ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.139 by root, Mon May 26 06:04:38 2008 UTC vs.
Revision 1.199 by root, Fri Mar 27 10:49:50 2009 UTC

1=head1 => NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - provide framework for multiple event loops
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops
6 6
7=head1 SYNOPSIS 7=head1 SYNOPSIS
8 8
9 use AnyEvent; 9 use AnyEvent;
10 10
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { 11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { ... });
12 ...
13 });
14 12
15 my $w = AnyEvent->timer (after => $seconds, cb => sub { 13 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
14 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...
15
16 print AnyEvent->now; # prints current event loop time
17 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
18
19 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
20
21 my $w = AnyEvent->child (pid => $pid, cb => sub {
22 my ($pid, $status) = @_;
16 ... 23 ...
17 }); 24 });
18 25
19 my $w = AnyEvent->condvar; # stores whether a condition was flagged 26 my $w = AnyEvent->condvar; # stores whether a condition was flagged
20 $w->send; # wake up current and all future recv's 27 $w->send; # wake up current and all future recv's
21 $w->recv; # enters "main loop" till $condvar gets ->send 28 $w->recv; # enters "main loop" till $condvar gets ->send
29 # use a condvar in callback mode:
30 $w->cb (sub { $_[0]->recv });
31
32=head1 INTRODUCTION/TUTORIAL
33
34This manpage is mainly a reference manual. If you are interested
35in a tutorial or some gentle introduction, have a look at the
36L<AnyEvent::Intro> manpage.
22 37
23=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 38=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
24 39
25Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 40Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
26nowadays. So what is different about AnyEvent? 41nowadays. So what is different about AnyEvent?
27 42
28Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of 43Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of
29policy> and AnyEvent is I<small and efficient>. 44policy> and AnyEvent is I<small and efficient>.
30 45
31First and foremost, I<AnyEvent is not an event model> itself, it only 46First and foremost, I<AnyEvent is not an event model> itself, it only
32interfaces to whatever event model the main program happens to use in a 47interfaces to whatever event model the main program happens to use, in a
33pragmatic way. For event models and certain classes of immortals alike, 48pragmatic way. For event models and certain classes of immortals alike,
34the statement "there can only be one" is a bitter reality: In general, 49the statement "there can only be one" is a bitter reality: In general,
35only one event loop can be active at the same time in a process. AnyEvent 50only one event loop can be active at the same time in a process. AnyEvent
36helps hiding the differences between those event loops. 51cannot change this, but it can hide the differences between those event
52loops.
37 53
38The goal of AnyEvent is to offer module authors the ability to do event 54The goal of AnyEvent is to offer module authors the ability to do event
39programming (waiting for I/O or timer events) without subscribing to a 55programming (waiting for I/O or timer events) without subscribing to a
40religion, a way of living, and most importantly: without forcing your 56religion, a way of living, and most importantly: without forcing your
41module users into the same thing by forcing them to use the same event 57module users into the same thing by forcing them to use the same event
42model you use. 58model you use.
43 59
44For modules like POE or IO::Async (which is a total misnomer as it is 60For modules like POE or IO::Async (which is a total misnomer as it is
45actually doing all I/O I<synchronously>...), using them in your module is 61actually doing all I/O I<synchronously>...), using them in your module is
46like joining a cult: After you joined, you are dependent on them and you 62like joining a cult: After you joined, you are dependent on them and you
47cannot use anything else, as it is simply incompatible to everything that 63cannot use anything else, as they are simply incompatible to everything
48isn't itself. What's worse, all the potential users of your module are 64that isn't them. What's worse, all the potential users of your
49I<also> forced to use the same event loop you use. 65module are I<also> forced to use the same event loop you use.
50 66
51AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 67AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
52fine. AnyEvent + Tk works fine etc. etc. but none of these work together 68fine. AnyEvent + Tk works fine etc. etc. but none of these work together
53with the rest: POE + IO::Async? no go. Tk + Event? no go. Again: if 69with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if
54your module uses one of those, every user of your module has to use it, 70your module uses one of those, every user of your module has to use it,
55too. But if your module uses AnyEvent, it works transparently with all 71too. But if your module uses AnyEvent, it works transparently with all
56event models it supports (including stuff like POE and IO::Async, as long 72event models it supports (including stuff like IO::Async, as long as those
57as those use one of the supported event loops. It is trivial to add new 73use one of the supported event loops. It is trivial to add new event loops
58event loops to AnyEvent, too, so it is future-proof). 74to AnyEvent, too, so it is future-proof).
59 75
60In addition to being free of having to use I<the one and only true event 76In addition to being free of having to use I<the one and only true event
61model>, AnyEvent also is free of bloat and policy: with POE or similar 77model>, AnyEvent also is free of bloat and policy: with POE or similar
62modules, you get an enormous amount of code and strict rules you have to 78modules, you get an enormous amount of code and strict rules you have to
63follow. AnyEvent, on the other hand, is lean and up to the point, by only 79follow. AnyEvent, on the other hand, is lean and up to the point, by only
64offering the functionality that is necessary, in as thin as a wrapper as 80offering the functionality that is necessary, in as thin as a wrapper as
65technically possible. 81technically possible.
66 82
83Of course, AnyEvent comes with a big (and fully optional!) toolbox
84of useful functionality, such as an asynchronous DNS resolver, 100%
85non-blocking connects (even with TLS/SSL, IPv6 and on broken platforms
86such as Windows) and lots of real-world knowledge and workarounds for
87platform bugs and differences.
88
67Of course, if you want lots of policy (this can arguably be somewhat 89Now, if you I<do want> lots of policy (this can arguably be somewhat
68useful) and you want to force your users to use the one and only event 90useful) and you want to force your users to use the one and only event
69model, you should I<not> use this module. 91model, you should I<not> use this module.
70 92
71=head1 DESCRIPTION 93=head1 DESCRIPTION
72 94
102starts using it, all bets are off. Maybe you should tell their authors to 124starts using it, all bets are off. Maybe you should tell their authors to
103use AnyEvent so their modules work together with others seamlessly... 125use AnyEvent so their modules work together with others seamlessly...
104 126
105The pure-perl implementation of AnyEvent is called 127The pure-perl implementation of AnyEvent is called
106C<AnyEvent::Impl::Perl>. Like other event modules you can load it 128C<AnyEvent::Impl::Perl>. Like other event modules you can load it
107explicitly. 129explicitly and enjoy the high availability of that event loop :)
108 130
109=head1 WATCHERS 131=head1 WATCHERS
110 132
111AnyEvent has the central concept of a I<watcher>, which is an object that 133AnyEvent has the central concept of a I<watcher>, which is an object that
112stores relevant data for each kind of event you are waiting for, such as 134stores relevant data for each kind of event you are waiting for, such as
115These watchers are normal Perl objects with normal Perl lifetime. After 137These watchers are normal Perl objects with normal Perl lifetime. After
116creating a watcher it will immediately "watch" for events and invoke the 138creating a watcher it will immediately "watch" for events and invoke the
117callback when the event occurs (of course, only when the event model 139callback when the event occurs (of course, only when the event model
118is in control). 140is in control).
119 141
142Note that B<callbacks must not permanently change global variables>
143potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
144callbacks must not C<die> >>. The former is good programming practise in
145Perl and the latter stems from the fact that exception handling differs
146widely between event loops.
147
120To disable the watcher you have to destroy it (e.g. by setting the 148To disable the watcher you have to destroy it (e.g. by setting the
121variable you store it in to C<undef> or otherwise deleting all references 149variable you store it in to C<undef> or otherwise deleting all references
122to it). 150to it).
123 151
124All watchers are created by calling a method on the C<AnyEvent> class. 152All watchers are created by calling a method on the C<AnyEvent> class.
126Many watchers either are used with "recursion" (repeating timers for 154Many watchers either are used with "recursion" (repeating timers for
127example), or need to refer to their watcher object in other ways. 155example), or need to refer to their watcher object in other ways.
128 156
129An any way to achieve that is this pattern: 157An any way to achieve that is this pattern:
130 158
131 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 159 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
132 # you can use $w here, for example to undef it 160 # you can use $w here, for example to undef it
133 undef $w; 161 undef $w;
134 }); 162 });
135 163
136Note that C<my $w; $w => combination. This is necessary because in Perl, 164Note that C<my $w; $w => combination. This is necessary because in Perl,
137my variables are only visible after the statement in which they are 165my variables are only visible after the statement in which they are
138declared. 166declared.
139 167
140=head2 I/O WATCHERS 168=head2 I/O WATCHERS
141 169
142You can create an I/O watcher by calling the C<< AnyEvent->io >> method 170You can create an I/O watcher by calling the C<< AnyEvent->io >> method
143with the following mandatory key-value pairs as arguments: 171with the following mandatory key-value pairs as arguments:
144 172
145C<fh> the Perl I<file handle> (I<not> file descriptor) to watch 173C<fh> is the Perl I<file handle> (I<not> file descriptor) to watch
174for events (AnyEvent might or might not keep a reference to this file
175handle). Note that only file handles pointing to things for which
176non-blocking operation makes sense are allowed. This includes sockets,
177most character devices, pipes, fifos and so on, but not for example files
178or block devices.
179
146for events. C<poll> must be a string that is either C<r> or C<w>, 180C<poll> must be a string that is either C<r> or C<w>, which creates a
147which creates a watcher waiting for "r"eadable or "w"ritable events, 181watcher waiting for "r"eadable or "w"ritable events, respectively.
182
148respectively. C<cb> is the callback to invoke each time the file handle 183C<cb> is the callback to invoke each time the file handle becomes ready.
149becomes ready.
150 184
151Although the callback might get passed parameters, their value and 185Although the callback might get passed parameters, their value and
152presence is undefined and you cannot rely on them. Portable AnyEvent 186presence is undefined and you cannot rely on them. Portable AnyEvent
153callbacks cannot use arguments passed to I/O watcher callbacks. 187callbacks cannot use arguments passed to I/O watcher callbacks.
154 188
158 192
159Some event loops issue spurious readyness notifications, so you should 193Some event loops issue spurious readyness notifications, so you should
160always use non-blocking calls when reading/writing from/to your file 194always use non-blocking calls when reading/writing from/to your file
161handles. 195handles.
162 196
163Example:
164
165 # wait for readability of STDIN, then read a line and disable the watcher 197Example: wait for readability of STDIN, then read a line and disable the
198watcher.
199
166 my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub { 200 my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
167 chomp (my $input = <STDIN>); 201 chomp (my $input = <STDIN>);
168 warn "read: $input\n"; 202 warn "read: $input\n";
169 undef $w; 203 undef $w;
170 }); 204 });
180 214
181Although the callback might get passed parameters, their value and 215Although the callback might get passed parameters, their value and
182presence is undefined and you cannot rely on them. Portable AnyEvent 216presence is undefined and you cannot rely on them. Portable AnyEvent
183callbacks cannot use arguments passed to time watcher callbacks. 217callbacks cannot use arguments passed to time watcher callbacks.
184 218
185The timer callback will be invoked at most once: if you want a repeating 219The callback will normally be invoked once only. If you specify another
186timer you have to create a new watcher (this is a limitation by both Tk 220parameter, C<interval>, as a strictly positive number (> 0), then the
187and Glib). 221callback will be invoked regularly at that interval (in fractional
222seconds) after the first invocation. If C<interval> is specified with a
223false value, then it is treated as if it were missing.
188 224
189Example: 225The callback will be rescheduled before invoking the callback, but no
226attempt is done to avoid timer drift in most backends, so the interval is
227only approximate.
190 228
191 # fire an event after 7.7 seconds 229Example: fire an event after 7.7 seconds.
230
192 my $w = AnyEvent->timer (after => 7.7, cb => sub { 231 my $w = AnyEvent->timer (after => 7.7, cb => sub {
193 warn "timeout\n"; 232 warn "timeout\n";
194 }); 233 });
195 234
196 # to cancel the timer: 235 # to cancel the timer:
197 undef $w; 236 undef $w;
198 237
199Example 2:
200
201 # fire an event after 0.5 seconds, then roughly every second 238Example 2: fire an event after 0.5 seconds, then roughly every second.
202 my $w;
203 239
204 my $cb = sub {
205 # cancel the old timer while creating a new one
206 $w = AnyEvent->timer (after => 1, cb => $cb); 240 my $w = AnyEvent->timer (after => 0.5, interval => 1, cb => sub {
241 warn "timeout\n";
207 }; 242 };
208
209 # start the "loop" by creating the first watcher
210 $w = AnyEvent->timer (after => 0.5, cb => $cb);
211 243
212=head3 TIMING ISSUES 244=head3 TIMING ISSUES
213 245
214There are two ways to handle timers: based on real time (relative, "fire 246There are two ways to handle timers: based on real time (relative, "fire
215in 10 seconds") and based on wallclock time (absolute, "fire at 12 247in 10 seconds") and based on wallclock time (absolute, "fire at 12
227timers. 259timers.
228 260
229AnyEvent always prefers relative timers, if available, matching the 261AnyEvent always prefers relative timers, if available, matching the
230AnyEvent API. 262AnyEvent API.
231 263
264AnyEvent has two additional methods that return the "current time":
265
266=over 4
267
268=item AnyEvent->time
269
270This returns the "current wallclock time" as a fractional number of
271seconds since the Epoch (the same thing as C<time> or C<Time::HiRes::time>
272return, and the result is guaranteed to be compatible with those).
273
274It progresses independently of any event loop processing, i.e. each call
275will check the system clock, which usually gets updated frequently.
276
277=item AnyEvent->now
278
279This also returns the "current wallclock time", but unlike C<time>, above,
280this value might change only once per event loop iteration, depending on
281the event loop (most return the same time as C<time>, above). This is the
282time that AnyEvent's timers get scheduled against.
283
284I<In almost all cases (in all cases if you don't care), this is the
285function to call when you want to know the current time.>
286
287This function is also often faster then C<< AnyEvent->time >>, and
288thus the preferred method if you want some timestamp (for example,
289L<AnyEvent::Handle> uses this to update it's activity timeouts).
290
291The rest of this section is only of relevance if you try to be very exact
292with your timing, you can skip it without bad conscience.
293
294For a practical example of when these times differ, consider L<Event::Lib>
295and L<EV> and the following set-up:
296
297The event loop is running and has just invoked one of your callback at
298time=500 (assume no other callbacks delay processing). In your callback,
299you wait a second by executing C<sleep 1> (blocking the process for a
300second) and then (at time=501) you create a relative timer that fires
301after three seconds.
302
303With L<Event::Lib>, C<< AnyEvent->time >> and C<< AnyEvent->now >> will
304both return C<501>, because that is the current time, and the timer will
305be scheduled to fire at time=504 (C<501> + C<3>).
306
307With L<EV>, C<< AnyEvent->time >> returns C<501> (as that is the current
308time), but C<< AnyEvent->now >> returns C<500>, as that is the time the
309last event processing phase started. With L<EV>, your timer gets scheduled
310to run at time=503 (C<500> + C<3>).
311
312In one sense, L<Event::Lib> is more exact, as it uses the current time
313regardless of any delays introduced by event processing. However, most
314callbacks do not expect large delays in processing, so this causes a
315higher drift (and a lot more system calls to get the current time).
316
317In another sense, L<EV> is more exact, as your timer will be scheduled at
318the same time, regardless of how long event processing actually took.
319
320In either case, if you care (and in most cases, you don't), then you
321can get whatever behaviour you want with any event loop, by taking the
322difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
323account.
324
325=back
326
232=head2 SIGNAL WATCHERS 327=head2 SIGNAL WATCHERS
233 328
234You can watch for signals using a signal watcher, C<signal> is the signal 329You can watch for signals using a signal watcher, C<signal> is the signal
235I<name> without any C<SIG> prefix, C<cb> is the Perl callback to 330I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
236be invoked whenever a signal occurs. 331callback to be invoked whenever a signal occurs.
237 332
238Although the callback might get passed parameters, their value and 333Although the callback might get passed parameters, their value and
239presence is undefined and you cannot rely on them. Portable AnyEvent 334presence is undefined and you cannot rely on them. Portable AnyEvent
240callbacks cannot use arguments passed to signal watcher callbacks. 335callbacks cannot use arguments passed to signal watcher callbacks.
241 336
257=head2 CHILD PROCESS WATCHERS 352=head2 CHILD PROCESS WATCHERS
258 353
259You can also watch on a child process exit and catch its exit status. 354You can also watch on a child process exit and catch its exit status.
260 355
261The child process is specified by the C<pid> argument (if set to C<0>, it 356The child process is specified by the C<pid> argument (if set to C<0>, it
262watches for any child process exit). The watcher will trigger as often 357watches for any child process exit). The watcher will triggered only when
263as status change for the child are received. This works by installing a 358the child process has finished and an exit status is available, not on
264signal handler for C<SIGCHLD>. The callback will be called with the pid 359any trace events (stopped/continued).
265and exit status (as returned by waitpid), so unlike other watcher types, 360
266you I<can> rely on child watcher callback arguments. 361The callback will be called with the pid and exit status (as returned by
362waitpid), so unlike other watcher types, you I<can> rely on child watcher
363callback arguments.
364
365This watcher type works by installing a signal handler for C<SIGCHLD>,
366and since it cannot be shared, nothing else should use SIGCHLD or reap
367random child processes (waiting for specific child processes, e.g. inside
368C<system>, is just fine).
267 369
268There is a slight catch to child watchers, however: you usually start them 370There is a slight catch to child watchers, however: you usually start them
269I<after> the child process was created, and this means the process could 371I<after> the child process was created, and this means the process could
270have exited already (and no SIGCHLD will be sent anymore). 372have exited already (and no SIGCHLD will be sent anymore).
271 373
277AnyEvent program, you I<have> to create at least one watcher before you 379AnyEvent program, you I<have> to create at least one watcher before you
278C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 380C<fork> the child (alternatively, you can call C<AnyEvent::detect>).
279 381
280Example: fork a process and wait for it 382Example: fork a process and wait for it
281 383
282 my $done = AnyEvent->condvar; 384 my $done = AnyEvent->condvar;
283 385
284 my $pid = fork or exit 5; 386 my $pid = fork or exit 5;
285 387
286 my $w = AnyEvent->child ( 388 my $w = AnyEvent->child (
287 pid => $pid, 389 pid => $pid,
288 cb => sub { 390 cb => sub {
289 my ($pid, $status) = @_; 391 my ($pid, $status) = @_;
290 warn "pid $pid exited with status $status"; 392 warn "pid $pid exited with status $status";
291 $done->send; 393 $done->send;
292 }, 394 },
293 ); 395 );
294 396
295 # do something else, then wait for process exit 397 # do something else, then wait for process exit
296 $done->recv; 398 $done->recv;
297 399
298=head2 CONDITION VARIABLES 400=head2 CONDITION VARIABLES
299 401
300If you are familiar with some event loops you will know that all of them 402If you are familiar with some event loops you will know that all of them
301require you to run some blocking "loop", "run" or similar function that 403require you to run some blocking "loop", "run" or similar function that
307The instrument to do that is called a "condition variable", so called 409The instrument to do that is called a "condition variable", so called
308because they represent a condition that must become true. 410because they represent a condition that must become true.
309 411
310Condition variables can be created by calling the C<< AnyEvent->condvar 412Condition variables can be created by calling the C<< AnyEvent->condvar
311>> method, usually without arguments. The only argument pair allowed is 413>> method, usually without arguments. The only argument pair allowed is
414
312C<cb>, which specifies a callback to be called when the condition variable 415C<cb>, which specifies a callback to be called when the condition variable
313becomes true. 416becomes true, with the condition variable as the first argument (but not
417the results).
314 418
315After creation, the condition variable is "false" until it becomes "true" 419After creation, the condition variable is "false" until it becomes "true"
316by calling the C<send> method (or calling the condition variable as if it 420by calling the C<send> method (or calling the condition variable as if it
317were a callback, read about the caveats in the description for the C<< 421were a callback, read about the caveats in the description for the C<<
318->send >> method). 422->send >> method).
374 478
375 my $done = AnyEvent->condvar; 479 my $done = AnyEvent->condvar;
376 my $delay = AnyEvent->timer (after => 5, cb => $done); 480 my $delay = AnyEvent->timer (after => 5, cb => $done);
377 $done->recv; 481 $done->recv;
378 482
483Example: Imagine an API that returns a condvar and doesn't support
484callbacks. This is how you make a synchronous call, for example from
485the main program:
486
487 use AnyEvent::CouchDB;
488
489 ...
490
491 my @info = $couchdb->info->recv;
492
493And this is how you would just ste a callback to be called whenever the
494results are available:
495
496 $couchdb->info->cb (sub {
497 my @info = $_[0]->recv;
498 });
499
379=head3 METHODS FOR PRODUCERS 500=head3 METHODS FOR PRODUCERS
380 501
381These methods should only be used by the producing side, i.e. the 502These methods should only be used by the producing side, i.e. the
382code/module that eventually sends the signal. Note that it is also 503code/module that eventually sends the signal. Note that it is also
383the producer side which creates the condvar in most cases, but it isn't 504the producer side which creates the condvar in most cases, but it isn't
516=item $bool = $cv->ready 637=item $bool = $cv->ready
517 638
518Returns true when the condition is "true", i.e. whether C<send> or 639Returns true when the condition is "true", i.e. whether C<send> or
519C<croak> have been called. 640C<croak> have been called.
520 641
521=item $cb = $cv->cb ([new callback]) 642=item $cb = $cv->cb ($cb->($cv))
522 643
523This is a mutator function that returns the callback set and optionally 644This is a mutator function that returns the callback set and optionally
524replaces it before doing so. 645replaces it before doing so.
525 646
526The callback will be called when the condition becomes "true", i.e. when 647The callback will be called when the condition becomes "true", i.e. when
527C<send> or C<croak> are called. Calling C<recv> inside the callback 648C<send> or C<croak> are called, with the only argument being the condition
528or at any later time is guaranteed not to block. 649variable itself. Calling C<recv> inside the callback or at any later time
650is guaranteed not to block.
529 651
530=back 652=back
531 653
532=head1 GLOBAL VARIABLES AND FUNCTIONS 654=head1 GLOBAL VARIABLES AND FUNCTIONS
533 655
662=item L<AnyEvent::Util> 784=item L<AnyEvent::Util>
663 785
664Contains various utility functions that replace often-used but blocking 786Contains various utility functions that replace often-used but blocking
665functions such as C<inet_aton> by event-/callback-based versions. 787functions such as C<inet_aton> by event-/callback-based versions.
666 788
667=item L<AnyEvent::Handle>
668
669Provide read and write buffers and manages watchers for reads and writes.
670
671=item L<AnyEvent::Socket> 789=item L<AnyEvent::Socket>
672 790
673Provides various utility functions for (internet protocol) sockets, 791Provides various utility functions for (internet protocol) sockets,
674addresses and name resolution. Also functions to create non-blocking tcp 792addresses and name resolution. Also functions to create non-blocking tcp
675connections or tcp servers, with IPv6 and SRV record support and more. 793connections or tcp servers, with IPv6 and SRV record support and more.
676 794
795=item L<AnyEvent::Handle>
796
797Provide read and write buffers, manages watchers for reads and writes,
798supports raw and formatted I/O, I/O queued and fully transparent and
799non-blocking SSL/TLS.
800
677=item L<AnyEvent::DNS> 801=item L<AnyEvent::DNS>
678 802
679Provides rich asynchronous DNS resolver capabilities. 803Provides rich asynchronous DNS resolver capabilities.
680 804
805=item L<AnyEvent::HTTP>
806
807A simple-to-use HTTP library that is capable of making a lot of concurrent
808HTTP requests.
809
681=item L<AnyEvent::HTTPD> 810=item L<AnyEvent::HTTPD>
682 811
683Provides a simple web application server framework. 812Provides a simple web application server framework.
684 813
685=item L<AnyEvent::FastPing> 814=item L<AnyEvent::FastPing>
686 815
687The fastest ping in the west. 816The fastest ping in the west.
688 817
818=item L<AnyEvent::DBI>
819
820Executes L<DBI> requests asynchronously in a proxy process.
821
822=item L<AnyEvent::AIO>
823
824Truly asynchronous I/O, should be in the toolbox of every event
825programmer. AnyEvent::AIO transparently fuses L<IO::AIO> and AnyEvent
826together.
827
828=item L<AnyEvent::BDB>
829
830Truly asynchronous Berkeley DB access. AnyEvent::BDB transparently fuses
831L<BDB> and AnyEvent together.
832
833=item L<AnyEvent::GPSD>
834
835A non-blocking interface to gpsd, a daemon delivering GPS information.
836
837=item L<AnyEvent::IGS>
838
839A non-blocking interface to the Internet Go Server protocol (used by
840L<App::IGS>).
841
689=item L<Net::IRC3> 842=item L<AnyEvent::IRC>
690 843
691AnyEvent based IRC client module family. 844AnyEvent based IRC client module family (replacing the older Net::IRC3).
692 845
693=item L<Net::XMPP2> 846=item L<Net::XMPP2>
694 847
695AnyEvent based XMPP (Jabber protocol) module family. 848AnyEvent based XMPP (Jabber protocol) module family.
696 849
705 858
706=item L<Coro> 859=item L<Coro>
707 860
708Has special support for AnyEvent via L<Coro::AnyEvent>. 861Has special support for AnyEvent via L<Coro::AnyEvent>.
709 862
710=item L<AnyEvent::AIO>, L<IO::AIO>
711
712Truly asynchronous I/O, should be in the toolbox of every event
713programmer. AnyEvent::AIO transparently fuses IO::AIO and AnyEvent
714together.
715
716=item L<AnyEvent::BDB>, L<BDB>
717
718Truly asynchronous Berkeley DB access. AnyEvent::AIO transparently fuses
719IO::AIO and AnyEvent together.
720
721=item L<IO::Lambda> 863=item L<IO::Lambda>
722 864
723The lambda approach to I/O - don't ask, look there. Can use AnyEvent. 865The lambda approach to I/O - don't ask, look there. Can use AnyEvent.
724 866
725=back 867=back
727=cut 869=cut
728 870
729package AnyEvent; 871package AnyEvent;
730 872
731no warnings; 873no warnings;
732use strict; 874use strict qw(vars subs);
733 875
734use Carp; 876use Carp;
735 877
736our $VERSION = '4.04'; 878our $VERSION = 4.35;
737our $MODEL; 879our $MODEL;
738 880
739our $AUTOLOAD; 881our $AUTOLOAD;
740our @ISA; 882our @ISA;
741 883
755{ 897{
756 my $idx; 898 my $idx;
757 $PROTOCOL{$_} = ++$idx 899 $PROTOCOL{$_} = ++$idx
758 for reverse split /\s*,\s*/, 900 for reverse split /\s*,\s*/,
759 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 901 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
760}
761
762sub import {
763 shift;
764 return unless @_;
765
766 my $pkg = caller;
767
768 no strict 'refs';
769
770 for (@_) {
771 *{"$pkg\::WIN32"} = *WIN32 if $_ eq "WIN32";
772 }
773} 902}
774 903
775my @models = ( 904my @models = (
776 [EV:: => AnyEvent::Impl::EV::], 905 [EV:: => AnyEvent::Impl::EV::],
777 [Event:: => AnyEvent::Impl::Event::], 906 [Event:: => AnyEvent::Impl::Event::],
786 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 915 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
787 [Wx:: => AnyEvent::Impl::POE::], 916 [Wx:: => AnyEvent::Impl::POE::],
788 [Prima:: => AnyEvent::Impl::POE::], 917 [Prima:: => AnyEvent::Impl::POE::],
789); 918);
790 919
791our %method = map +($_ => 1), qw(io timer signal child condvar one_event DESTROY); 920our %method = map +($_ => 1), qw(io timer time now signal child condvar one_event DESTROY);
792 921
793our @post_detect; 922our @post_detect;
794 923
795sub post_detect(&) { 924sub post_detect(&) {
796 my ($cb) = @_; 925 my ($cb) = @_;
857 $MODEL 986 $MODEL
858 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib."; 987 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib.";
859 } 988 }
860 } 989 }
861 990
991 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
992
862 unshift @ISA, $MODEL; 993 unshift @ISA, $MODEL;
863 push @{"$MODEL\::ISA"}, "AnyEvent::Base"; 994
995 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
864 996
865 (shift @post_detect)->() while @post_detect; 997 (shift @post_detect)->() while @post_detect;
866 } 998 }
867 999
868 $MODEL 1000 $MODEL
878 1010
879 my $class = shift; 1011 my $class = shift;
880 $class->$func (@_); 1012 $class->$func (@_);
881} 1013}
882 1014
1015# utility function to dup a filehandle. this is used by many backends
1016# to support binding more than one watcher per filehandle (they usually
1017# allow only one watcher per fd, so we dup it to get a different one).
1018sub _dupfh($$$$) {
1019 my ($poll, $fh, $r, $w) = @_;
1020
1021 # cygwin requires the fh mode to be matching, unix doesn't
1022 my ($rw, $mode) = $poll eq "r" ? ($r, "<")
1023 : $poll eq "w" ? ($w, ">")
1024 : Carp::croak "AnyEvent->io requires poll set to either 'r' or 'w'";
1025
1026 open my $fh2, "$mode&" . fileno $fh
1027 or die "cannot dup() filehandle: $!";
1028
1029 # we assume CLOEXEC is already set by perl in all important cases
1030
1031 ($fh2, $rw)
1032}
1033
883package AnyEvent::Base; 1034package AnyEvent::Base;
1035
1036# default implementation for now and time
1037
1038BEGIN {
1039 if (eval "use Time::HiRes (); time (); 1") {
1040 *_time = \&Time::HiRes::time;
1041 # if (eval "use POSIX (); (POSIX::times())...
1042 } else {
1043 *_time = sub { time }; # epic fail
1044 }
1045}
1046
1047sub time { _time }
1048sub now { _time }
884 1049
885# default implementation for ->condvar 1050# default implementation for ->condvar
886 1051
887sub condvar { 1052sub condvar {
888 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar:: 1053 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar::
889} 1054}
890 1055
891# default implementation for ->signal 1056# default implementation for ->signal
892 1057
893our %SIG_CB; 1058our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1059
1060sub _signal_exec {
1061 sysread $SIGPIPE_R, my $dummy, 4;
1062
1063 while (%SIG_EV) {
1064 for (keys %SIG_EV) {
1065 delete $SIG_EV{$_};
1066 $_->() for values %{ $SIG_CB{$_} || {} };
1067 }
1068 }
1069}
894 1070
895sub signal { 1071sub signal {
896 my (undef, %arg) = @_; 1072 my (undef, %arg) = @_;
897 1073
1074 unless ($SIGPIPE_R) {
1075 if (AnyEvent::WIN32) {
1076 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1077 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R) if $SIGPIPE_R;
1078 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W) if $SIGPIPE_W; # just in case
1079 } else {
1080 pipe $SIGPIPE_R, $SIGPIPE_W;
1081 require Fcntl;
1082 fcntl $SIGPIPE_R, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_R;
1083 fcntl $SIGPIPE_W, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_W; # just in case
1084 }
1085
1086 $SIGPIPE_R
1087 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1088
1089 $SIG_IO = AnyEvent->io (fh => $SIGPIPE_R, poll => "r", cb => \&_signal_exec);
1090 }
1091
898 my $signal = uc $arg{signal} 1092 my $signal = uc $arg{signal}
899 or Carp::croak "required option 'signal' is missing"; 1093 or Carp::croak "required option 'signal' is missing";
900 1094
901 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1095 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
902 $SIG{$signal} ||= sub { 1096 $SIG{$signal} ||= sub {
903 $_->() for values %{ $SIG_CB{$signal} || {} }; 1097 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1098 undef $SIG_EV{$signal};
904 }; 1099 };
905 1100
906 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1101 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal"
907} 1102}
908 1103
909sub AnyEvent::Base::Signal::DESTROY { 1104sub AnyEvent::Base::Signal::DESTROY {
910 my ($signal, $cb) = @{$_[0]}; 1105 my ($signal, $cb) = @{$_[0]};
911 1106
912 delete $SIG_CB{$signal}{$cb}; 1107 delete $SIG_CB{$signal}{$cb};
913 1108
914 $SIG{$signal} = 'DEFAULT' unless keys %{ $SIG_CB{$signal} }; 1109 delete $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
915} 1110}
916 1111
917# default implementation for ->child 1112# default implementation for ->child
918 1113
919our %PID_CB; 1114our %PID_CB;
1027 1222
1028# undocumented/compatibility with pre-3.4 1223# undocumented/compatibility with pre-3.4
1029*broadcast = \&send; 1224*broadcast = \&send;
1030*wait = \&_wait; 1225*wait = \&_wait;
1031 1226
1227=head1 ERROR AND EXCEPTION HANDLING
1228
1229In general, AnyEvent does not do any error handling - it relies on the
1230caller to do that if required. The L<AnyEvent::Strict> module (see also
1231the C<PERL_ANYEVENT_STRICT> environment variable, below) provides strict
1232checking of all AnyEvent methods, however, which is highly useful during
1233development.
1234
1235As for exception handling (i.e. runtime errors and exceptions thrown while
1236executing a callback), this is not only highly event-loop specific, but
1237also not in any way wrapped by this module, as this is the job of the main
1238program.
1239
1240The pure perl event loop simply re-throws the exception (usually
1241within C<< condvar->recv >>), the L<Event> and L<EV> modules call C<<
1242$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
1243so on.
1244
1245=head1 ENVIRONMENT VARIABLES
1246
1247The following environment variables are used by this module or its
1248submodules:
1249
1250=over 4
1251
1252=item C<PERL_ANYEVENT_VERBOSE>
1253
1254By default, AnyEvent will be completely silent except in fatal
1255conditions. You can set this environment variable to make AnyEvent more
1256talkative.
1257
1258When set to C<1> or higher, causes AnyEvent to warn about unexpected
1259conditions, such as not being able to load the event model specified by
1260C<PERL_ANYEVENT_MODEL>.
1261
1262When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1263model it chooses.
1264
1265=item C<PERL_ANYEVENT_STRICT>
1266
1267AnyEvent does not do much argument checking by default, as thorough
1268argument checking is very costly. Setting this variable to a true value
1269will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1270check the arguments passed to most method calls. If it finds any problems
1271it will croak.
1272
1273In other words, enables "strict" mode.
1274
1275Unlike C<use strict>, it is definitely recommended ot keep it off in
1276production. Keeping C<PERL_ANYEVENT_STRICT=1> in your environment while
1277developing programs can be very useful, however.
1278
1279=item C<PERL_ANYEVENT_MODEL>
1280
1281This can be used to specify the event model to be used by AnyEvent, before
1282auto detection and -probing kicks in. It must be a string consisting
1283entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1284and the resulting module name is loaded and if the load was successful,
1285used as event model. If it fails to load AnyEvent will proceed with
1286auto detection and -probing.
1287
1288This functionality might change in future versions.
1289
1290For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
1291could start your program like this:
1292
1293 PERL_ANYEVENT_MODEL=Perl perl ...
1294
1295=item C<PERL_ANYEVENT_PROTOCOLS>
1296
1297Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1298for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1299of auto probing).
1300
1301Must be set to a comma-separated list of protocols or address families,
1302current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1303used, and preference will be given to protocols mentioned earlier in the
1304list.
1305
1306This variable can effectively be used for denial-of-service attacks
1307against local programs (e.g. when setuid), although the impact is likely
1308small, as the program has to handle conenction and other failures anyways.
1309
1310Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1311but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1312- only support IPv4, never try to resolve or contact IPv6
1313addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1314IPv6, but prefer IPv6 over IPv4.
1315
1316=item C<PERL_ANYEVENT_EDNS0>
1317
1318Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1319for DNS. This extension is generally useful to reduce DNS traffic, but
1320some (broken) firewalls drop such DNS packets, which is why it is off by
1321default.
1322
1323Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1324EDNS0 in its DNS requests.
1325
1326=item C<PERL_ANYEVENT_MAX_FORKS>
1327
1328The maximum number of child processes that C<AnyEvent::Util::fork_call>
1329will create in parallel.
1330
1331=back
1332
1032=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 1333=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1033 1334
1034This is an advanced topic that you do not normally need to use AnyEvent in 1335This is an advanced topic that you do not normally need to use AnyEvent in
1035a module. This section is only of use to event loop authors who want to 1336a module. This section is only of use to event loop authors who want to
1036provide AnyEvent compatibility. 1337provide AnyEvent compatibility.
1069 1370
1070I<rxvt-unicode> also cheats a bit by not providing blocking access to 1371I<rxvt-unicode> also cheats a bit by not providing blocking access to
1071condition variables: code blocking while waiting for a condition will 1372condition variables: code blocking while waiting for a condition will
1072C<die>. This still works with most modules/usages, and blocking calls must 1373C<die>. This still works with most modules/usages, and blocking calls must
1073not be done in an interactive application, so it makes sense. 1374not be done in an interactive application, so it makes sense.
1074
1075=head1 ENVIRONMENT VARIABLES
1076
1077The following environment variables are used by this module:
1078
1079=over 4
1080
1081=item C<PERL_ANYEVENT_VERBOSE>
1082
1083By default, AnyEvent will be completely silent except in fatal
1084conditions. You can set this environment variable to make AnyEvent more
1085talkative.
1086
1087When set to C<1> or higher, causes AnyEvent to warn about unexpected
1088conditions, such as not being able to load the event model specified by
1089C<PERL_ANYEVENT_MODEL>.
1090
1091When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1092model it chooses.
1093
1094=item C<PERL_ANYEVENT_MODEL>
1095
1096This can be used to specify the event model to be used by AnyEvent, before
1097auto detection and -probing kicks in. It must be a string consisting
1098entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1099and the resulting module name is loaded and if the load was successful,
1100used as event model. If it fails to load AnyEvent will proceed with
1101auto detection and -probing.
1102
1103This functionality might change in future versions.
1104
1105For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
1106could start your program like this:
1107
1108 PERL_ANYEVENT_MODEL=Perl perl ...
1109
1110=item C<PERL_ANYEVENT_PROTOCOLS>
1111
1112Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1113for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1114of auto probing).
1115
1116Must be set to a comma-separated list of protocols or address families,
1117current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1118used, and preference will be given to protocols mentioned earlier in the
1119list.
1120
1121This variable can effectively be used for denial-of-service attacks
1122against local programs (e.g. when setuid), although the impact is likely
1123small, as the program has to handle connection errors already-
1124
1125Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1126but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1127- only support IPv4, never try to resolve or contact IPv6
1128addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1129IPv6, but prefer IPv6 over IPv4.
1130
1131=item C<PERL_ANYEVENT_EDNS0>
1132
1133Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1134for DNS. This extension is generally useful to reduce DNS traffic, but
1135some (broken) firewalls drop such DNS packets, which is why it is off by
1136default.
1137
1138Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1139EDNS0 in its DNS requests.
1140
1141=back
1142 1375
1143=head1 EXAMPLE PROGRAM 1376=head1 EXAMPLE PROGRAM
1144 1377
1145The following program uses an I/O watcher to read data from STDIN, a timer 1378The following program uses an I/O watcher to read data from STDIN, a timer
1146to display a message once per second, and a condition variable to quit the 1379to display a message once per second, and a condition variable to quit the
1340watcher. 1573watcher.
1341 1574
1342=head3 Results 1575=head3 Results
1343 1576
1344 name watchers bytes create invoke destroy comment 1577 name watchers bytes create invoke destroy comment
1345 EV/EV 400000 244 0.56 0.46 0.31 EV native interface 1578 EV/EV 400000 224 0.47 0.35 0.27 EV native interface
1346 EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers 1579 EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers
1347 CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal 1580 CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal
1348 Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation 1581 Perl/Any 100000 452 4.13 0.73 0.95 pure perl implementation
1349 Event/Event 16000 516 31.88 31.30 0.85 Event native interface 1582 Event/Event 16000 517 32.20 31.80 0.81 Event native interface
1350 Event/Any 16000 590 35.75 31.42 1.08 Event + AnyEvent watchers 1583 Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers
1351 Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour 1584 Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour
1352 Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers 1585 Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers
1353 POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event 1586 POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event
1354 POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select 1587 POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select
1355 1588
1356=head3 Discussion 1589=head3 Discussion
1357 1590
1358The benchmark does I<not> measure scalability of the event loop very 1591The benchmark does I<not> measure scalability of the event loop very
1359well. For example, a select-based event loop (such as the pure perl one) 1592well. For example, a select-based event loop (such as the pure perl one)
1561watchers, as the management overhead dominates. 1794watchers, as the management overhead dominates.
1562 1795
1563=back 1796=back
1564 1797
1565 1798
1799=head1 SIGNALS
1800
1801AnyEvent currently installs handlers for these signals:
1802
1803=over 4
1804
1805=item SIGCHLD
1806
1807A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
1808emulation for event loops that do not support them natively. Also, some
1809event loops install a similar handler.
1810
1811=item SIGPIPE
1812
1813A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
1814when AnyEvent gets loaded.
1815
1816The rationale for this is that AnyEvent users usually do not really depend
1817on SIGPIPE delivery (which is purely an optimisation for shell use, or
1818badly-written programs), but C<SIGPIPE> can cause spurious and rare
1819program exits as a lot of people do not expect C<SIGPIPE> when writing to
1820some random socket.
1821
1822The rationale for installing a no-op handler as opposed to ignoring it is
1823that this way, the handler will be restored to defaults on exec.
1824
1825Feel free to install your own handler, or reset it to defaults.
1826
1827=back
1828
1829=cut
1830
1831$SIG{PIPE} = sub { }
1832 unless defined $SIG{PIPE};
1833
1834
1566=head1 FORK 1835=head1 FORK
1567 1836
1568Most event libraries are not fork-safe. The ones who are usually are 1837Most event libraries are not fork-safe. The ones who are usually are
1569because they rely on inefficient but fork-safe C<select> or C<poll> 1838because they rely on inefficient but fork-safe C<select> or C<poll>
1570calls. Only L<EV> is fully fork-aware. 1839calls. Only L<EV> is fully fork-aware.
1583specified in the variable. 1852specified in the variable.
1584 1853
1585You can make AnyEvent completely ignore this variable by deleting it 1854You can make AnyEvent completely ignore this variable by deleting it
1586before the first watcher gets created, e.g. with a C<BEGIN> block: 1855before the first watcher gets created, e.g. with a C<BEGIN> block:
1587 1856
1588 BEGIN { delete $ENV{PERL_ANYEVENT_MODEL} } 1857 BEGIN { delete $ENV{PERL_ANYEVENT_MODEL} }
1589 1858
1590 use AnyEvent; 1859 use AnyEvent;
1591 1860
1592Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 1861Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1593be used to probe what backend is used and gain other information (which is 1862be used to probe what backend is used and gain other information (which is
1594probably even less useful to an attacker than PERL_ANYEVENT_MODEL). 1863probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
1864$ENV{PERL_ANYEGENT_STRICT}.
1865
1866
1867=head1 BUGS
1868
1869Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
1870to work around. If you suffer from memleaks, first upgrade to Perl 5.10
1871and check wether the leaks still show up. (Perl 5.10.0 has other annoying
1872memleaks, such as leaking on C<map> and C<grep> but it is usually not as
1873pronounced).
1595 1874
1596 1875
1597=head1 SEE ALSO 1876=head1 SEE ALSO
1598 1877
1599Utility functions: L<AnyEvent::Util>. 1878Utility functions: L<AnyEvent::Util>.
1616Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 1895Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>.
1617 1896
1618 1897
1619=head1 AUTHOR 1898=head1 AUTHOR
1620 1899
1621 Marc Lehmann <schmorp@schmorp.de> 1900 Marc Lehmann <schmorp@schmorp.de>
1622 http://home.schmorp.de/ 1901 http://home.schmorp.de/
1623 1902
1624=cut 1903=cut
1625 1904
16261 19051
1627 1906

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines