interrupt::sig2name;
1700 } else {
1701 require Config;
1118 1702
1119sub _signal_exec { 1703 my %signame2num;
1120 sysread $SIGPIPE_R, my $dummy, 4; 1704 @signame2num{ split ' ', $Config::Config{sig_name} }
1705 = split ' ', $Config::Config{sig_num};
1121 1706
1122 while (%SIG_EV) { 1707 my @signum2name;
1123 for (keys %SIG_EV) { 1708 @signum2name[values %signame2num] = keys %signame2num;
1124 delete $SIG_EV{$_}; 1709
1125 $_->() for values %{ $SIG_CB{$_} || {} }; 1710 *sig2num = sub($) {
1711 $_[0] > 0 ? shift : $signame2num{+shift}
1712 };
1713 *sig2name = sub ($) {
1714 $_[0] > 0 ? $signum2name[+shift] : shift
1715 };
1126 } 1716 }
1127 } 1717 };
1128} 1718 die if $@;
1719};
1720
1721sub sig2num ($) { &$_sig_name_init; &sig2num }
1722sub sig2name($) { &$_sig_name_init; &sig2name }
1129 1723
1130sub signal { 1724sub signal {
1131 my (undef, %arg) = @_; 1725 eval q{ # poor man's autoloading {}
1726 # probe for availability of Async::Interrupt
1727 if (_have_async_interrupt) {
1728 AnyEvent::log 8 => "using Async::Interrupt for race-free signal handling.";
1132 1729
1133 unless ($SIGPIPE_R) { 1730 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1134 require Fcntl; 1731 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1135 1732
1136 if (AnyEvent::WIN32) {
1137 require AnyEvent::Util;
1138
1139 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1140 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R) if $SIGPIPE_R;
1141 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W) if $SIGPIPE_W; # just in case
1142 } else { 1733 } else {
1734 AnyEvent::log 8 => "using emulated perl signal handling with latency timer.";
1735
1736 if (AnyEvent::WIN32) {
1737 require AnyEvent::Util;
1738
1739 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1740 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1741 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1742 } else {
1143 pipe $SIGPIPE_R, $SIGPIPE_W; 1743 pipe $SIGPIPE_R, $SIGPIPE_W;
1144 fcntl $SIGPIPE_R, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_R; 1744 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1145 fcntl $SIGPIPE_W, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_W; # just in case 1745 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1746
1747 # not strictly required, as $^F is normally 2, but let's make sure...
1748 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1749 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1750 }
1751
1752 $SIGPIPE_R
1753 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1754
1755 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1146 } 1756 }
1147 1757
1148 $SIGPIPE_R 1758 *signal = $HAVE_ASYNC_INTERRUPT
1149 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n"; 1759 ? sub {
1760 my (undef, %arg) = @_;
1150 1761
1151 # not strictly required, as $^F is normally 2, but let's make sure... 1762 # async::interrupt
1152 fcntl $SIGPIPE_R, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1153 fcntl $SIGPIPE_W, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1154
1155 $SIG_IO = AnyEvent->io (fh => $SIGPIPE_R, poll => "r", cb => \&_signal_exec);
1156 }
1157
1158 my $signal = uc $arg{signal} 1763 my $signal = sig2num $arg{signal};
1159 or Carp::croak "required option 'signal' is missing";
1160
1161 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1764 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1765
1766 $SIG_ASY{$signal} ||= new Async::Interrupt
1767 cb => sub { undef $SIG_EV{$signal} },
1768 signal => $signal,
1769 pipe => [$SIGPIPE_R->filenos],
1770 pipe_autodrain => 0,
1771 ;
1772
1773 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1774 }
1775 : sub {
1776 my (undef, %arg) = @_;
1777
1778 # pure perl
1779 my $signal = sig2name $arg{signal};
1780 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1781
1162 $SIG{$signal} ||= sub { 1782 $SIG{$signal} ||= sub {
1163 local $!; 1783 local $!;
1164 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV; 1784 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1165 undef $SIG_EV{$signal}; 1785 undef $SIG_EV{$signal};
1786 };
1787
1788 # can't do signal processing without introducing races in pure perl,
1789 # so limit the signal latency.
1790 _sig_add;
1791
1792 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1793 }
1794 ;
1795
1796 *AnyEvent::Base::signal::DESTROY = sub {
1797 my ($signal, $cb) = @{$_[0]};
1798
1799 _sig_del;
1800
1801 delete $SIG_CB{$signal}{$cb};
1802
1803 $HAVE_ASYNC_INTERRUPT
1804 ? delete $SIG_ASY{$signal}
1805 : # delete doesn't work with older perls - they then
1806 # print weird messages, or just unconditionally exit
1807 # instead of getting the default action.
1808 undef $SIG{$signal}
1809 unless keys %{ $SIG_CB{$signal} };
1810 };
1811
1812 *_signal_exec = sub {
1813 $HAVE_ASYNC_INTERRUPT
1814 ? $SIGPIPE_R->drain
1815 : sysread $SIGPIPE_R, (my $dummy), 9;
1816
1817 while (%SIG_EV) {
1818 for (keys %SIG_EV) {
1819 delete $SIG_EV{$_};
1820 &$_ for values %{ $SIG_CB{$_} || {} };
1821 }
1822 }
1823 };
1166 }; 1824 };
1825 die if $@;
1167 1826
1168 bless [$signal, $arg{cb}], "AnyEvent::Base::signal" 1827 &signal
1169}
1170
1171sub AnyEvent::Base::signal::DESTROY {
1172 my ($signal, $cb) = @{$_[0]};
1173
1174 delete $SIG_CB{$signal}{$cb};
1175
1176 delete $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
1177} 1828}
1178 1829
1179# default implementation for ->child 1830# default implementation for ->child
1180 1831
1181our %PID_CB; 1832our %PID_CB;
1182our $CHLD_W; 1833our $CHLD_W;
1183our $CHLD_DELAY_W; 1834our $CHLD_DELAY_W;
1184our $PID_IDLE;
1185our $WNOHANG;
1186 1835
1187sub _child_wait { 1836# used by many Impl's
1188 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1837sub _emit_childstatus($$) {
1838 my (undef, $rpid, $rstatus) = @_;
1839
1840 $_->($rpid, $rstatus)
1189 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1841 for values %{ $PID_CB{$rpid} || {} },
1190 (values %{ $PID_CB{0} || {} }); 1842 values %{ $PID_CB{0} || {} };
1191 }
1192
1193 undef $PID_IDLE;
1194}
1195
1196sub _sigchld {
1197 # make sure we deliver these changes "synchronous" with the event loop.
1198 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub {
1199 undef $CHLD_DELAY_W;
1200 &_child_wait;
1201 });
1202} 1843}
1203 1844
1204sub child { 1845sub child {
1846 eval q{ # poor man's autoloading {}
1847 *_sigchld = sub {
1848 my $pid;
1849
1850 AnyEvent->_emit_childstatus ($pid, $?)
1851 while ($pid = waitpid -1, WNOHANG) > 0;
1852 };
1853
1854 *child = sub {
1205 my (undef, %arg) = @_; 1855 my (undef, %arg) = @_;
1206 1856
1207 defined (my $pid = $arg{pid} + 0) 1857 my $pid = $arg{pid};
1208 or Carp::croak "required option 'pid' is missing"; 1858 my $cb = $arg{cb};
1209 1859
1210 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1860 $PID_CB{$pid}{$cb+0} = $cb;
1211 1861
1212 unless ($WNOHANG) {
1213 $WNOHANG = eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1214 }
1215
1216 unless ($CHLD_W) { 1862 unless ($CHLD_W) {
1217 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1863 $CHLD_W = AE::signal CHLD => \&_sigchld;
1218 # child could be a zombie already, so make at least one round 1864 # child could be a zombie already, so make at least one round
1219 &_sigchld; 1865 &_sigchld;
1220 } 1866 }
1221 1867
1222 bless [$pid, $arg{cb}], "AnyEvent::Base::child" 1868 bless [$pid, $cb+0], "AnyEvent::Base::child"
1223} 1869 };
1224 1870
1225sub AnyEvent::Base::child::DESTROY { 1871 *AnyEvent::Base::child::DESTROY = sub {
1226 my ($pid, $cb) = @{$_[0]}; 1872 my ($pid, $icb) = @{$_[0]};
1227 1873
1228 delete $PID_CB{$pid}{$cb}; 1874 delete $PID_CB{$pid}{$icb};
1229 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1875 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1230 1876
1231 undef $CHLD_W unless keys %PID_CB; 1877 undef $CHLD_W unless keys %PID_CB;
1878 };
1879 };
1880 die if $@;
1881
1882 &child
1232} 1883}
1233 1884
1234# idle emulation is done by simply using a timer, regardless 1885# idle emulation is done by simply using a timer, regardless
1235# of whether the proces sis idle or not, and not letting 1886# of whether the process is idle or not, and not letting
1236# the callback use more than 50% of the time. 1887# the callback use more than 50% of the time.
1237sub idle { 1888sub idle {
1889 eval q{ # poor man's autoloading {}
1890 *idle = sub {
1238 my (undef, %arg) = @_; 1891 my (undef, %arg) = @_;
1239 1892
1240 my ($cb, $w, $rcb) = $arg{cb}; 1893 my ($cb, $w, $rcb) = $arg{cb};
1241 1894
1242 $rcb = sub { 1895 $rcb = sub {
1243 if ($cb) { 1896 if ($cb) {
1244 $w = _time; 1897 $w = AE::time;
1245 &$cb; 1898 &$cb;
1246 $w = _time - $w; 1899 $w = AE::time - $w;
1247 1900
1248 # never use more then 50% of the time for the idle watcher, 1901 # never use more then 50% of the time for the idle watcher,
1249 # within some limits 1902 # within some limits
1250 $w = 0.0001 if $w < 0.0001; 1903 $w = 0.0001 if $w < 0.0001;
1251 $w = 5 if $w > 5; 1904 $w = 5 if $w > 5;
1252 1905
1253 $w = AnyEvent->timer (after => $w, cb => $rcb); 1906 $w = AE::timer $w, 0, $rcb;
1254 } else { 1907 } else {
1255 # clean up... 1908 # clean up...
1256 undef $w; 1909 undef $w;
1257 undef $rcb; 1910 undef $rcb;
1911 }
1912 };
1913
1914 $w = AE::timer 0.05, 0, $rcb;
1915
1916 bless \\$cb, "AnyEvent::Base::idle"
1258 } 1917 };
1918
1919 *AnyEvent::Base::idle::DESTROY = sub {
1920 undef $${$_[0]};
1921 };
1259 }; 1922 };
1923 die if $@;
1260 1924
1261 $w = AnyEvent->timer (after => 0.05, cb => $rcb); 1925 &idle
1262
1263 bless \\$cb, "AnyEvent::Base::idle"
1264}
1265
1266sub AnyEvent::Base::idle::DESTROY {
1267 undef $${$_[0]};
1268} 1926}
1269 1927
1270package AnyEvent::CondVar; 1928package AnyEvent::CondVar;
1271 1929
1272our @ISA = AnyEvent::CondVar::Base::; 1930our @ISA = AnyEvent::CondVar::Base::;
1273 1931
1932# only to be used for subclassing
1933sub new {
1934 my $class = shift;
1935 bless AnyEvent->condvar (@_), $class
1936}
1937
1274package AnyEvent::CondVar::Base; 1938package AnyEvent::CondVar::Base;
1275 1939
1276use overload 1940#use overload
1277 '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, 1941# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1278 fallback => 1; 1942# fallback => 1;
1943
1944# save 300+ kilobytes by dirtily hardcoding overloading
1945${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1946*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1947*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1948${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1949
1950our $WAITING;
1279 1951
1280sub _send { 1952sub _send {
1281 # nop 1953 # nop
1954}
1955
1956sub _wait {
1957 AnyEvent->_poll until $_[0]{_ae_sent};
1282} 1958}
1283 1959
1284sub send { 1960sub send {
1285 my $cv = shift; 1961 my $cv = shift;
1286 $cv->{_ae_sent} = [@_]; 1962 $cv->{_ae_sent} = [@_];
1295 1971
1296sub ready { 1972sub ready {
1297 $_[0]{_ae_sent} 1973 $_[0]{_ae_sent}
1298} 1974}
1299 1975
1300sub _wait {
1301 AnyEvent->one_event while !$_[0]{_ae_sent};
1302}
1303
1304sub recv { 1976sub recv {
1977 unless ($_[0]{_ae_sent}) {
1978 $WAITING
1979 and Carp::croak "AnyEvent::CondVar: recursive blocking wait attempted";
1980
1981 local $WAITING = 1;
1305 $_[0]->_wait; 1982 $_[0]->_wait;
1983 }
1306 1984
1307 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1985 $_[0]{_ae_croak}
1308 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1986 and Carp::croak $_[0]{_ae_croak};
1987
1988 wantarray
1989 ? @{ $_[0]{_ae_sent} }
1990 : $_[0]{_ae_sent}[0]
1309} 1991}
1310 1992
1311sub cb { 1993sub cb {
1312 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1994 my $cv = shift;
1995
1996 @_
1997 and $cv->{_ae_cb} = shift
1998 and $cv->{_ae_sent}
1999 and (delete $cv->{_ae_cb})->($cv);
2000
1313 $_[0]{_ae_cb} 2001 $cv->{_ae_cb}
1314} 2002}
1315 2003
1316sub begin { 2004sub begin {
1317 ++$_[0]{_ae_counter}; 2005 ++$_[0]{_ae_counter};
1318 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 2006 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
1323 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } }; 2011 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } };
1324} 2012}
1325 2013
1326# undocumented/compatibility with pre-3.4 2014# undocumented/compatibility with pre-3.4
1327*broadcast = \&send; 2015*broadcast = \&send;
1328*wait = \&_wait; 2016*wait = \&recv;
1329 2017
1330=head1 ERROR AND EXCEPTION HANDLING 2018=head1 ERROR AND EXCEPTION HANDLING
1331 2019
1332In general, AnyEvent does not do any error handling - it relies on the 2020In general, AnyEvent does not do any error handling - it relies on the
1333caller to do that if required. The L<AnyEvent::Strict> module (see also 2021caller to do that if required. The L<AnyEvent::Strict> module (see also
1345$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and 2033$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
1346so on. 2034so on.
1347 2035
1348=head1 ENVIRONMENT VARIABLES 2036=head1 ENVIRONMENT VARIABLES
1349 2037
1350The following environment variables are used by this module or its 2038AnyEvent supports a number of environment variables that tune the
1351submodules: 2039runtime behaviour. They are usually evaluated when AnyEvent is
2040loaded, initialised, or a submodule that uses them is loaded. Many of
2041them also cause AnyEvent to load additional modules - for example,
2042C<PERL_ANYEVENT_DEBUG_WRAP> causes the L<AnyEvent::Debug> module to be
2043loaded.
2044
2045All the environment variables documented here start with
2046C<PERL_ANYEVENT_>, which is what AnyEvent considers its own
2047namespace. Other modules are encouraged (but by no means required) to use
2048C<PERL_ANYEVENT_SUBMODULE> if they have registered the AnyEvent::Submodule
2049namespace on CPAN, for any submodule. For example, L<AnyEvent::HTTP> could
2050be expected to use C<PERL_ANYEVENT_HTTP_PROXY> (it should not access env
2051variables starting with C<AE_>, see below).
2052
2053All variables can also be set via the C<AE_> prefix, that is, instead
2054of setting C<PERL_ANYEVENT_VERBOSE> you can also set C<AE_VERBOSE>. In
2055case there is a clash btween anyevent and another program that uses
2056C<AE_something> you can set the corresponding C<PERL_ANYEVENT_something>
2057variable to the empty string, as those variables take precedence.
2058
2059When AnyEvent is first loaded, it copies all C<AE_xxx> env variables
2060to their C<PERL_ANYEVENT_xxx> counterpart unless that variable already
2061exists. If taint mode is on, then AnyEvent will remove I<all> environment
2062variables starting with C<PERL_ANYEVENT_> from C<%ENV> (or replace them
2063with C<undef> or the empty string, if the corresaponding C<AE_> variable
2064is set).
2065
2066The exact algorithm is currently:
2067
2068 1. if taint mode enabled, delete all PERL_ANYEVENT_xyz variables from %ENV
2069 2. copy over AE_xyz to PERL_ANYEVENT_xyz unless the latter alraedy exists
2070 3. if taint mode enabled, set all PERL_ANYEVENT_xyz variables to undef.
2071
2072This ensures that child processes will not see the C<AE_> variables.
2073
2074The following environment variables are currently known to AnyEvent:
1352 2075
1353=over 4 2076=over 4
1354 2077
1355=item C<PERL_ANYEVENT_VERBOSE> 2078=item C<PERL_ANYEVENT_VERBOSE>
1356 2079
1357By default, AnyEvent will be completely silent except in fatal 2080By default, AnyEvent will only log messages with loglevel C<3>
1358conditions. You can set this environment variable to make AnyEvent more 2081(C<critical>) or higher (see L<AnyEvent::Log>). You can set this
2082environment variable to a numerical loglevel to make AnyEvent more (or
1359talkative. 2083less) talkative.
1360 2084
2085If you want to do more than just set the global logging level
2086you should have a look at C<PERL_ANYEVENT_LOG>, which allows much more
2087complex specifications.
2088
2089When set to C<0> (C<off>), then no messages whatsoever will be logged with
2090the default logging settings.
2091
1361When set to C<1> or higher, causes AnyEvent to warn about unexpected 2092When set to C<5> or higher (C<warn>), causes AnyEvent to warn about
1362conditions, such as not being able to load the event model specified by 2093unexpected conditions, such as not being able to load the event model
1363C<PERL_ANYEVENT_MODEL>. 2094specified by C<PERL_ANYEVENT_MODEL>, or a guard callback throwing an
2095exception - this is the minimum recommended level.
1364 2096
1365When set to C<2> or higher, cause AnyEvent to report to STDERR which event 2097When set to C<7> or higher (info), cause AnyEvent to report which event model it
1366model it chooses. 2098chooses.
2099
2100When set to C<8> or higher (debug), then AnyEvent will report extra information on
2101which optional modules it loads and how it implements certain features.
2102
2103=item C<PERL_ANYEVENT_LOG>
2104
2105Accepts rather complex logging specifications. For example, you could log
2106all C<debug> messages of some module to stderr, warnings and above to
2107stderr, and errors and above to syslog, with:
2108
2109 PERL_ANYEVENT_LOG=Some::Module=debug,+log:filter=warn,+%syslog:%syslog=error,syslog
2110
2111For the rather extensive details, see L<AnyEvent::Log>.
2112
2113This variable is evaluated when AnyEvent (or L<AnyEvent::Log>) is loaded,
2114so will take effect even before AnyEvent has initialised itself.
2115
2116Note that specifying this environment variable causes the L<AnyEvent::Log>
2117module to be loaded, while C<PERL_ANYEVENT_VERBOSE> does not, so only
2118using the latter saves a few hundred kB of memory until the first message
2119is being logged.
1367 2120
1368=item C<PERL_ANYEVENT_STRICT> 2121=item C<PERL_ANYEVENT_STRICT>
1369 2122
1370AnyEvent does not do much argument checking by default, as thorough 2123AnyEvent does not do much argument checking by default, as thorough
1371argument checking is very costly. Setting this variable to a true value 2124argument checking is very costly. Setting this variable to a true value
1372will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly 2125will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1373check the arguments passed to most method calls. If it finds any problems 2126check the arguments passed to most method calls. If it finds any problems,
1374it will croak. 2127it will croak.
1375 2128
1376In other words, enables "strict" mode. 2129In other words, enables "strict" mode.
1377 2130
1378Unlike C<use strict>, it is definitely recommended ot keep it off in 2131Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
1379production. Keeping C<PERL_ANYEVENT_STRICT=1> in your environment while 2132>>, it is definitely recommended to keep it off in production. Keeping
1380developing programs can be very useful, however. 2133C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
2134can be very useful, however.
2135
2136=item C<PERL_ANYEVENT_DEBUG_SHELL>
2137
2138If this env variable is nonempty, then its contents will be interpreted by
2139C<AnyEvent::Socket::parse_hostport> and C<AnyEvent::Debug::shell> (after
2140replacing every occurance of C<$$> by the process pid). The shell object
2141is saved in C<$AnyEvent::Debug::SHELL>.
2142
2143This happens when the first watcher is created.
2144
2145For example, to bind a debug shell on a unix domain socket in
2146F<< /tmp/debug<pid>.sock >>, you could use this:
2147
2148 PERL_ANYEVENT_DEBUG_SHELL=/tmp/debug\$\$.sock perlprog
2149 # connect with e.g.: socat readline /tmp/debug123.sock
2150
2151Or to bind to tcp port 4545 on localhost:
2152
2153 PERL_ANYEVENT_DEBUG_SHELL=127.0.0.1:4545 perlprog
2154 # connect with e.g.: telnet localhost 4545
2155
2156Note that creating sockets in F</tmp> or on localhost is very unsafe on
2157multiuser systems.
2158
2159=item C<PERL_ANYEVENT_DEBUG_WRAP>
2160
2161Can be set to C<0>, C<1> or C<2> and enables wrapping of all watchers for
2162debugging purposes. See C<AnyEvent::Debug::wrap> for details.
1381 2163
1382=item C<PERL_ANYEVENT_MODEL> 2164=item C<PERL_ANYEVENT_MODEL>
1383 2165
1384This can be used to specify the event model to be used by AnyEvent, before 2166This can be used to specify the event model to be used by AnyEvent, before
1385auto detection and -probing kicks in. It must be a string consisting 2167auto detection and -probing kicks in.
1386entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended 2168
2169It normally is a string consisting entirely of ASCII letters (e.g. C<EV>
2170or C<IOAsync>). The string C<AnyEvent::Impl::> gets prepended and the
1387and the resulting module name is loaded and if the load was successful, 2171resulting module name is loaded and - if the load was successful - used as
1388used as event model. If it fails to load AnyEvent will proceed with 2172event model backend. If it fails to load then AnyEvent will proceed with
1389auto detection and -probing. 2173auto detection and -probing.
1390 2174
1391This functionality might change in future versions. 2175If the string ends with C<::> instead (e.g. C<AnyEvent::Impl::EV::>) then
2176nothing gets prepended and the module name is used as-is (hint: C<::> at
2177the end of a string designates a module name and quotes it appropriately).
1392 2178
1393For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you 2179For example, to force the pure perl model (L<AnyEvent::Loop::Perl>) you
1394could start your program like this: 2180could start your program like this:
1395 2181
1396 PERL_ANYEVENT_MODEL=Perl perl ... 2182 PERL_ANYEVENT_MODEL=Perl perl ...
1397 2183
1398=item C<PERL_ANYEVENT_PROTOCOLS> 2184=item C<PERL_ANYEVENT_PROTOCOLS>
1414but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4> 2200but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1415- only support IPv4, never try to resolve or contact IPv6 2201- only support IPv4, never try to resolve or contact IPv6
1416addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or 2202addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1417IPv6, but prefer IPv6 over IPv4. 2203IPv6, but prefer IPv6 over IPv4.
1418 2204
2205=item C<PERL_ANYEVENT_HOSTS>
2206
2207This variable, if specified, overrides the F</etc/hosts> file used by
2208L<AnyEvent::Socket>C<::resolve_sockaddr>, i.e. hosts aliases will be read
2209from that file instead.
2210
1419=item C<PERL_ANYEVENT_EDNS0> 2211=item C<PERL_ANYEVENT_EDNS0>
1420 2212
1421Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension 2213Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension for
1422for DNS. This extension is generally useful to reduce DNS traffic, but 2214DNS. This extension is generally useful to reduce DNS traffic, especially
1423some (broken) firewalls drop such DNS packets, which is why it is off by 2215when DNSSEC is involved, but some (broken) firewalls drop such DNS
1424default. 2216packets, which is why it is off by default.
1425 2217
1426Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce 2218Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1427EDNS0 in its DNS requests. 2219EDNS0 in its DNS requests.
1428 2220
1429=item C<PERL_ANYEVENT_MAX_FORKS> 2221=item C<PERL_ANYEVENT_MAX_FORKS>
1430 2222
1431The maximum number of child processes that C<AnyEvent::Util::fork_call> 2223The maximum number of child processes that C<AnyEvent::Util::fork_call>
1432will create in parallel. 2224will create in parallel.
2225
2226=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
2227
2228The default value for the C<max_outstanding> parameter for the default DNS
2229resolver - this is the maximum number of parallel DNS requests that are
2230sent to the DNS server.
2231
2232=item C<PERL_ANYEVENT_RESOLV_CONF>
2233
2234The absolute path to a F<resolv.conf>-style file to use instead of
2235F</etc/resolv.conf> (or the OS-specific configuration) in the default
2236resolver, or the empty string to select the default configuration.
2237
2238=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
2239
2240When neither C<ca_file> nor C<ca_path> was specified during
2241L<AnyEvent::TLS> context creation, and either of these environment
2242variables are nonempty, they will be used to specify CA certificate
2243locations instead of a system-dependent default.
2244
2245=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
2246
2247When these are set to C<1>, then the respective modules are not
2248loaded. Mostly good for testing AnyEvent itself.
1433 2249
1434=back 2250=back
1435 2251
1436=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 2252=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1437 2253
1495 warn "read: $input\n"; # output what has been read 2311 warn "read: $input\n"; # output what has been read
1496 $cv->send if $input =~ /^q/i; # quit program if /^q/i 2312 $cv->send if $input =~ /^q/i; # quit program if /^q/i
1497 }, 2313 },
1498 ); 2314 );
1499 2315
1500 my $time_watcher; # can only be used once
1501
1502 sub new_timer {
1503 $timer = AnyEvent->timer (after => 1, cb => sub { 2316 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
1504 warn "timeout\n"; # print 'timeout' about every second 2317 warn "timeout\n"; # print 'timeout' at most every second
1505 &new_timer; # and restart the time
1506 }); 2318 });
1507 }
1508
1509 new_timer; # create first timer
1510 2319
1511 $cv->recv; # wait until user enters /^q/i 2320 $cv->recv; # wait until user enters /^q/i
1512 2321
1513=head1 REAL-WORLD EXAMPLE 2322=head1 REAL-WORLD EXAMPLE
1514 2323
1587 2396
1588The actual code goes further and collects all errors (C<die>s, exceptions) 2397The actual code goes further and collects all errors (C<die>s, exceptions)
1589that occurred during request processing. The C<result> method detects 2398that occurred during request processing. The C<result> method detects
1590whether an exception as thrown (it is stored inside the $txn object) 2399whether an exception as thrown (it is stored inside the $txn object)
1591and just throws the exception, which means connection errors and other 2400and just throws the exception, which means connection errors and other
1592problems get reported tot he code that tries to use the result, not in a 2401problems get reported to the code that tries to use the result, not in a
1593random callback. 2402random callback.
1594 2403
1595All of this enables the following usage styles: 2404All of this enables the following usage styles:
1596 2405
15971. Blocking: 24061. Blocking:
1645through AnyEvent. The benchmark creates a lot of timers (with a zero 2454through AnyEvent. The benchmark creates a lot of timers (with a zero
1646timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2455timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1647which it is), lets them fire exactly once and destroys them again. 2456which it is), lets them fire exactly once and destroys them again.
1648 2457
1649Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2458Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1650distribution. 2459distribution. It uses the L<AE> interface, which makes a real difference
2460for the EV and Perl backends only.
1651 2461
1652=head3 Explanation of the columns 2462=head3 Explanation of the columns
1653 2463
1654I<watcher> is the number of event watchers created/destroyed. Since 2464I<watcher> is the number of event watchers created/destroyed. Since
1655different event models feature vastly different performances, each event 2465different event models feature vastly different performances, each event
1676watcher. 2486watcher.
1677 2487
1678=head3 Results 2488=head3 Results
1679 2489
1680 name watchers bytes create invoke destroy comment 2490 name watchers bytes create invoke destroy comment
1681 EV/EV 400000 224 0.47 0.35 0.27 EV native interface 2491 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1682 EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers 2492 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1683 CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal 2493 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1684 Perl/Any 100000 452 4.13 0.73 0.95 pure perl implementation 2494 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1685 Event/Event 16000 517 32.20 31.80 0.81 Event native interface 2495 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1686 Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers 2496 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2497 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2498 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1687 Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour 2499 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1688 Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers 2500 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1689 POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event 2501 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1690 POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select 2502 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1691 2503
1692=head3 Discussion 2504=head3 Discussion
1693 2505
1694The benchmark does I<not> measure scalability of the event loop very 2506The benchmark does I<not> measure scalability of the event loop very
1695well. For example, a select-based event loop (such as the pure perl one) 2507well. For example, a select-based event loop (such as the pure perl one)
1707benchmark machine, handling an event takes roughly 1600 CPU cycles with 2519benchmark machine, handling an event takes roughly 1600 CPU cycles with
1708EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2520EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1709cycles with POE. 2521cycles with POE.
1710 2522
1711C<EV> is the sole leader regarding speed and memory use, which are both 2523C<EV> is the sole leader regarding speed and memory use, which are both
1712maximal/minimal, respectively. Even when going through AnyEvent, it uses 2524maximal/minimal, respectively. When using the L<AE> API there is zero
2525overhead (when going through the AnyEvent API create is about 5-6 times
2526slower, with other times being equal, so still uses far less memory than
1713far less memory than any other event loop and is still faster than Event 2527any other event loop and is still faster than Event natively).
1714natively.
1715 2528
1716The pure perl implementation is hit in a few sweet spots (both the 2529The pure perl implementation is hit in a few sweet spots (both the
1717constant timeout and the use of a single fd hit optimisations in the perl 2530constant timeout and the use of a single fd hit optimisations in the perl
1718interpreter and the backend itself). Nevertheless this shows that it 2531interpreter and the backend itself). Nevertheless this shows that it
1719adds very little overhead in itself. Like any select-based backend its 2532adds very little overhead in itself. Like any select-based backend its
1720performance becomes really bad with lots of file descriptors (and few of 2533performance becomes really bad with lots of file descriptors (and few of
1721them active), of course, but this was not subject of this benchmark. 2534them active), of course, but this was not subject of this benchmark.
1722 2535
1723The C<Event> module has a relatively high setup and callback invocation 2536The C<Event> module has a relatively high setup and callback invocation
1724cost, but overall scores in on the third place. 2537cost, but overall scores in on the third place.
2538
2539C<IO::Async> performs admirably well, about on par with C<Event>, even
2540when using its pure perl backend.
1725 2541
1726C<Glib>'s memory usage is quite a bit higher, but it features a 2542C<Glib>'s memory usage is quite a bit higher, but it features a
1727faster callback invocation and overall ends up in the same class as 2543faster callback invocation and overall ends up in the same class as
1728C<Event>. However, Glib scales extremely badly, doubling the number of 2544C<Event>. However, Glib scales extremely badly, doubling the number of
1729watchers increases the processing time by more than a factor of four, 2545watchers increases the processing time by more than a factor of four,
1764(even when used without AnyEvent), but most event loops have acceptable 2580(even when used without AnyEvent), but most event loops have acceptable
1765performance with or without AnyEvent. 2581performance with or without AnyEvent.
1766 2582
1767=item * The overhead AnyEvent adds is usually much smaller than the overhead of 2583=item * The overhead AnyEvent adds is usually much smaller than the overhead of
1768the actual event loop, only with extremely fast event loops such as EV 2584the actual event loop, only with extremely fast event loops such as EV
1769adds AnyEvent significant overhead. 2585does AnyEvent add significant overhead.
1770 2586
1771=item * You should avoid POE like the plague if you want performance or 2587=item * You should avoid POE like the plague if you want performance or
1772reasonable memory usage. 2588reasonable memory usage.
1773 2589
1774=back 2590=back
1790In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2606In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1791(1%) are active. This mirrors the activity of large servers with many 2607(1%) are active. This mirrors the activity of large servers with many
1792connections, most of which are idle at any one point in time. 2608connections, most of which are idle at any one point in time.
1793 2609
1794Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2610Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1795distribution. 2611distribution. It uses the L<AE> interface, which makes a real difference
2612for the EV and Perl backends only.
1796 2613
1797=head3 Explanation of the columns 2614=head3 Explanation of the columns
1798 2615
1799I<sockets> is the number of sockets, and twice the number of "servers" (as 2616I<sockets> is the number of sockets, and twice the number of "servers" (as
1800each server has a read and write socket end). 2617each server has a read and write socket end).
1807it to another server. This includes deleting the old timeout and creating 2624it to another server. This includes deleting the old timeout and creating
1808a new one that moves the timeout into the future. 2625a new one that moves the timeout into the future.
1809 2626
1810=head3 Results 2627=head3 Results
1811 2628
1812 name sockets create request 2629 name sockets create request
1813 EV 20000 69.01 11.16 2630 EV 20000 62.66 7.99
1814 Perl 20000 73.32 35.87 2631 Perl 20000 68.32 32.64
1815 Event 20000 212.62 257.32 2632 IOAsync 20000 174.06 101.15 epoll
1816 Glib 20000 651.16 1896.30 2633 IOAsync 20000 174.67 610.84 poll
2634 Event 20000 202.69 242.91
2635 Glib 20000 557.01 1689.52
1817 POE 20000 349.67 12317.24 uses POE::Loop::Event 2636 POE 20000 341.54 12086.32 uses POE::Loop::Event
1818 2637
1819=head3 Discussion 2638=head3 Discussion
1820 2639
1821This benchmark I<does> measure scalability and overall performance of the 2640This benchmark I<does> measure scalability and overall performance of the
1822particular event loop. 2641particular event loop.
1824EV is again fastest. Since it is using epoll on my system, the setup time 2643EV is again fastest. Since it is using epoll on my system, the setup time
1825is relatively high, though. 2644is relatively high, though.
1826 2645
1827Perl surprisingly comes second. It is much faster than the C-based event 2646Perl surprisingly comes second. It is much faster than the C-based event
1828loops Event and Glib. 2647loops Event and Glib.
2648
2649IO::Async performs very well when using its epoll backend, and still quite
2650good compared to Glib when using its pure perl backend.
1829 2651
1830Event suffers from high setup time as well (look at its code and you will 2652Event suffers from high setup time as well (look at its code and you will
1831understand why). Callback invocation also has a high overhead compared to 2653understand why). Callback invocation also has a high overhead compared to
1832the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2654the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1833uses select or poll in basically all documented configurations. 2655uses select or poll in basically all documented configurations.
1896=item * C-based event loops perform very well with small number of 2718=item * C-based event loops perform very well with small number of
1897watchers, as the management overhead dominates. 2719watchers, as the management overhead dominates.
1898 2720
1899=back 2721=back
1900 2722
2723=head2 THE IO::Lambda BENCHMARK
2724
2725Recently I was told about the benchmark in the IO::Lambda manpage, which
2726could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2727simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2728shouldn't come as a surprise to anybody). As such, the benchmark is
2729fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2730very optimal. But how would AnyEvent compare when used without the extra
2731baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2732
2733The benchmark itself creates an echo-server, and then, for 500 times,
2734connects to the echo server, sends a line, waits for the reply, and then
2735creates the next connection. This is a rather bad benchmark, as it doesn't
2736test the efficiency of the framework or much non-blocking I/O, but it is a
2737benchmark nevertheless.
2738
2739 name runtime
2740 Lambda/select 0.330 sec
2741 + optimized 0.122 sec
2742 Lambda/AnyEvent 0.327 sec
2743 + optimized 0.138 sec
2744 Raw sockets/select 0.077 sec
2745 POE/select, components 0.662 sec
2746 POE/select, raw sockets 0.226 sec
2747 POE/select, optimized 0.404 sec
2748
2749 AnyEvent/select/nb 0.085 sec
2750 AnyEvent/EV/nb 0.068 sec
2751 +state machine 0.134 sec
2752
2753The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2754benchmarks actually make blocking connects and use 100% blocking I/O,
2755defeating the purpose of an event-based solution. All of the newly
2756written AnyEvent benchmarks use 100% non-blocking connects (using
2757AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2758resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2759generally require a lot more bookkeeping and event handling than blocking
2760connects (which involve a single syscall only).
2761
2762The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2763offers similar expressive power as POE and IO::Lambda, using conventional
2764Perl syntax. This means that both the echo server and the client are 100%
2765non-blocking, further placing it at a disadvantage.
2766
2767As you can see, the AnyEvent + EV combination even beats the
2768hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2769backend easily beats IO::Lambda and POE.
2770
2771And even the 100% non-blocking version written using the high-level (and
2772slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2773higher level ("unoptimised") abstractions by a large margin, even though
2774it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2775
2776The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2777F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2778part of the IO::Lambda distribution and were used without any changes.
2779
1901 2780
1902=head1 SIGNALS 2781=head1 SIGNALS
1903 2782
1904AnyEvent currently installs handlers for these signals: 2783AnyEvent currently installs handlers for these signals:
1905 2784
1908=item SIGCHLD 2787=item SIGCHLD
1909 2788
1910A handler for C<SIGCHLD> is installed by AnyEvent's child watcher 2789A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
1911emulation for event loops that do not support them natively. Also, some 2790emulation for event loops that do not support them natively. Also, some
1912event loops install a similar handler. 2791event loops install a similar handler.
2792
2793Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2794AnyEvent will reset it to default, to avoid losing child exit statuses.
1913 2795
1914=item SIGPIPE 2796=item SIGPIPE
1915 2797
1916A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef> 2798A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
1917when AnyEvent gets loaded. 2799when AnyEvent gets loaded.
1929 2811
1930=back 2812=back
1931 2813
1932=cut 2814=cut
1933 2815
2816undef $SIG{CHLD}
2817 if $SIG{CHLD} eq 'IGNORE';
2818
1934$SIG{PIPE} = sub { } 2819$SIG{PIPE} = sub { }
1935 unless defined $SIG{PIPE}; 2820 unless defined $SIG{PIPE};
1936 2821
2822=head1 RECOMMENDED/OPTIONAL MODULES
2823
2824One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2825its built-in modules) are required to use it.
2826
2827That does not mean that AnyEvent won't take advantage of some additional
2828modules if they are installed.
2829
2830This section explains which additional modules will be used, and how they
2831affect AnyEvent's operation.
2832
2833=over 4
2834
2835=item L<Async::Interrupt>
2836
2837This slightly arcane module is used to implement fast signal handling: To
2838my knowledge, there is no way to do completely race-free and quick
2839signal handling in pure perl. To ensure that signals still get
2840delivered, AnyEvent will start an interval timer to wake up perl (and
2841catch the signals) with some delay (default is 10 seconds, look for
2842C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2843
2844If this module is available, then it will be used to implement signal
2845catching, which means that signals will not be delayed, and the event loop
2846will not be interrupted regularly, which is more efficient (and good for
2847battery life on laptops).
2848
2849This affects not just the pure-perl event loop, but also other event loops
2850that have no signal handling on their own (e.g. Glib, Tk, Qt).
2851
2852Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2853and either employ their own workarounds (POE) or use AnyEvent's workaround
2854(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2855does nothing for those backends.
2856
2857=item L<EV>
2858
2859This module isn't really "optional", as it is simply one of the backend
2860event loops that AnyEvent can use. However, it is simply the best event
2861loop available in terms of features, speed and stability: It supports
2862the AnyEvent API optimally, implements all the watcher types in XS, does
2863automatic timer adjustments even when no monotonic clock is available,
2864can take avdantage of advanced kernel interfaces such as C<epoll> and
2865C<kqueue>, and is the fastest backend I<by far>. You can even embed
2866L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2867
2868If you only use backends that rely on another event loop (e.g. C<Tk>),
2869then this module will do nothing for you.
2870
2871=item L<Guard>
2872
2873The guard module, when used, will be used to implement
2874C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2875lot less memory), but otherwise doesn't affect guard operation much. It is
2876purely used for performance.
2877
2878=item L<JSON> and L<JSON::XS>
2879
2880One of these modules is required when you want to read or write JSON data
2881via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2882advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2883
2884=item L<Net::SSLeay>
2885
2886Implementing TLS/SSL in Perl is certainly interesting, but not very
2887worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2888the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2889
2890=item L<Time::HiRes>
2891
2892This module is part of perl since release 5.008. It will be used when the
2893chosen event library does not come with a timing source of its own. The
2894pure-perl event loop (L<AnyEvent::Loop>) will additionally load it to
2895try to use a monotonic clock for timing stability.
2896
2897=back
2898
1937 2899
1938=head1 FORK 2900=head1 FORK
1939 2901
1940Most event libraries are not fork-safe. The ones who are usually are 2902Most event libraries are not fork-safe. The ones who are usually are
1941because they rely on inefficient but fork-safe C<select> or C<poll> 2903because they rely on inefficient but fork-safe C<select> or C<poll> calls
1942calls. Only L<EV> is fully fork-aware. 2904- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2905are usually badly thought-out hacks that are incompatible with fork in
2906one way or another. Only L<EV> is fully fork-aware and ensures that you
2907continue event-processing in both parent and child (or both, if you know
2908what you are doing).
2909
2910This means that, in general, you cannot fork and do event processing in
2911the child if the event library was initialised before the fork (which
2912usually happens when the first AnyEvent watcher is created, or the library
2913is loaded).
1943 2914
1944If you have to fork, you must either do so I<before> creating your first 2915If you have to fork, you must either do so I<before> creating your first
1945watcher OR you must not use AnyEvent at all in the child. 2916watcher OR you must not use AnyEvent at all in the child OR you must do
2917something completely out of the scope of AnyEvent.
2918
2919The problem of doing event processing in the parent I<and> the child
2920is much more complicated: even for backends that I<are> fork-aware or
2921fork-safe, their behaviour is not usually what you want: fork clones all
2922watchers, that means all timers, I/O watchers etc. are active in both
2923parent and child, which is almost never what you want. USing C<exec>
2924to start worker children from some kind of manage rprocess is usually
2925preferred, because it is much easier and cleaner, at the expense of having
2926to have another binary.
1946 2927
1947 2928
1948=head1 SECURITY CONSIDERATIONS 2929=head1 SECURITY CONSIDERATIONS
1949 2930
1950AnyEvent can be forced to load any event model via 2931AnyEvent can be forced to load any event model via
1962 use AnyEvent; 2943 use AnyEvent;
1963 2944
1964Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2945Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1965be used to probe what backend is used and gain other information (which is 2946be used to probe what backend is used and gain other information (which is
1966probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and 2947probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
1967$ENV{PERL_ANYEGENT_STRICT}. 2948$ENV{PERL_ANYEVENT_STRICT}.
2949
2950Note that AnyEvent will remove I<all> environment variables starting with
2951C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2952enabled.
1968 2953
1969 2954
1970=head1 BUGS 2955=head1 BUGS
1971 2956
1972Perl 5.8 has numerous memleaks that sometimes hit this module and are hard 2957Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
1976pronounced). 2961pronounced).
1977 2962
1978 2963
1979=head1 SEE ALSO 2964=head1 SEE ALSO
1980 2965
1981Utility functions: L<AnyEvent::Util>. 2966Tutorial/Introduction: L<AnyEvent::Intro>.
1982 2967
1983Event modules: L<EV>, L<EV::Glib>, L<Glib::EV>, L<Event>, L<Glib::Event>, 2968FAQ: L<AnyEvent::FAQ>.
1984L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2969
2970Utility functions: L<AnyEvent::Util> (misc. grab-bag), L<AnyEvent::Log>
2971(simply logging).
2972
2973Development/Debugging: L<AnyEvent::Strict> (stricter checking),
2974L<AnyEvent::Debug> (interactive shell, watcher tracing).
2975
2976Supported event modules: L<AnyEvent::Loop>, L<EV>, L<EV::Glib>,
2977L<Glib::EV>, L<Event>, L<Glib::Event>, L<Glib>, L<Tk>, L<Event::Lib>,
2978L<Qt>, L<POE>, L<FLTK>.
1985 2979
1986Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 2980Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
1987L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 2981L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
1988L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 2982L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
2983L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>,
1989L<AnyEvent::Impl::POE>. 2984L<AnyEvent::Impl::FLTK>.
1990 2985
1991Non-blocking file handles, sockets, TCP clients and 2986Non-blocking handles, pipes, stream sockets, TCP clients and
1992servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>. 2987servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
1993 2988
1994Asynchronous DNS: L<AnyEvent::DNS>. 2989Asynchronous DNS: L<AnyEvent::DNS>.
1995 2990
1996Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>, 2991Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
1997 2992
1998Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 2993Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
2994L<AnyEvent::HTTP>.
1999 2995
2000 2996
2001=head1 AUTHOR 2997=head1 AUTHOR
2002 2998
2003 Marc Lehmann <schmorp@schmorp.de> 2999 Marc Lehmann <schmorp@schmorp.de>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines