ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.157 by root, Fri Jun 6 11:01:17 2008 UTC vs.
Revision 1.220 by root, Thu Jun 25 14:27:18 2009 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - provide framework for multiple event loops
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Qt and POE are various supported
6event loops.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # file descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { 13 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
14
15 # one-shot or repeating timers
16 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
17 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...
18
19 print AnyEvent->now; # prints current event loop time
20 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
21
22 # POSIX signal
23 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
24
25 # child process exit
26 my $w = AnyEvent->child (pid => $pid, cb => sub {
27 my ($pid, $status) = @_;
12 ... 28 ...
13 }); 29 });
14 30
15 my $w = AnyEvent->timer (after => $seconds, cb => sub { 31 # called when event loop idle (if applicable)
16 ... 32 my $w = AnyEvent->idle (cb => sub { ... });
17 });
18 33
19 my $w = AnyEvent->condvar; # stores whether a condition was flagged 34 my $w = AnyEvent->condvar; # stores whether a condition was flagged
20 $w->send; # wake up current and all future recv's 35 $w->send; # wake up current and all future recv's
21 $w->recv; # enters "main loop" till $condvar gets ->send 36 $w->recv; # enters "main loop" till $condvar gets ->send
37 # use a condvar in callback mode:
38 $w->cb (sub { $_[0]->recv });
22 39
23=head1 INTRODUCTION/TUTORIAL 40=head1 INTRODUCTION/TUTORIAL
24 41
25This manpage is mainly a reference manual. If you are interested 42This manpage is mainly a reference manual. If you are interested
26in a tutorial or some gentle introduction, have a look at the 43in a tutorial or some gentle introduction, have a look at the
33 50
34Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of 51Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of
35policy> and AnyEvent is I<small and efficient>. 52policy> and AnyEvent is I<small and efficient>.
36 53
37First and foremost, I<AnyEvent is not an event model> itself, it only 54First and foremost, I<AnyEvent is not an event model> itself, it only
38interfaces to whatever event model the main program happens to use in a 55interfaces to whatever event model the main program happens to use, in a
39pragmatic way. For event models and certain classes of immortals alike, 56pragmatic way. For event models and certain classes of immortals alike,
40the statement "there can only be one" is a bitter reality: In general, 57the statement "there can only be one" is a bitter reality: In general,
41only one event loop can be active at the same time in a process. AnyEvent 58only one event loop can be active at the same time in a process. AnyEvent
42helps hiding the differences between those event loops. 59cannot change this, but it can hide the differences between those event
60loops.
43 61
44The goal of AnyEvent is to offer module authors the ability to do event 62The goal of AnyEvent is to offer module authors the ability to do event
45programming (waiting for I/O or timer events) without subscribing to a 63programming (waiting for I/O or timer events) without subscribing to a
46religion, a way of living, and most importantly: without forcing your 64religion, a way of living, and most importantly: without forcing your
47module users into the same thing by forcing them to use the same event 65module users into the same thing by forcing them to use the same event
48model you use. 66model you use.
49 67
50For modules like POE or IO::Async (which is a total misnomer as it is 68For modules like POE or IO::Async (which is a total misnomer as it is
51actually doing all I/O I<synchronously>...), using them in your module is 69actually doing all I/O I<synchronously>...), using them in your module is
52like joining a cult: After you joined, you are dependent on them and you 70like joining a cult: After you joined, you are dependent on them and you
53cannot use anything else, as it is simply incompatible to everything that 71cannot use anything else, as they are simply incompatible to everything
54isn't itself. What's worse, all the potential users of your module are 72that isn't them. What's worse, all the potential users of your
55I<also> forced to use the same event loop you use. 73module are I<also> forced to use the same event loop you use.
56 74
57AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 75AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
58fine. AnyEvent + Tk works fine etc. etc. but none of these work together 76fine. AnyEvent + Tk works fine etc. etc. but none of these work together
59with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if 77with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if
60your module uses one of those, every user of your module has to use it, 78your module uses one of those, every user of your module has to use it,
61too. But if your module uses AnyEvent, it works transparently with all 79too. But if your module uses AnyEvent, it works transparently with all
62event models it supports (including stuff like POE and IO::Async, as long 80event models it supports (including stuff like IO::Async, as long as those
63as those use one of the supported event loops. It is trivial to add new 81use one of the supported event loops. It is trivial to add new event loops
64event loops to AnyEvent, too, so it is future-proof). 82to AnyEvent, too, so it is future-proof).
65 83
66In addition to being free of having to use I<the one and only true event 84In addition to being free of having to use I<the one and only true event
67model>, AnyEvent also is free of bloat and policy: with POE or similar 85model>, AnyEvent also is free of bloat and policy: with POE or similar
68modules, you get an enormous amount of code and strict rules you have to 86modules, you get an enormous amount of code and strict rules you have to
69follow. AnyEvent, on the other hand, is lean and up to the point, by only 87follow. AnyEvent, on the other hand, is lean and up to the point, by only
127These watchers are normal Perl objects with normal Perl lifetime. After 145These watchers are normal Perl objects with normal Perl lifetime. After
128creating a watcher it will immediately "watch" for events and invoke the 146creating a watcher it will immediately "watch" for events and invoke the
129callback when the event occurs (of course, only when the event model 147callback when the event occurs (of course, only when the event model
130is in control). 148is in control).
131 149
150Note that B<callbacks must not permanently change global variables>
151potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
152callbacks must not C<die> >>. The former is good programming practise in
153Perl and the latter stems from the fact that exception handling differs
154widely between event loops.
155
132To disable the watcher you have to destroy it (e.g. by setting the 156To disable the watcher you have to destroy it (e.g. by setting the
133variable you store it in to C<undef> or otherwise deleting all references 157variable you store it in to C<undef> or otherwise deleting all references
134to it). 158to it).
135 159
136All watchers are created by calling a method on the C<AnyEvent> class. 160All watchers are created by calling a method on the C<AnyEvent> class.
152=head2 I/O WATCHERS 176=head2 I/O WATCHERS
153 177
154You can create an I/O watcher by calling the C<< AnyEvent->io >> method 178You can create an I/O watcher by calling the C<< AnyEvent->io >> method
155with the following mandatory key-value pairs as arguments: 179with the following mandatory key-value pairs as arguments:
156 180
157C<fh> the Perl I<file handle> (I<not> file descriptor) to watch 181C<fh> is the Perl I<file handle> (I<not> file descriptor) to watch
182for events (AnyEvent might or might not keep a reference to this file
183handle). Note that only file handles pointing to things for which
184non-blocking operation makes sense are allowed. This includes sockets,
185most character devices, pipes, fifos and so on, but not for example files
186or block devices.
187
158for events. C<poll> must be a string that is either C<r> or C<w>, 188C<poll> must be a string that is either C<r> or C<w>, which creates a
159which creates a watcher waiting for "r"eadable or "w"ritable events, 189watcher waiting for "r"eadable or "w"ritable events, respectively.
190
160respectively. C<cb> is the callback to invoke each time the file handle 191C<cb> is the callback to invoke each time the file handle becomes ready.
161becomes ready.
162 192
163Although the callback might get passed parameters, their value and 193Although the callback might get passed parameters, their value and
164presence is undefined and you cannot rely on them. Portable AnyEvent 194presence is undefined and you cannot rely on them. Portable AnyEvent
165callbacks cannot use arguments passed to I/O watcher callbacks. 195callbacks cannot use arguments passed to I/O watcher callbacks.
166 196
170 200
171Some event loops issue spurious readyness notifications, so you should 201Some event loops issue spurious readyness notifications, so you should
172always use non-blocking calls when reading/writing from/to your file 202always use non-blocking calls when reading/writing from/to your file
173handles. 203handles.
174 204
175Example:
176
177 # wait for readability of STDIN, then read a line and disable the watcher 205Example: wait for readability of STDIN, then read a line and disable the
206watcher.
207
178 my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub { 208 my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
179 chomp (my $input = <STDIN>); 209 chomp (my $input = <STDIN>);
180 warn "read: $input\n"; 210 warn "read: $input\n";
181 undef $w; 211 undef $w;
182 }); 212 });
192 222
193Although the callback might get passed parameters, their value and 223Although the callback might get passed parameters, their value and
194presence is undefined and you cannot rely on them. Portable AnyEvent 224presence is undefined and you cannot rely on them. Portable AnyEvent
195callbacks cannot use arguments passed to time watcher callbacks. 225callbacks cannot use arguments passed to time watcher callbacks.
196 226
197The timer callback will be invoked at most once: if you want a repeating 227The callback will normally be invoked once only. If you specify another
198timer you have to create a new watcher (this is a limitation by both Tk 228parameter, C<interval>, as a strictly positive number (> 0), then the
199and Glib). 229callback will be invoked regularly at that interval (in fractional
230seconds) after the first invocation. If C<interval> is specified with a
231false value, then it is treated as if it were missing.
200 232
201Example: 233The callback will be rescheduled before invoking the callback, but no
234attempt is done to avoid timer drift in most backends, so the interval is
235only approximate.
202 236
203 # fire an event after 7.7 seconds 237Example: fire an event after 7.7 seconds.
238
204 my $w = AnyEvent->timer (after => 7.7, cb => sub { 239 my $w = AnyEvent->timer (after => 7.7, cb => sub {
205 warn "timeout\n"; 240 warn "timeout\n";
206 }); 241 });
207 242
208 # to cancel the timer: 243 # to cancel the timer:
209 undef $w; 244 undef $w;
210 245
211Example 2:
212
213 # fire an event after 0.5 seconds, then roughly every second 246Example 2: fire an event after 0.5 seconds, then roughly every second.
214 my $w;
215 247
216 my $cb = sub {
217 # cancel the old timer while creating a new one
218 $w = AnyEvent->timer (after => 1, cb => $cb); 248 my $w = AnyEvent->timer (after => 0.5, interval => 1, cb => sub {
249 warn "timeout\n";
219 }; 250 };
220
221 # start the "loop" by creating the first watcher
222 $w = AnyEvent->timer (after => 0.5, cb => $cb);
223 251
224=head3 TIMING ISSUES 252=head3 TIMING ISSUES
225 253
226There are two ways to handle timers: based on real time (relative, "fire 254There are two ways to handle timers: based on real time (relative, "fire
227in 10 seconds") and based on wallclock time (absolute, "fire at 12 255in 10 seconds") and based on wallclock time (absolute, "fire at 12
300In either case, if you care (and in most cases, you don't), then you 328In either case, if you care (and in most cases, you don't), then you
301can get whatever behaviour you want with any event loop, by taking the 329can get whatever behaviour you want with any event loop, by taking the
302difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into 330difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
303account. 331account.
304 332
333=item AnyEvent->now_update
334
335Some event loops (such as L<EV> or L<AnyEvent::Impl::Perl>) cache
336the current time for each loop iteration (see the discussion of L<<
337AnyEvent->now >>, above).
338
339When a callback runs for a long time (or when the process sleeps), then
340this "current" time will differ substantially from the real time, which
341might affect timers and time-outs.
342
343When this is the case, you can call this method, which will update the
344event loop's idea of "current time".
345
346Note that updating the time I<might> cause some events to be handled.
347
305=back 348=back
306 349
307=head2 SIGNAL WATCHERS 350=head2 SIGNAL WATCHERS
308 351
309You can watch for signals using a signal watcher, C<signal> is the signal 352You can watch for signals using a signal watcher, C<signal> is the signal
310I<name> without any C<SIG> prefix, C<cb> is the Perl callback to 353I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
311be invoked whenever a signal occurs. 354callback to be invoked whenever a signal occurs.
312 355
313Although the callback might get passed parameters, their value and 356Although the callback might get passed parameters, their value and
314presence is undefined and you cannot rely on them. Portable AnyEvent 357presence is undefined and you cannot rely on them. Portable AnyEvent
315callbacks cannot use arguments passed to signal watcher callbacks. 358callbacks cannot use arguments passed to signal watcher callbacks.
316 359
332=head2 CHILD PROCESS WATCHERS 375=head2 CHILD PROCESS WATCHERS
333 376
334You can also watch on a child process exit and catch its exit status. 377You can also watch on a child process exit and catch its exit status.
335 378
336The child process is specified by the C<pid> argument (if set to C<0>, it 379The child process is specified by the C<pid> argument (if set to C<0>, it
337watches for any child process exit). The watcher will trigger as often 380watches for any child process exit). The watcher will triggered only when
338as status change for the child are received. This works by installing a 381the child process has finished and an exit status is available, not on
339signal handler for C<SIGCHLD>. The callback will be called with the pid 382any trace events (stopped/continued).
340and exit status (as returned by waitpid), so unlike other watcher types, 383
341you I<can> rely on child watcher callback arguments. 384The callback will be called with the pid and exit status (as returned by
385waitpid), so unlike other watcher types, you I<can> rely on child watcher
386callback arguments.
387
388This watcher type works by installing a signal handler for C<SIGCHLD>,
389and since it cannot be shared, nothing else should use SIGCHLD or reap
390random child processes (waiting for specific child processes, e.g. inside
391C<system>, is just fine).
342 392
343There is a slight catch to child watchers, however: you usually start them 393There is a slight catch to child watchers, however: you usually start them
344I<after> the child process was created, and this means the process could 394I<after> the child process was created, and this means the process could
345have exited already (and no SIGCHLD will be sent anymore). 395have exited already (and no SIGCHLD will be sent anymore).
346 396
347Not all event models handle this correctly (POE doesn't), but even for 397Not all event models handle this correctly (neither POE nor IO::Async do,
398see their AnyEvent::Impl manpages for details), but even for event models
348event models that I<do> handle this correctly, they usually need to be 399that I<do> handle this correctly, they usually need to be loaded before
349loaded before the process exits (i.e. before you fork in the first place). 400the process exits (i.e. before you fork in the first place). AnyEvent's
401pure perl event loop handles all cases correctly regardless of when you
402start the watcher.
350 403
351This means you cannot create a child watcher as the very first thing in an 404This means you cannot create a child watcher as the very first
352AnyEvent program, you I<have> to create at least one watcher before you 405thing in an AnyEvent program, you I<have> to create at least one
353C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 406watcher before you C<fork> the child (alternatively, you can call
407C<AnyEvent::detect>).
354 408
355Example: fork a process and wait for it 409Example: fork a process and wait for it
356 410
357 my $done = AnyEvent->condvar; 411 my $done = AnyEvent->condvar;
358 412
368 ); 422 );
369 423
370 # do something else, then wait for process exit 424 # do something else, then wait for process exit
371 $done->recv; 425 $done->recv;
372 426
427=head2 IDLE WATCHERS
428
429Sometimes there is a need to do something, but it is not so important
430to do it instantly, but only when there is nothing better to do. This
431"nothing better to do" is usually defined to be "no other events need
432attention by the event loop".
433
434Idle watchers ideally get invoked when the event loop has nothing
435better to do, just before it would block the process to wait for new
436events. Instead of blocking, the idle watcher is invoked.
437
438Most event loops unfortunately do not really support idle watchers (only
439EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
440will simply call the callback "from time to time".
441
442Example: read lines from STDIN, but only process them when the
443program is otherwise idle:
444
445 my @lines; # read data
446 my $idle_w;
447 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
448 push @lines, scalar <STDIN>;
449
450 # start an idle watcher, if not already done
451 $idle_w ||= AnyEvent->idle (cb => sub {
452 # handle only one line, when there are lines left
453 if (my $line = shift @lines) {
454 print "handled when idle: $line";
455 } else {
456 # otherwise disable the idle watcher again
457 undef $idle_w;
458 }
459 });
460 });
461
373=head2 CONDITION VARIABLES 462=head2 CONDITION VARIABLES
374 463
375If you are familiar with some event loops you will know that all of them 464If you are familiar with some event loops you will know that all of them
376require you to run some blocking "loop", "run" or similar function that 465require you to run some blocking "loop", "run" or similar function that
377will actively watch for new events and call your callbacks. 466will actively watch for new events and call your callbacks.
382The instrument to do that is called a "condition variable", so called 471The instrument to do that is called a "condition variable", so called
383because they represent a condition that must become true. 472because they represent a condition that must become true.
384 473
385Condition variables can be created by calling the C<< AnyEvent->condvar 474Condition variables can be created by calling the C<< AnyEvent->condvar
386>> method, usually without arguments. The only argument pair allowed is 475>> method, usually without arguments. The only argument pair allowed is
476
387C<cb>, which specifies a callback to be called when the condition variable 477C<cb>, which specifies a callback to be called when the condition variable
388becomes true. 478becomes true, with the condition variable as the first argument (but not
479the results).
389 480
390After creation, the condition variable is "false" until it becomes "true" 481After creation, the condition variable is "false" until it becomes "true"
391by calling the C<send> method (or calling the condition variable as if it 482by calling the C<send> method (or calling the condition variable as if it
392were a callback, read about the caveats in the description for the C<< 483were a callback, read about the caveats in the description for the C<<
393->send >> method). 484->send >> method).
449 540
450 my $done = AnyEvent->condvar; 541 my $done = AnyEvent->condvar;
451 my $delay = AnyEvent->timer (after => 5, cb => $done); 542 my $delay = AnyEvent->timer (after => 5, cb => $done);
452 $done->recv; 543 $done->recv;
453 544
545Example: Imagine an API that returns a condvar and doesn't support
546callbacks. This is how you make a synchronous call, for example from
547the main program:
548
549 use AnyEvent::CouchDB;
550
551 ...
552
553 my @info = $couchdb->info->recv;
554
555And this is how you would just ste a callback to be called whenever the
556results are available:
557
558 $couchdb->info->cb (sub {
559 my @info = $_[0]->recv;
560 });
561
454=head3 METHODS FOR PRODUCERS 562=head3 METHODS FOR PRODUCERS
455 563
456These methods should only be used by the producing side, i.e. the 564These methods should only be used by the producing side, i.e. the
457code/module that eventually sends the signal. Note that it is also 565code/module that eventually sends the signal. Note that it is also
458the producer side which creates the condvar in most cases, but it isn't 566the producer side which creates the condvar in most cases, but it isn't
591=item $bool = $cv->ready 699=item $bool = $cv->ready
592 700
593Returns true when the condition is "true", i.e. whether C<send> or 701Returns true when the condition is "true", i.e. whether C<send> or
594C<croak> have been called. 702C<croak> have been called.
595 703
596=item $cb = $cv->cb ([new callback]) 704=item $cb = $cv->cb ($cb->($cv))
597 705
598This is a mutator function that returns the callback set and optionally 706This is a mutator function that returns the callback set and optionally
599replaces it before doing so. 707replaces it before doing so.
600 708
601The callback will be called when the condition becomes "true", i.e. when 709The callback will be called when the condition becomes "true", i.e. when
626 AnyEvent::Impl::Tk based on Tk, very bad choice. 734 AnyEvent::Impl::Tk based on Tk, very bad choice.
627 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs). 735 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
628 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse. 736 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
629 AnyEvent::Impl::POE based on POE, not generic enough for full support. 737 AnyEvent::Impl::POE based on POE, not generic enough for full support.
630 738
739 # warning, support for IO::Async is only partial, as it is too broken
740 # and limited toe ven support the AnyEvent API. See AnyEvent::Impl::Async.
741 AnyEvent::Impl::IOAsync based on IO::Async, cannot be autoprobed (see its docs).
742
631There is no support for WxWidgets, as WxWidgets has no support for 743There is no support for WxWidgets, as WxWidgets has no support for
632watching file handles. However, you can use WxWidgets through the 744watching file handles. However, you can use WxWidgets through the
633POE Adaptor, as POE has a Wx backend that simply polls 20 times per 745POE Adaptor, as POE has a Wx backend that simply polls 20 times per
634second, which was considered to be too horrible to even consider for 746second, which was considered to be too horrible to even consider for
635AnyEvent. Likewise, other POE backends can be used by AnyEvent by using 747AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
738=item L<AnyEvent::Util> 850=item L<AnyEvent::Util>
739 851
740Contains various utility functions that replace often-used but blocking 852Contains various utility functions that replace often-used but blocking
741functions such as C<inet_aton> by event-/callback-based versions. 853functions such as C<inet_aton> by event-/callback-based versions.
742 854
743=item L<AnyEvent::Handle>
744
745Provide read and write buffers and manages watchers for reads and writes.
746
747=item L<AnyEvent::Socket> 855=item L<AnyEvent::Socket>
748 856
749Provides various utility functions for (internet protocol) sockets, 857Provides various utility functions for (internet protocol) sockets,
750addresses and name resolution. Also functions to create non-blocking tcp 858addresses and name resolution. Also functions to create non-blocking tcp
751connections or tcp servers, with IPv6 and SRV record support and more. 859connections or tcp servers, with IPv6 and SRV record support and more.
752 860
861=item L<AnyEvent::Handle>
862
863Provide read and write buffers, manages watchers for reads and writes,
864supports raw and formatted I/O, I/O queued and fully transparent and
865non-blocking SSL/TLS.
866
753=item L<AnyEvent::DNS> 867=item L<AnyEvent::DNS>
754 868
755Provides rich asynchronous DNS resolver capabilities. 869Provides rich asynchronous DNS resolver capabilities.
756 870
757=item L<AnyEvent::HTTP> 871=item L<AnyEvent::HTTP>
765 879
766=item L<AnyEvent::FastPing> 880=item L<AnyEvent::FastPing>
767 881
768The fastest ping in the west. 882The fastest ping in the west.
769 883
884=item L<AnyEvent::DBI>
885
886Executes L<DBI> requests asynchronously in a proxy process.
887
888=item L<AnyEvent::AIO>
889
890Truly asynchronous I/O, should be in the toolbox of every event
891programmer. AnyEvent::AIO transparently fuses L<IO::AIO> and AnyEvent
892together.
893
894=item L<AnyEvent::BDB>
895
896Truly asynchronous Berkeley DB access. AnyEvent::BDB transparently fuses
897L<BDB> and AnyEvent together.
898
899=item L<AnyEvent::GPSD>
900
901A non-blocking interface to gpsd, a daemon delivering GPS information.
902
903=item L<AnyEvent::IGS>
904
905A non-blocking interface to the Internet Go Server protocol (used by
906L<App::IGS>).
907
770=item L<Net::IRC3> 908=item L<AnyEvent::IRC>
771 909
772AnyEvent based IRC client module family. 910AnyEvent based IRC client module family (replacing the older Net::IRC3).
773 911
774=item L<Net::XMPP2> 912=item L<Net::XMPP2>
775 913
776AnyEvent based XMPP (Jabber protocol) module family. 914AnyEvent based XMPP (Jabber protocol) module family.
777 915
786 924
787=item L<Coro> 925=item L<Coro>
788 926
789Has special support for AnyEvent via L<Coro::AnyEvent>. 927Has special support for AnyEvent via L<Coro::AnyEvent>.
790 928
791=item L<AnyEvent::AIO>, L<IO::AIO>
792
793Truly asynchronous I/O, should be in the toolbox of every event
794programmer. AnyEvent::AIO transparently fuses IO::AIO and AnyEvent
795together.
796
797=item L<AnyEvent::BDB>, L<BDB>
798
799Truly asynchronous Berkeley DB access. AnyEvent::AIO transparently fuses
800IO::AIO and AnyEvent together.
801
802=item L<IO::Lambda> 929=item L<IO::Lambda>
803 930
804The lambda approach to I/O - don't ask, look there. Can use AnyEvent. 931The lambda approach to I/O - don't ask, look there. Can use AnyEvent.
805 932
806=back 933=back
808=cut 935=cut
809 936
810package AnyEvent; 937package AnyEvent;
811 938
812no warnings; 939no warnings;
813use strict; 940use strict qw(vars subs);
814 941
815use Carp; 942use Carp;
816 943
817our $VERSION = 4.15; 944our $VERSION = 4.412;
818our $MODEL; 945our $MODEL;
819 946
820our $AUTOLOAD; 947our $AUTOLOAD;
821our @ISA; 948our @ISA;
822 949
823our @REGISTRY; 950our @REGISTRY;
824 951
825our $WIN32; 952our $WIN32;
826 953
827BEGIN { 954BEGIN {
828 my $win32 = ! ! ($^O =~ /mswin32/i); 955 eval "sub WIN32(){ " . (($^O =~ /mswin32/i)*1) ." }";
829 eval "sub WIN32(){ $win32 }"; 956 eval "sub TAINT(){ " . (${^TAINT}*1) . " }";
957
958 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
959 if ${^TAINT};
830} 960}
831 961
832our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; 962our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1;
833 963
834our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred 964our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
852 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy 982 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
853 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 983 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
854 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 984 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
855 [Wx:: => AnyEvent::Impl::POE::], 985 [Wx:: => AnyEvent::Impl::POE::],
856 [Prima:: => AnyEvent::Impl::POE::], 986 [Prima:: => AnyEvent::Impl::POE::],
987 # IO::Async is just too broken - we would need workaorunds for its
988 # byzantine signal and broken child handling, among others.
989 # IO::Async is rather hard to detect, as it doesn't have any
990 # obvious default class.
991# [IO::Async:: => AnyEvent::Impl::IOAsync::], # requires special main program
992# [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # requires special main program
993# [IO::Async::Notifier:: => AnyEvent::Impl::IOAsync::], # requires special main program
857); 994);
858 995
859our %method = map +($_ => 1), qw(io timer time now signal child condvar one_event DESTROY); 996our %method = map +($_ => 1),
997 qw(io timer time now now_update signal child idle condvar one_event DESTROY);
860 998
861our @post_detect; 999our @post_detect;
862 1000
863sub post_detect(&) { 1001sub post_detect(&) {
864 my ($cb) = @_; 1002 my ($cb) = @_;
869 1 1007 1
870 } else { 1008 } else {
871 push @post_detect, $cb; 1009 push @post_detect, $cb;
872 1010
873 defined wantarray 1011 defined wantarray
874 ? bless \$cb, "AnyEvent::Util::PostDetect" 1012 ? bless \$cb, "AnyEvent::Util::postdetect"
875 : () 1013 : ()
876 } 1014 }
877} 1015}
878 1016
879sub AnyEvent::Util::PostDetect::DESTROY { 1017sub AnyEvent::Util::postdetect::DESTROY {
880 @post_detect = grep $_ != ${$_[0]}, @post_detect; 1018 @post_detect = grep $_ != ${$_[0]}, @post_detect;
881} 1019}
882 1020
883sub detect() { 1021sub detect() {
884 unless ($MODEL) { 1022 unless ($MODEL) {
921 last; 1059 last;
922 } 1060 }
923 } 1061 }
924 1062
925 $MODEL 1063 $MODEL
926 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib."; 1064 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib.\n";
927 } 1065 }
928 } 1066 }
929 1067
1068 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1069
930 unshift @ISA, $MODEL; 1070 unshift @ISA, $MODEL;
931 push @{"$MODEL\::ISA"}, "AnyEvent::Base"; 1071
1072 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
932 1073
933 (shift @post_detect)->() while @post_detect; 1074 (shift @post_detect)->() while @post_detect;
934 } 1075 }
935 1076
936 $MODEL 1077 $MODEL
946 1087
947 my $class = shift; 1088 my $class = shift;
948 $class->$func (@_); 1089 $class->$func (@_);
949} 1090}
950 1091
1092# utility function to dup a filehandle. this is used by many backends
1093# to support binding more than one watcher per filehandle (they usually
1094# allow only one watcher per fd, so we dup it to get a different one).
1095sub _dupfh($$;$$) {
1096 my ($poll, $fh, $r, $w) = @_;
1097
1098 # cygwin requires the fh mode to be matching, unix doesn't
1099 my ($rw, $mode) = $poll eq "r" ? ($r, "<")
1100 : $poll eq "w" ? ($w, ">")
1101 : Carp::croak "AnyEvent->io requires poll set to either 'r' or 'w'";
1102
1103 open my $fh2, "$mode&" . fileno $fh
1104 or die "cannot dup() filehandle: $!,";
1105
1106 # we assume CLOEXEC is already set by perl in all important cases
1107
1108 ($fh2, $rw)
1109}
1110
951package AnyEvent::Base; 1111package AnyEvent::Base;
952 1112
953# default implementation for now and time 1113# default implementations for many methods
954 1114
955use Time::HiRes (); 1115BEGIN {
1116 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1117 *_time = \&Time::HiRes::time;
1118 # if (eval "use POSIX (); (POSIX::times())...
1119 } else {
1120 *_time = sub { time }; # epic fail
1121 }
1122}
956 1123
957sub time { Time::HiRes::time } 1124sub time { _time }
958sub now { Time::HiRes::time } 1125sub now { _time }
1126sub now_update { }
959 1127
960# default implementation for ->condvar 1128# default implementation for ->condvar
961 1129
962sub condvar { 1130sub condvar {
963 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar:: 1131 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
964} 1132}
965 1133
966# default implementation for ->signal 1134# default implementation for ->signal
967 1135
968our %SIG_CB; 1136our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1137
1138sub _signal_exec {
1139 sysread $SIGPIPE_R, my $dummy, 4;
1140
1141 while (%SIG_EV) {
1142 for (keys %SIG_EV) {
1143 delete $SIG_EV{$_};
1144 $_->() for values %{ $SIG_CB{$_} || {} };
1145 }
1146 }
1147}
969 1148
970sub signal { 1149sub signal {
971 my (undef, %arg) = @_; 1150 my (undef, %arg) = @_;
972 1151
1152 unless ($SIGPIPE_R) {
1153 require Fcntl;
1154
1155 if (AnyEvent::WIN32) {
1156 require AnyEvent::Util;
1157
1158 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1159 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R) if $SIGPIPE_R;
1160 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W) if $SIGPIPE_W; # just in case
1161 } else {
1162 pipe $SIGPIPE_R, $SIGPIPE_W;
1163 fcntl $SIGPIPE_R, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_R;
1164 fcntl $SIGPIPE_W, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_W; # just in case
1165
1166 # not strictly required, as $^F is normally 2, but let's make sure...
1167 fcntl $SIGPIPE_R, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1168 fcntl $SIGPIPE_W, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1169 }
1170
1171 $SIGPIPE_R
1172 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1173
1174 $SIG_IO = AnyEvent->io (fh => $SIGPIPE_R, poll => "r", cb => \&_signal_exec);
1175 }
1176
973 my $signal = uc $arg{signal} 1177 my $signal = uc $arg{signal}
974 or Carp::croak "required option 'signal' is missing"; 1178 or Carp::croak "required option 'signal' is missing";
975 1179
976 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1180 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
977 $SIG{$signal} ||= sub { 1181 $SIG{$signal} ||= sub {
978 $_->() for values %{ $SIG_CB{$signal} || {} }; 1182 local $!;
1183 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1184 undef $SIG_EV{$signal};
979 }; 1185 };
980 1186
981 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1187 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
982} 1188}
983 1189
984sub AnyEvent::Base::Signal::DESTROY { 1190sub AnyEvent::Base::signal::DESTROY {
985 my ($signal, $cb) = @{$_[0]}; 1191 my ($signal, $cb) = @{$_[0]};
986 1192
987 delete $SIG_CB{$signal}{$cb}; 1193 delete $SIG_CB{$signal}{$cb};
988 1194
1195 # delete doesn't work with older perls - they then
1196 # print weird messages, or just unconditionally exit
1197 # instead of getting the default action.
989 $SIG{$signal} = 'DEFAULT' unless keys %{ $SIG_CB{$signal} }; 1198 undef $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
990} 1199}
991 1200
992# default implementation for ->child 1201# default implementation for ->child
993 1202
994our %PID_CB; 1203our %PID_CB;
995our $CHLD_W; 1204our $CHLD_W;
996our $CHLD_DELAY_W; 1205our $CHLD_DELAY_W;
997our $PID_IDLE;
998our $WNOHANG; 1206our $WNOHANG;
999 1207
1000sub _child_wait { 1208sub _sigchld {
1001 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1209 while (0 < (my $pid = waitpid -1, $WNOHANG)) {
1002 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1210 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }),
1003 (values %{ $PID_CB{0} || {} }); 1211 (values %{ $PID_CB{0} || {} });
1004 } 1212 }
1005
1006 undef $PID_IDLE;
1007}
1008
1009sub _sigchld {
1010 # make sure we deliver these changes "synchronous" with the event loop.
1011 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub {
1012 undef $CHLD_DELAY_W;
1013 &_child_wait;
1014 });
1015} 1213}
1016 1214
1017sub child { 1215sub child {
1018 my (undef, %arg) = @_; 1216 my (undef, %arg) = @_;
1019 1217
1020 defined (my $pid = $arg{pid} + 0) 1218 defined (my $pid = $arg{pid} + 0)
1021 or Carp::croak "required option 'pid' is missing"; 1219 or Carp::croak "required option 'pid' is missing";
1022 1220
1023 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1221 $PID_CB{$pid}{$arg{cb}} = $arg{cb};
1024 1222
1025 unless ($WNOHANG) {
1026 $WNOHANG = eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1; 1223 $WNOHANG ||= eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1027 }
1028 1224
1029 unless ($CHLD_W) { 1225 unless ($CHLD_W) {
1030 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1226 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld);
1031 # child could be a zombie already, so make at least one round 1227 # child could be a zombie already, so make at least one round
1032 &_sigchld; 1228 &_sigchld;
1033 } 1229 }
1034 1230
1035 bless [$pid, $arg{cb}], "AnyEvent::Base::Child" 1231 bless [$pid, $arg{cb}], "AnyEvent::Base::child"
1036} 1232}
1037 1233
1038sub AnyEvent::Base::Child::DESTROY { 1234sub AnyEvent::Base::child::DESTROY {
1039 my ($pid, $cb) = @{$_[0]}; 1235 my ($pid, $cb) = @{$_[0]};
1040 1236
1041 delete $PID_CB{$pid}{$cb}; 1237 delete $PID_CB{$pid}{$cb};
1042 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1238 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1043 1239
1044 undef $CHLD_W unless keys %PID_CB; 1240 undef $CHLD_W unless keys %PID_CB;
1241}
1242
1243# idle emulation is done by simply using a timer, regardless
1244# of whether the process is idle or not, and not letting
1245# the callback use more than 50% of the time.
1246sub idle {
1247 my (undef, %arg) = @_;
1248
1249 my ($cb, $w, $rcb) = $arg{cb};
1250
1251 $rcb = sub {
1252 if ($cb) {
1253 $w = _time;
1254 &$cb;
1255 $w = _time - $w;
1256
1257 # never use more then 50% of the time for the idle watcher,
1258 # within some limits
1259 $w = 0.0001 if $w < 0.0001;
1260 $w = 5 if $w > 5;
1261
1262 $w = AnyEvent->timer (after => $w, cb => $rcb);
1263 } else {
1264 # clean up...
1265 undef $w;
1266 undef $rcb;
1267 }
1268 };
1269
1270 $w = AnyEvent->timer (after => 0.05, cb => $rcb);
1271
1272 bless \\$cb, "AnyEvent::Base::idle"
1273}
1274
1275sub AnyEvent::Base::idle::DESTROY {
1276 undef $${$_[0]};
1045} 1277}
1046 1278
1047package AnyEvent::CondVar; 1279package AnyEvent::CondVar;
1048 1280
1049our @ISA = AnyEvent::CondVar::Base::; 1281our @ISA = AnyEvent::CondVar::Base::;
1101} 1333}
1102 1334
1103# undocumented/compatibility with pre-3.4 1335# undocumented/compatibility with pre-3.4
1104*broadcast = \&send; 1336*broadcast = \&send;
1105*wait = \&_wait; 1337*wait = \&_wait;
1338
1339=head1 ERROR AND EXCEPTION HANDLING
1340
1341In general, AnyEvent does not do any error handling - it relies on the
1342caller to do that if required. The L<AnyEvent::Strict> module (see also
1343the C<PERL_ANYEVENT_STRICT> environment variable, below) provides strict
1344checking of all AnyEvent methods, however, which is highly useful during
1345development.
1346
1347As for exception handling (i.e. runtime errors and exceptions thrown while
1348executing a callback), this is not only highly event-loop specific, but
1349also not in any way wrapped by this module, as this is the job of the main
1350program.
1351
1352The pure perl event loop simply re-throws the exception (usually
1353within C<< condvar->recv >>), the L<Event> and L<EV> modules call C<<
1354$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
1355so on.
1356
1357=head1 ENVIRONMENT VARIABLES
1358
1359The following environment variables are used by this module or its
1360submodules.
1361
1362Note that AnyEvent will remove I<all> environment variables starting with
1363C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
1364enabled.
1365
1366=over 4
1367
1368=item C<PERL_ANYEVENT_VERBOSE>
1369
1370By default, AnyEvent will be completely silent except in fatal
1371conditions. You can set this environment variable to make AnyEvent more
1372talkative.
1373
1374When set to C<1> or higher, causes AnyEvent to warn about unexpected
1375conditions, such as not being able to load the event model specified by
1376C<PERL_ANYEVENT_MODEL>.
1377
1378When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1379model it chooses.
1380
1381=item C<PERL_ANYEVENT_STRICT>
1382
1383AnyEvent does not do much argument checking by default, as thorough
1384argument checking is very costly. Setting this variable to a true value
1385will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1386check the arguments passed to most method calls. If it finds any problems,
1387it will croak.
1388
1389In other words, enables "strict" mode.
1390
1391Unlike C<use strict>, it is definitely recommended to keep it off in
1392production. Keeping C<PERL_ANYEVENT_STRICT=1> in your environment while
1393developing programs can be very useful, however.
1394
1395=item C<PERL_ANYEVENT_MODEL>
1396
1397This can be used to specify the event model to be used by AnyEvent, before
1398auto detection and -probing kicks in. It must be a string consisting
1399entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1400and the resulting module name is loaded and if the load was successful,
1401used as event model. If it fails to load AnyEvent will proceed with
1402auto detection and -probing.
1403
1404This functionality might change in future versions.
1405
1406For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
1407could start your program like this:
1408
1409 PERL_ANYEVENT_MODEL=Perl perl ...
1410
1411=item C<PERL_ANYEVENT_PROTOCOLS>
1412
1413Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1414for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1415of auto probing).
1416
1417Must be set to a comma-separated list of protocols or address families,
1418current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1419used, and preference will be given to protocols mentioned earlier in the
1420list.
1421
1422This variable can effectively be used for denial-of-service attacks
1423against local programs (e.g. when setuid), although the impact is likely
1424small, as the program has to handle conenction and other failures anyways.
1425
1426Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1427but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1428- only support IPv4, never try to resolve or contact IPv6
1429addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1430IPv6, but prefer IPv6 over IPv4.
1431
1432=item C<PERL_ANYEVENT_EDNS0>
1433
1434Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1435for DNS. This extension is generally useful to reduce DNS traffic, but
1436some (broken) firewalls drop such DNS packets, which is why it is off by
1437default.
1438
1439Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1440EDNS0 in its DNS requests.
1441
1442=item C<PERL_ANYEVENT_MAX_FORKS>
1443
1444The maximum number of child processes that C<AnyEvent::Util::fork_call>
1445will create in parallel.
1446
1447=back
1106 1448
1107=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 1449=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1108 1450
1109This is an advanced topic that you do not normally need to use AnyEvent in 1451This is an advanced topic that you do not normally need to use AnyEvent in
1110a module. This section is only of use to event loop authors who want to 1452a module. This section is only of use to event loop authors who want to
1144 1486
1145I<rxvt-unicode> also cheats a bit by not providing blocking access to 1487I<rxvt-unicode> also cheats a bit by not providing blocking access to
1146condition variables: code blocking while waiting for a condition will 1488condition variables: code blocking while waiting for a condition will
1147C<die>. This still works with most modules/usages, and blocking calls must 1489C<die>. This still works with most modules/usages, and blocking calls must
1148not be done in an interactive application, so it makes sense. 1490not be done in an interactive application, so it makes sense.
1149
1150=head1 ENVIRONMENT VARIABLES
1151
1152The following environment variables are used by this module:
1153
1154=over 4
1155
1156=item C<PERL_ANYEVENT_VERBOSE>
1157
1158By default, AnyEvent will be completely silent except in fatal
1159conditions. You can set this environment variable to make AnyEvent more
1160talkative.
1161
1162When set to C<1> or higher, causes AnyEvent to warn about unexpected
1163conditions, such as not being able to load the event model specified by
1164C<PERL_ANYEVENT_MODEL>.
1165
1166When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1167model it chooses.
1168
1169=item C<PERL_ANYEVENT_MODEL>
1170
1171This can be used to specify the event model to be used by AnyEvent, before
1172auto detection and -probing kicks in. It must be a string consisting
1173entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1174and the resulting module name is loaded and if the load was successful,
1175used as event model. If it fails to load AnyEvent will proceed with
1176auto detection and -probing.
1177
1178This functionality might change in future versions.
1179
1180For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
1181could start your program like this:
1182
1183 PERL_ANYEVENT_MODEL=Perl perl ...
1184
1185=item C<PERL_ANYEVENT_PROTOCOLS>
1186
1187Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1188for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1189of auto probing).
1190
1191Must be set to a comma-separated list of protocols or address families,
1192current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1193used, and preference will be given to protocols mentioned earlier in the
1194list.
1195
1196This variable can effectively be used for denial-of-service attacks
1197against local programs (e.g. when setuid), although the impact is likely
1198small, as the program has to handle connection errors already-
1199
1200Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1201but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1202- only support IPv4, never try to resolve or contact IPv6
1203addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1204IPv6, but prefer IPv6 over IPv4.
1205
1206=item C<PERL_ANYEVENT_EDNS0>
1207
1208Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1209for DNS. This extension is generally useful to reduce DNS traffic, but
1210some (broken) firewalls drop such DNS packets, which is why it is off by
1211default.
1212
1213Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1214EDNS0 in its DNS requests.
1215
1216=item C<PERL_ANYEVENT_MAX_FORKS>
1217
1218The maximum number of child processes that C<AnyEvent::Util::fork_call>
1219will create in parallel.
1220
1221=back
1222 1491
1223=head1 EXAMPLE PROGRAM 1492=head1 EXAMPLE PROGRAM
1224 1493
1225The following program uses an I/O watcher to read data from STDIN, a timer 1494The following program uses an I/O watcher to read data from STDIN, a timer
1226to display a message once per second, and a condition variable to quit the 1495to display a message once per second, and a condition variable to quit the
1420watcher. 1689watcher.
1421 1690
1422=head3 Results 1691=head3 Results
1423 1692
1424 name watchers bytes create invoke destroy comment 1693 name watchers bytes create invoke destroy comment
1425 EV/EV 400000 244 0.56 0.46 0.31 EV native interface 1694 EV/EV 400000 224 0.47 0.35 0.27 EV native interface
1426 EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers 1695 EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers
1427 CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal 1696 CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal
1428 Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation 1697 Perl/Any 100000 452 4.13 0.73 0.95 pure perl implementation
1429 Event/Event 16000 516 31.88 31.30 0.85 Event native interface 1698 Event/Event 16000 517 32.20 31.80 0.81 Event native interface
1430 Event/Any 16000 590 35.75 31.42 1.08 Event + AnyEvent watchers 1699 Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers
1700 IOAsync/Any 16000 989 38.10 32.77 11.13 via IO::Async::Loop::IO_Poll
1701 IOAsync/Any 16000 990 37.59 29.50 10.61 via IO::Async::Loop::Epoll
1431 Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour 1702 Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour
1432 Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers 1703 Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers
1433 POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event 1704 POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event
1434 POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select 1705 POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select
1435 1706
1436=head3 Discussion 1707=head3 Discussion
1437 1708
1438The benchmark does I<not> measure scalability of the event loop very 1709The benchmark does I<not> measure scalability of the event loop very
1439well. For example, a select-based event loop (such as the pure perl one) 1710well. For example, a select-based event loop (such as the pure perl one)
1464performance becomes really bad with lots of file descriptors (and few of 1735performance becomes really bad with lots of file descriptors (and few of
1465them active), of course, but this was not subject of this benchmark. 1736them active), of course, but this was not subject of this benchmark.
1466 1737
1467The C<Event> module has a relatively high setup and callback invocation 1738The C<Event> module has a relatively high setup and callback invocation
1468cost, but overall scores in on the third place. 1739cost, but overall scores in on the third place.
1740
1741C<IO::Async> performs admirably well, about on par with C<Event>, even
1742when using its pure perl backend.
1469 1743
1470C<Glib>'s memory usage is quite a bit higher, but it features a 1744C<Glib>'s memory usage is quite a bit higher, but it features a
1471faster callback invocation and overall ends up in the same class as 1745faster callback invocation and overall ends up in the same class as
1472C<Event>. However, Glib scales extremely badly, doubling the number of 1746C<Event>. However, Glib scales extremely badly, doubling the number of
1473watchers increases the processing time by more than a factor of four, 1747watchers increases the processing time by more than a factor of four,
1551it to another server. This includes deleting the old timeout and creating 1825it to another server. This includes deleting the old timeout and creating
1552a new one that moves the timeout into the future. 1826a new one that moves the timeout into the future.
1553 1827
1554=head3 Results 1828=head3 Results
1555 1829
1556 name sockets create request 1830 name sockets create request
1557 EV 20000 69.01 11.16 1831 EV 20000 69.01 11.16
1558 Perl 20000 73.32 35.87 1832 Perl 20000 73.32 35.87
1833 IOAsync 20000 157.00 98.14 epoll
1834 IOAsync 20000 159.31 616.06 poll
1559 Event 20000 212.62 257.32 1835 Event 20000 212.62 257.32
1560 Glib 20000 651.16 1896.30 1836 Glib 20000 651.16 1896.30
1561 POE 20000 349.67 12317.24 uses POE::Loop::Event 1837 POE 20000 349.67 12317.24 uses POE::Loop::Event
1562 1838
1563=head3 Discussion 1839=head3 Discussion
1564 1840
1565This benchmark I<does> measure scalability and overall performance of the 1841This benchmark I<does> measure scalability and overall performance of the
1566particular event loop. 1842particular event loop.
1568EV is again fastest. Since it is using epoll on my system, the setup time 1844EV is again fastest. Since it is using epoll on my system, the setup time
1569is relatively high, though. 1845is relatively high, though.
1570 1846
1571Perl surprisingly comes second. It is much faster than the C-based event 1847Perl surprisingly comes second. It is much faster than the C-based event
1572loops Event and Glib. 1848loops Event and Glib.
1849
1850IO::Async performs very well when using its epoll backend, and still quite
1851good compared to Glib when using its pure perl backend.
1573 1852
1574Event suffers from high setup time as well (look at its code and you will 1853Event suffers from high setup time as well (look at its code and you will
1575understand why). Callback invocation also has a high overhead compared to 1854understand why). Callback invocation also has a high overhead compared to
1576the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 1855the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1577uses select or poll in basically all documented configurations. 1856uses select or poll in basically all documented configurations.
1640=item * C-based event loops perform very well with small number of 1919=item * C-based event loops perform very well with small number of
1641watchers, as the management overhead dominates. 1920watchers, as the management overhead dominates.
1642 1921
1643=back 1922=back
1644 1923
1924=head2 THE IO::Lambda BENCHMARK
1925
1926Recently I was told about the benchmark in the IO::Lambda manpage, which
1927could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
1928simply compares IO::Lambda with POE, and IO::Lambda looks better (which
1929shouldn't come as a surprise to anybody). As such, the benchmark is
1930fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
1931very optimal. But how would AnyEvent compare when used without the extra
1932baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
1933
1934The benchmark itself creates an echo-server, and then, for 500 times,
1935connects to the echo server, sends a line, waits for the reply, and then
1936creates the next connection. This is a rather bad benchmark, as it doesn't
1937test the efficiency of the framework or much non-blocking I/O, but it is a
1938benchmark nevertheless.
1939
1940 name runtime
1941 Lambda/select 0.330 sec
1942 + optimized 0.122 sec
1943 Lambda/AnyEvent 0.327 sec
1944 + optimized 0.138 sec
1945 Raw sockets/select 0.077 sec
1946 POE/select, components 0.662 sec
1947 POE/select, raw sockets 0.226 sec
1948 POE/select, optimized 0.404 sec
1949
1950 AnyEvent/select/nb 0.085 sec
1951 AnyEvent/EV/nb 0.068 sec
1952 +state machine 0.134 sec
1953
1954The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
1955benchmarks actually make blocking connects and use 100% blocking I/O,
1956defeating the purpose of an event-based solution. All of the newly
1957written AnyEvent benchmarks use 100% non-blocking connects (using
1958AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
1959resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
1960generally require a lot more bookkeeping and event handling than blocking
1961connects (which involve a single syscall only).
1962
1963The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
1964offers similar expressive power as POE and IO::Lambda, using conventional
1965Perl syntax. This means that both the echo server and the client are 100%
1966non-blocking, further placing it at a disadvantage.
1967
1968As you can see, the AnyEvent + EV combination even beats the
1969hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
1970backend easily beats IO::Lambda and POE.
1971
1972And even the 100% non-blocking version written using the high-level (and
1973slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda by a
1974large margin, even though it does all of DNS, tcp-connect and socket I/O
1975in a non-blocking way.
1976
1977The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
1978F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
1979part of the IO::lambda distribution and were used without any changes.
1980
1981
1982=head1 SIGNALS
1983
1984AnyEvent currently installs handlers for these signals:
1985
1986=over 4
1987
1988=item SIGCHLD
1989
1990A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
1991emulation for event loops that do not support them natively. Also, some
1992event loops install a similar handler.
1993
1994If, when AnyEvent is loaded, SIGCHLD is set to IGNORE, then AnyEvent will
1995reset it to default, to avoid losing child exit statuses.
1996
1997=item SIGPIPE
1998
1999A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
2000when AnyEvent gets loaded.
2001
2002The rationale for this is that AnyEvent users usually do not really depend
2003on SIGPIPE delivery (which is purely an optimisation for shell use, or
2004badly-written programs), but C<SIGPIPE> can cause spurious and rare
2005program exits as a lot of people do not expect C<SIGPIPE> when writing to
2006some random socket.
2007
2008The rationale for installing a no-op handler as opposed to ignoring it is
2009that this way, the handler will be restored to defaults on exec.
2010
2011Feel free to install your own handler, or reset it to defaults.
2012
2013=back
2014
2015=cut
2016
2017undef $SIG{CHLD}
2018 if $SIG{CHLD} eq 'IGNORE';
2019
2020$SIG{PIPE} = sub { }
2021 unless defined $SIG{PIPE};
1645 2022
1646=head1 FORK 2023=head1 FORK
1647 2024
1648Most event libraries are not fork-safe. The ones who are usually are 2025Most event libraries are not fork-safe. The ones who are usually are
1649because they rely on inefficient but fork-safe C<select> or C<poll> 2026because they rely on inefficient but fork-safe C<select> or C<poll>
1669 2046
1670 use AnyEvent; 2047 use AnyEvent;
1671 2048
1672Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2049Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1673be used to probe what backend is used and gain other information (which is 2050be used to probe what backend is used and gain other information (which is
1674probably even less useful to an attacker than PERL_ANYEVENT_MODEL). 2051probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
2052$ENV{PERL_ANYEVENT_STRICT}.
2053
2054Note that AnyEvent will remove I<all> environment variables starting with
2055C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2056enabled.
1675 2057
1676 2058
1677=head1 BUGS 2059=head1 BUGS
1678 2060
1679Perl 5.8 has numerous memleaks that sometimes hit this module and are hard 2061Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
1680to work around. If you suffer from memleaks, first upgrade to Perl 5.10 2062to work around. If you suffer from memleaks, first upgrade to Perl 5.10
1681and check wether the leaks still show up. (Perl 5.10.0 has other annoying 2063and check wether the leaks still show up. (Perl 5.10.0 has other annoying
1682mamleaks, such as leaking on C<map> and C<grep> but it is usually not as 2064memleaks, such as leaking on C<map> and C<grep> but it is usually not as
1683pronounced). 2065pronounced).
1684 2066
1685 2067
1686=head1 SEE ALSO 2068=head1 SEE ALSO
1687 2069

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines