ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.243 by root, Fri Jul 17 23:12:20 2009 UTC vs.
Revision 1.279 by root, Sun Aug 9 16:05:11 2009 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt and POE are various supported 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt
6event loops. 6and POE are various supported event loops/environments.
7 7
8=head1 SYNOPSIS 8=head1 SYNOPSIS
9 9
10 use AnyEvent; 10 use AnyEvent;
11 11
40=head1 INTRODUCTION/TUTORIAL 40=head1 INTRODUCTION/TUTORIAL
41 41
42This manpage is mainly a reference manual. If you are interested 42This manpage is mainly a reference manual. If you are interested
43in a tutorial or some gentle introduction, have a look at the 43in a tutorial or some gentle introduction, have a look at the
44L<AnyEvent::Intro> manpage. 44L<AnyEvent::Intro> manpage.
45
46=head1 SUPPORT
47
48There is a mailinglist for discussing all things AnyEvent, and an IRC
49channel, too.
50
51See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
52Repository>, at L<http://anyevent.schmorp.de>, for more info.
45 53
46=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 54=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
47 55
48Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 56Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
49nowadays. So what is different about AnyEvent? 57nowadays. So what is different about AnyEvent?
173my variables are only visible after the statement in which they are 181my variables are only visible after the statement in which they are
174declared. 182declared.
175 183
176=head2 I/O WATCHERS 184=head2 I/O WATCHERS
177 185
186 $w = AnyEvent->io (
187 fh => <filehandle_or_fileno>,
188 poll => <"r" or "w">,
189 cb => <callback>,
190 );
191
178You can create an I/O watcher by calling the C<< AnyEvent->io >> method 192You can create an I/O watcher by calling the C<< AnyEvent->io >> method
179with the following mandatory key-value pairs as arguments: 193with the following mandatory key-value pairs as arguments:
180 194
181C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch 195C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
182for events (AnyEvent might or might not keep a reference to this file 196for events (AnyEvent might or might not keep a reference to this file
211 undef $w; 225 undef $w;
212 }); 226 });
213 227
214=head2 TIME WATCHERS 228=head2 TIME WATCHERS
215 229
230 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
231
232 $w = AnyEvent->timer (
233 after => <fractional_seconds>,
234 interval => <fractional_seconds>,
235 cb => <callback>,
236 );
237
216You can create a time watcher by calling the C<< AnyEvent->timer >> 238You can create a time watcher by calling the C<< AnyEvent->timer >>
217method with the following mandatory arguments: 239method with the following mandatory arguments:
218 240
219C<after> specifies after how many seconds (fractional values are 241C<after> specifies after how many seconds (fractional values are
220supported) the callback should be invoked. C<cb> is the callback to invoke 242supported) the callback should be invoked. C<cb> is the callback to invoke
347 369
348=back 370=back
349 371
350=head2 SIGNAL WATCHERS 372=head2 SIGNAL WATCHERS
351 373
374 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
375
352You can watch for signals using a signal watcher, C<signal> is the signal 376You can watch for signals using a signal watcher, C<signal> is the signal
353I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl 377I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
354callback to be invoked whenever a signal occurs. 378callback to be invoked whenever a signal occurs.
355 379
356Although the callback might get passed parameters, their value and 380Although the callback might get passed parameters, their value and
368 392
369This watcher might use C<%SIG> (depending on the event loop used), 393This watcher might use C<%SIG> (depending on the event loop used),
370so programs overwriting those signals directly will likely not work 394so programs overwriting those signals directly will likely not work
371correctly. 395correctly.
372 396
397Example: exit on SIGINT
398
399 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
400
401=head3 Signal Races, Delays and Workarounds
402
373Also note that many event loops (e.g. Glib, Tk, Qt, IO::Async) do not 403Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
374support attaching callbacks to signals, which is a pity, as you cannot do 404callbacks to signals in a generic way, which is a pity, as you cannot
375race-free signal handling in perl. AnyEvent will try to do it's best, but 405do race-free signal handling in perl, requiring C libraries for
406this. AnyEvent will try to do it's best, which means in some cases,
376in some cases, signals will be delayed. The maximum time a signal might 407signals will be delayed. The maximum time a signal might be delayed is
377be delayed is specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 408specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
378seconds). This variable can be changed only before the first signal 409variable can be changed only before the first signal watcher is created,
379watcher is created, and should be left alone otherwise. Higher values 410and should be left alone otherwise. This variable determines how often
411AnyEvent polls for signals (in case a wake-up was missed). Higher values
380will cause fewer spurious wake-ups, which is better for power and CPU 412will cause fewer spurious wake-ups, which is better for power and CPU
413saving.
414
381saving. All these problems can be avoided by installing the optional 415All these problems can be avoided by installing the optional
382L<Async::Interrupt> module. 416L<Async::Interrupt> module, which works with most event loops. It will not
383 417work with inherently broken event loops such as L<Event> or L<Event::Lib>
384Example: exit on SIGINT 418(and not with L<POE> currently, as POE does it's own workaround with
385 419one-second latency). For those, you just have to suffer the delays.
386 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
387 420
388=head2 CHILD PROCESS WATCHERS 421=head2 CHILD PROCESS WATCHERS
389 422
423 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
424
390You can also watch on a child process exit and catch its exit status. 425You can also watch on a child process exit and catch its exit status.
391 426
392The child process is specified by the C<pid> argument (if set to C<0>, it 427The child process is specified by the C<pid> argument (one some backends,
393watches for any child process exit). The watcher will triggered only when 428using C<0> watches for any child process exit, on others this will
394the child process has finished and an exit status is available, not on 429croak). The watcher will be triggered only when the child process has
395any trace events (stopped/continued). 430finished and an exit status is available, not on any trace events
431(stopped/continued).
396 432
397The callback will be called with the pid and exit status (as returned by 433The callback will be called with the pid and exit status (as returned by
398waitpid), so unlike other watcher types, you I<can> rely on child watcher 434waitpid), so unlike other watcher types, you I<can> rely on child watcher
399callback arguments. 435callback arguments.
400 436
441 # do something else, then wait for process exit 477 # do something else, then wait for process exit
442 $done->recv; 478 $done->recv;
443 479
444=head2 IDLE WATCHERS 480=head2 IDLE WATCHERS
445 481
482 $w = AnyEvent->idle (cb => <callback>);
483
446Sometimes there is a need to do something, but it is not so important 484Sometimes there is a need to do something, but it is not so important
447to do it instantly, but only when there is nothing better to do. This 485to do it instantly, but only when there is nothing better to do. This
448"nothing better to do" is usually defined to be "no other events need 486"nothing better to do" is usually defined to be "no other events need
449attention by the event loop". 487attention by the event loop".
450 488
476 }); 514 });
477 }); 515 });
478 516
479=head2 CONDITION VARIABLES 517=head2 CONDITION VARIABLES
480 518
519 $cv = AnyEvent->condvar;
520
521 $cv->send (<list>);
522 my @res = $cv->recv;
523
481If you are familiar with some event loops you will know that all of them 524If you are familiar with some event loops you will know that all of them
482require you to run some blocking "loop", "run" or similar function that 525require you to run some blocking "loop", "run" or similar function that
483will actively watch for new events and call your callbacks. 526will actively watch for new events and call your callbacks.
484 527
485AnyEvent is slightly different: it expects somebody else to run the event 528AnyEvent is slightly different: it expects somebody else to run the event
504Condition variables are similar to callbacks, except that you can 547Condition variables are similar to callbacks, except that you can
505optionally wait for them. They can also be called merge points - points 548optionally wait for them. They can also be called merge points - points
506in time where multiple outstanding events have been processed. And yet 549in time where multiple outstanding events have been processed. And yet
507another way to call them is transactions - each condition variable can be 550another way to call them is transactions - each condition variable can be
508used to represent a transaction, which finishes at some point and delivers 551used to represent a transaction, which finishes at some point and delivers
509a result. 552a result. And yet some people know them as "futures" - a promise to
553compute/deliver something that you can wait for.
510 554
511Condition variables are very useful to signal that something has finished, 555Condition variables are very useful to signal that something has finished,
512for example, if you write a module that does asynchronous http requests, 556for example, if you write a module that does asynchronous http requests,
513then a condition variable would be the ideal candidate to signal the 557then a condition variable would be the ideal candidate to signal the
514availability of results. The user can either act when the callback is 558availability of results. The user can either act when the callback is
746=item $cb = $cv->cb ($cb->($cv)) 790=item $cb = $cv->cb ($cb->($cv))
747 791
748This is a mutator function that returns the callback set and optionally 792This is a mutator function that returns the callback set and optionally
749replaces it before doing so. 793replaces it before doing so.
750 794
751The callback will be called when the condition becomes "true", i.e. when 795The callback will be called when the condition becomes (or already was)
752C<send> or C<croak> are called, with the only argument being the condition 796"true", i.e. when C<send> or C<croak> are called (or were called), with
753variable itself. Calling C<recv> inside the callback or at any later time 797the only argument being the condition variable itself. Calling C<recv>
754is guaranteed not to block. 798inside the callback or at any later time is guaranteed not to block.
755 799
756=back 800=back
757 801
758=head1 SUPPORTED EVENT LOOPS/BACKENDS 802=head1 SUPPORTED EVENT LOOPS/BACKENDS
759 803
762=over 4 806=over 4
763 807
764=item Backends that are autoprobed when no other event loop can be found. 808=item Backends that are autoprobed when no other event loop can be found.
765 809
766EV is the preferred backend when no other event loop seems to be in 810EV is the preferred backend when no other event loop seems to be in
767use. If EV is not installed, then AnyEvent will try Event, and, failing 811use. If EV is not installed, then AnyEvent will fall back to its own
768that, will fall back to its own pure-perl implementation, which is 812pure-perl implementation, which is available everywhere as it comes with
769available everywhere as it comes with AnyEvent itself. 813AnyEvent itself.
770 814
771 AnyEvent::Impl::EV based on EV (interface to libev, best choice). 815 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
772 AnyEvent::Impl::Event based on Event, very stable, few glitches.
773 AnyEvent::Impl::Perl pure-perl implementation, fast and portable. 816 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
774 817
775=item Backends that are transparently being picked up when they are used. 818=item Backends that are transparently being picked up when they are used.
776 819
777These will be used when they are currently loaded when the first watcher 820These will be used when they are currently loaded when the first watcher
778is created, in which case it is assumed that the application is using 821is created, in which case it is assumed that the application is using
779them. This means that AnyEvent will automatically pick the right backend 822them. This means that AnyEvent will automatically pick the right backend
780when the main program loads an event module before anything starts to 823when the main program loads an event module before anything starts to
781create watchers. Nothing special needs to be done by the main program. 824create watchers. Nothing special needs to be done by the main program.
782 825
826 AnyEvent::Impl::Event based on Event, very stable, few glitches.
783 AnyEvent::Impl::Glib based on Glib, slow but very stable. 827 AnyEvent::Impl::Glib based on Glib, slow but very stable.
784 AnyEvent::Impl::Tk based on Tk, very broken. 828 AnyEvent::Impl::Tk based on Tk, very broken.
785 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse. 829 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
786 AnyEvent::Impl::POE based on POE, very slow, some limitations. 830 AnyEvent::Impl::POE based on POE, very slow, some limitations.
831 AnyEvent::Impl::Irssi used when running within irssi.
787 832
788=item Backends with special needs. 833=item Backends with special needs.
789 834
790Qt requires the Qt::Application to be instantiated first, but will 835Qt requires the Qt::Application to be instantiated first, but will
791otherwise be picked up automatically. As long as the main program 836otherwise be picked up automatically. As long as the main program
865event module detection too early, for example, L<AnyEvent::AIO> creates 910event module detection too early, for example, L<AnyEvent::AIO> creates
866and installs the global L<IO::AIO> watcher in a C<post_detect> block to 911and installs the global L<IO::AIO> watcher in a C<post_detect> block to
867avoid autodetecting the event module at load time. 912avoid autodetecting the event module at load time.
868 913
869If called in scalar or list context, then it creates and returns an object 914If called in scalar or list context, then it creates and returns an object
870that automatically removes the callback again when it is destroyed. See 915that automatically removes the callback again when it is destroyed (or
916C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
871L<Coro::BDB> for a case where this is useful. 917a case where this is useful.
918
919Example: Create a watcher for the IO::AIO module and store it in
920C<$WATCHER>. Only do so after the event loop is initialised, though.
921
922 our WATCHER;
923
924 my $guard = AnyEvent::post_detect {
925 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
926 };
927
928 # the ||= is important in case post_detect immediately runs the block,
929 # as to not clobber the newly-created watcher. assigning both watcher and
930 # post_detect guard to the same variable has the advantage of users being
931 # able to just C<undef $WATCHER> if the watcher causes them grief.
932
933 $WATCHER ||= $guard;
872 934
873=item @AnyEvent::post_detect 935=item @AnyEvent::post_detect
874 936
875If there are any code references in this array (you can C<push> to it 937If there are any code references in this array (you can C<push> to it
876before or after loading AnyEvent), then they will called directly after 938before or after loading AnyEvent), then they will called directly after
1053 1115
1054BEGIN { AnyEvent::common_sense } 1116BEGIN { AnyEvent::common_sense }
1055 1117
1056use Carp (); 1118use Carp ();
1057 1119
1058our $VERSION = 4.83; 1120our $VERSION = '5.0';
1059our $MODEL; 1121our $MODEL;
1060 1122
1061our $AUTOLOAD; 1123our $AUTOLOAD;
1062our @ISA; 1124our @ISA;
1063 1125
1088 for reverse split /\s*,\s*/, 1150 for reverse split /\s*,\s*/,
1089 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1151 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
1090} 1152}
1091 1153
1092my @models = ( 1154my @models = (
1093 [EV:: => AnyEvent::Impl::EV::], 1155 [EV:: => AnyEvent::Impl::EV:: , 1],
1094 [Event:: => AnyEvent::Impl::Event::],
1095 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::], 1156 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl:: , 1],
1096 # everything below here will not be autoprobed 1157 # everything below here will not (normally) be autoprobed
1097 # as the pureperl backend should work everywhere 1158 # as the pureperl backend should work everywhere
1098 # and is usually faster 1159 # and is usually faster
1160 [Event:: => AnyEvent::Impl::Event::, 1],
1099 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers 1161 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1100 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy 1162 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1163 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
1101 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles 1164 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
1102 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 1165 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
1103 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 1166 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
1104 [Wx:: => AnyEvent::Impl::POE::], 1167 [Wx:: => AnyEvent::Impl::POE::],
1105 [Prima:: => AnyEvent::Impl::POE::], 1168 [Prima:: => AnyEvent::Impl::POE::],
1106 # IO::Async is just too broken - we would need workarounds for its 1169 # IO::Async is just too broken - we would need workarounds for its
1107 # byzantine signal and broken child handling, among others. 1170 # byzantine signal and broken child handling, among others.
1108 # IO::Async is rather hard to detect, as it doesn't have any 1171 # IO::Async is rather hard to detect, as it doesn't have any
1109 # obvious default class. 1172 # obvious default class.
1110# [IO::Async:: => AnyEvent::Impl::IOAsync::], # requires special main program 1173 [IO::Async:: => AnyEvent::Impl::IOAsync::], # requires special main program
1111# [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # requires special main program 1174 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # requires special main program
1112# [IO::Async::Notifier:: => AnyEvent::Impl::IOAsync::], # requires special main program 1175 [IO::Async::Notifier:: => AnyEvent::Impl::IOAsync::], # requires special main program
1176 [AnyEvent::Impl::IOAsync:: => AnyEvent::Impl::IOAsync::], # requires special main program
1113); 1177);
1114 1178
1115our %method = map +($_ => 1), 1179our %method = map +($_ => 1),
1116 qw(io timer time now now_update signal child idle condvar one_event DESTROY); 1180 qw(io timer time now now_update signal child idle condvar one_event DESTROY);
1117 1181
1121 my ($cb) = @_; 1185 my ($cb) = @_;
1122 1186
1123 if ($MODEL) { 1187 if ($MODEL) {
1124 $cb->(); 1188 $cb->();
1125 1189
1126 1 1190 undef
1127 } else { 1191 } else {
1128 push @post_detect, $cb; 1192 push @post_detect, $cb;
1129 1193
1130 defined wantarray 1194 defined wantarray
1131 ? bless \$cb, "AnyEvent::Util::postdetect" 1195 ? bless \$cb, "AnyEvent::Util::postdetect"
1163 } 1227 }
1164 } 1228 }
1165 } 1229 }
1166 1230
1167 unless ($MODEL) { 1231 unless ($MODEL) {
1168 # try to load a model 1232 # try to autoload a model
1169
1170 for (@REGISTRY, @models) { 1233 for (@REGISTRY, @models) {
1171 my ($package, $model) = @$_; 1234 my ($package, $model, $autoload) = @$_;
1235 if (
1236 $autoload
1172 if (eval "require $package" 1237 and eval "require $package"
1173 and ${"$package\::VERSION"} > 0 1238 and ${"$package\::VERSION"} > 0
1174 and eval "require $model") { 1239 and eval "require $model"
1240 ) {
1175 $MODEL = $model; 1241 $MODEL = $model;
1176 warn "AnyEvent: autoprobed model '$model', using it.\n" if $VERBOSE >= 2; 1242 warn "AnyEvent: autoloaded model '$model', using it.\n" if $VERBOSE >= 2;
1177 last; 1243 last;
1178 } 1244 }
1179 } 1245 }
1180 1246
1181 $MODEL 1247 $MODEL
1220 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,"; 1286 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1221 1287
1222 # we assume CLOEXEC is already set by perl in all important cases 1288 # we assume CLOEXEC is already set by perl in all important cases
1223 1289
1224 ($fh2, $rw) 1290 ($fh2, $rw)
1291}
1292
1293=head1 SIMPLIFIED AE API
1294
1295Starting with version 5.0, AnyEvent officially supports a second, much
1296simpler, API that is designed to reduce the calling, typing and memory
1297overhead.
1298
1299See the L<AE> manpage for details.
1300
1301=cut
1302
1303package AE;
1304
1305our $VERSION = $AnyEvent::VERSION;
1306
1307sub io($$$) {
1308 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1309}
1310
1311sub timer($$$) {
1312 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1313}
1314
1315sub signal($$) {
1316 AnyEvent->signal (signal => $_[0], cb => $_[1])
1317}
1318
1319sub child($$) {
1320 AnyEvent->child (pid => $_[0], cb => $_[1])
1321}
1322
1323sub idle($) {
1324 AnyEvent->idle (cb => $_[0])
1325}
1326
1327sub cv(;&) {
1328 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1329}
1330
1331sub now() {
1332 AnyEvent->now
1333}
1334
1335sub now_update() {
1336 AnyEvent->now_update
1337}
1338
1339sub time() {
1340 AnyEvent->time
1225} 1341}
1226 1342
1227package AnyEvent::Base; 1343package AnyEvent::Base;
1228 1344
1229# default implementations for many methods 1345# default implementations for many methods
1253} 1369}
1254 1370
1255# default implementation for ->signal 1371# default implementation for ->signal
1256 1372
1257our $HAVE_ASYNC_INTERRUPT; 1373our $HAVE_ASYNC_INTERRUPT;
1374
1375sub _have_async_interrupt() {
1376 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1377 && eval "use Async::Interrupt 1.0 (); 1")
1378 unless defined $HAVE_ASYNC_INTERRUPT;
1379
1380 $HAVE_ASYNC_INTERRUPT
1381}
1382
1258our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO); 1383our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1259our (%SIG_ASY, %SIG_ASY_W); 1384our (%SIG_ASY, %SIG_ASY_W);
1260our ($SIG_COUNT, $SIG_TW); 1385our ($SIG_COUNT, $SIG_TW);
1261 1386
1262sub _signal_exec { 1387sub _signal_exec {
1270 $_->() for values %{ $SIG_CB{$_} || {} }; 1395 $_->() for values %{ $SIG_CB{$_} || {} };
1271 } 1396 }
1272 } 1397 }
1273} 1398}
1274 1399
1400# install a dummy wakeup watcher to reduce signal catching latency
1275sub _signal { 1401sub _sig_add() {
1276 my (undef, %arg) = @_; 1402 unless ($SIG_COUNT++) {
1403 # try to align timer on a full-second boundary, if possible
1404 my $NOW = AE::now;
1277 1405
1278 my $signal = uc $arg{signal} 1406 $SIG_TW = AE::timer
1279 or Carp::croak "required option 'signal' is missing"; 1407 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1280 1408 $MAX_SIGNAL_LATENCY,
1281 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1409 sub { } # just for the PERL_ASYNC_CHECK
1282
1283 if ($HAVE_ASYNC_INTERRUPT) {
1284 # async::interrupt
1285
1286 $SIG_ASY{$signal} ||= do {
1287 my $asy = new Async::Interrupt
1288 cb => sub { undef $SIG_EV{$signal} },
1289 signal => $signal,
1290 pipe => [$SIGPIPE_R->filenos],
1291 ;
1292 $asy->pipe_autodrain (0);
1293
1294 $asy
1295 }; 1410 ;
1296
1297 } else {
1298 # pure perl
1299
1300 $SIG{$signal} ||= sub {
1301 local $!;
1302 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1303 undef $SIG_EV{$signal};
1304 };
1305
1306 # can't do signal processing without introducing races in pure perl,
1307 # so limit the signal latency.
1308 ++$SIG_COUNT;
1309 $SIG_TW ||= AnyEvent->timer (
1310 after => $MAX_SIGNAL_LATENCY,
1311 interval => $MAX_SIGNAL_LATENCY,
1312 cb => sub { }, # just for the PERL_ASYNC_CHECK
1313 );
1314 } 1411 }
1315
1316 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1317} 1412}
1318 1413
1319sub signal { 1414sub _sig_del {
1320 # probe for availability of Async::Interrupt
1321 if (!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT} && eval "use Async::Interrupt 0.6 (); 1") {
1322 warn "AnyEvent: using Async::Interrupt for race-free signal handling.\n" if $VERBOSE >= 8;
1323
1324 $HAVE_ASYNC_INTERRUPT = 1;
1325 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1326 $SIG_IO = AnyEvent->io (fh => $SIGPIPE_R->fileno, poll => "r", cb => \&_signal_exec);
1327
1328 } else {
1329 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8;
1330
1331 require Fcntl;
1332
1333 if (AnyEvent::WIN32) {
1334 require AnyEvent::Util;
1335
1336 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1337 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R) if $SIGPIPE_R;
1338 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W) if $SIGPIPE_W; # just in case
1339 } else {
1340 pipe $SIGPIPE_R, $SIGPIPE_W;
1341 fcntl $SIGPIPE_R, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_R;
1342 fcntl $SIGPIPE_W, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_W; # just in case
1343
1344 # not strictly required, as $^F is normally 2, but let's make sure...
1345 fcntl $SIGPIPE_R, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1346 fcntl $SIGPIPE_W, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1347 }
1348
1349 $SIGPIPE_R
1350 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1351
1352 $SIG_IO = AnyEvent->io (fh => $SIGPIPE_R, poll => "r", cb => \&_signal_exec);
1353 }
1354
1355 *signal = \&_signal;
1356 &signal
1357}
1358
1359sub AnyEvent::Base::signal::DESTROY {
1360 my ($signal, $cb) = @{$_[0]};
1361
1362 undef $SIG_TW 1415 undef $SIG_TW
1363 unless --$SIG_COUNT; 1416 unless --$SIG_COUNT;
1417}
1364 1418
1419our $_sig_name_init; $_sig_name_init = sub {
1420 eval q{ # poor man's autoloading
1421 undef $_sig_name_init;
1422
1423 if (_have_async_interrupt) {
1424 *sig2num = \&Async::Interrupt::sig2num;
1425 *sig2name = \&Async::Interrupt::sig2name;
1426 } else {
1427 require Config;
1428
1429 my %signame2num;
1430 @signame2num{ split ' ', $Config::Config{sig_name} }
1431 = split ' ', $Config::Config{sig_num};
1432
1433 my @signum2name;
1434 @signum2name[values %signame2num] = keys %signame2num;
1435
1436 *sig2num = sub($) {
1437 $_[0] > 0 ? shift : $signame2num{+shift}
1438 };
1439 *sig2name = sub ($) {
1440 $_[0] > 0 ? $signum2name[+shift] : shift
1441 };
1442 }
1443 };
1444 die if $@;
1445};
1446
1447sub sig2num ($) { &$_sig_name_init; &sig2num }
1448sub sig2name($) { &$_sig_name_init; &sig2name }
1449
1450sub signal {
1451 eval q{ # poor man's autoloading {}
1452 # probe for availability of Async::Interrupt
1453 if (_have_async_interrupt) {
1454 warn "AnyEvent: using Async::Interrupt for race-free signal handling.\n" if $VERBOSE >= 8;
1455
1456 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1457 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1458
1459 } else {
1460 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8;
1461
1462 require Fcntl;
1463
1464 if (AnyEvent::WIN32) {
1465 require AnyEvent::Util;
1466
1467 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1468 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1469 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1470 } else {
1471 pipe $SIGPIPE_R, $SIGPIPE_W;
1472 fcntl $SIGPIPE_R, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_R;
1473 fcntl $SIGPIPE_W, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_W; # just in case
1474
1475 # not strictly required, as $^F is normally 2, but let's make sure...
1476 fcntl $SIGPIPE_R, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1477 fcntl $SIGPIPE_W, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1478 }
1479
1480 $SIGPIPE_R
1481 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1482
1483 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1484 }
1485
1486 *signal = sub {
1487 my (undef, %arg) = @_;
1488
1489 my $signal = uc $arg{signal}
1490 or Carp::croak "required option 'signal' is missing";
1491
1492 if ($HAVE_ASYNC_INTERRUPT) {
1493 # async::interrupt
1494
1495 $signal = sig2num $signal;
1496 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1497
1498 $SIG_ASY{$signal} ||= new Async::Interrupt
1499 cb => sub { undef $SIG_EV{$signal} },
1500 signal => $signal,
1501 pipe => [$SIGPIPE_R->filenos],
1502 pipe_autodrain => 0,
1503 ;
1504
1505 } else {
1506 # pure perl
1507
1508 # AE::Util has been loaded in signal
1509 $signal = sig2name $signal;
1510 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1511
1512 $SIG{$signal} ||= sub {
1513 local $!;
1514 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1515 undef $SIG_EV{$signal};
1516 };
1517
1518 # can't do signal processing without introducing races in pure perl,
1519 # so limit the signal latency.
1520 _sig_add;
1521 }
1522
1523 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1524 };
1525
1526 *AnyEvent::Base::signal::DESTROY = sub {
1527 my ($signal, $cb) = @{$_[0]};
1528
1529 _sig_del;
1530
1365 delete $SIG_CB{$signal}{$cb}; 1531 delete $SIG_CB{$signal}{$cb};
1366 1532
1533 $HAVE_ASYNC_INTERRUPT
1534 ? delete $SIG_ASY{$signal}
1367 # delete doesn't work with older perls - they then 1535 : # delete doesn't work with older perls - they then
1368 # print weird messages, or just unconditionally exit 1536 # print weird messages, or just unconditionally exit
1369 # instead of getting the default action. 1537 # instead of getting the default action.
1370 undef $SIG{$signal} 1538 undef $SIG{$signal}
1371 unless keys %{ $SIG_CB{$signal} }; 1539 unless keys %{ $SIG_CB{$signal} };
1540 };
1541 };
1542 die if $@;
1543 &signal
1372} 1544}
1373 1545
1374# default implementation for ->child 1546# default implementation for ->child
1375 1547
1376our %PID_CB; 1548our %PID_CB;
1377our $CHLD_W; 1549our $CHLD_W;
1378our $CHLD_DELAY_W; 1550our $CHLD_DELAY_W;
1379our $WNOHANG; 1551our $WNOHANG;
1380 1552
1553sub _emit_childstatus($$) {
1554 my (undef, $rpid, $rstatus) = @_;
1555
1556 $_->($rpid, $rstatus)
1557 for values %{ $PID_CB{$rpid} || {} },
1558 values %{ $PID_CB{0} || {} };
1559}
1560
1381sub _sigchld { 1561sub _sigchld {
1562 my $pid;
1563
1564 AnyEvent->_emit_childstatus ($pid, $?)
1382 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1565 while ($pid = waitpid -1, $WNOHANG) > 0;
1383 $_->($pid, $?)
1384 for values %{ $PID_CB{$pid} || {} },
1385 values %{ $PID_CB{0} || {} };
1386 }
1387} 1566}
1388 1567
1389sub child { 1568sub child {
1390 my (undef, %arg) = @_; 1569 my (undef, %arg) = @_;
1391 1570
1398 $WNOHANG ||= $^O =~ /^(?:openbsd|netbsd|linux|freebsd|cygwin|MSWin32)$/ 1577 $WNOHANG ||= $^O =~ /^(?:openbsd|netbsd|linux|freebsd|cygwin|MSWin32)$/
1399 ? 1 1578 ? 1
1400 : eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1; 1579 : eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1401 1580
1402 unless ($CHLD_W) { 1581 unless ($CHLD_W) {
1403 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1582 $CHLD_W = AE::signal CHLD => \&_sigchld;
1404 # child could be a zombie already, so make at least one round 1583 # child could be a zombie already, so make at least one round
1405 &_sigchld; 1584 &_sigchld;
1406 } 1585 }
1407 1586
1408 bless [$pid, $arg{cb}], "AnyEvent::Base::child" 1587 bless [$pid, $arg{cb}], "AnyEvent::Base::child"
1434 # never use more then 50% of the time for the idle watcher, 1613 # never use more then 50% of the time for the idle watcher,
1435 # within some limits 1614 # within some limits
1436 $w = 0.0001 if $w < 0.0001; 1615 $w = 0.0001 if $w < 0.0001;
1437 $w = 5 if $w > 5; 1616 $w = 5 if $w > 5;
1438 1617
1439 $w = AnyEvent->timer (after => $w, cb => $rcb); 1618 $w = AE::timer $w, 0, $rcb;
1440 } else { 1619 } else {
1441 # clean up... 1620 # clean up...
1442 undef $w; 1621 undef $w;
1443 undef $rcb; 1622 undef $rcb;
1444 } 1623 }
1445 }; 1624 };
1446 1625
1447 $w = AnyEvent->timer (after => 0.05, cb => $rcb); 1626 $w = AE::timer 0.05, 0, $rcb;
1448 1627
1449 bless \\$cb, "AnyEvent::Base::idle" 1628 bless \\$cb, "AnyEvent::Base::idle"
1450} 1629}
1451 1630
1452sub AnyEvent::Base::idle::DESTROY { 1631sub AnyEvent::Base::idle::DESTROY {
1506 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1685 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak};
1507 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1686 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0]
1508} 1687}
1509 1688
1510sub cb { 1689sub cb {
1511 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1690 my $cv = shift;
1691
1692 @_
1693 and $cv->{_ae_cb} = shift
1694 and $cv->{_ae_sent}
1695 and (delete $cv->{_ae_cb})->($cv);
1696
1512 $_[0]{_ae_cb} 1697 $cv->{_ae_cb}
1513} 1698}
1514 1699
1515sub begin { 1700sub begin {
1516 ++$_[0]{_ae_counter}; 1701 ++$_[0]{_ae_counter};
1517 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 1702 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
1565conditions, such as not being able to load the event model specified by 1750conditions, such as not being able to load the event model specified by
1566C<PERL_ANYEVENT_MODEL>. 1751C<PERL_ANYEVENT_MODEL>.
1567 1752
1568When set to C<2> or higher, cause AnyEvent to report to STDERR which event 1753When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1569model it chooses. 1754model it chooses.
1755
1756When set to C<8> or higher, then AnyEvent will report extra information on
1757which optional modules it loads and how it implements certain features.
1570 1758
1571=item C<PERL_ANYEVENT_STRICT> 1759=item C<PERL_ANYEVENT_STRICT>
1572 1760
1573AnyEvent does not do much argument checking by default, as thorough 1761AnyEvent does not do much argument checking by default, as thorough
1574argument checking is very costly. Setting this variable to a true value 1762argument checking is very costly. Setting this variable to a true value
1651 1839
1652When neither C<ca_file> nor C<ca_path> was specified during 1840When neither C<ca_file> nor C<ca_path> was specified during
1653L<AnyEvent::TLS> context creation, and either of these environment 1841L<AnyEvent::TLS> context creation, and either of these environment
1654variables exist, they will be used to specify CA certificate locations 1842variables exist, they will be used to specify CA certificate locations
1655instead of a system-dependent default. 1843instead of a system-dependent default.
1844
1845=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
1846
1847When these are set to C<1>, then the respective modules are not
1848loaded. Mostly good for testing AnyEvent itself.
1656 1849
1657=back 1850=back
1658 1851
1659=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 1852=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1660 1853
1868through AnyEvent. The benchmark creates a lot of timers (with a zero 2061through AnyEvent. The benchmark creates a lot of timers (with a zero
1869timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2062timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1870which it is), lets them fire exactly once and destroys them again. 2063which it is), lets them fire exactly once and destroys them again.
1871 2064
1872Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2065Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1873distribution. 2066distribution. It uses the L<AE> interface, which makes a real difference
2067for the EV and Perl backends only.
1874 2068
1875=head3 Explanation of the columns 2069=head3 Explanation of the columns
1876 2070
1877I<watcher> is the number of event watchers created/destroyed. Since 2071I<watcher> is the number of event watchers created/destroyed. Since
1878different event models feature vastly different performances, each event 2072different event models feature vastly different performances, each event
1899watcher. 2093watcher.
1900 2094
1901=head3 Results 2095=head3 Results
1902 2096
1903 name watchers bytes create invoke destroy comment 2097 name watchers bytes create invoke destroy comment
1904 EV/EV 400000 224 0.47 0.35 0.27 EV native interface 2098 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1905 EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers 2099 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1906 CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal 2100 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1907 Perl/Any 100000 452 4.13 0.73 0.95 pure perl implementation 2101 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1908 Event/Event 16000 517 32.20 31.80 0.81 Event native interface 2102 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1909 Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers 2103 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
1910 IOAsync/Any 16000 989 38.10 32.77 11.13 via IO::Async::Loop::IO_Poll 2104 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
1911 IOAsync/Any 16000 990 37.59 29.50 10.61 via IO::Async::Loop::Epoll 2105 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1912 Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour 2106 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1913 Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers 2107 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1914 POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event 2108 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1915 POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select 2109 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1916 2110
1917=head3 Discussion 2111=head3 Discussion
1918 2112
1919The benchmark does I<not> measure scalability of the event loop very 2113The benchmark does I<not> measure scalability of the event loop very
1920well. For example, a select-based event loop (such as the pure perl one) 2114well. For example, a select-based event loop (such as the pure perl one)
1932benchmark machine, handling an event takes roughly 1600 CPU cycles with 2126benchmark machine, handling an event takes roughly 1600 CPU cycles with
1933EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2127EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1934cycles with POE. 2128cycles with POE.
1935 2129
1936C<EV> is the sole leader regarding speed and memory use, which are both 2130C<EV> is the sole leader regarding speed and memory use, which are both
1937maximal/minimal, respectively. Even when going through AnyEvent, it uses 2131maximal/minimal, respectively. When using the L<AE> API there is zero
2132overhead (when going through the AnyEvent API create is about 5-6 times
2133slower, with other times being equal, so still uses far less memory than
1938far less memory than any other event loop and is still faster than Event 2134any other event loop and is still faster than Event natively).
1939natively.
1940 2135
1941The pure perl implementation is hit in a few sweet spots (both the 2136The pure perl implementation is hit in a few sweet spots (both the
1942constant timeout and the use of a single fd hit optimisations in the perl 2137constant timeout and the use of a single fd hit optimisations in the perl
1943interpreter and the backend itself). Nevertheless this shows that it 2138interpreter and the backend itself). Nevertheless this shows that it
1944adds very little overhead in itself. Like any select-based backend its 2139adds very little overhead in itself. Like any select-based backend its
2018In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2213In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
2019(1%) are active. This mirrors the activity of large servers with many 2214(1%) are active. This mirrors the activity of large servers with many
2020connections, most of which are idle at any one point in time. 2215connections, most of which are idle at any one point in time.
2021 2216
2022Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2217Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
2023distribution. 2218distribution. It uses the L<AE> interface, which makes a real difference
2219for the EV and Perl backends only.
2024 2220
2025=head3 Explanation of the columns 2221=head3 Explanation of the columns
2026 2222
2027I<sockets> is the number of sockets, and twice the number of "servers" (as 2223I<sockets> is the number of sockets, and twice the number of "servers" (as
2028each server has a read and write socket end). 2224each server has a read and write socket end).
2036a new one that moves the timeout into the future. 2232a new one that moves the timeout into the future.
2037 2233
2038=head3 Results 2234=head3 Results
2039 2235
2040 name sockets create request 2236 name sockets create request
2041 EV 20000 69.01 11.16 2237 EV 20000 62.66 7.99
2042 Perl 20000 73.32 35.87 2238 Perl 20000 68.32 32.64
2043 IOAsync 20000 157.00 98.14 epoll 2239 IOAsync 20000 174.06 101.15 epoll
2044 IOAsync 20000 159.31 616.06 poll 2240 IOAsync 20000 174.67 610.84 poll
2045 Event 20000 212.62 257.32 2241 Event 20000 202.69 242.91
2046 Glib 20000 651.16 1896.30 2242 Glib 20000 557.01 1689.52
2047 POE 20000 349.67 12317.24 uses POE::Loop::Event 2243 POE 20000 341.54 12086.32 uses POE::Loop::Event
2048 2244
2049=head3 Discussion 2245=head3 Discussion
2050 2246
2051This benchmark I<does> measure scalability and overall performance of the 2247This benchmark I<does> measure scalability and overall performance of the
2052particular event loop. 2248particular event loop.
2247 2443
2248This slightly arcane module is used to implement fast signal handling: To 2444This slightly arcane module is used to implement fast signal handling: To
2249my knowledge, there is no way to do completely race-free and quick 2445my knowledge, there is no way to do completely race-free and quick
2250signal handling in pure perl. To ensure that signals still get 2446signal handling in pure perl. To ensure that signals still get
2251delivered, AnyEvent will start an interval timer to wake up perl (and 2447delivered, AnyEvent will start an interval timer to wake up perl (and
2252catch the signals) with soemd elay (default is 10 seconds, look for 2448catch the signals) with some delay (default is 10 seconds, look for
2253C<$AnyEvent::MAX_SIGNAL_LATENCY>). 2449C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2254 2450
2255If this module is available, then it will be used to implement signal 2451If this module is available, then it will be used to implement signal
2256catching, which means that signals will not be delayed, and the event loop 2452catching, which means that signals will not be delayed, and the event loop
2257will not be interrupted regularly, which is more efficient (And good for 2453will not be interrupted regularly, which is more efficient (And good for
2258battery life on laptops). 2454battery life on laptops).
2259 2455
2260This affects not just the pure-perl event loop, but also other event loops 2456This affects not just the pure-perl event loop, but also other event loops
2261that have no signal handling on their own (e.g. Glib, Tk, Qt). 2457that have no signal handling on their own (e.g. Glib, Tk, Qt).
2458
2459Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2460and either employ their own workarounds (POE) or use AnyEvent's workaround
2461(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2462does nothing for those backends.
2262 2463
2263=item L<EV> 2464=item L<EV>
2264 2465
2265This module isn't really "optional", as it is simply one of the backend 2466This module isn't really "optional", as it is simply one of the backend
2266event loops that AnyEvent can use. However, it is simply the best event 2467event loops that AnyEvent can use. However, it is simply the best event
2280 2481
2281=item L<JSON> and L<JSON::XS> 2482=item L<JSON> and L<JSON::XS>
2282 2483
2283This module is required when you want to read or write JSON data via 2484This module is required when you want to read or write JSON data via
2284L<AnyEvent::Handle>. It is also written in pure-perl, but can take 2485L<AnyEvent::Handle>. It is also written in pure-perl, but can take
2285advantage of the ulta-high-speed L<JSON::XS> module when it is installed. 2486advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2286 2487
2287In fact, L<AnyEvent::Handle> will use L<JSON::XS> by default if it is 2488In fact, L<AnyEvent::Handle> will use L<JSON::XS> by default if it is
2288installed. 2489installed.
2289 2490
2290=item L<Net::SSLeay> 2491=item L<Net::SSLeay>
2357L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2558L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>.
2358 2559
2359Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 2560Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
2360L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 2561L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
2361L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 2562L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
2362L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>. 2563L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>.
2363 2564
2364Non-blocking file handles, sockets, TCP clients and 2565Non-blocking file handles, sockets, TCP clients and
2365servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>. 2566servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
2366 2567
2367Asynchronous DNS: L<AnyEvent::DNS>. 2568Asynchronous DNS: L<AnyEvent::DNS>.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines