ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.200 by root, Wed Apr 1 14:02:27 2009 UTC vs.
Revision 1.354 by root, Thu Aug 11 21:26:39 2011 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt
6and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
15 # file handle or descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { ... }); 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
12 17
18 # one-shot or repeating timers
13 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... }); 19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
14 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ... 20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
15 21
16 print AnyEvent->now; # prints current event loop time 22 print AnyEvent->now; # prints current event loop time
17 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time. 23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
18 24
25 # POSIX signal
19 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... }); 26 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
20 27
28 # child process exit
21 my $w = AnyEvent->child (pid => $pid, cb => sub { 29 my $w = AnyEvent->child (pid => $pid, cb => sub {
22 my ($pid, $status) = @_; 30 my ($pid, $status) = @_;
23 ... 31 ...
24 }); 32 });
33
34 # called when event loop idle (if applicable)
35 my $w = AnyEvent->idle (cb => sub { ... });
25 36
26 my $w = AnyEvent->condvar; # stores whether a condition was flagged 37 my $w = AnyEvent->condvar; # stores whether a condition was flagged
27 $w->send; # wake up current and all future recv's 38 $w->send; # wake up current and all future recv's
28 $w->recv; # enters "main loop" till $condvar gets ->send 39 $w->recv; # enters "main loop" till $condvar gets ->send
29 # use a condvar in callback mode: 40 # use a condvar in callback mode:
32=head1 INTRODUCTION/TUTORIAL 43=head1 INTRODUCTION/TUTORIAL
33 44
34This manpage is mainly a reference manual. If you are interested 45This manpage is mainly a reference manual. If you are interested
35in a tutorial or some gentle introduction, have a look at the 46in a tutorial or some gentle introduction, have a look at the
36L<AnyEvent::Intro> manpage. 47L<AnyEvent::Intro> manpage.
48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
37 58
38=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
39 60
40Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
41nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
57module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
58model you use. 79model you use.
59 80
60For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
61actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
62like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
63cannot use anything else, as they are simply incompatible to everything 84cannot use anything else, as they are simply incompatible to everything
64that isn't them. What's worse, all the potential users of your 85that isn't them. What's worse, all the potential users of your
65module are I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
66 87
67AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
68fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
69with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if 90with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module
70your module uses one of those, every user of your module has to use it, 91uses one of those, every user of your module has to use it, too. But if
71too. But if your module uses AnyEvent, it works transparently with all 92your module uses AnyEvent, it works transparently with all event models it
72event models it supports (including stuff like IO::Async, as long as those 93supports (including stuff like IO::Async, as long as those use one of the
73use one of the supported event loops. It is trivial to add new event loops 94supported event loops. It is easy to add new event loops to AnyEvent, too,
74to AnyEvent, too, so it is future-proof). 95so it is future-proof).
75 96
76In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
77model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
78modules, you get an enormous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
79follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
80offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
81technically possible. 102technically possible.
82 103
83Of course, AnyEvent comes with a big (and fully optional!) toolbox 104Of course, AnyEvent comes with a big (and fully optional!) toolbox
84of useful functionality, such as an asynchronous DNS resolver, 100% 105of useful functionality, such as an asynchronous DNS resolver, 100%
90useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
91model, you should I<not> use this module. 112model, you should I<not> use this module.
92 113
93=head1 DESCRIPTION 114=head1 DESCRIPTION
94 115
95L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
96allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
97users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
98peacefully at any one time). 119than one event loop cannot coexist peacefully).
99 120
100The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
101module. 122module.
102 123
103During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
104to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
105following modules is already loaded: L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Loop>,
106L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
107L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
108to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
109adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Loop> should always work, so
110be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
111found, AnyEvent will fall back to a pure-perl event loop, which is not
112very efficient, but should work everywhere.
113 132
114Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
115an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
116that model the default. For example: 135that model the default. For example:
117 136
119 use AnyEvent; 138 use AnyEvent;
120 139
121 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
122 141
123The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
124starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
125use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
126 146
127The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called C<AnyEvent::Loop>. Like
128C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148other event modules you can load it explicitly and enjoy the high
129explicitly and enjoy the high availability of that event loop :) 149availability of that event loop :)
130 150
131=head1 WATCHERS 151=head1 WATCHERS
132 152
133AnyEvent has the central concept of a I<watcher>, which is an object that 153AnyEvent has the central concept of a I<watcher>, which is an object that
134stores relevant data for each kind of event you are waiting for, such as 154stores relevant data for each kind of event you are waiting for, such as
139callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
140is in control). 160is in control).
141 161
142Note that B<callbacks must not permanently change global variables> 162Note that B<callbacks must not permanently change global variables>
143potentially in use by the event loop (such as C<$_> or C<$[>) and that B<< 163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
144callbacks must not C<die> >>. The former is good programming practise in 164callbacks must not C<die> >>. The former is good programming practice in
145Perl and the latter stems from the fact that exception handling differs 165Perl and the latter stems from the fact that exception handling differs
146widely between event loops. 166widely between event loops.
147 167
148To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
149variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
150to it). 170to it).
151 171
152All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
153 173
154Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
155example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
156 176
157An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
158 178
159 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
160 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
161 undef $w; 181 undef $w;
162 }); 182 });
165my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
166declared. 186declared.
167 187
168=head2 I/O WATCHERS 188=head2 I/O WATCHERS
169 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
170You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
171with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
172 198
173C<fh> is the Perl I<file handle> (I<not> file descriptor) to watch 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
174for events (AnyEvent might or might not keep a reference to this file 200for events (AnyEvent might or might not keep a reference to this file
175handle). Note that only file handles pointing to things for which 201handle). Note that only file handles pointing to things for which
176non-blocking operation makes sense are allowed. This includes sockets, 202non-blocking operation makes sense are allowed. This includes sockets,
177most character devices, pipes, fifos and so on, but not for example files 203most character devices, pipes, fifos and so on, but not for example files
178or block devices. 204or block devices.
188 214
189The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
190You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
191underlying file descriptor. 217underlying file descriptor.
192 218
193Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
194always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
195handles. 221handles.
196 222
197Example: wait for readability of STDIN, then read a line and disable the 223Example: wait for readability of STDIN, then read a line and disable the
198watcher. 224watcher.
203 undef $w; 229 undef $w;
204 }); 230 });
205 231
206=head2 TIME WATCHERS 232=head2 TIME WATCHERS
207 233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
241
208You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
209method with the following mandatory arguments: 243method with the following mandatory arguments:
210 244
211C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
212supported) the callback should be invoked. C<cb> is the callback to invoke 246supported) the callback should be invoked. C<cb> is the callback to invoke
214 248
215Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
216presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
217callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
218 252
219The callback will normally be invoked once only. If you specify another 253The callback will normally be invoked only once. If you specify another
220parameter, C<interval>, as a strictly positive number (> 0), then the 254parameter, C<interval>, as a strictly positive number (> 0), then the
221callback will be invoked regularly at that interval (in fractional 255callback will be invoked regularly at that interval (in fractional
222seconds) after the first invocation. If C<interval> is specified with a 256seconds) after the first invocation. If C<interval> is specified with a
223false value, then it is treated as if it were missing. 257false value, then it is treated as if it were not specified at all.
224 258
225The callback will be rescheduled before invoking the callback, but no 259The callback will be rescheduled before invoking the callback, but no
226attempt is done to avoid timer drift in most backends, so the interval is 260attempt is made to avoid timer drift in most backends, so the interval is
227only approximate. 261only approximate.
228 262
229Example: fire an event after 7.7 seconds. 263Example: fire an event after 7.7 seconds.
230 264
231 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
249 283
250While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
251use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
252"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
253the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
254fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
255 289
256AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
257about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
258on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
259timers. 293timers.
260 294
261AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
262AnyEvent API. 296AnyEvent API.
284I<In almost all cases (in all cases if you don't care), this is the 318I<In almost all cases (in all cases if you don't care), this is the
285function to call when you want to know the current time.> 319function to call when you want to know the current time.>
286 320
287This function is also often faster then C<< AnyEvent->time >>, and 321This function is also often faster then C<< AnyEvent->time >>, and
288thus the preferred method if you want some timestamp (for example, 322thus the preferred method if you want some timestamp (for example,
289L<AnyEvent::Handle> uses this to update it's activity timeouts). 323L<AnyEvent::Handle> uses this to update its activity timeouts).
290 324
291The rest of this section is only of relevance if you try to be very exact 325The rest of this section is only of relevance if you try to be very exact
292with your timing, you can skip it without bad conscience. 326with your timing; you can skip it without a bad conscience.
293 327
294For a practical example of when these times differ, consider L<Event::Lib> 328For a practical example of when these times differ, consider L<Event::Lib>
295and L<EV> and the following set-up: 329and L<EV> and the following set-up:
296 330
297The event loop is running and has just invoked one of your callback at 331The event loop is running and has just invoked one of your callbacks at
298time=500 (assume no other callbacks delay processing). In your callback, 332time=500 (assume no other callbacks delay processing). In your callback,
299you wait a second by executing C<sleep 1> (blocking the process for a 333you wait a second by executing C<sleep 1> (blocking the process for a
300second) and then (at time=501) you create a relative timer that fires 334second) and then (at time=501) you create a relative timer that fires
301after three seconds. 335after three seconds.
302 336
320In either case, if you care (and in most cases, you don't), then you 354In either case, if you care (and in most cases, you don't), then you
321can get whatever behaviour you want with any event loop, by taking the 355can get whatever behaviour you want with any event loop, by taking the
322difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into 356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
323account. 357account.
324 358
359=item AnyEvent->now_update
360
361Some event loops (such as L<EV> or L<AnyEvent::Loop>) cache the current
362time for each loop iteration (see the discussion of L<< AnyEvent->now >>,
363above).
364
365When a callback runs for a long time (or when the process sleeps), then
366this "current" time will differ substantially from the real time, which
367might affect timers and time-outs.
368
369When this is the case, you can call this method, which will update the
370event loop's idea of "current time".
371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
379Note that updating the time I<might> cause some events to be handled.
380
325=back 381=back
326 382
327=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
328 386
329You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
330I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
331callback to be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
332 390
338invocation, and callback invocation will be synchronous. Synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
339that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
340but it is guaranteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
341 399
342The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
343between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
344 403
345This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
346directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
347 407
348Example: exit on SIGINT 408Example: exit on SIGINT
349 409
350 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
351 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling) or
421"unsafe" (asynchronous) - the former might get delayed indefinitely, the
422latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
432callbacks to signals in a generic way, which is a pity, as you cannot
433do race-free signal handling in perl, requiring C libraries for
434this. AnyEvent will try to do its best, which means in some cases,
435signals will be delayed. The maximum time a signal might be delayed is
436specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
437variable can be changed only before the first signal watcher is created,
438and should be left alone otherwise. This variable determines how often
439AnyEvent polls for signals (in case a wake-up was missed). Higher values
440will cause fewer spurious wake-ups, which is better for power and CPU
441saving.
442
443All these problems can be avoided by installing the optional
444L<Async::Interrupt> module, which works with most event loops. It will not
445work with inherently broken event loops such as L<Event> or L<Event::Lib>
446(and not with L<POE> currently, as POE does its own workaround with
447one-second latency). For those, you just have to suffer the delays.
448
352=head2 CHILD PROCESS WATCHERS 449=head2 CHILD PROCESS WATCHERS
353 450
451 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
452
354You can also watch on a child process exit and catch its exit status. 453You can also watch for a child process exit and catch its exit status.
355 454
356The child process is specified by the C<pid> argument (if set to C<0>, it 455The child process is specified by the C<pid> argument (on some backends,
357watches for any child process exit). The watcher will triggered only when 456using C<0> watches for any child process exit, on others this will
358the child process has finished and an exit status is available, not on 457croak). The watcher will be triggered only when the child process has
359any trace events (stopped/continued). 458finished and an exit status is available, not on any trace events
459(stopped/continued).
360 460
361The callback will be called with the pid and exit status (as returned by 461The callback will be called with the pid and exit status (as returned by
362waitpid), so unlike other watcher types, you I<can> rely on child watcher 462waitpid), so unlike other watcher types, you I<can> rely on child watcher
363callback arguments. 463callback arguments.
364 464
369 469
370There is a slight catch to child watchers, however: you usually start them 470There is a slight catch to child watchers, however: you usually start them
371I<after> the child process was created, and this means the process could 471I<after> the child process was created, and this means the process could
372have exited already (and no SIGCHLD will be sent anymore). 472have exited already (and no SIGCHLD will be sent anymore).
373 473
374Not all event models handle this correctly (POE doesn't), but even for 474Not all event models handle this correctly (neither POE nor IO::Async do,
475see their AnyEvent::Impl manpages for details), but even for event models
375event models that I<do> handle this correctly, they usually need to be 476that I<do> handle this correctly, they usually need to be loaded before
376loaded before the process exits (i.e. before you fork in the first place). 477the process exits (i.e. before you fork in the first place). AnyEvent's
478pure perl event loop handles all cases correctly regardless of when you
479start the watcher.
377 480
378This means you cannot create a child watcher as the very first thing in an 481This means you cannot create a child watcher as the very first
379AnyEvent program, you I<have> to create at least one watcher before you 482thing in an AnyEvent program, you I<have> to create at least one
380C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 483watcher before you C<fork> the child (alternatively, you can call
484C<AnyEvent::detect>).
485
486As most event loops do not support waiting for child events, they will be
487emulated by AnyEvent in most cases, in which case the latency and race
488problems mentioned in the description of signal watchers apply.
381 489
382Example: fork a process and wait for it 490Example: fork a process and wait for it
383 491
384 my $done = AnyEvent->condvar; 492 my $done = AnyEvent->condvar;
385 493
395 ); 503 );
396 504
397 # do something else, then wait for process exit 505 # do something else, then wait for process exit
398 $done->recv; 506 $done->recv;
399 507
508=head2 IDLE WATCHERS
509
510 $w = AnyEvent->idle (cb => <callback>);
511
512This will repeatedly invoke the callback after the process becomes idle,
513until either the watcher is destroyed or new events have been detected.
514
515Idle watchers are useful when there is a need to do something, but it
516is not so important (or wise) to do it instantly. The callback will be
517invoked only when there is "nothing better to do", which is usually
518defined as "all outstanding events have been handled and no new events
519have been detected". That means that idle watchers ideally get invoked
520when the event loop has just polled for new events but none have been
521detected. Instead of blocking to wait for more events, the idle watchers
522will be invoked.
523
524Unfortunately, most event loops do not really support idle watchers (only
525EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
526will simply call the callback "from time to time".
527
528Example: read lines from STDIN, but only process them when the
529program is otherwise idle:
530
531 my @lines; # read data
532 my $idle_w;
533 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
534 push @lines, scalar <STDIN>;
535
536 # start an idle watcher, if not already done
537 $idle_w ||= AnyEvent->idle (cb => sub {
538 # handle only one line, when there are lines left
539 if (my $line = shift @lines) {
540 print "handled when idle: $line";
541 } else {
542 # otherwise disable the idle watcher again
543 undef $idle_w;
544 }
545 });
546 });
547
400=head2 CONDITION VARIABLES 548=head2 CONDITION VARIABLES
549
550 $cv = AnyEvent->condvar;
551
552 $cv->send (<list>);
553 my @res = $cv->recv;
401 554
402If you are familiar with some event loops you will know that all of them 555If you are familiar with some event loops you will know that all of them
403require you to run some blocking "loop", "run" or similar function that 556require you to run some blocking "loop", "run" or similar function that
404will actively watch for new events and call your callbacks. 557will actively watch for new events and call your callbacks.
405 558
406AnyEvent is different, it expects somebody else to run the event loop and 559AnyEvent is slightly different: it expects somebody else to run the event
407will only block when necessary (usually when told by the user). 560loop and will only block when necessary (usually when told by the user).
408 561
409The instrument to do that is called a "condition variable", so called 562The tool to do that is called a "condition variable", so called because
410because they represent a condition that must become true. 563they represent a condition that must become true.
564
565Now is probably a good time to look at the examples further below.
411 566
412Condition variables can be created by calling the C<< AnyEvent->condvar 567Condition variables can be created by calling the C<< AnyEvent->condvar
413>> method, usually without arguments. The only argument pair allowed is 568>> method, usually without arguments. The only argument pair allowed is
414
415C<cb>, which specifies a callback to be called when the condition variable 569C<cb>, which specifies a callback to be called when the condition variable
416becomes true, with the condition variable as the first argument (but not 570becomes true, with the condition variable as the first argument (but not
417the results). 571the results).
418 572
419After creation, the condition variable is "false" until it becomes "true" 573After creation, the condition variable is "false" until it becomes "true"
420by calling the C<send> method (or calling the condition variable as if it 574by calling the C<send> method (or calling the condition variable as if it
421were a callback, read about the caveats in the description for the C<< 575were a callback, read about the caveats in the description for the C<<
422->send >> method). 576->send >> method).
423 577
424Condition variables are similar to callbacks, except that you can 578Since condition variables are the most complex part of the AnyEvent API, here are
425optionally wait for them. They can also be called merge points - points 579some different mental models of what they are - pick the ones you can connect to:
426in time where multiple outstanding events have been processed. And yet 580
427another way to call them is transactions - each condition variable can be 581=over 4
428used to represent a transaction, which finishes at some point and delivers 582
429a result. 583=item * Condition variables are like callbacks - you can call them (and pass them instead
584of callbacks). Unlike callbacks however, you can also wait for them to be called.
585
586=item * Condition variables are signals - one side can emit or send them,
587the other side can wait for them, or install a handler that is called when
588the signal fires.
589
590=item * Condition variables are like "Merge Points" - points in your program
591where you merge multiple independent results/control flows into one.
592
593=item * Condition variables represent a transaction - functions that start
594some kind of transaction can return them, leaving the caller the choice
595between waiting in a blocking fashion, or setting a callback.
596
597=item * Condition variables represent future values, or promises to deliver
598some result, long before the result is available.
599
600=back
430 601
431Condition variables are very useful to signal that something has finished, 602Condition variables are very useful to signal that something has finished,
432for example, if you write a module that does asynchronous http requests, 603for example, if you write a module that does asynchronous http requests,
433then a condition variable would be the ideal candidate to signal the 604then a condition variable would be the ideal candidate to signal the
434availability of results. The user can either act when the callback is 605availability of results. The user can either act when the callback is
447 618
448Condition variables are represented by hash refs in perl, and the keys 619Condition variables are represented by hash refs in perl, and the keys
449used by AnyEvent itself are all named C<_ae_XXX> to make subclassing 620used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
450easy (it is often useful to build your own transaction class on top of 621easy (it is often useful to build your own transaction class on top of
451AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call 622AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
452it's C<new> method in your own C<new> method. 623its C<new> method in your own C<new> method.
453 624
454There are two "sides" to a condition variable - the "producer side" which 625There are two "sides" to a condition variable - the "producer side" which
455eventually calls C<< -> send >>, and the "consumer side", which waits 626eventually calls C<< -> send >>, and the "consumer side", which waits
456for the send to occur. 627for the send to occur.
457 628
458Example: wait for a timer. 629Example: wait for a timer.
459 630
460 # wait till the result is ready 631 # condition: "wait till the timer is fired"
461 my $result_ready = AnyEvent->condvar; 632 my $timer_fired = AnyEvent->condvar;
462 633
463 # do something such as adding a timer 634 # create the timer - we could wait for, say
464 # or socket watcher the calls $result_ready->send 635 # a handle becomign ready, or even an
465 # when the "result" is ready. 636 # AnyEvent::HTTP request to finish, but
466 # in this case, we simply use a timer: 637 # in this case, we simply use a timer:
467 my $w = AnyEvent->timer ( 638 my $w = AnyEvent->timer (
468 after => 1, 639 after => 1,
469 cb => sub { $result_ready->send }, 640 cb => sub { $timer_fired->send },
470 ); 641 );
471 642
472 # this "blocks" (while handling events) till the callback 643 # this "blocks" (while handling events) till the callback
473 # calls send 644 # calls ->send
474 $result_ready->recv; 645 $timer_fired->recv;
475 646
476Example: wait for a timer, but take advantage of the fact that 647Example: wait for a timer, but take advantage of the fact that condition
477condition variables are also code references. 648variables are also callable directly.
478 649
479 my $done = AnyEvent->condvar; 650 my $done = AnyEvent->condvar;
480 my $delay = AnyEvent->timer (after => 5, cb => $done); 651 my $delay = AnyEvent->timer (after => 5, cb => $done);
481 $done->recv; 652 $done->recv;
482 653
488 659
489 ... 660 ...
490 661
491 my @info = $couchdb->info->recv; 662 my @info = $couchdb->info->recv;
492 663
493And this is how you would just ste a callback to be called whenever the 664And this is how you would just set a callback to be called whenever the
494results are available: 665results are available:
495 666
496 $couchdb->info->cb (sub { 667 $couchdb->info->cb (sub {
497 my @info = $_[0]->recv; 668 my @info = $_[0]->recv;
498 }); 669 });
516immediately from within send. 687immediately from within send.
517 688
518Any arguments passed to the C<send> call will be returned by all 689Any arguments passed to the C<send> call will be returned by all
519future C<< ->recv >> calls. 690future C<< ->recv >> calls.
520 691
521Condition variables are overloaded so one can call them directly 692Condition variables are overloaded so one can call them directly (as if
522(as a code reference). Calling them directly is the same as calling 693they were a code reference). Calling them directly is the same as calling
523C<send>. Note, however, that many C-based event loops do not handle 694C<send>.
524overloading, so as tempting as it may be, passing a condition variable
525instead of a callback does not work. Both the pure perl and EV loops
526support overloading, however, as well as all functions that use perl to
527invoke a callback (as in L<AnyEvent::Socket> and L<AnyEvent::DNS> for
528example).
529 695
530=item $cv->croak ($error) 696=item $cv->croak ($error)
531 697
532Similar to send, but causes all call's to C<< ->recv >> to invoke 698Similar to send, but causes all calls to C<< ->recv >> to invoke
533C<Carp::croak> with the given error message/object/scalar. 699C<Carp::croak> with the given error message/object/scalar.
534 700
535This can be used to signal any errors to the condition variable 701This can be used to signal any errors to the condition variable
536user/consumer. 702user/consumer. Doing it this way instead of calling C<croak> directly
703delays the error detection, but has the overwhelming advantage that it
704diagnoses the error at the place where the result is expected, and not
705deep in some event callback with no connection to the actual code causing
706the problem.
537 707
538=item $cv->begin ([group callback]) 708=item $cv->begin ([group callback])
539 709
540=item $cv->end 710=item $cv->end
541
542These two methods are EXPERIMENTAL and MIGHT CHANGE.
543 711
544These two methods can be used to combine many transactions/events into 712These two methods can be used to combine many transactions/events into
545one. For example, a function that pings many hosts in parallel might want 713one. For example, a function that pings many hosts in parallel might want
546to use a condition variable for the whole process. 714to use a condition variable for the whole process.
547 715
548Every call to C<< ->begin >> will increment a counter, and every call to 716Every call to C<< ->begin >> will increment a counter, and every call to
549C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 717C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
550>>, the (last) callback passed to C<begin> will be executed. That callback 718>>, the (last) callback passed to C<begin> will be executed, passing the
551is I<supposed> to call C<< ->send >>, but that is not required. If no 719condvar as first argument. That callback is I<supposed> to call C<< ->send
552callback was set, C<send> will be called without any arguments. 720>>, but that is not required. If no group callback was set, C<send> will
721be called without any arguments.
553 722
554Let's clarify this with the ping example: 723You can think of C<< $cv->send >> giving you an OR condition (one call
724sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
725condition (all C<begin> calls must be C<end>'ed before the condvar sends).
726
727Let's start with a simple example: you have two I/O watchers (for example,
728STDOUT and STDERR for a program), and you want to wait for both streams to
729close before activating a condvar:
555 730
556 my $cv = AnyEvent->condvar; 731 my $cv = AnyEvent->condvar;
557 732
733 $cv->begin; # first watcher
734 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
735 defined sysread $fh1, my $buf, 4096
736 or $cv->end;
737 });
738
739 $cv->begin; # second watcher
740 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
741 defined sysread $fh2, my $buf, 4096
742 or $cv->end;
743 });
744
745 $cv->recv;
746
747This works because for every event source (EOF on file handle), there is
748one call to C<begin>, so the condvar waits for all calls to C<end> before
749sending.
750
751The ping example mentioned above is slightly more complicated, as the
752there are results to be passwd back, and the number of tasks that are
753begun can potentially be zero:
754
755 my $cv = AnyEvent->condvar;
756
558 my %result; 757 my %result;
559 $cv->begin (sub { $cv->send (\%result) }); 758 $cv->begin (sub { shift->send (\%result) });
560 759
561 for my $host (@list_of_hosts) { 760 for my $host (@list_of_hosts) {
562 $cv->begin; 761 $cv->begin;
563 ping_host_then_call_callback $host, sub { 762 ping_host_then_call_callback $host, sub {
564 $result{$host} = ...; 763 $result{$host} = ...;
579loop, which serves two important purposes: first, it sets the callback 778loop, which serves two important purposes: first, it sets the callback
580to be called once the counter reaches C<0>, and second, it ensures that 779to be called once the counter reaches C<0>, and second, it ensures that
581C<send> is called even when C<no> hosts are being pinged (the loop 780C<send> is called even when C<no> hosts are being pinged (the loop
582doesn't execute once). 781doesn't execute once).
583 782
584This is the general pattern when you "fan out" into multiple subrequests: 783This is the general pattern when you "fan out" into multiple (but
585use an outer C<begin>/C<end> pair to set the callback and ensure C<end> 784potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
586is called at least once, and then, for each subrequest you start, call 785the callback and ensure C<end> is called at least once, and then, for each
587C<begin> and for each subrequest you finish, call C<end>. 786subrequest you start, call C<begin> and for each subrequest you finish,
787call C<end>.
588 788
589=back 789=back
590 790
591=head3 METHODS FOR CONSUMERS 791=head3 METHODS FOR CONSUMERS
592 792
596=over 4 796=over 4
597 797
598=item $cv->recv 798=item $cv->recv
599 799
600Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak 800Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
601>> methods have been called on c<$cv>, while servicing other watchers 801>> methods have been called on C<$cv>, while servicing other watchers
602normally. 802normally.
603 803
604You can only wait once on a condition - additional calls are valid but 804You can only wait once on a condition - additional calls are valid but
605will return immediately. 805will return immediately.
606 806
608function will call C<croak>. 808function will call C<croak>.
609 809
610In list context, all parameters passed to C<send> will be returned, 810In list context, all parameters passed to C<send> will be returned,
611in scalar context only the first one will be returned. 811in scalar context only the first one will be returned.
612 812
813Note that doing a blocking wait in a callback is not supported by any
814event loop, that is, recursive invocation of a blocking C<< ->recv
815>> is not allowed, and the C<recv> call will C<croak> if such a
816condition is detected. This condition can be slightly loosened by using
817L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
818any thread that doesn't run the event loop itself.
819
613Not all event models support a blocking wait - some die in that case 820Not all event models support a blocking wait - some die in that case
614(programs might want to do that to stay interactive), so I<if you are 821(programs might want to do that to stay interactive), so I<if you are
615using this from a module, never require a blocking wait>, but let the 822using this from a module, never require a blocking wait>. Instead, let the
616caller decide whether the call will block or not (for example, by coupling 823caller decide whether the call will block or not (for example, by coupling
617condition variables with some kind of request results and supporting 824condition variables with some kind of request results and supporting
618callbacks so the caller knows that getting the result will not block, 825callbacks so the caller knows that getting the result will not block,
619while still supporting blocking waits if the caller so desires). 826while still supporting blocking waits if the caller so desires).
620 827
621Another reason I<never> to C<< ->recv >> in a module is that you cannot
622sensibly have two C<< ->recv >>'s in parallel, as that would require
623multiple interpreters or coroutines/threads, none of which C<AnyEvent>
624can supply.
625
626The L<Coro> module, however, I<can> and I<does> supply coroutines and, in
627fact, L<Coro::AnyEvent> replaces AnyEvent's condvars by coroutine-safe
628versions and also integrates coroutines into AnyEvent, making blocking
629C<< ->recv >> calls perfectly safe as long as they are done from another
630coroutine (one that doesn't run the event loop).
631
632You can ensure that C<< -recv >> never blocks by setting a callback and 828You can ensure that C<< ->recv >> never blocks by setting a callback and
633only calling C<< ->recv >> from within that callback (or at a later 829only calling C<< ->recv >> from within that callback (or at a later
634time). This will work even when the event loop does not support blocking 830time). This will work even when the event loop does not support blocking
635waits otherwise. 831waits otherwise.
636 832
637=item $bool = $cv->ready 833=item $bool = $cv->ready
643 839
644This is a mutator function that returns the callback set and optionally 840This is a mutator function that returns the callback set and optionally
645replaces it before doing so. 841replaces it before doing so.
646 842
647The callback will be called when the condition becomes "true", i.e. when 843The callback will be called when the condition becomes "true", i.e. when
648C<send> or C<croak> are called, with the only argument being the condition 844C<send> or C<croak> are called, with the only argument being the
649variable itself. Calling C<recv> inside the callback or at any later time 845condition variable itself. If the condition is already true, the
650is guaranteed not to block. 846callback is called immediately when it is set. Calling C<recv> inside
847the callback or at any later time is guaranteed not to block.
651 848
652=back 849=back
653 850
851=head1 SUPPORTED EVENT LOOPS/BACKENDS
852
853The available backend classes are (every class has its own manpage):
854
855=over 4
856
857=item Backends that are autoprobed when no other event loop can be found.
858
859EV is the preferred backend when no other event loop seems to be in
860use. If EV is not installed, then AnyEvent will fall back to its own
861pure-perl implementation, which is available everywhere as it comes with
862AnyEvent itself.
863
864 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
865 AnyEvent::Impl::Perl pure-perl AnyEvent::Loop, fast and portable.
866
867=item Backends that are transparently being picked up when they are used.
868
869These will be used if they are already loaded when the first watcher
870is created, in which case it is assumed that the application is using
871them. This means that AnyEvent will automatically pick the right backend
872when the main program loads an event module before anything starts to
873create watchers. Nothing special needs to be done by the main program.
874
875 AnyEvent::Impl::Event based on Event, very stable, few glitches.
876 AnyEvent::Impl::Glib based on Glib, slow but very stable.
877 AnyEvent::Impl::Tk based on Tk, very broken.
878 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
879 AnyEvent::Impl::POE based on POE, very slow, some limitations.
880 AnyEvent::Impl::Irssi used when running within irssi.
881 AnyEvent::Impl::IOAsync based on IO::Async.
882 AnyEvent::Impl::Cocoa based on Cocoa::EventLoop.
883 AnyEvent::Impl::FLTK based on FLTK.
884
885=item Backends with special needs.
886
887Qt requires the Qt::Application to be instantiated first, but will
888otherwise be picked up automatically. As long as the main program
889instantiates the application before any AnyEvent watchers are created,
890everything should just work.
891
892 AnyEvent::Impl::Qt based on Qt.
893
894=item Event loops that are indirectly supported via other backends.
895
896Some event loops can be supported via other modules:
897
898There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
899
900B<WxWidgets> has no support for watching file handles. However, you can
901use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
902polls 20 times per second, which was considered to be too horrible to even
903consider for AnyEvent.
904
905B<Prima> is not supported as nobody seems to be using it, but it has a POE
906backend, so it can be supported through POE.
907
908AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
909load L<POE> when detecting them, in the hope that POE will pick them up,
910in which case everything will be automatic.
911
912=back
913
654=head1 GLOBAL VARIABLES AND FUNCTIONS 914=head1 GLOBAL VARIABLES AND FUNCTIONS
655 915
916These are not normally required to use AnyEvent, but can be useful to
917write AnyEvent extension modules.
918
656=over 4 919=over 4
657 920
658=item $AnyEvent::MODEL 921=item $AnyEvent::MODEL
659 922
660Contains C<undef> until the first watcher is being created. Then it 923Contains C<undef> until the first watcher is being created, before the
924backend has been autodetected.
925
661contains the event model that is being used, which is the name of the 926Afterwards it contains the event model that is being used, which is the
662Perl class implementing the model. This class is usually one of the 927name of the Perl class implementing the model. This class is usually one
663C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 928of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
664AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 929case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
665 930will be C<urxvt::anyevent>).
666The known classes so far are:
667
668 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
669 AnyEvent::Impl::Event based on Event, second best choice.
670 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
671 AnyEvent::Impl::Glib based on Glib, third-best choice.
672 AnyEvent::Impl::Tk based on Tk, very bad choice.
673 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
674 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
675 AnyEvent::Impl::POE based on POE, not generic enough for full support.
676
677There is no support for WxWidgets, as WxWidgets has no support for
678watching file handles. However, you can use WxWidgets through the
679POE Adaptor, as POE has a Wx backend that simply polls 20 times per
680second, which was considered to be too horrible to even consider for
681AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
682it's adaptor.
683
684AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
685autodetecting them.
686 931
687=item AnyEvent::detect 932=item AnyEvent::detect
688 933
689Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 934Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
690if necessary. You should only call this function right before you would 935if necessary. You should only call this function right before you would
691have created an AnyEvent watcher anyway, that is, as late as possible at 936have created an AnyEvent watcher anyway, that is, as late as possible at
692runtime. 937runtime, and not e.g. during initialisation of your module.
938
939If you need to do some initialisation before AnyEvent watchers are
940created, use C<post_detect>.
693 941
694=item $guard = AnyEvent::post_detect { BLOCK } 942=item $guard = AnyEvent::post_detect { BLOCK }
695 943
696Arranges for the code block to be executed as soon as the event model is 944Arranges for the code block to be executed as soon as the event model is
697autodetected (or immediately if this has already happened). 945autodetected (or immediately if that has already happened).
946
947The block will be executed I<after> the actual backend has been detected
948(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
949created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
950other initialisations - see the sources of L<AnyEvent::Strict> or
951L<AnyEvent::AIO> to see how this is used.
952
953The most common usage is to create some global watchers, without forcing
954event module detection too early, for example, L<AnyEvent::AIO> creates
955and installs the global L<IO::AIO> watcher in a C<post_detect> block to
956avoid autodetecting the event module at load time.
698 957
699If called in scalar or list context, then it creates and returns an object 958If called in scalar or list context, then it creates and returns an object
700that automatically removes the callback again when it is destroyed. See 959that automatically removes the callback again when it is destroyed (or
960C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
701L<Coro::BDB> for a case where this is useful. 961a case where this is useful.
962
963Example: Create a watcher for the IO::AIO module and store it in
964C<$WATCHER>, but do so only do so after the event loop is initialised.
965
966 our WATCHER;
967
968 my $guard = AnyEvent::post_detect {
969 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
970 };
971
972 # the ||= is important in case post_detect immediately runs the block,
973 # as to not clobber the newly-created watcher. assigning both watcher and
974 # post_detect guard to the same variable has the advantage of users being
975 # able to just C<undef $WATCHER> if the watcher causes them grief.
976
977 $WATCHER ||= $guard;
702 978
703=item @AnyEvent::post_detect 979=item @AnyEvent::post_detect
704 980
705If there are any code references in this array (you can C<push> to it 981If there are any code references in this array (you can C<push> to it
706before or after loading AnyEvent), then they will called directly after 982before or after loading AnyEvent), then they will be called directly
707the event loop has been chosen. 983after the event loop has been chosen.
708 984
709You should check C<$AnyEvent::MODEL> before adding to this array, though: 985You should check C<$AnyEvent::MODEL> before adding to this array, though:
710if it contains a true value then the event loop has already been detected, 986if it is defined then the event loop has already been detected, and the
711and the array will be ignored. 987array will be ignored.
712 988
713Best use C<AnyEvent::post_detect { BLOCK }> instead. 989Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
990it, as it takes care of these details.
991
992This variable is mainly useful for modules that can do something useful
993when AnyEvent is used and thus want to know when it is initialised, but do
994not need to even load it by default. This array provides the means to hook
995into AnyEvent passively, without loading it.
996
997Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
998together, you could put this into Coro (this is the actual code used by
999Coro to accomplish this):
1000
1001 if (defined $AnyEvent::MODEL) {
1002 # AnyEvent already initialised, so load Coro::AnyEvent
1003 require Coro::AnyEvent;
1004 } else {
1005 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1006 # as soon as it is
1007 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1008 }
1009
1010=item AnyEvent::postpone { BLOCK }
1011
1012Arranges for the block to be executed as soon as possible, but not before
1013the call itself returns. In practise, the block will be executed just
1014before the event loop polls for new events, or shortly afterwards.
1015
1016This function never returns anything (to make the C<return postpone { ...
1017}> idiom more useful.
1018
1019To understand the usefulness of this function, consider a function that
1020asynchronously does something for you and returns some transaction
1021object or guard to let you cancel the operation. For example,
1022C<AnyEvent::Socket::tcp_connect>:
1023
1024 # start a conenction attempt unless one is active
1025 $self->{connect_guard} ||= AnyEvent::Socket::tcp_connect "www.example.net", 80, sub {
1026 delete $self->{connect_guard};
1027 ...
1028 };
1029
1030Imagine that this function could instantly call the callback, for
1031example, because it detects an obvious error such as a negative port
1032number. Invoking the callback before the function returns causes problems
1033however: the callback will be called and will try to delete the guard
1034object. But since the function hasn't returned yet, there is nothing to
1035delete. When the function eventually returns it will assign the guard
1036object to C<< $self->{connect_guard} >>, where it will likely never be
1037deleted, so the program thinks it is still trying to connect.
1038
1039This is where C<AnyEvent::postpone> should be used. Instead of calling the
1040callback directly on error:
1041
1042 $cb->(undef), return # signal error to callback, BAD!
1043 if $some_error_condition;
1044
1045It should use C<postpone>:
1046
1047 AnyEvent::postpone { $cb->(undef) }, return # signal error to callback, later
1048 if $some_error_condition;
714 1049
715=back 1050=back
716 1051
717=head1 WHAT TO DO IN A MODULE 1052=head1 WHAT TO DO IN A MODULE
718 1053
729because it will stall the whole program, and the whole point of using 1064because it will stall the whole program, and the whole point of using
730events is to stay interactive. 1065events is to stay interactive.
731 1066
732It is fine, however, to call C<< ->recv >> when the user of your module 1067It is fine, however, to call C<< ->recv >> when the user of your module
733requests it (i.e. if you create a http request object ad have a method 1068requests it (i.e. if you create a http request object ad have a method
734called C<results> that returns the results, it should call C<< ->recv >> 1069called C<results> that returns the results, it may call C<< ->recv >>
735freely, as the user of your module knows what she is doing. always). 1070freely, as the user of your module knows what she is doing. Always).
736 1071
737=head1 WHAT TO DO IN THE MAIN PROGRAM 1072=head1 WHAT TO DO IN THE MAIN PROGRAM
738 1073
739There will always be a single main program - the only place that should 1074There will always be a single main program - the only place that should
740dictate which event model to use. 1075dictate which event model to use.
741 1076
742If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1077If the program is not event-based, it need not do anything special, even
743do anything special (it does not need to be event-based) and let AnyEvent 1078when it depends on a module that uses an AnyEvent. If the program itself
744decide which implementation to chose if some module relies on it. 1079uses AnyEvent, but does not care which event loop is used, all it needs
1080to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1081available loop implementation.
745 1082
746If the main program relies on a specific event model - for example, in 1083If the main program relies on a specific event model - for example, in
747Gtk2 programs you have to rely on the Glib module - you should load the 1084Gtk2 programs you have to rely on the Glib module - you should load the
748event module before loading AnyEvent or any module that uses it: generally 1085event module before loading AnyEvent or any module that uses it: generally
749speaking, you should load it as early as possible. The reason is that 1086speaking, you should load it as early as possible. The reason is that
750modules might create watchers when they are loaded, and AnyEvent will 1087modules might create watchers when they are loaded, and AnyEvent will
751decide on the event model to use as soon as it creates watchers, and it 1088decide on the event model to use as soon as it creates watchers, and it
752might chose the wrong one unless you load the correct one yourself. 1089might choose the wrong one unless you load the correct one yourself.
753 1090
754You can chose to use a pure-perl implementation by loading the 1091You can chose to use a pure-perl implementation by loading the
755C<AnyEvent::Impl::Perl> module, which gives you similar behaviour 1092C<AnyEvent::Loop> module, which gives you similar behaviour
756everywhere, but letting AnyEvent chose the model is generally better. 1093everywhere, but letting AnyEvent chose the model is generally better.
757 1094
758=head2 MAINLOOP EMULATION 1095=head2 MAINLOOP EMULATION
759 1096
760Sometimes (often for short test scripts, or even standalone programs who 1097Sometimes (often for short test scripts, or even standalone programs who
773 1110
774 1111
775=head1 OTHER MODULES 1112=head1 OTHER MODULES
776 1113
777The following is a non-exhaustive list of additional modules that use 1114The following is a non-exhaustive list of additional modules that use
778AnyEvent and can therefore be mixed easily with other AnyEvent modules 1115AnyEvent as a client and can therefore be mixed easily with other AnyEvent
779in the same program. Some of the modules come with AnyEvent, some are 1116modules and other event loops in the same program. Some of the modules
780available via CPAN. 1117come as part of AnyEvent, the others are available via CPAN.
781 1118
782=over 4 1119=over 4
783 1120
784=item L<AnyEvent::Util> 1121=item L<AnyEvent::Util>
785 1122
786Contains various utility functions that replace often-used but blocking 1123Contains various utility functions that replace often-used blocking
787functions such as C<inet_aton> by event-/callback-based versions. 1124functions such as C<inet_aton> with event/callback-based versions.
788 1125
789=item L<AnyEvent::Socket> 1126=item L<AnyEvent::Socket>
790 1127
791Provides various utility functions for (internet protocol) sockets, 1128Provides various utility functions for (internet protocol) sockets,
792addresses and name resolution. Also functions to create non-blocking tcp 1129addresses and name resolution. Also functions to create non-blocking tcp
794 1131
795=item L<AnyEvent::Handle> 1132=item L<AnyEvent::Handle>
796 1133
797Provide read and write buffers, manages watchers for reads and writes, 1134Provide read and write buffers, manages watchers for reads and writes,
798supports raw and formatted I/O, I/O queued and fully transparent and 1135supports raw and formatted I/O, I/O queued and fully transparent and
799non-blocking SSL/TLS. 1136non-blocking SSL/TLS (via L<AnyEvent::TLS>).
800 1137
801=item L<AnyEvent::DNS> 1138=item L<AnyEvent::DNS>
802 1139
803Provides rich asynchronous DNS resolver capabilities. 1140Provides rich asynchronous DNS resolver capabilities.
804 1141
1142=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1143
1144Implement event-based interfaces to the protocols of the same name (for
1145the curious, IGS is the International Go Server and FCP is the Freenet
1146Client Protocol).
1147
1148=item L<AnyEvent::Handle::UDP>
1149
1150Here be danger!
1151
1152As Pauli would put it, "Not only is it not right, it's not even wrong!" -
1153there are so many things wrong with AnyEvent::Handle::UDP, most notably
1154its use of a stream-based API with a protocol that isn't streamable, that
1155the only way to improve it is to delete it.
1156
1157It features data corruption (but typically only under load) and general
1158confusion. On top, the author is not only clueless about UDP but also
1159fact-resistant - some gems of his understanding: "connect doesn't work
1160with UDP", "UDP packets are not IP packets", "UDP only has datagrams, not
1161packets", "I don't need to implement proper error checking as UDP doesn't
1162support error checking" and so on - he doesn't even understand what's
1163wrong with his module when it is explained to him.
1164
805=item L<AnyEvent::HTTP> 1165=item L<AnyEvent::DBI>
806 1166
807A simple-to-use HTTP library that is capable of making a lot of concurrent 1167Executes L<DBI> requests asynchronously in a proxy process for you,
808HTTP requests. 1168notifying you in an event-based way when the operation is finished.
1169
1170=item L<AnyEvent::AIO>
1171
1172Truly asynchronous (as opposed to non-blocking) I/O, should be in the
1173toolbox of every event programmer. AnyEvent::AIO transparently fuses
1174L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1175file I/O, and much more.
809 1176
810=item L<AnyEvent::HTTPD> 1177=item L<AnyEvent::HTTPD>
811 1178
812Provides a simple web application server framework. 1179A simple embedded webserver.
813 1180
814=item L<AnyEvent::FastPing> 1181=item L<AnyEvent::FastPing>
815 1182
816The fastest ping in the west. 1183The fastest ping in the west.
817 1184
818=item L<AnyEvent::DBI>
819
820Executes L<DBI> requests asynchronously in a proxy process.
821
822=item L<AnyEvent::AIO>
823
824Truly asynchronous I/O, should be in the toolbox of every event
825programmer. AnyEvent::AIO transparently fuses L<IO::AIO> and AnyEvent
826together.
827
828=item L<AnyEvent::BDB>
829
830Truly asynchronous Berkeley DB access. AnyEvent::BDB transparently fuses
831L<BDB> and AnyEvent together.
832
833=item L<AnyEvent::GPSD>
834
835A non-blocking interface to gpsd, a daemon delivering GPS information.
836
837=item L<AnyEvent::IGS>
838
839A non-blocking interface to the Internet Go Server protocol (used by
840L<App::IGS>).
841
842=item L<AnyEvent::IRC>
843
844AnyEvent based IRC client module family (replacing the older Net::IRC3).
845
846=item L<Net::XMPP2>
847
848AnyEvent based XMPP (Jabber protocol) module family.
849
850=item L<Net::FCP>
851
852AnyEvent-based implementation of the Freenet Client Protocol, birthplace
853of AnyEvent.
854
855=item L<Event::ExecFlow>
856
857High level API for event-based execution flow control.
858
859=item L<Coro> 1185=item L<Coro>
860 1186
861Has special support for AnyEvent via L<Coro::AnyEvent>. 1187Has special support for AnyEvent via L<Coro::AnyEvent>.
862 1188
863=item L<IO::Lambda>
864
865The lambda approach to I/O - don't ask, look there. Can use AnyEvent.
866
867=back 1189=back
868 1190
869=cut 1191=cut
870 1192
871package AnyEvent; 1193package AnyEvent;
872 1194
873no warnings; 1195# basically a tuned-down version of common::sense
874use strict qw(vars subs); 1196sub common_sense {
1197 # from common:.sense 3.4
1198 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf0\x0f\xc0\xf0\xfc\x33\x00";
1199 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1200 $^H |= 0x00000600;
1201}
875 1202
1203BEGIN { AnyEvent::common_sense }
1204
876use Carp; 1205use Carp ();
877 1206
878our $VERSION = 4.35; 1207our $VERSION = '5.34';
879our $MODEL; 1208our $MODEL;
880 1209
881our $AUTOLOAD; 1210our $AUTOLOAD;
882our @ISA; 1211our @ISA;
883 1212
884our @REGISTRY; 1213our @REGISTRY;
885 1214
886our $WIN32; 1215our $VERBOSE;
887 1216
888BEGIN { 1217BEGIN {
889 my $win32 = ! ! ($^O =~ /mswin32/i); 1218 require "AnyEvent/constants.pl";
890 eval "sub WIN32(){ $win32 }";
891}
892 1219
1220 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
1221
1222 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1223 if ${^TAINT};
1224
893our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; 1225 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1;
1226
1227}
1228
1229our $MAX_SIGNAL_LATENCY = 10;
894 1230
895our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred 1231our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
896 1232
897{ 1233{
898 my $idx; 1234 my $idx;
900 for reverse split /\s*,\s*/, 1236 for reverse split /\s*,\s*/,
901 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1237 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
902} 1238}
903 1239
904my @models = ( 1240my @models = (
905 [EV:: => AnyEvent::Impl::EV::], 1241 [EV:: => AnyEvent::Impl::EV:: , 1],
906 [Event:: => AnyEvent::Impl::Event::], 1242 [AnyEvent::Loop:: => AnyEvent::Impl::Perl:: , 1],
907 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::],
908 # everything below here will not be autoprobed 1243 # everything below here will not (normally) be autoprobed
909 # as the pureperl backend should work everywhere 1244 # as the pure perl backend should work everywhere
910 # and is usually faster 1245 # and is usually faster
1246 [Event:: => AnyEvent::Impl::Event::, 1],
1247 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1248 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1249 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
911 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles 1250 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
912 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
913 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
914 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 1251 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
915 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 1252 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
916 [Wx:: => AnyEvent::Impl::POE::], 1253 [Wx:: => AnyEvent::Impl::POE::],
917 [Prima:: => AnyEvent::Impl::POE::], 1254 [Prima:: => AnyEvent::Impl::POE::],
1255 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::],
1256 [Cocoa::EventLoop:: => AnyEvent::Impl::Cocoa::],
1257 [FLTK:: => AnyEvent::Impl::FLTK::],
918); 1258);
919 1259
920our %method = map +($_ => 1), qw(io timer time now signal child condvar one_event DESTROY); 1260our %method = map +($_ => 1),
1261 qw(io timer time now now_update signal child idle condvar DESTROY);
921 1262
922our @post_detect; 1263our @post_detect;
923 1264
924sub post_detect(&) { 1265sub post_detect(&) {
925 my ($cb) = @_; 1266 my ($cb) = @_;
926 1267
927 if ($MODEL) {
928 $cb->();
929
930 1
931 } else {
932 push @post_detect, $cb; 1268 push @post_detect, $cb;
933 1269
934 defined wantarray 1270 defined wantarray
935 ? bless \$cb, "AnyEvent::Util::PostDetect" 1271 ? bless \$cb, "AnyEvent::Util::postdetect"
936 : () 1272 : ()
1273}
1274
1275sub AnyEvent::Util::postdetect::DESTROY {
1276 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1277}
1278
1279sub detect() {
1280 # free some memory
1281 *detect = sub () { $MODEL };
1282
1283 local $!; # for good measure
1284 local $SIG{__DIE__};
1285
1286 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
1287 my $model = "AnyEvent::Impl::$1";
1288 if (eval "require $model") {
1289 $MODEL = $model;
1290 warn "AnyEvent: loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.\n" if $VERBOSE >= 2;
1291 } else {
1292 warn "AnyEvent: unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@" if $VERBOSE;
1293 }
937 } 1294 }
938}
939 1295
940sub AnyEvent::Util::PostDetect::DESTROY { 1296 # check for already loaded models
941 @post_detect = grep $_ != ${$_[0]}, @post_detect;
942}
943
944sub detect() {
945 unless ($MODEL) { 1297 unless ($MODEL) {
946 no strict 'refs'; 1298 for (@REGISTRY, @models) {
947 local $SIG{__DIE__}; 1299 my ($package, $model) = @$_;
948 1300 if (${"$package\::VERSION"} > 0) {
949 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
950 my $model = "AnyEvent::Impl::$1";
951 if (eval "require $model") { 1301 if (eval "require $model") {
952 $MODEL = $model; 1302 $MODEL = $model;
953 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1303 warn "AnyEvent: autodetected model '$model', using it.\n" if $VERBOSE >= 2;
954 } else { 1304 last;
955 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose; 1305 }
956 } 1306 }
957 } 1307 }
958 1308
959 # check for already loaded models
960 unless ($MODEL) { 1309 unless ($MODEL) {
1310 # try to autoload a model
961 for (@REGISTRY, @models) { 1311 for (@REGISTRY, @models) {
962 my ($package, $model) = @$_; 1312 my ($package, $model, $autoload) = @$_;
1313 if (
1314 $autoload
1315 and eval "require $package"
963 if (${"$package\::VERSION"} > 0) { 1316 and ${"$package\::VERSION"} > 0
964 if (eval "require $model") { 1317 and eval "require $model"
1318 ) {
965 $MODEL = $model; 1319 $MODEL = $model;
966 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1; 1320 warn "AnyEvent: autoloaded model '$model', using it.\n" if $VERBOSE >= 2;
967 last; 1321 last;
968 }
969 } 1322 }
970 } 1323 }
971 1324
972 unless ($MODEL) {
973 # try to load a model
974
975 for (@REGISTRY, @models) {
976 my ($package, $model) = @$_;
977 if (eval "require $package"
978 and ${"$package\::VERSION"} > 0
979 and eval "require $model") {
980 $MODEL = $model;
981 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1;
982 last;
983 }
984 }
985
986 $MODEL 1325 $MODEL
987 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib."; 1326 or die "AnyEvent: backend autodetection failed - did you properly install AnyEvent?\n";
988 }
989 } 1327 }
990
991 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
992
993 unshift @ISA, $MODEL;
994
995 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
996
997 (shift @post_detect)->() while @post_detect;
998 } 1328 }
1329
1330 @models = (); # free probe data
1331
1332 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1333 unshift @ISA, $MODEL;
1334
1335 # now nuke some methods that are overridden by the backend.
1336 # SUPER is not allowed.
1337 for (qw(time signal child idle)) {
1338 undef &{"AnyEvent::Base::$_"}
1339 if defined &{"$MODEL\::$_"};
1340 }
1341
1342 if ($ENV{PERL_ANYEVENT_STRICT}) {
1343 eval { require AnyEvent::Strict };
1344 warn "AnyEvent: cannot load AnyEvent::Strict: $@"
1345 if $@ && $VERBOSE;
1346 }
1347
1348 (shift @post_detect)->() while @post_detect;
1349
1350 *post_detect = sub(&) {
1351 shift->();
1352
1353 undef
1354 };
999 1355
1000 $MODEL 1356 $MODEL
1001} 1357}
1002 1358
1003sub AUTOLOAD { 1359sub AUTOLOAD {
1004 (my $func = $AUTOLOAD) =~ s/.*://; 1360 (my $func = $AUTOLOAD) =~ s/.*://;
1005 1361
1006 $method{$func} 1362 $method{$func}
1007 or croak "$func: not a valid method for AnyEvent objects"; 1363 or Carp::croak "$func: not a valid AnyEvent class method";
1008 1364
1009 detect unless $MODEL; 1365 detect;
1010 1366
1011 my $class = shift; 1367 my $class = shift;
1012 $class->$func (@_); 1368 $class->$func (@_);
1369}
1370
1371our $POSTPONE_W;
1372our @POSTPONE;
1373
1374sub _postpone_exec {
1375 undef $POSTPONE_W;
1376 (pop @POSTPONE)->()
1377 while @POSTPONE;
1378}
1379
1380sub postpone(&) {
1381 push @POSTPONE, shift;
1382
1383 $POSTPONE_W ||= AE::timer (0, 0, \&_postpone_exec);
1384
1385 ()
1013} 1386}
1014 1387
1015# utility function to dup a filehandle. this is used by many backends 1388# utility function to dup a filehandle. this is used by many backends
1016# to support binding more than one watcher per filehandle (they usually 1389# to support binding more than one watcher per filehandle (they usually
1017# allow only one watcher per fd, so we dup it to get a different one). 1390# allow only one watcher per fd, so we dup it to get a different one).
1018sub _dupfh($$$$) { 1391sub _dupfh($$;$$) {
1019 my ($poll, $fh, $r, $w) = @_; 1392 my ($poll, $fh, $r, $w) = @_;
1020 1393
1021 # cygwin requires the fh mode to be matching, unix doesn't 1394 # cygwin requires the fh mode to be matching, unix doesn't
1022 my ($rw, $mode) = $poll eq "r" ? ($r, "<") 1395 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1023 : $poll eq "w" ? ($w, ">")
1024 : Carp::croak "AnyEvent->io requires poll set to either 'r' or 'w'";
1025 1396
1026 open my $fh2, "$mode&" . fileno $fh 1397 open my $fh2, $mode, $fh
1027 or die "cannot dup() filehandle: $!"; 1398 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1028 1399
1029 # we assume CLOEXEC is already set by perl in all important cases 1400 # we assume CLOEXEC is already set by perl in all important cases
1030 1401
1031 ($fh2, $rw) 1402 ($fh2, $rw)
1032} 1403}
1033 1404
1405=head1 SIMPLIFIED AE API
1406
1407Starting with version 5.0, AnyEvent officially supports a second, much
1408simpler, API that is designed to reduce the calling, typing and memory
1409overhead by using function call syntax and a fixed number of parameters.
1410
1411See the L<AE> manpage for details.
1412
1413=cut
1414
1415package AE;
1416
1417our $VERSION = $AnyEvent::VERSION;
1418
1419# fall back to the main API by default - backends and AnyEvent::Base
1420# implementations can overwrite these.
1421
1422sub io($$$) {
1423 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1424}
1425
1426sub timer($$$) {
1427 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1428}
1429
1430sub signal($$) {
1431 AnyEvent->signal (signal => $_[0], cb => $_[1])
1432}
1433
1434sub child($$) {
1435 AnyEvent->child (pid => $_[0], cb => $_[1])
1436}
1437
1438sub idle($) {
1439 AnyEvent->idle (cb => $_[0])
1440}
1441
1442sub cv(;&) {
1443 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1444}
1445
1446sub now() {
1447 AnyEvent->now
1448}
1449
1450sub now_update() {
1451 AnyEvent->now_update
1452}
1453
1454sub time() {
1455 AnyEvent->time
1456}
1457
1458*postpone = \&AnyEvent::postpone;
1459
1034package AnyEvent::Base; 1460package AnyEvent::Base;
1035 1461
1036# default implementation for now and time 1462# default implementations for many methods
1037 1463
1038BEGIN { 1464sub time {
1465 eval q{ # poor man's autoloading {}
1466 # probe for availability of Time::HiRes
1039 if (eval "use Time::HiRes (); time (); 1") { 1467 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1468 warn "AnyEvent: using Time::HiRes for sub-second timing accuracy.\n" if $VERBOSE >= 8;
1040 *_time = \&Time::HiRes::time; 1469 *AE::time = \&Time::HiRes::time;
1041 # if (eval "use POSIX (); (POSIX::times())... 1470 # if (eval "use POSIX (); (POSIX::times())...
1042 } else { 1471 } else {
1472 warn "AnyEvent: using built-in time(), WARNING, no sub-second resolution!\n" if $VERBOSE;
1043 *_time = sub { time }; # epic fail 1473 *AE::time = sub (){ time }; # epic fail
1474 }
1475
1476 *time = sub { AE::time }; # different prototypes
1477 };
1478 die if $@;
1479
1480 &time
1481}
1482
1483*now = \&time;
1484
1485sub now_update { }
1486
1487sub _poll {
1488 Carp::croak "$AnyEvent::MODEL does not support blocking waits. Caught";
1489}
1490
1491# default implementation for ->condvar
1492# in fact, the default should not be overwritten
1493
1494sub condvar {
1495 eval q{ # poor man's autoloading {}
1496 *condvar = sub {
1497 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1498 };
1499
1500 *AE::cv = sub (;&) {
1501 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
1502 };
1503 };
1504 die if $@;
1505
1506 &condvar
1507}
1508
1509# default implementation for ->signal
1510
1511our $HAVE_ASYNC_INTERRUPT;
1512
1513sub _have_async_interrupt() {
1514 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1515 && eval "use Async::Interrupt 1.02 (); 1")
1516 unless defined $HAVE_ASYNC_INTERRUPT;
1517
1518 $HAVE_ASYNC_INTERRUPT
1519}
1520
1521our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1522our (%SIG_ASY, %SIG_ASY_W);
1523our ($SIG_COUNT, $SIG_TW);
1524
1525# install a dummy wakeup watcher to reduce signal catching latency
1526# used by Impls
1527sub _sig_add() {
1528 unless ($SIG_COUNT++) {
1529 # try to align timer on a full-second boundary, if possible
1530 my $NOW = AE::now;
1531
1532 $SIG_TW = AE::timer
1533 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1534 $MAX_SIGNAL_LATENCY,
1535 sub { } # just for the PERL_ASYNC_CHECK
1536 ;
1044 } 1537 }
1045} 1538}
1046 1539
1047sub time { _time } 1540sub _sig_del {
1048sub now { _time } 1541 undef $SIG_TW
1049 1542 unless --$SIG_COUNT;
1050# default implementation for ->condvar
1051
1052sub condvar {
1053 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar::
1054} 1543}
1055 1544
1056# default implementation for ->signal 1545our $_sig_name_init; $_sig_name_init = sub {
1546 eval q{ # poor man's autoloading {}
1547 undef $_sig_name_init;
1057 1548
1058our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO); 1549 if (_have_async_interrupt) {
1550 *sig2num = \&Async::Interrupt::sig2num;
1551 *sig2name = \&Async::Interrupt::sig2name;
1552 } else {
1553 require Config;
1059 1554
1060sub _signal_exec { 1555 my %signame2num;
1061 sysread $SIGPIPE_R, my $dummy, 4; 1556 @signame2num{ split ' ', $Config::Config{sig_name} }
1557 = split ' ', $Config::Config{sig_num};
1062 1558
1063 while (%SIG_EV) { 1559 my @signum2name;
1064 for (keys %SIG_EV) { 1560 @signum2name[values %signame2num] = keys %signame2num;
1065 delete $SIG_EV{$_}; 1561
1066 $_->() for values %{ $SIG_CB{$_} || {} }; 1562 *sig2num = sub($) {
1563 $_[0] > 0 ? shift : $signame2num{+shift}
1564 };
1565 *sig2name = sub ($) {
1566 $_[0] > 0 ? $signum2name[+shift] : shift
1567 };
1067 } 1568 }
1068 } 1569 };
1069} 1570 die if $@;
1571};
1572
1573sub sig2num ($) { &$_sig_name_init; &sig2num }
1574sub sig2name($) { &$_sig_name_init; &sig2name }
1070 1575
1071sub signal { 1576sub signal {
1072 my (undef, %arg) = @_; 1577 eval q{ # poor man's autoloading {}
1578 # probe for availability of Async::Interrupt
1579 if (_have_async_interrupt) {
1580 warn "AnyEvent: using Async::Interrupt for race-free signal handling.\n" if $VERBOSE >= 8;
1073 1581
1074 unless ($SIGPIPE_R) { 1582 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1075 require Fcntl; 1583 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1076 1584
1077 if (AnyEvent::WIN32) {
1078 require AnyEvent::Util;
1079
1080 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1081 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R) if $SIGPIPE_R;
1082 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W) if $SIGPIPE_W; # just in case
1083 } else { 1585 } else {
1586 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8;
1587
1588 if (AnyEvent::WIN32) {
1589 require AnyEvent::Util;
1590
1591 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1592 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1593 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1594 } else {
1084 pipe $SIGPIPE_R, $SIGPIPE_W; 1595 pipe $SIGPIPE_R, $SIGPIPE_W;
1085 fcntl $SIGPIPE_R, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_R; 1596 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1086 fcntl $SIGPIPE_W, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_W; # just in case 1597 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1598
1599 # not strictly required, as $^F is normally 2, but let's make sure...
1600 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1601 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1602 }
1603
1604 $SIGPIPE_R
1605 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1606
1607 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1087 } 1608 }
1088 1609
1089 $SIGPIPE_R 1610 *signal = $HAVE_ASYNC_INTERRUPT
1090 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n"; 1611 ? sub {
1612 my (undef, %arg) = @_;
1091 1613
1092 fcntl $SIGPIPE_R, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC; 1614 # async::interrupt
1093 fcntl $SIGPIPE_W, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1094
1095 $SIG_IO = AnyEvent->io (fh => $SIGPIPE_R, poll => "r", cb => \&_signal_exec);
1096 }
1097
1098 my $signal = uc $arg{signal} 1615 my $signal = sig2num $arg{signal};
1099 or Carp::croak "required option 'signal' is missing";
1100
1101 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1616 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1617
1618 $SIG_ASY{$signal} ||= new Async::Interrupt
1619 cb => sub { undef $SIG_EV{$signal} },
1620 signal => $signal,
1621 pipe => [$SIGPIPE_R->filenos],
1622 pipe_autodrain => 0,
1623 ;
1624
1625 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1626 }
1627 : sub {
1628 my (undef, %arg) = @_;
1629
1630 # pure perl
1631 my $signal = sig2name $arg{signal};
1632 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1633
1102 $SIG{$signal} ||= sub { 1634 $SIG{$signal} ||= sub {
1635 local $!;
1103 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV; 1636 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1104 undef $SIG_EV{$signal}; 1637 undef $SIG_EV{$signal};
1638 };
1639
1640 # can't do signal processing without introducing races in pure perl,
1641 # so limit the signal latency.
1642 _sig_add;
1643
1644 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1645 }
1646 ;
1647
1648 *AnyEvent::Base::signal::DESTROY = sub {
1649 my ($signal, $cb) = @{$_[0]};
1650
1651 _sig_del;
1652
1653 delete $SIG_CB{$signal}{$cb};
1654
1655 $HAVE_ASYNC_INTERRUPT
1656 ? delete $SIG_ASY{$signal}
1657 : # delete doesn't work with older perls - they then
1658 # print weird messages, or just unconditionally exit
1659 # instead of getting the default action.
1660 undef $SIG{$signal}
1661 unless keys %{ $SIG_CB{$signal} };
1662 };
1663
1664 *_signal_exec = sub {
1665 $HAVE_ASYNC_INTERRUPT
1666 ? $SIGPIPE_R->drain
1667 : sysread $SIGPIPE_R, (my $dummy), 9;
1668
1669 while (%SIG_EV) {
1670 for (keys %SIG_EV) {
1671 delete $SIG_EV{$_};
1672 $_->() for values %{ $SIG_CB{$_} || {} };
1673 }
1674 }
1675 };
1105 }; 1676 };
1677 die if $@;
1106 1678
1107 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1679 &signal
1108}
1109
1110sub AnyEvent::Base::Signal::DESTROY {
1111 my ($signal, $cb) = @{$_[0]};
1112
1113 delete $SIG_CB{$signal}{$cb};
1114
1115 delete $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
1116} 1680}
1117 1681
1118# default implementation for ->child 1682# default implementation for ->child
1119 1683
1120our %PID_CB; 1684our %PID_CB;
1121our $CHLD_W; 1685our $CHLD_W;
1122our $CHLD_DELAY_W; 1686our $CHLD_DELAY_W;
1123our $PID_IDLE;
1124our $WNOHANG;
1125 1687
1126sub _child_wait { 1688# used by many Impl's
1127 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1689sub _emit_childstatus($$) {
1690 my (undef, $rpid, $rstatus) = @_;
1691
1692 $_->($rpid, $rstatus)
1128 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1693 for values %{ $PID_CB{$rpid} || {} },
1129 (values %{ $PID_CB{0} || {} }); 1694 values %{ $PID_CB{0} || {} };
1130 }
1131
1132 undef $PID_IDLE;
1133}
1134
1135sub _sigchld {
1136 # make sure we deliver these changes "synchronous" with the event loop.
1137 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub {
1138 undef $CHLD_DELAY_W;
1139 &_child_wait;
1140 });
1141} 1695}
1142 1696
1143sub child { 1697sub child {
1698 eval q{ # poor man's autoloading {}
1699 *_sigchld = sub {
1700 my $pid;
1701
1702 AnyEvent->_emit_childstatus ($pid, $?)
1703 while ($pid = waitpid -1, WNOHANG) > 0;
1704 };
1705
1706 *child = sub {
1144 my (undef, %arg) = @_; 1707 my (undef, %arg) = @_;
1145 1708
1146 defined (my $pid = $arg{pid} + 0) 1709 my $pid = $arg{pid};
1147 or Carp::croak "required option 'pid' is missing"; 1710 my $cb = $arg{cb};
1148 1711
1149 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1712 $PID_CB{$pid}{$cb+0} = $cb;
1150 1713
1151 unless ($WNOHANG) {
1152 $WNOHANG = eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1153 }
1154
1155 unless ($CHLD_W) { 1714 unless ($CHLD_W) {
1156 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1715 $CHLD_W = AE::signal CHLD => \&_sigchld;
1157 # child could be a zombie already, so make at least one round 1716 # child could be a zombie already, so make at least one round
1158 &_sigchld; 1717 &_sigchld;
1159 } 1718 }
1160 1719
1161 bless [$pid, $arg{cb}], "AnyEvent::Base::Child" 1720 bless [$pid, $cb+0], "AnyEvent::Base::child"
1162} 1721 };
1163 1722
1164sub AnyEvent::Base::Child::DESTROY { 1723 *AnyEvent::Base::child::DESTROY = sub {
1165 my ($pid, $cb) = @{$_[0]}; 1724 my ($pid, $icb) = @{$_[0]};
1166 1725
1167 delete $PID_CB{$pid}{$cb}; 1726 delete $PID_CB{$pid}{$icb};
1168 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1727 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1169 1728
1170 undef $CHLD_W unless keys %PID_CB; 1729 undef $CHLD_W unless keys %PID_CB;
1730 };
1731 };
1732 die if $@;
1733
1734 &child
1735}
1736
1737# idle emulation is done by simply using a timer, regardless
1738# of whether the process is idle or not, and not letting
1739# the callback use more than 50% of the time.
1740sub idle {
1741 eval q{ # poor man's autoloading {}
1742 *idle = sub {
1743 my (undef, %arg) = @_;
1744
1745 my ($cb, $w, $rcb) = $arg{cb};
1746
1747 $rcb = sub {
1748 if ($cb) {
1749 $w = _time;
1750 &$cb;
1751 $w = _time - $w;
1752
1753 # never use more then 50% of the time for the idle watcher,
1754 # within some limits
1755 $w = 0.0001 if $w < 0.0001;
1756 $w = 5 if $w > 5;
1757
1758 $w = AE::timer $w, 0, $rcb;
1759 } else {
1760 # clean up...
1761 undef $w;
1762 undef $rcb;
1763 }
1764 };
1765
1766 $w = AE::timer 0.05, 0, $rcb;
1767
1768 bless \\$cb, "AnyEvent::Base::idle"
1769 };
1770
1771 *AnyEvent::Base::idle::DESTROY = sub {
1772 undef $${$_[0]};
1773 };
1774 };
1775 die if $@;
1776
1777 &idle
1171} 1778}
1172 1779
1173package AnyEvent::CondVar; 1780package AnyEvent::CondVar;
1174 1781
1175our @ISA = AnyEvent::CondVar::Base::; 1782our @ISA = AnyEvent::CondVar::Base::;
1176 1783
1784# only to be used for subclassing
1785sub new {
1786 my $class = shift;
1787 bless AnyEvent->condvar (@_), $class
1788}
1789
1177package AnyEvent::CondVar::Base; 1790package AnyEvent::CondVar::Base;
1178 1791
1179use overload 1792#use overload
1180 '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, 1793# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1181 fallback => 1; 1794# fallback => 1;
1795
1796# save 300+ kilobytes by dirtily hardcoding overloading
1797${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1798*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1799*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1800${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1801
1802our $WAITING;
1182 1803
1183sub _send { 1804sub _send {
1184 # nop 1805 # nop
1806}
1807
1808sub _wait {
1809 AnyEvent->_poll until $_[0]{_ae_sent};
1185} 1810}
1186 1811
1187sub send { 1812sub send {
1188 my $cv = shift; 1813 my $cv = shift;
1189 $cv->{_ae_sent} = [@_]; 1814 $cv->{_ae_sent} = [@_];
1198 1823
1199sub ready { 1824sub ready {
1200 $_[0]{_ae_sent} 1825 $_[0]{_ae_sent}
1201} 1826}
1202 1827
1203sub _wait {
1204 AnyEvent->one_event while !$_[0]{_ae_sent};
1205}
1206
1207sub recv { 1828sub recv {
1829 unless ($_[0]{_ae_sent}) {
1830 $WAITING
1831 and Carp::croak "AnyEvent::CondVar: recursive blocking wait attempted";
1832
1833 local $WAITING = 1;
1208 $_[0]->_wait; 1834 $_[0]->_wait;
1835 }
1209 1836
1210 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1837 $_[0]{_ae_croak}
1211 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1838 and Carp::croak $_[0]{_ae_croak};
1839
1840 wantarray
1841 ? @{ $_[0]{_ae_sent} }
1842 : $_[0]{_ae_sent}[0]
1212} 1843}
1213 1844
1214sub cb { 1845sub cb {
1215 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1846 my $cv = shift;
1847
1848 @_
1849 and $cv->{_ae_cb} = shift
1850 and $cv->{_ae_sent}
1851 and (delete $cv->{_ae_cb})->($cv);
1852
1216 $_[0]{_ae_cb} 1853 $cv->{_ae_cb}
1217} 1854}
1218 1855
1219sub begin { 1856sub begin {
1220 ++$_[0]{_ae_counter}; 1857 ++$_[0]{_ae_counter};
1221 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 1858 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
1226 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } }; 1863 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } };
1227} 1864}
1228 1865
1229# undocumented/compatibility with pre-3.4 1866# undocumented/compatibility with pre-3.4
1230*broadcast = \&send; 1867*broadcast = \&send;
1231*wait = \&_wait; 1868*wait = \&recv;
1232 1869
1233=head1 ERROR AND EXCEPTION HANDLING 1870=head1 ERROR AND EXCEPTION HANDLING
1234 1871
1235In general, AnyEvent does not do any error handling - it relies on the 1872In general, AnyEvent does not do any error handling - it relies on the
1236caller to do that if required. The L<AnyEvent::Strict> module (see also 1873caller to do that if required. The L<AnyEvent::Strict> module (see also
1249so on. 1886so on.
1250 1887
1251=head1 ENVIRONMENT VARIABLES 1888=head1 ENVIRONMENT VARIABLES
1252 1889
1253The following environment variables are used by this module or its 1890The following environment variables are used by this module or its
1254submodules: 1891submodules.
1892
1893Note that AnyEvent will remove I<all> environment variables starting with
1894C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
1895enabled.
1255 1896
1256=over 4 1897=over 4
1257 1898
1258=item C<PERL_ANYEVENT_VERBOSE> 1899=item C<PERL_ANYEVENT_VERBOSE>
1259 1900
1266C<PERL_ANYEVENT_MODEL>. 1907C<PERL_ANYEVENT_MODEL>.
1267 1908
1268When set to C<2> or higher, cause AnyEvent to report to STDERR which event 1909When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1269model it chooses. 1910model it chooses.
1270 1911
1912When set to C<8> or higher, then AnyEvent will report extra information on
1913which optional modules it loads and how it implements certain features.
1914
1271=item C<PERL_ANYEVENT_STRICT> 1915=item C<PERL_ANYEVENT_STRICT>
1272 1916
1273AnyEvent does not do much argument checking by default, as thorough 1917AnyEvent does not do much argument checking by default, as thorough
1274argument checking is very costly. Setting this variable to a true value 1918argument checking is very costly. Setting this variable to a true value
1275will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly 1919will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1276check the arguments passed to most method calls. If it finds any problems 1920check the arguments passed to most method calls. If it finds any problems,
1277it will croak. 1921it will croak.
1278 1922
1279In other words, enables "strict" mode. 1923In other words, enables "strict" mode.
1280 1924
1281Unlike C<use strict>, it is definitely recommended ot keep it off in 1925Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
1282production. Keeping C<PERL_ANYEVENT_STRICT=1> in your environment while 1926>>, it is definitely recommended to keep it off in production. Keeping
1283developing programs can be very useful, however. 1927C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
1928can be very useful, however.
1284 1929
1285=item C<PERL_ANYEVENT_MODEL> 1930=item C<PERL_ANYEVENT_MODEL>
1286 1931
1287This can be used to specify the event model to be used by AnyEvent, before 1932This can be used to specify the event model to be used by AnyEvent, before
1288auto detection and -probing kicks in. It must be a string consisting 1933auto detection and -probing kicks in. It must be a string consisting
1291used as event model. If it fails to load AnyEvent will proceed with 1936used as event model. If it fails to load AnyEvent will proceed with
1292auto detection and -probing. 1937auto detection and -probing.
1293 1938
1294This functionality might change in future versions. 1939This functionality might change in future versions.
1295 1940
1296For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you 1941For example, to force the pure perl model (L<AnyEvent::Loop::Perl>) you
1297could start your program like this: 1942could start your program like this:
1298 1943
1299 PERL_ANYEVENT_MODEL=Perl perl ... 1944 PERL_ANYEVENT_MODEL=Perl perl ...
1300 1945
1301=item C<PERL_ANYEVENT_PROTOCOLS> 1946=item C<PERL_ANYEVENT_PROTOCOLS>
1331 1976
1332=item C<PERL_ANYEVENT_MAX_FORKS> 1977=item C<PERL_ANYEVENT_MAX_FORKS>
1333 1978
1334The maximum number of child processes that C<AnyEvent::Util::fork_call> 1979The maximum number of child processes that C<AnyEvent::Util::fork_call>
1335will create in parallel. 1980will create in parallel.
1981
1982=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
1983
1984The default value for the C<max_outstanding> parameter for the default DNS
1985resolver - this is the maximum number of parallel DNS requests that are
1986sent to the DNS server.
1987
1988=item C<PERL_ANYEVENT_RESOLV_CONF>
1989
1990The file to use instead of F</etc/resolv.conf> (or OS-specific
1991configuration) in the default resolver. When set to the empty string, no
1992default config will be used.
1993
1994=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
1995
1996When neither C<ca_file> nor C<ca_path> was specified during
1997L<AnyEvent::TLS> context creation, and either of these environment
1998variables exist, they will be used to specify CA certificate locations
1999instead of a system-dependent default.
2000
2001=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
2002
2003When these are set to C<1>, then the respective modules are not
2004loaded. Mostly good for testing AnyEvent itself.
1336 2005
1337=back 2006=back
1338 2007
1339=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 2008=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1340 2009
1398 warn "read: $input\n"; # output what has been read 2067 warn "read: $input\n"; # output what has been read
1399 $cv->send if $input =~ /^q/i; # quit program if /^q/i 2068 $cv->send if $input =~ /^q/i; # quit program if /^q/i
1400 }, 2069 },
1401 ); 2070 );
1402 2071
1403 my $time_watcher; # can only be used once
1404
1405 sub new_timer {
1406 $timer = AnyEvent->timer (after => 1, cb => sub { 2072 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
1407 warn "timeout\n"; # print 'timeout' about every second 2073 warn "timeout\n"; # print 'timeout' at most every second
1408 &new_timer; # and restart the time
1409 }); 2074 });
1410 }
1411
1412 new_timer; # create first timer
1413 2075
1414 $cv->recv; # wait until user enters /^q/i 2076 $cv->recv; # wait until user enters /^q/i
1415 2077
1416=head1 REAL-WORLD EXAMPLE 2078=head1 REAL-WORLD EXAMPLE
1417 2079
1490 2152
1491The actual code goes further and collects all errors (C<die>s, exceptions) 2153The actual code goes further and collects all errors (C<die>s, exceptions)
1492that occurred during request processing. The C<result> method detects 2154that occurred during request processing. The C<result> method detects
1493whether an exception as thrown (it is stored inside the $txn object) 2155whether an exception as thrown (it is stored inside the $txn object)
1494and just throws the exception, which means connection errors and other 2156and just throws the exception, which means connection errors and other
1495problems get reported tot he code that tries to use the result, not in a 2157problems get reported to the code that tries to use the result, not in a
1496random callback. 2158random callback.
1497 2159
1498All of this enables the following usage styles: 2160All of this enables the following usage styles:
1499 2161
15001. Blocking: 21621. Blocking:
1548through AnyEvent. The benchmark creates a lot of timers (with a zero 2210through AnyEvent. The benchmark creates a lot of timers (with a zero
1549timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2211timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1550which it is), lets them fire exactly once and destroys them again. 2212which it is), lets them fire exactly once and destroys them again.
1551 2213
1552Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2214Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1553distribution. 2215distribution. It uses the L<AE> interface, which makes a real difference
2216for the EV and Perl backends only.
1554 2217
1555=head3 Explanation of the columns 2218=head3 Explanation of the columns
1556 2219
1557I<watcher> is the number of event watchers created/destroyed. Since 2220I<watcher> is the number of event watchers created/destroyed. Since
1558different event models feature vastly different performances, each event 2221different event models feature vastly different performances, each event
1579watcher. 2242watcher.
1580 2243
1581=head3 Results 2244=head3 Results
1582 2245
1583 name watchers bytes create invoke destroy comment 2246 name watchers bytes create invoke destroy comment
1584 EV/EV 400000 224 0.47 0.35 0.27 EV native interface 2247 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1585 EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers 2248 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1586 CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal 2249 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1587 Perl/Any 100000 452 4.13 0.73 0.95 pure perl implementation 2250 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1588 Event/Event 16000 517 32.20 31.80 0.81 Event native interface 2251 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1589 Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers 2252 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2253 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2254 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1590 Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour 2255 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1591 Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers 2256 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1592 POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event 2257 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1593 POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select 2258 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1594 2259
1595=head3 Discussion 2260=head3 Discussion
1596 2261
1597The benchmark does I<not> measure scalability of the event loop very 2262The benchmark does I<not> measure scalability of the event loop very
1598well. For example, a select-based event loop (such as the pure perl one) 2263well. For example, a select-based event loop (such as the pure perl one)
1610benchmark machine, handling an event takes roughly 1600 CPU cycles with 2275benchmark machine, handling an event takes roughly 1600 CPU cycles with
1611EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2276EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1612cycles with POE. 2277cycles with POE.
1613 2278
1614C<EV> is the sole leader regarding speed and memory use, which are both 2279C<EV> is the sole leader regarding speed and memory use, which are both
1615maximal/minimal, respectively. Even when going through AnyEvent, it uses 2280maximal/minimal, respectively. When using the L<AE> API there is zero
2281overhead (when going through the AnyEvent API create is about 5-6 times
2282slower, with other times being equal, so still uses far less memory than
1616far less memory than any other event loop and is still faster than Event 2283any other event loop and is still faster than Event natively).
1617natively.
1618 2284
1619The pure perl implementation is hit in a few sweet spots (both the 2285The pure perl implementation is hit in a few sweet spots (both the
1620constant timeout and the use of a single fd hit optimisations in the perl 2286constant timeout and the use of a single fd hit optimisations in the perl
1621interpreter and the backend itself). Nevertheless this shows that it 2287interpreter and the backend itself). Nevertheless this shows that it
1622adds very little overhead in itself. Like any select-based backend its 2288adds very little overhead in itself. Like any select-based backend its
1623performance becomes really bad with lots of file descriptors (and few of 2289performance becomes really bad with lots of file descriptors (and few of
1624them active), of course, but this was not subject of this benchmark. 2290them active), of course, but this was not subject of this benchmark.
1625 2291
1626The C<Event> module has a relatively high setup and callback invocation 2292The C<Event> module has a relatively high setup and callback invocation
1627cost, but overall scores in on the third place. 2293cost, but overall scores in on the third place.
2294
2295C<IO::Async> performs admirably well, about on par with C<Event>, even
2296when using its pure perl backend.
1628 2297
1629C<Glib>'s memory usage is quite a bit higher, but it features a 2298C<Glib>'s memory usage is quite a bit higher, but it features a
1630faster callback invocation and overall ends up in the same class as 2299faster callback invocation and overall ends up in the same class as
1631C<Event>. However, Glib scales extremely badly, doubling the number of 2300C<Event>. However, Glib scales extremely badly, doubling the number of
1632watchers increases the processing time by more than a factor of four, 2301watchers increases the processing time by more than a factor of four,
1693In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2362In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1694(1%) are active. This mirrors the activity of large servers with many 2363(1%) are active. This mirrors the activity of large servers with many
1695connections, most of which are idle at any one point in time. 2364connections, most of which are idle at any one point in time.
1696 2365
1697Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2366Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1698distribution. 2367distribution. It uses the L<AE> interface, which makes a real difference
2368for the EV and Perl backends only.
1699 2369
1700=head3 Explanation of the columns 2370=head3 Explanation of the columns
1701 2371
1702I<sockets> is the number of sockets, and twice the number of "servers" (as 2372I<sockets> is the number of sockets, and twice the number of "servers" (as
1703each server has a read and write socket end). 2373each server has a read and write socket end).
1710it to another server. This includes deleting the old timeout and creating 2380it to another server. This includes deleting the old timeout and creating
1711a new one that moves the timeout into the future. 2381a new one that moves the timeout into the future.
1712 2382
1713=head3 Results 2383=head3 Results
1714 2384
1715 name sockets create request 2385 name sockets create request
1716 EV 20000 69.01 11.16 2386 EV 20000 62.66 7.99
1717 Perl 20000 73.32 35.87 2387 Perl 20000 68.32 32.64
1718 Event 20000 212.62 257.32 2388 IOAsync 20000 174.06 101.15 epoll
1719 Glib 20000 651.16 1896.30 2389 IOAsync 20000 174.67 610.84 poll
2390 Event 20000 202.69 242.91
2391 Glib 20000 557.01 1689.52
1720 POE 20000 349.67 12317.24 uses POE::Loop::Event 2392 POE 20000 341.54 12086.32 uses POE::Loop::Event
1721 2393
1722=head3 Discussion 2394=head3 Discussion
1723 2395
1724This benchmark I<does> measure scalability and overall performance of the 2396This benchmark I<does> measure scalability and overall performance of the
1725particular event loop. 2397particular event loop.
1727EV is again fastest. Since it is using epoll on my system, the setup time 2399EV is again fastest. Since it is using epoll on my system, the setup time
1728is relatively high, though. 2400is relatively high, though.
1729 2401
1730Perl surprisingly comes second. It is much faster than the C-based event 2402Perl surprisingly comes second. It is much faster than the C-based event
1731loops Event and Glib. 2403loops Event and Glib.
2404
2405IO::Async performs very well when using its epoll backend, and still quite
2406good compared to Glib when using its pure perl backend.
1732 2407
1733Event suffers from high setup time as well (look at its code and you will 2408Event suffers from high setup time as well (look at its code and you will
1734understand why). Callback invocation also has a high overhead compared to 2409understand why). Callback invocation also has a high overhead compared to
1735the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2410the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1736uses select or poll in basically all documented configurations. 2411uses select or poll in basically all documented configurations.
1799=item * C-based event loops perform very well with small number of 2474=item * C-based event loops perform very well with small number of
1800watchers, as the management overhead dominates. 2475watchers, as the management overhead dominates.
1801 2476
1802=back 2477=back
1803 2478
2479=head2 THE IO::Lambda BENCHMARK
2480
2481Recently I was told about the benchmark in the IO::Lambda manpage, which
2482could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2483simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2484shouldn't come as a surprise to anybody). As such, the benchmark is
2485fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2486very optimal. But how would AnyEvent compare when used without the extra
2487baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2488
2489The benchmark itself creates an echo-server, and then, for 500 times,
2490connects to the echo server, sends a line, waits for the reply, and then
2491creates the next connection. This is a rather bad benchmark, as it doesn't
2492test the efficiency of the framework or much non-blocking I/O, but it is a
2493benchmark nevertheless.
2494
2495 name runtime
2496 Lambda/select 0.330 sec
2497 + optimized 0.122 sec
2498 Lambda/AnyEvent 0.327 sec
2499 + optimized 0.138 sec
2500 Raw sockets/select 0.077 sec
2501 POE/select, components 0.662 sec
2502 POE/select, raw sockets 0.226 sec
2503 POE/select, optimized 0.404 sec
2504
2505 AnyEvent/select/nb 0.085 sec
2506 AnyEvent/EV/nb 0.068 sec
2507 +state machine 0.134 sec
2508
2509The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2510benchmarks actually make blocking connects and use 100% blocking I/O,
2511defeating the purpose of an event-based solution. All of the newly
2512written AnyEvent benchmarks use 100% non-blocking connects (using
2513AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2514resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2515generally require a lot more bookkeeping and event handling than blocking
2516connects (which involve a single syscall only).
2517
2518The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2519offers similar expressive power as POE and IO::Lambda, using conventional
2520Perl syntax. This means that both the echo server and the client are 100%
2521non-blocking, further placing it at a disadvantage.
2522
2523As you can see, the AnyEvent + EV combination even beats the
2524hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2525backend easily beats IO::Lambda and POE.
2526
2527And even the 100% non-blocking version written using the high-level (and
2528slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2529higher level ("unoptimised") abstractions by a large margin, even though
2530it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2531
2532The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2533F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2534part of the IO::Lambda distribution and were used without any changes.
2535
1804 2536
1805=head1 SIGNALS 2537=head1 SIGNALS
1806 2538
1807AnyEvent currently installs handlers for these signals: 2539AnyEvent currently installs handlers for these signals:
1808 2540
1811=item SIGCHLD 2543=item SIGCHLD
1812 2544
1813A handler for C<SIGCHLD> is installed by AnyEvent's child watcher 2545A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
1814emulation for event loops that do not support them natively. Also, some 2546emulation for event loops that do not support them natively. Also, some
1815event loops install a similar handler. 2547event loops install a similar handler.
2548
2549Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2550AnyEvent will reset it to default, to avoid losing child exit statuses.
1816 2551
1817=item SIGPIPE 2552=item SIGPIPE
1818 2553
1819A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef> 2554A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
1820when AnyEvent gets loaded. 2555when AnyEvent gets loaded.
1832 2567
1833=back 2568=back
1834 2569
1835=cut 2570=cut
1836 2571
2572undef $SIG{CHLD}
2573 if $SIG{CHLD} eq 'IGNORE';
2574
1837$SIG{PIPE} = sub { } 2575$SIG{PIPE} = sub { }
1838 unless defined $SIG{PIPE}; 2576 unless defined $SIG{PIPE};
1839 2577
2578=head1 RECOMMENDED/OPTIONAL MODULES
2579
2580One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2581its built-in modules) are required to use it.
2582
2583That does not mean that AnyEvent won't take advantage of some additional
2584modules if they are installed.
2585
2586This section explains which additional modules will be used, and how they
2587affect AnyEvent's operation.
2588
2589=over 4
2590
2591=item L<Async::Interrupt>
2592
2593This slightly arcane module is used to implement fast signal handling: To
2594my knowledge, there is no way to do completely race-free and quick
2595signal handling in pure perl. To ensure that signals still get
2596delivered, AnyEvent will start an interval timer to wake up perl (and
2597catch the signals) with some delay (default is 10 seconds, look for
2598C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2599
2600If this module is available, then it will be used to implement signal
2601catching, which means that signals will not be delayed, and the event loop
2602will not be interrupted regularly, which is more efficient (and good for
2603battery life on laptops).
2604
2605This affects not just the pure-perl event loop, but also other event loops
2606that have no signal handling on their own (e.g. Glib, Tk, Qt).
2607
2608Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2609and either employ their own workarounds (POE) or use AnyEvent's workaround
2610(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2611does nothing for those backends.
2612
2613=item L<EV>
2614
2615This module isn't really "optional", as it is simply one of the backend
2616event loops that AnyEvent can use. However, it is simply the best event
2617loop available in terms of features, speed and stability: It supports
2618the AnyEvent API optimally, implements all the watcher types in XS, does
2619automatic timer adjustments even when no monotonic clock is available,
2620can take avdantage of advanced kernel interfaces such as C<epoll> and
2621C<kqueue>, and is the fastest backend I<by far>. You can even embed
2622L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2623
2624If you only use backends that rely on another event loop (e.g. C<Tk>),
2625then this module will do nothing for you.
2626
2627=item L<Guard>
2628
2629The guard module, when used, will be used to implement
2630C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2631lot less memory), but otherwise doesn't affect guard operation much. It is
2632purely used for performance.
2633
2634=item L<JSON> and L<JSON::XS>
2635
2636One of these modules is required when you want to read or write JSON data
2637via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2638advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2639
2640=item L<Net::SSLeay>
2641
2642Implementing TLS/SSL in Perl is certainly interesting, but not very
2643worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2644the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2645
2646=item L<Time::HiRes>
2647
2648This module is part of perl since release 5.008. It will be used when the
2649chosen event library does not come with a timing source of its own. The
2650pure-perl event loop (L<AnyEvent::Loop>) will additionally load it to
2651try to use a monotonic clock for timing stability.
2652
2653=back
2654
1840 2655
1841=head1 FORK 2656=head1 FORK
1842 2657
1843Most event libraries are not fork-safe. The ones who are usually are 2658Most event libraries are not fork-safe. The ones who are usually are
1844because they rely on inefficient but fork-safe C<select> or C<poll> 2659because they rely on inefficient but fork-safe C<select> or C<poll> calls
1845calls. Only L<EV> is fully fork-aware. 2660- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2661are usually badly thought-out hacks that are incompatible with fork in
2662one way or another. Only L<EV> is fully fork-aware and ensures that you
2663continue event-processing in both parent and child (or both, if you know
2664what you are doing).
2665
2666This means that, in general, you cannot fork and do event processing in
2667the child if the event library was initialised before the fork (which
2668usually happens when the first AnyEvent watcher is created, or the library
2669is loaded).
1846 2670
1847If you have to fork, you must either do so I<before> creating your first 2671If you have to fork, you must either do so I<before> creating your first
1848watcher OR you must not use AnyEvent at all in the child. 2672watcher OR you must not use AnyEvent at all in the child OR you must do
2673something completely out of the scope of AnyEvent.
2674
2675The problem of doing event processing in the parent I<and> the child
2676is much more complicated: even for backends that I<are> fork-aware or
2677fork-safe, their behaviour is not usually what you want: fork clones all
2678watchers, that means all timers, I/O watchers etc. are active in both
2679parent and child, which is almost never what you want. USing C<exec>
2680to start worker children from some kind of manage rprocess is usually
2681preferred, because it is much easier and cleaner, at the expense of having
2682to have another binary.
1849 2683
1850 2684
1851=head1 SECURITY CONSIDERATIONS 2685=head1 SECURITY CONSIDERATIONS
1852 2686
1853AnyEvent can be forced to load any event model via 2687AnyEvent can be forced to load any event model via
1865 use AnyEvent; 2699 use AnyEvent;
1866 2700
1867Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2701Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1868be used to probe what backend is used and gain other information (which is 2702be used to probe what backend is used and gain other information (which is
1869probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and 2703probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
1870$ENV{PERL_ANYEGENT_STRICT}. 2704$ENV{PERL_ANYEVENT_STRICT}.
2705
2706Note that AnyEvent will remove I<all> environment variables starting with
2707C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2708enabled.
1871 2709
1872 2710
1873=head1 BUGS 2711=head1 BUGS
1874 2712
1875Perl 5.8 has numerous memleaks that sometimes hit this module and are hard 2713Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
1879pronounced). 2717pronounced).
1880 2718
1881 2719
1882=head1 SEE ALSO 2720=head1 SEE ALSO
1883 2721
2722Tutorial/Introduction: L<AnyEvent::Intro>.
2723
2724FAQ: L<AnyEvent::FAQ>.
2725
1884Utility functions: L<AnyEvent::Util>. 2726Utility functions: L<AnyEvent::Util>.
1885 2727
1886Event modules: L<EV>, L<EV::Glib>, L<Glib::EV>, L<Event>, L<Glib::Event>, 2728Event modules: L<AnyEvent::Loop>, L<EV>, L<EV::Glib>, L<Glib::EV>,
1887L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2729L<Event>, L<Glib::Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>.
1888 2730
1889Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 2731Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
1890L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 2732L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
1891L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 2733L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
1892L<AnyEvent::Impl::POE>. 2734L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>.
1893 2735
1894Non-blocking file handles, sockets, TCP clients and 2736Non-blocking file handles, sockets, TCP clients and
1895servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>. 2737servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
1896 2738
1897Asynchronous DNS: L<AnyEvent::DNS>. 2739Asynchronous DNS: L<AnyEvent::DNS>.
1898 2740
1899Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>, 2741Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
1900 2742
1901Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 2743Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
2744L<AnyEvent::HTTP>.
1902 2745
1903 2746
1904=head1 AUTHOR 2747=head1 AUTHOR
1905 2748
1906 Marc Lehmann <schmorp@schmorp.de> 2749 Marc Lehmann <schmorp@schmorp.de>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines