ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.198 by root, Thu Mar 26 20:17:44 2009 UTC vs.
Revision 1.356 by root, Fri Aug 12 18:41:25 2011 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt
6and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
15 # file handle or descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { ... }); 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
12 17
18 # one-shot or repeating timers
13 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... }); 19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
14 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ... 20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
15 21
16 print AnyEvent->now; # prints current event loop time 22 print AnyEvent->now; # prints current event loop time
17 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time. 23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
18 24
25 # POSIX signal
19 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... }); 26 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
20 27
28 # child process exit
21 my $w = AnyEvent->child (pid => $pid, cb => sub { 29 my $w = AnyEvent->child (pid => $pid, cb => sub {
22 my ($pid, $status) = @_; 30 my ($pid, $status) = @_;
23 ... 31 ...
24 }); 32 });
33
34 # called when event loop idle (if applicable)
35 my $w = AnyEvent->idle (cb => sub { ... });
25 36
26 my $w = AnyEvent->condvar; # stores whether a condition was flagged 37 my $w = AnyEvent->condvar; # stores whether a condition was flagged
27 $w->send; # wake up current and all future recv's 38 $w->send; # wake up current and all future recv's
28 $w->recv; # enters "main loop" till $condvar gets ->send 39 $w->recv; # enters "main loop" till $condvar gets ->send
29 # use a condvar in callback mode: 40 # use a condvar in callback mode:
32=head1 INTRODUCTION/TUTORIAL 43=head1 INTRODUCTION/TUTORIAL
33 44
34This manpage is mainly a reference manual. If you are interested 45This manpage is mainly a reference manual. If you are interested
35in a tutorial or some gentle introduction, have a look at the 46in a tutorial or some gentle introduction, have a look at the
36L<AnyEvent::Intro> manpage. 47L<AnyEvent::Intro> manpage.
48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
37 58
38=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
39 60
40Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
41nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
57module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
58model you use. 79model you use.
59 80
60For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
61actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
62like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
63cannot use anything else, as they are simply incompatible to everything 84cannot use anything else, as they are simply incompatible to everything
64that isn't them. What's worse, all the potential users of your 85that isn't them. What's worse, all the potential users of your
65module are I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
66 87
67AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
68fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
69with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if 90with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module
70your module uses one of those, every user of your module has to use it, 91uses one of those, every user of your module has to use it, too. But if
71too. But if your module uses AnyEvent, it works transparently with all 92your module uses AnyEvent, it works transparently with all event models it
72event models it supports (including stuff like IO::Async, as long as those 93supports (including stuff like IO::Async, as long as those use one of the
73use one of the supported event loops. It is trivial to add new event loops 94supported event loops. It is easy to add new event loops to AnyEvent, too,
74to AnyEvent, too, so it is future-proof). 95so it is future-proof).
75 96
76In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
77model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
78modules, you get an enormous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
79follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
80offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
81technically possible. 102technically possible.
82 103
83Of course, AnyEvent comes with a big (and fully optional!) toolbox 104Of course, AnyEvent comes with a big (and fully optional!) toolbox
84of useful functionality, such as an asynchronous DNS resolver, 100% 105of useful functionality, such as an asynchronous DNS resolver, 100%
90useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
91model, you should I<not> use this module. 112model, you should I<not> use this module.
92 113
93=head1 DESCRIPTION 114=head1 DESCRIPTION
94 115
95L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
96allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
97users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
98peacefully at any one time). 119than one event loop cannot coexist peacefully).
99 120
100The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
101module. 122module.
102 123
103During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
104to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
105following modules is already loaded: L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Loop>,
106L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
107L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
108to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
109adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Loop> should always work, so
110be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
111found, AnyEvent will fall back to a pure-perl event loop, which is not
112very efficient, but should work everywhere.
113 132
114Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
115an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
116that model the default. For example: 135that model the default. For example:
117 136
119 use AnyEvent; 138 use AnyEvent;
120 139
121 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
122 141
123The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
124starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
125use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
126 146
127The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called C<AnyEvent::Loop>. Like
128C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148other event modules you can load it explicitly and enjoy the high
129explicitly and enjoy the high availability of that event loop :) 149availability of that event loop :)
130 150
131=head1 WATCHERS 151=head1 WATCHERS
132 152
133AnyEvent has the central concept of a I<watcher>, which is an object that 153AnyEvent has the central concept of a I<watcher>, which is an object that
134stores relevant data for each kind of event you are waiting for, such as 154stores relevant data for each kind of event you are waiting for, such as
139callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
140is in control). 160is in control).
141 161
142Note that B<callbacks must not permanently change global variables> 162Note that B<callbacks must not permanently change global variables>
143potentially in use by the event loop (such as C<$_> or C<$[>) and that B<< 163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
144callbacks must not C<die> >>. The former is good programming practise in 164callbacks must not C<die> >>. The former is good programming practice in
145Perl and the latter stems from the fact that exception handling differs 165Perl and the latter stems from the fact that exception handling differs
146widely between event loops. 166widely between event loops.
147 167
148To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
149variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
150to it). 170to it).
151 171
152All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
153 173
154Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
155example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
156 176
157An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
158 178
159 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
160 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
161 undef $w; 181 undef $w;
162 }); 182 });
165my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
166declared. 186declared.
167 187
168=head2 I/O WATCHERS 188=head2 I/O WATCHERS
169 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
170You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
171with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
172 198
173C<fh> the Perl I<file handle> (I<not> file descriptor) to watch for events 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
174(AnyEvent might or might not keep a reference to this file handle). C<poll> 200for events (AnyEvent might or might not keep a reference to this file
201handle). Note that only file handles pointing to things for which
202non-blocking operation makes sense are allowed. This includes sockets,
203most character devices, pipes, fifos and so on, but not for example files
204or block devices.
205
175must be a string that is either C<r> or C<w>, which creates a watcher 206C<poll> must be a string that is either C<r> or C<w>, which creates a
176waiting for "r"eadable or "w"ritable events, respectively. C<cb> is the 207watcher waiting for "r"eadable or "w"ritable events, respectively.
208
177callback to invoke each time the file handle becomes ready. 209C<cb> is the callback to invoke each time the file handle becomes ready.
178 210
179Although the callback might get passed parameters, their value and 211Although the callback might get passed parameters, their value and
180presence is undefined and you cannot rely on them. Portable AnyEvent 212presence is undefined and you cannot rely on them. Portable AnyEvent
181callbacks cannot use arguments passed to I/O watcher callbacks. 213callbacks cannot use arguments passed to I/O watcher callbacks.
182 214
183The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
184You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
185underlying file descriptor. 217underlying file descriptor.
186 218
187Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
188always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
189handles. 221handles.
190 222
191Example: wait for readability of STDIN, then read a line and disable the 223Example: wait for readability of STDIN, then read a line and disable the
192watcher. 224watcher.
197 undef $w; 229 undef $w;
198 }); 230 });
199 231
200=head2 TIME WATCHERS 232=head2 TIME WATCHERS
201 233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
241
202You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
203method with the following mandatory arguments: 243method with the following mandatory arguments:
204 244
205C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
206supported) the callback should be invoked. C<cb> is the callback to invoke 246supported) the callback should be invoked. C<cb> is the callback to invoke
208 248
209Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
210presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
211callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
212 252
213The callback will normally be invoked once only. If you specify another 253The callback will normally be invoked only once. If you specify another
214parameter, C<interval>, as a strictly positive number (> 0), then the 254parameter, C<interval>, as a strictly positive number (> 0), then the
215callback will be invoked regularly at that interval (in fractional 255callback will be invoked regularly at that interval (in fractional
216seconds) after the first invocation. If C<interval> is specified with a 256seconds) after the first invocation. If C<interval> is specified with a
217false value, then it is treated as if it were missing. 257false value, then it is treated as if it were not specified at all.
218 258
219The callback will be rescheduled before invoking the callback, but no 259The callback will be rescheduled before invoking the callback, but no
220attempt is done to avoid timer drift in most backends, so the interval is 260attempt is made to avoid timer drift in most backends, so the interval is
221only approximate. 261only approximate.
222 262
223Example: fire an event after 7.7 seconds. 263Example: fire an event after 7.7 seconds.
224 264
225 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
243 283
244While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
245use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
246"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
247the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
248fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
249 289
250AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
251about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
252on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
253timers. 293timers.
254 294
255AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
256AnyEvent API. 296AnyEvent API.
278I<In almost all cases (in all cases if you don't care), this is the 318I<In almost all cases (in all cases if you don't care), this is the
279function to call when you want to know the current time.> 319function to call when you want to know the current time.>
280 320
281This function is also often faster then C<< AnyEvent->time >>, and 321This function is also often faster then C<< AnyEvent->time >>, and
282thus the preferred method if you want some timestamp (for example, 322thus the preferred method if you want some timestamp (for example,
283L<AnyEvent::Handle> uses this to update it's activity timeouts). 323L<AnyEvent::Handle> uses this to update its activity timeouts).
284 324
285The rest of this section is only of relevance if you try to be very exact 325The rest of this section is only of relevance if you try to be very exact
286with your timing, you can skip it without bad conscience. 326with your timing; you can skip it without a bad conscience.
287 327
288For a practical example of when these times differ, consider L<Event::Lib> 328For a practical example of when these times differ, consider L<Event::Lib>
289and L<EV> and the following set-up: 329and L<EV> and the following set-up:
290 330
291The event loop is running and has just invoked one of your callback at 331The event loop is running and has just invoked one of your callbacks at
292time=500 (assume no other callbacks delay processing). In your callback, 332time=500 (assume no other callbacks delay processing). In your callback,
293you wait a second by executing C<sleep 1> (blocking the process for a 333you wait a second by executing C<sleep 1> (blocking the process for a
294second) and then (at time=501) you create a relative timer that fires 334second) and then (at time=501) you create a relative timer that fires
295after three seconds. 335after three seconds.
296 336
314In either case, if you care (and in most cases, you don't), then you 354In either case, if you care (and in most cases, you don't), then you
315can get whatever behaviour you want with any event loop, by taking the 355can get whatever behaviour you want with any event loop, by taking the
316difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into 356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
317account. 357account.
318 358
359=item AnyEvent->now_update
360
361Some event loops (such as L<EV> or L<AnyEvent::Loop>) cache the current
362time for each loop iteration (see the discussion of L<< AnyEvent->now >>,
363above).
364
365When a callback runs for a long time (or when the process sleeps), then
366this "current" time will differ substantially from the real time, which
367might affect timers and time-outs.
368
369When this is the case, you can call this method, which will update the
370event loop's idea of "current time".
371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
379Note that updating the time I<might> cause some events to be handled.
380
319=back 381=back
320 382
321=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
322 386
323You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
324I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
325callback to be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
326 390
332invocation, and callback invocation will be synchronous. Synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
333that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
334but it is guaranteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
335 399
336The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
337between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
338 403
339This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
340directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
341 407
342Example: exit on SIGINT 408Example: exit on SIGINT
343 409
344 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
345 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling) or
421"unsafe" (asynchronous) - the former might get delayed indefinitely, the
422latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
432callbacks to signals in a generic way, which is a pity, as you cannot
433do race-free signal handling in perl, requiring C libraries for
434this. AnyEvent will try to do its best, which means in some cases,
435signals will be delayed. The maximum time a signal might be delayed is
436specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
437variable can be changed only before the first signal watcher is created,
438and should be left alone otherwise. This variable determines how often
439AnyEvent polls for signals (in case a wake-up was missed). Higher values
440will cause fewer spurious wake-ups, which is better for power and CPU
441saving.
442
443All these problems can be avoided by installing the optional
444L<Async::Interrupt> module, which works with most event loops. It will not
445work with inherently broken event loops such as L<Event> or L<Event::Lib>
446(and not with L<POE> currently, as POE does its own workaround with
447one-second latency). For those, you just have to suffer the delays.
448
346=head2 CHILD PROCESS WATCHERS 449=head2 CHILD PROCESS WATCHERS
347 450
451 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
452
348You can also watch on a child process exit and catch its exit status. 453You can also watch for a child process exit and catch its exit status.
349 454
350The child process is specified by the C<pid> argument (if set to C<0>, it 455The child process is specified by the C<pid> argument (on some backends,
351watches for any child process exit). The watcher will triggered only when 456using C<0> watches for any child process exit, on others this will
352the child process has finished and an exit status is available, not on 457croak). The watcher will be triggered only when the child process has
353any trace events (stopped/continued). 458finished and an exit status is available, not on any trace events
459(stopped/continued).
354 460
355The callback will be called with the pid and exit status (as returned by 461The callback will be called with the pid and exit status (as returned by
356waitpid), so unlike other watcher types, you I<can> rely on child watcher 462waitpid), so unlike other watcher types, you I<can> rely on child watcher
357callback arguments. 463callback arguments.
358 464
363 469
364There is a slight catch to child watchers, however: you usually start them 470There is a slight catch to child watchers, however: you usually start them
365I<after> the child process was created, and this means the process could 471I<after> the child process was created, and this means the process could
366have exited already (and no SIGCHLD will be sent anymore). 472have exited already (and no SIGCHLD will be sent anymore).
367 473
368Not all event models handle this correctly (POE doesn't), but even for 474Not all event models handle this correctly (neither POE nor IO::Async do,
475see their AnyEvent::Impl manpages for details), but even for event models
369event models that I<do> handle this correctly, they usually need to be 476that I<do> handle this correctly, they usually need to be loaded before
370loaded before the process exits (i.e. before you fork in the first place). 477the process exits (i.e. before you fork in the first place). AnyEvent's
478pure perl event loop handles all cases correctly regardless of when you
479start the watcher.
371 480
372This means you cannot create a child watcher as the very first thing in an 481This means you cannot create a child watcher as the very first
373AnyEvent program, you I<have> to create at least one watcher before you 482thing in an AnyEvent program, you I<have> to create at least one
374C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 483watcher before you C<fork> the child (alternatively, you can call
484C<AnyEvent::detect>).
485
486As most event loops do not support waiting for child events, they will be
487emulated by AnyEvent in most cases, in which case the latency and race
488problems mentioned in the description of signal watchers apply.
375 489
376Example: fork a process and wait for it 490Example: fork a process and wait for it
377 491
378 my $done = AnyEvent->condvar; 492 my $done = AnyEvent->condvar;
379 493
389 ); 503 );
390 504
391 # do something else, then wait for process exit 505 # do something else, then wait for process exit
392 $done->recv; 506 $done->recv;
393 507
508=head2 IDLE WATCHERS
509
510 $w = AnyEvent->idle (cb => <callback>);
511
512This will repeatedly invoke the callback after the process becomes idle,
513until either the watcher is destroyed or new events have been detected.
514
515Idle watchers are useful when there is a need to do something, but it
516is not so important (or wise) to do it instantly. The callback will be
517invoked only when there is "nothing better to do", which is usually
518defined as "all outstanding events have been handled and no new events
519have been detected". That means that idle watchers ideally get invoked
520when the event loop has just polled for new events but none have been
521detected. Instead of blocking to wait for more events, the idle watchers
522will be invoked.
523
524Unfortunately, most event loops do not really support idle watchers (only
525EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
526will simply call the callback "from time to time".
527
528Example: read lines from STDIN, but only process them when the
529program is otherwise idle:
530
531 my @lines; # read data
532 my $idle_w;
533 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
534 push @lines, scalar <STDIN>;
535
536 # start an idle watcher, if not already done
537 $idle_w ||= AnyEvent->idle (cb => sub {
538 # handle only one line, when there are lines left
539 if (my $line = shift @lines) {
540 print "handled when idle: $line";
541 } else {
542 # otherwise disable the idle watcher again
543 undef $idle_w;
544 }
545 });
546 });
547
394=head2 CONDITION VARIABLES 548=head2 CONDITION VARIABLES
549
550 $cv = AnyEvent->condvar;
551
552 $cv->send (<list>);
553 my @res = $cv->recv;
395 554
396If you are familiar with some event loops you will know that all of them 555If you are familiar with some event loops you will know that all of them
397require you to run some blocking "loop", "run" or similar function that 556require you to run some blocking "loop", "run" or similar function that
398will actively watch for new events and call your callbacks. 557will actively watch for new events and call your callbacks.
399 558
400AnyEvent is different, it expects somebody else to run the event loop and 559AnyEvent is slightly different: it expects somebody else to run the event
401will only block when necessary (usually when told by the user). 560loop and will only block when necessary (usually when told by the user).
402 561
403The instrument to do that is called a "condition variable", so called 562The tool to do that is called a "condition variable", so called because
404because they represent a condition that must become true. 563they represent a condition that must become true.
564
565Now is probably a good time to look at the examples further below.
405 566
406Condition variables can be created by calling the C<< AnyEvent->condvar 567Condition variables can be created by calling the C<< AnyEvent->condvar
407>> method, usually without arguments. The only argument pair allowed is 568>> method, usually without arguments. The only argument pair allowed is
408
409C<cb>, which specifies a callback to be called when the condition variable 569C<cb>, which specifies a callback to be called when the condition variable
410becomes true, with the condition variable as the first argument (but not 570becomes true, with the condition variable as the first argument (but not
411the results). 571the results).
412 572
413After creation, the condition variable is "false" until it becomes "true" 573After creation, the condition variable is "false" until it becomes "true"
414by calling the C<send> method (or calling the condition variable as if it 574by calling the C<send> method (or calling the condition variable as if it
415were a callback, read about the caveats in the description for the C<< 575were a callback, read about the caveats in the description for the C<<
416->send >> method). 576->send >> method).
417 577
418Condition variables are similar to callbacks, except that you can 578Since condition variables are the most complex part of the AnyEvent API, here are
419optionally wait for them. They can also be called merge points - points 579some different mental models of what they are - pick the ones you can connect to:
420in time where multiple outstanding events have been processed. And yet 580
421another way to call them is transactions - each condition variable can be 581=over 4
422used to represent a transaction, which finishes at some point and delivers 582
423a result. 583=item * Condition variables are like callbacks - you can call them (and pass them instead
584of callbacks). Unlike callbacks however, you can also wait for them to be called.
585
586=item * Condition variables are signals - one side can emit or send them,
587the other side can wait for them, or install a handler that is called when
588the signal fires.
589
590=item * Condition variables are like "Merge Points" - points in your program
591where you merge multiple independent results/control flows into one.
592
593=item * Condition variables represent a transaction - functions that start
594some kind of transaction can return them, leaving the caller the choice
595between waiting in a blocking fashion, or setting a callback.
596
597=item * Condition variables represent future values, or promises to deliver
598some result, long before the result is available.
599
600=back
424 601
425Condition variables are very useful to signal that something has finished, 602Condition variables are very useful to signal that something has finished,
426for example, if you write a module that does asynchronous http requests, 603for example, if you write a module that does asynchronous http requests,
427then a condition variable would be the ideal candidate to signal the 604then a condition variable would be the ideal candidate to signal the
428availability of results. The user can either act when the callback is 605availability of results. The user can either act when the callback is
441 618
442Condition variables are represented by hash refs in perl, and the keys 619Condition variables are represented by hash refs in perl, and the keys
443used by AnyEvent itself are all named C<_ae_XXX> to make subclassing 620used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
444easy (it is often useful to build your own transaction class on top of 621easy (it is often useful to build your own transaction class on top of
445AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call 622AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
446it's C<new> method in your own C<new> method. 623its C<new> method in your own C<new> method.
447 624
448There are two "sides" to a condition variable - the "producer side" which 625There are two "sides" to a condition variable - the "producer side" which
449eventually calls C<< -> send >>, and the "consumer side", which waits 626eventually calls C<< -> send >>, and the "consumer side", which waits
450for the send to occur. 627for the send to occur.
451 628
452Example: wait for a timer. 629Example: wait for a timer.
453 630
454 # wait till the result is ready 631 # condition: "wait till the timer is fired"
455 my $result_ready = AnyEvent->condvar; 632 my $timer_fired = AnyEvent->condvar;
456 633
457 # do something such as adding a timer 634 # create the timer - we could wait for, say
458 # or socket watcher the calls $result_ready->send 635 # a handle becomign ready, or even an
459 # when the "result" is ready. 636 # AnyEvent::HTTP request to finish, but
460 # in this case, we simply use a timer: 637 # in this case, we simply use a timer:
461 my $w = AnyEvent->timer ( 638 my $w = AnyEvent->timer (
462 after => 1, 639 after => 1,
463 cb => sub { $result_ready->send }, 640 cb => sub { $timer_fired->send },
464 ); 641 );
465 642
466 # this "blocks" (while handling events) till the callback 643 # this "blocks" (while handling events) till the callback
467 # calls send 644 # calls ->send
468 $result_ready->recv; 645 $timer_fired->recv;
469 646
470Example: wait for a timer, but take advantage of the fact that 647Example: wait for a timer, but take advantage of the fact that condition
471condition variables are also code references. 648variables are also callable directly.
472 649
473 my $done = AnyEvent->condvar; 650 my $done = AnyEvent->condvar;
474 my $delay = AnyEvent->timer (after => 5, cb => $done); 651 my $delay = AnyEvent->timer (after => 5, cb => $done);
475 $done->recv; 652 $done->recv;
476 653
482 659
483 ... 660 ...
484 661
485 my @info = $couchdb->info->recv; 662 my @info = $couchdb->info->recv;
486 663
487And this is how you would just ste a callback to be called whenever the 664And this is how you would just set a callback to be called whenever the
488results are available: 665results are available:
489 666
490 $couchdb->info->cb (sub { 667 $couchdb->info->cb (sub {
491 my @info = $_[0]->recv; 668 my @info = $_[0]->recv;
492 }); 669 });
510immediately from within send. 687immediately from within send.
511 688
512Any arguments passed to the C<send> call will be returned by all 689Any arguments passed to the C<send> call will be returned by all
513future C<< ->recv >> calls. 690future C<< ->recv >> calls.
514 691
515Condition variables are overloaded so one can call them directly 692Condition variables are overloaded so one can call them directly (as if
516(as a code reference). Calling them directly is the same as calling 693they were a code reference). Calling them directly is the same as calling
517C<send>. Note, however, that many C-based event loops do not handle 694C<send>.
518overloading, so as tempting as it may be, passing a condition variable
519instead of a callback does not work. Both the pure perl and EV loops
520support overloading, however, as well as all functions that use perl to
521invoke a callback (as in L<AnyEvent::Socket> and L<AnyEvent::DNS> for
522example).
523 695
524=item $cv->croak ($error) 696=item $cv->croak ($error)
525 697
526Similar to send, but causes all call's to C<< ->recv >> to invoke 698Similar to send, but causes all calls to C<< ->recv >> to invoke
527C<Carp::croak> with the given error message/object/scalar. 699C<Carp::croak> with the given error message/object/scalar.
528 700
529This can be used to signal any errors to the condition variable 701This can be used to signal any errors to the condition variable
530user/consumer. 702user/consumer. Doing it this way instead of calling C<croak> directly
703delays the error detection, but has the overwhelming advantage that it
704diagnoses the error at the place where the result is expected, and not
705deep in some event callback with no connection to the actual code causing
706the problem.
531 707
532=item $cv->begin ([group callback]) 708=item $cv->begin ([group callback])
533 709
534=item $cv->end 710=item $cv->end
535
536These two methods are EXPERIMENTAL and MIGHT CHANGE.
537 711
538These two methods can be used to combine many transactions/events into 712These two methods can be used to combine many transactions/events into
539one. For example, a function that pings many hosts in parallel might want 713one. For example, a function that pings many hosts in parallel might want
540to use a condition variable for the whole process. 714to use a condition variable for the whole process.
541 715
542Every call to C<< ->begin >> will increment a counter, and every call to 716Every call to C<< ->begin >> will increment a counter, and every call to
543C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 717C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
544>>, the (last) callback passed to C<begin> will be executed. That callback 718>>, the (last) callback passed to C<begin> will be executed, passing the
545is I<supposed> to call C<< ->send >>, but that is not required. If no 719condvar as first argument. That callback is I<supposed> to call C<< ->send
546callback was set, C<send> will be called without any arguments. 720>>, but that is not required. If no group callback was set, C<send> will
721be called without any arguments.
547 722
548Let's clarify this with the ping example: 723You can think of C<< $cv->send >> giving you an OR condition (one call
724sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
725condition (all C<begin> calls must be C<end>'ed before the condvar sends).
726
727Let's start with a simple example: you have two I/O watchers (for example,
728STDOUT and STDERR for a program), and you want to wait for both streams to
729close before activating a condvar:
549 730
550 my $cv = AnyEvent->condvar; 731 my $cv = AnyEvent->condvar;
551 732
733 $cv->begin; # first watcher
734 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
735 defined sysread $fh1, my $buf, 4096
736 or $cv->end;
737 });
738
739 $cv->begin; # second watcher
740 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
741 defined sysread $fh2, my $buf, 4096
742 or $cv->end;
743 });
744
745 $cv->recv;
746
747This works because for every event source (EOF on file handle), there is
748one call to C<begin>, so the condvar waits for all calls to C<end> before
749sending.
750
751The ping example mentioned above is slightly more complicated, as the
752there are results to be passwd back, and the number of tasks that are
753begun can potentially be zero:
754
755 my $cv = AnyEvent->condvar;
756
552 my %result; 757 my %result;
553 $cv->begin (sub { $cv->send (\%result) }); 758 $cv->begin (sub { shift->send (\%result) });
554 759
555 for my $host (@list_of_hosts) { 760 for my $host (@list_of_hosts) {
556 $cv->begin; 761 $cv->begin;
557 ping_host_then_call_callback $host, sub { 762 ping_host_then_call_callback $host, sub {
558 $result{$host} = ...; 763 $result{$host} = ...;
573loop, which serves two important purposes: first, it sets the callback 778loop, which serves two important purposes: first, it sets the callback
574to be called once the counter reaches C<0>, and second, it ensures that 779to be called once the counter reaches C<0>, and second, it ensures that
575C<send> is called even when C<no> hosts are being pinged (the loop 780C<send> is called even when C<no> hosts are being pinged (the loop
576doesn't execute once). 781doesn't execute once).
577 782
578This is the general pattern when you "fan out" into multiple subrequests: 783This is the general pattern when you "fan out" into multiple (but
579use an outer C<begin>/C<end> pair to set the callback and ensure C<end> 784potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
580is called at least once, and then, for each subrequest you start, call 785the callback and ensure C<end> is called at least once, and then, for each
581C<begin> and for each subrequest you finish, call C<end>. 786subrequest you start, call C<begin> and for each subrequest you finish,
787call C<end>.
582 788
583=back 789=back
584 790
585=head3 METHODS FOR CONSUMERS 791=head3 METHODS FOR CONSUMERS
586 792
590=over 4 796=over 4
591 797
592=item $cv->recv 798=item $cv->recv
593 799
594Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak 800Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
595>> methods have been called on c<$cv>, while servicing other watchers 801>> methods have been called on C<$cv>, while servicing other watchers
596normally. 802normally.
597 803
598You can only wait once on a condition - additional calls are valid but 804You can only wait once on a condition - additional calls are valid but
599will return immediately. 805will return immediately.
600 806
602function will call C<croak>. 808function will call C<croak>.
603 809
604In list context, all parameters passed to C<send> will be returned, 810In list context, all parameters passed to C<send> will be returned,
605in scalar context only the first one will be returned. 811in scalar context only the first one will be returned.
606 812
813Note that doing a blocking wait in a callback is not supported by any
814event loop, that is, recursive invocation of a blocking C<< ->recv
815>> is not allowed, and the C<recv> call will C<croak> if such a
816condition is detected. This condition can be slightly loosened by using
817L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
818any thread that doesn't run the event loop itself.
819
607Not all event models support a blocking wait - some die in that case 820Not all event models support a blocking wait - some die in that case
608(programs might want to do that to stay interactive), so I<if you are 821(programs might want to do that to stay interactive), so I<if you are
609using this from a module, never require a blocking wait>, but let the 822using this from a module, never require a blocking wait>. Instead, let the
610caller decide whether the call will block or not (for example, by coupling 823caller decide whether the call will block or not (for example, by coupling
611condition variables with some kind of request results and supporting 824condition variables with some kind of request results and supporting
612callbacks so the caller knows that getting the result will not block, 825callbacks so the caller knows that getting the result will not block,
613while still supporting blocking waits if the caller so desires). 826while still supporting blocking waits if the caller so desires).
614 827
615Another reason I<never> to C<< ->recv >> in a module is that you cannot
616sensibly have two C<< ->recv >>'s in parallel, as that would require
617multiple interpreters or coroutines/threads, none of which C<AnyEvent>
618can supply.
619
620The L<Coro> module, however, I<can> and I<does> supply coroutines and, in
621fact, L<Coro::AnyEvent> replaces AnyEvent's condvars by coroutine-safe
622versions and also integrates coroutines into AnyEvent, making blocking
623C<< ->recv >> calls perfectly safe as long as they are done from another
624coroutine (one that doesn't run the event loop).
625
626You can ensure that C<< -recv >> never blocks by setting a callback and 828You can ensure that C<< ->recv >> never blocks by setting a callback and
627only calling C<< ->recv >> from within that callback (or at a later 829only calling C<< ->recv >> from within that callback (or at a later
628time). This will work even when the event loop does not support blocking 830time). This will work even when the event loop does not support blocking
629waits otherwise. 831waits otherwise.
630 832
631=item $bool = $cv->ready 833=item $bool = $cv->ready
637 839
638This is a mutator function that returns the callback set and optionally 840This is a mutator function that returns the callback set and optionally
639replaces it before doing so. 841replaces it before doing so.
640 842
641The callback will be called when the condition becomes "true", i.e. when 843The callback will be called when the condition becomes "true", i.e. when
642C<send> or C<croak> are called, with the only argument being the condition 844C<send> or C<croak> are called, with the only argument being the
643variable itself. Calling C<recv> inside the callback or at any later time 845condition variable itself. If the condition is already true, the
644is guaranteed not to block. 846callback is called immediately when it is set. Calling C<recv> inside
847the callback or at any later time is guaranteed not to block.
645 848
646=back 849=back
647 850
851=head1 SUPPORTED EVENT LOOPS/BACKENDS
852
853The available backend classes are (every class has its own manpage):
854
855=over 4
856
857=item Backends that are autoprobed when no other event loop can be found.
858
859EV is the preferred backend when no other event loop seems to be in
860use. If EV is not installed, then AnyEvent will fall back to its own
861pure-perl implementation, which is available everywhere as it comes with
862AnyEvent itself.
863
864 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
865 AnyEvent::Impl::Perl pure-perl AnyEvent::Loop, fast and portable.
866
867=item Backends that are transparently being picked up when they are used.
868
869These will be used if they are already loaded when the first watcher
870is created, in which case it is assumed that the application is using
871them. This means that AnyEvent will automatically pick the right backend
872when the main program loads an event module before anything starts to
873create watchers. Nothing special needs to be done by the main program.
874
875 AnyEvent::Impl::Event based on Event, very stable, few glitches.
876 AnyEvent::Impl::Glib based on Glib, slow but very stable.
877 AnyEvent::Impl::Tk based on Tk, very broken.
878 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
879 AnyEvent::Impl::POE based on POE, very slow, some limitations.
880 AnyEvent::Impl::Irssi used when running within irssi.
881 AnyEvent::Impl::IOAsync based on IO::Async.
882 AnyEvent::Impl::Cocoa based on Cocoa::EventLoop.
883 AnyEvent::Impl::FLTK2 based on FLTK (fltk 2 binding).
884
885=item Backends with special needs.
886
887Qt requires the Qt::Application to be instantiated first, but will
888otherwise be picked up automatically. As long as the main program
889instantiates the application before any AnyEvent watchers are created,
890everything should just work.
891
892 AnyEvent::Impl::Qt based on Qt.
893
894=item Event loops that are indirectly supported via other backends.
895
896Some event loops can be supported via other modules:
897
898There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
899
900B<WxWidgets> has no support for watching file handles. However, you can
901use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
902polls 20 times per second, which was considered to be too horrible to even
903consider for AnyEvent.
904
905B<Prima> is not supported as nobody seems to be using it, but it has a POE
906backend, so it can be supported through POE.
907
908AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
909load L<POE> when detecting them, in the hope that POE will pick them up,
910in which case everything will be automatic.
911
912=back
913
648=head1 GLOBAL VARIABLES AND FUNCTIONS 914=head1 GLOBAL VARIABLES AND FUNCTIONS
649 915
916These are not normally required to use AnyEvent, but can be useful to
917write AnyEvent extension modules.
918
650=over 4 919=over 4
651 920
652=item $AnyEvent::MODEL 921=item $AnyEvent::MODEL
653 922
654Contains C<undef> until the first watcher is being created. Then it 923Contains C<undef> until the first watcher is being created, before the
924backend has been autodetected.
925
655contains the event model that is being used, which is the name of the 926Afterwards it contains the event model that is being used, which is the
656Perl class implementing the model. This class is usually one of the 927name of the Perl class implementing the model. This class is usually one
657C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 928of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
658AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 929case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
659 930will be C<urxvt::anyevent>).
660The known classes so far are:
661
662 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
663 AnyEvent::Impl::Event based on Event, second best choice.
664 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
665 AnyEvent::Impl::Glib based on Glib, third-best choice.
666 AnyEvent::Impl::Tk based on Tk, very bad choice.
667 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
668 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
669 AnyEvent::Impl::POE based on POE, not generic enough for full support.
670
671There is no support for WxWidgets, as WxWidgets has no support for
672watching file handles. However, you can use WxWidgets through the
673POE Adaptor, as POE has a Wx backend that simply polls 20 times per
674second, which was considered to be too horrible to even consider for
675AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
676it's adaptor.
677
678AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
679autodetecting them.
680 931
681=item AnyEvent::detect 932=item AnyEvent::detect
682 933
683Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 934Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
684if necessary. You should only call this function right before you would 935if necessary. You should only call this function right before you would
685have created an AnyEvent watcher anyway, that is, as late as possible at 936have created an AnyEvent watcher anyway, that is, as late as possible at
686runtime. 937runtime, and not e.g. during initialisation of your module.
938
939If you need to do some initialisation before AnyEvent watchers are
940created, use C<post_detect>.
687 941
688=item $guard = AnyEvent::post_detect { BLOCK } 942=item $guard = AnyEvent::post_detect { BLOCK }
689 943
690Arranges for the code block to be executed as soon as the event model is 944Arranges for the code block to be executed as soon as the event model is
691autodetected (or immediately if this has already happened). 945autodetected (or immediately if that has already happened).
946
947The block will be executed I<after> the actual backend has been detected
948(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
949created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
950other initialisations - see the sources of L<AnyEvent::Strict> or
951L<AnyEvent::AIO> to see how this is used.
952
953The most common usage is to create some global watchers, without forcing
954event module detection too early, for example, L<AnyEvent::AIO> creates
955and installs the global L<IO::AIO> watcher in a C<post_detect> block to
956avoid autodetecting the event module at load time.
692 957
693If called in scalar or list context, then it creates and returns an object 958If called in scalar or list context, then it creates and returns an object
694that automatically removes the callback again when it is destroyed. See 959that automatically removes the callback again when it is destroyed (or
960C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
695L<Coro::BDB> for a case where this is useful. 961a case where this is useful.
962
963Example: Create a watcher for the IO::AIO module and store it in
964C<$WATCHER>, but do so only do so after the event loop is initialised.
965
966 our WATCHER;
967
968 my $guard = AnyEvent::post_detect {
969 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
970 };
971
972 # the ||= is important in case post_detect immediately runs the block,
973 # as to not clobber the newly-created watcher. assigning both watcher and
974 # post_detect guard to the same variable has the advantage of users being
975 # able to just C<undef $WATCHER> if the watcher causes them grief.
976
977 $WATCHER ||= $guard;
696 978
697=item @AnyEvent::post_detect 979=item @AnyEvent::post_detect
698 980
699If there are any code references in this array (you can C<push> to it 981If there are any code references in this array (you can C<push> to it
700before or after loading AnyEvent), then they will called directly after 982before or after loading AnyEvent), then they will be called directly
701the event loop has been chosen. 983after the event loop has been chosen.
702 984
703You should check C<$AnyEvent::MODEL> before adding to this array, though: 985You should check C<$AnyEvent::MODEL> before adding to this array, though:
704if it contains a true value then the event loop has already been detected, 986if it is defined then the event loop has already been detected, and the
705and the array will be ignored. 987array will be ignored.
706 988
707Best use C<AnyEvent::post_detect { BLOCK }> instead. 989Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
990it, as it takes care of these details.
991
992This variable is mainly useful for modules that can do something useful
993when AnyEvent is used and thus want to know when it is initialised, but do
994not need to even load it by default. This array provides the means to hook
995into AnyEvent passively, without loading it.
996
997Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
998together, you could put this into Coro (this is the actual code used by
999Coro to accomplish this):
1000
1001 if (defined $AnyEvent::MODEL) {
1002 # AnyEvent already initialised, so load Coro::AnyEvent
1003 require Coro::AnyEvent;
1004 } else {
1005 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1006 # as soon as it is
1007 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1008 }
1009
1010=item AnyEvent::postpone { BLOCK }
1011
1012Arranges for the block to be executed as soon as possible, but not before
1013the call itself returns. In practise, the block will be executed just
1014before the event loop polls for new events, or shortly afterwards.
1015
1016This function never returns anything (to make the C<return postpone { ...
1017}> idiom more useful.
1018
1019To understand the usefulness of this function, consider a function that
1020asynchronously does something for you and returns some transaction
1021object or guard to let you cancel the operation. For example,
1022C<AnyEvent::Socket::tcp_connect>:
1023
1024 # start a conenction attempt unless one is active
1025 $self->{connect_guard} ||= AnyEvent::Socket::tcp_connect "www.example.net", 80, sub {
1026 delete $self->{connect_guard};
1027 ...
1028 };
1029
1030Imagine that this function could instantly call the callback, for
1031example, because it detects an obvious error such as a negative port
1032number. Invoking the callback before the function returns causes problems
1033however: the callback will be called and will try to delete the guard
1034object. But since the function hasn't returned yet, there is nothing to
1035delete. When the function eventually returns it will assign the guard
1036object to C<< $self->{connect_guard} >>, where it will likely never be
1037deleted, so the program thinks it is still trying to connect.
1038
1039This is where C<AnyEvent::postpone> should be used. Instead of calling the
1040callback directly on error:
1041
1042 $cb->(undef), return # signal error to callback, BAD!
1043 if $some_error_condition;
1044
1045It should use C<postpone>:
1046
1047 AnyEvent::postpone { $cb->(undef) }, return # signal error to callback, later
1048 if $some_error_condition;
708 1049
709=back 1050=back
710 1051
711=head1 WHAT TO DO IN A MODULE 1052=head1 WHAT TO DO IN A MODULE
712 1053
723because it will stall the whole program, and the whole point of using 1064because it will stall the whole program, and the whole point of using
724events is to stay interactive. 1065events is to stay interactive.
725 1066
726It is fine, however, to call C<< ->recv >> when the user of your module 1067It is fine, however, to call C<< ->recv >> when the user of your module
727requests it (i.e. if you create a http request object ad have a method 1068requests it (i.e. if you create a http request object ad have a method
728called C<results> that returns the results, it should call C<< ->recv >> 1069called C<results> that returns the results, it may call C<< ->recv >>
729freely, as the user of your module knows what she is doing. always). 1070freely, as the user of your module knows what she is doing. Always).
730 1071
731=head1 WHAT TO DO IN THE MAIN PROGRAM 1072=head1 WHAT TO DO IN THE MAIN PROGRAM
732 1073
733There will always be a single main program - the only place that should 1074There will always be a single main program - the only place that should
734dictate which event model to use. 1075dictate which event model to use.
735 1076
736If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1077If the program is not event-based, it need not do anything special, even
737do anything special (it does not need to be event-based) and let AnyEvent 1078when it depends on a module that uses an AnyEvent. If the program itself
738decide which implementation to chose if some module relies on it. 1079uses AnyEvent, but does not care which event loop is used, all it needs
1080to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1081available loop implementation.
739 1082
740If the main program relies on a specific event model - for example, in 1083If the main program relies on a specific event model - for example, in
741Gtk2 programs you have to rely on the Glib module - you should load the 1084Gtk2 programs you have to rely on the Glib module - you should load the
742event module before loading AnyEvent or any module that uses it: generally 1085event module before loading AnyEvent or any module that uses it: generally
743speaking, you should load it as early as possible. The reason is that 1086speaking, you should load it as early as possible. The reason is that
744modules might create watchers when they are loaded, and AnyEvent will 1087modules might create watchers when they are loaded, and AnyEvent will
745decide on the event model to use as soon as it creates watchers, and it 1088decide on the event model to use as soon as it creates watchers, and it
746might chose the wrong one unless you load the correct one yourself. 1089might choose the wrong one unless you load the correct one yourself.
747 1090
748You can chose to use a pure-perl implementation by loading the 1091You can chose to use a pure-perl implementation by loading the
749C<AnyEvent::Impl::Perl> module, which gives you similar behaviour 1092C<AnyEvent::Loop> module, which gives you similar behaviour
750everywhere, but letting AnyEvent chose the model is generally better. 1093everywhere, but letting AnyEvent chose the model is generally better.
751 1094
752=head2 MAINLOOP EMULATION 1095=head2 MAINLOOP EMULATION
753 1096
754Sometimes (often for short test scripts, or even standalone programs who 1097Sometimes (often for short test scripts, or even standalone programs who
767 1110
768 1111
769=head1 OTHER MODULES 1112=head1 OTHER MODULES
770 1113
771The following is a non-exhaustive list of additional modules that use 1114The following is a non-exhaustive list of additional modules that use
772AnyEvent and can therefore be mixed easily with other AnyEvent modules 1115AnyEvent as a client and can therefore be mixed easily with other AnyEvent
773in the same program. Some of the modules come with AnyEvent, some are 1116modules and other event loops in the same program. Some of the modules
774available via CPAN. 1117come as part of AnyEvent, the others are available via CPAN.
775 1118
776=over 4 1119=over 4
777 1120
778=item L<AnyEvent::Util> 1121=item L<AnyEvent::Util>
779 1122
780Contains various utility functions that replace often-used but blocking 1123Contains various utility functions that replace often-used blocking
781functions such as C<inet_aton> by event-/callback-based versions. 1124functions such as C<inet_aton> with event/callback-based versions.
782 1125
783=item L<AnyEvent::Socket> 1126=item L<AnyEvent::Socket>
784 1127
785Provides various utility functions for (internet protocol) sockets, 1128Provides various utility functions for (internet protocol) sockets,
786addresses and name resolution. Also functions to create non-blocking tcp 1129addresses and name resolution. Also functions to create non-blocking tcp
788 1131
789=item L<AnyEvent::Handle> 1132=item L<AnyEvent::Handle>
790 1133
791Provide read and write buffers, manages watchers for reads and writes, 1134Provide read and write buffers, manages watchers for reads and writes,
792supports raw and formatted I/O, I/O queued and fully transparent and 1135supports raw and formatted I/O, I/O queued and fully transparent and
793non-blocking SSL/TLS. 1136non-blocking SSL/TLS (via L<AnyEvent::TLS>).
794 1137
795=item L<AnyEvent::DNS> 1138=item L<AnyEvent::DNS>
796 1139
797Provides rich asynchronous DNS resolver capabilities. 1140Provides rich asynchronous DNS resolver capabilities.
798 1141
1142=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1143
1144Implement event-based interfaces to the protocols of the same name (for
1145the curious, IGS is the International Go Server and FCP is the Freenet
1146Client Protocol).
1147
1148=item L<AnyEvent::Handle::UDP>
1149
1150Here be danger!
1151
1152As Pauli would put it, "Not only is it not right, it's not even wrong!" -
1153there are so many things wrong with AnyEvent::Handle::UDP, most notably
1154its use of a stream-based API with a protocol that isn't streamable, that
1155the only way to improve it is to delete it.
1156
1157It features data corruption (but typically only under load) and general
1158confusion. On top, the author is not only clueless about UDP but also
1159fact-resistant - some gems of his understanding: "connect doesn't work
1160with UDP", "UDP packets are not IP packets", "UDP only has datagrams, not
1161packets", "I don't need to implement proper error checking as UDP doesn't
1162support error checking" and so on - he doesn't even understand what's
1163wrong with his module when it is explained to him.
1164
799=item L<AnyEvent::HTTP> 1165=item L<AnyEvent::DBI>
800 1166
801A simple-to-use HTTP library that is capable of making a lot of concurrent 1167Executes L<DBI> requests asynchronously in a proxy process for you,
802HTTP requests. 1168notifying you in an event-based way when the operation is finished.
1169
1170=item L<AnyEvent::AIO>
1171
1172Truly asynchronous (as opposed to non-blocking) I/O, should be in the
1173toolbox of every event programmer. AnyEvent::AIO transparently fuses
1174L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1175file I/O, and much more.
803 1176
804=item L<AnyEvent::HTTPD> 1177=item L<AnyEvent::HTTPD>
805 1178
806Provides a simple web application server framework. 1179A simple embedded webserver.
807 1180
808=item L<AnyEvent::FastPing> 1181=item L<AnyEvent::FastPing>
809 1182
810The fastest ping in the west. 1183The fastest ping in the west.
811 1184
812=item L<AnyEvent::DBI>
813
814Executes L<DBI> requests asynchronously in a proxy process.
815
816=item L<AnyEvent::AIO>
817
818Truly asynchronous I/O, should be in the toolbox of every event
819programmer. AnyEvent::AIO transparently fuses L<IO::AIO> and AnyEvent
820together.
821
822=item L<AnyEvent::BDB>
823
824Truly asynchronous Berkeley DB access. AnyEvent::BDB transparently fuses
825L<BDB> and AnyEvent together.
826
827=item L<AnyEvent::GPSD>
828
829A non-blocking interface to gpsd, a daemon delivering GPS information.
830
831=item L<AnyEvent::IGS>
832
833A non-blocking interface to the Internet Go Server protocol (used by
834L<App::IGS>).
835
836=item L<AnyEvent::IRC>
837
838AnyEvent based IRC client module family (replacing the older Net::IRC3).
839
840=item L<Net::XMPP2>
841
842AnyEvent based XMPP (Jabber protocol) module family.
843
844=item L<Net::FCP>
845
846AnyEvent-based implementation of the Freenet Client Protocol, birthplace
847of AnyEvent.
848
849=item L<Event::ExecFlow>
850
851High level API for event-based execution flow control.
852
853=item L<Coro> 1185=item L<Coro>
854 1186
855Has special support for AnyEvent via L<Coro::AnyEvent>. 1187Has special support for AnyEvent via L<Coro::AnyEvent>.
856 1188
857=item L<IO::Lambda>
858
859The lambda approach to I/O - don't ask, look there. Can use AnyEvent.
860
861=back 1189=back
862 1190
863=cut 1191=cut
864 1192
865package AnyEvent; 1193package AnyEvent;
866 1194
867no warnings; 1195# basically a tuned-down version of common::sense
868use strict qw(vars subs); 1196sub common_sense {
1197 # from common:.sense 3.4
1198 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf0\x0f\xc0\xf0\xfc\x33\x00";
1199 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1200 $^H |= 0x00000600;
1201}
869 1202
1203BEGIN { AnyEvent::common_sense }
1204
870use Carp; 1205use Carp ();
871 1206
872our $VERSION = 4.341; 1207our $VERSION = '5.34';
873our $MODEL; 1208our $MODEL;
874 1209
875our $AUTOLOAD; 1210our $AUTOLOAD;
876our @ISA; 1211our @ISA;
877 1212
878our @REGISTRY; 1213our @REGISTRY;
879 1214
880our $WIN32; 1215our $VERBOSE;
881 1216
882BEGIN { 1217BEGIN {
883 my $win32 = ! ! ($^O =~ /mswin32/i); 1218 require "AnyEvent/constants.pl";
884 eval "sub WIN32(){ $win32 }";
885}
886 1219
1220 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
1221
1222 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1223 if ${^TAINT};
1224
887our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; 1225 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1;
1226
1227}
1228
1229our $MAX_SIGNAL_LATENCY = 10;
888 1230
889our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred 1231our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
890 1232
891{ 1233{
892 my $idx; 1234 my $idx;
893 $PROTOCOL{$_} = ++$idx 1235 $PROTOCOL{$_} = ++$idx
894 for reverse split /\s*,\s*/, 1236 for reverse split /\s*,\s*/,
895 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1237 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
896} 1238}
897 1239
1240our @post_detect;
1241
1242sub post_detect(&) {
1243 my ($cb) = @_;
1244
1245 push @post_detect, $cb;
1246
1247 defined wantarray
1248 ? bless \$cb, "AnyEvent::Util::postdetect"
1249 : ()
1250}
1251
1252sub AnyEvent::Util::postdetect::DESTROY {
1253 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1254}
1255
1256our $POSTPONE_W;
1257our @POSTPONE;
1258
1259sub _postpone_exec {
1260 undef $POSTPONE_W;
1261
1262 &{ shift @POSTPONE }
1263 while @POSTPONE;
1264}
1265
1266sub postpone(&) {
1267 push @POSTPONE, shift;
1268
1269 $POSTPONE_W ||= AE::timer (0, 0, \&_postpone_exec);
1270
1271 ()
1272}
1273
898my @models = ( 1274our @models = (
899 [EV:: => AnyEvent::Impl::EV::], 1275 [EV:: => AnyEvent::Impl::EV:: , 1],
900 [Event:: => AnyEvent::Impl::Event::], 1276 [AnyEvent::Loop:: => AnyEvent::Impl::Perl:: , 1],
901 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::],
902 # everything below here will not be autoprobed 1277 # everything below here will not (normally) be autoprobed
903 # as the pureperl backend should work everywhere 1278 # as the pure perl backend should work everywhere
904 # and is usually faster 1279 # and is usually faster
1280 [Event:: => AnyEvent::Impl::Event::, 1],
1281 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1282 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1283 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
905 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles 1284 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
906 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
907 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
908 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 1285 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
909 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 1286 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
910 [Wx:: => AnyEvent::Impl::POE::], 1287 [Wx:: => AnyEvent::Impl::POE::],
911 [Prima:: => AnyEvent::Impl::POE::], 1288 [Prima:: => AnyEvent::Impl::POE::],
1289 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # a bitch to autodetect
1290 [Cocoa::EventLoop:: => AnyEvent::Impl::Cocoa::],
1291 [FLTK:: => AnyEvent::Impl::FLTK2::],
912); 1292);
913 1293
914our %method = map +($_ => 1), qw(io timer time now signal child condvar one_event DESTROY);
915
916our @post_detect;
917
918sub post_detect(&) { 1294sub detect() {
919 my ($cb) = @_; 1295 # free some memory
1296 *detect = sub () { $MODEL };
920 1297
921 if ($MODEL) { 1298 local $!; # for good measure
922 $cb->(); 1299 local $SIG{__DIE__};
923 1300
924 1 1301 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z0-9:]+)$/) {
1302 my $model = $1;
1303 $model = "AnyEvent::Impl::$model" unless $model =~ s/::$//;
1304 if (eval "require $model") {
1305 $MODEL = $model;
1306 warn "AnyEvent: loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.\n" if $VERBOSE >= 2;
925 } else { 1307 } else {
926 push @post_detect, $cb; 1308 warn "AnyEvent: unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@" if $VERBOSE;
927 1309 }
928 defined wantarray
929 ? bless \$cb, "AnyEvent::Util::PostDetect"
930 : ()
931 } 1310 }
932}
933 1311
934sub AnyEvent::Util::PostDetect::DESTROY { 1312 # check for already loaded models
935 @post_detect = grep $_ != ${$_[0]}, @post_detect;
936}
937
938sub detect() {
939 unless ($MODEL) { 1313 unless ($MODEL) {
940 no strict 'refs'; 1314 for (@REGISTRY, @models) {
941 local $SIG{__DIE__}; 1315 my ($package, $model) = @$_;
942 1316 if (${"$package\::VERSION"} > 0) {
943 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
944 my $model = "AnyEvent::Impl::$1";
945 if (eval "require $model") { 1317 if (eval "require $model") {
946 $MODEL = $model; 1318 $MODEL = $model;
947 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1319 warn "AnyEvent: autodetected model '$model', using it.\n" if $VERBOSE >= 2;
948 } else { 1320 last;
949 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose; 1321 }
950 } 1322 }
951 } 1323 }
952 1324
953 # check for already loaded models
954 unless ($MODEL) { 1325 unless ($MODEL) {
1326 # try to autoload a model
955 for (@REGISTRY, @models) { 1327 for (@REGISTRY, @models) {
956 my ($package, $model) = @$_; 1328 my ($package, $model, $autoload) = @$_;
1329 if (
1330 $autoload
1331 and eval "require $package"
957 if (${"$package\::VERSION"} > 0) { 1332 and ${"$package\::VERSION"} > 0
958 if (eval "require $model") { 1333 and eval "require $model"
1334 ) {
959 $MODEL = $model; 1335 $MODEL = $model;
960 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1; 1336 warn "AnyEvent: autoloaded model '$model', using it.\n" if $VERBOSE >= 2;
961 last; 1337 last;
962 }
963 } 1338 }
964 } 1339 }
965 1340
966 unless ($MODEL) {
967 # try to load a model
968
969 for (@REGISTRY, @models) {
970 my ($package, $model) = @$_;
971 if (eval "require $package"
972 and ${"$package\::VERSION"} > 0
973 and eval "require $model") {
974 $MODEL = $model;
975 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1;
976 last;
977 }
978 }
979
980 $MODEL 1341 $MODEL
981 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib."; 1342 or die "AnyEvent: backend autodetection failed - did you properly install AnyEvent?\n";
982 }
983 } 1343 }
984
985 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
986
987 unshift @ISA, $MODEL;
988
989 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
990
991 (shift @post_detect)->() while @post_detect;
992 } 1344 }
993 1345
1346 # free memory only needed for probing
1347 undef @models;
1348 undef @REGISTRY;
1349
1350 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1351 unshift @ISA, $MODEL;
1352
1353 # now nuke some methods that are overridden by the backend.
1354 # SUPER usage is not allowed in these.
1355 for (qw(time signal child idle)) {
1356 undef &{"AnyEvent::Base::$_"}
1357 if defined &{"$MODEL\::$_"};
1358 }
1359
1360 if ($ENV{PERL_ANYEVENT_STRICT}) {
1361 eval { require AnyEvent::Strict };
1362 warn "AnyEvent: cannot load AnyEvent::Strict: $@"
1363 if $@ && $VERBOSE;
1364 }
1365
1366 (shift @post_detect)->() while @post_detect;
1367 undef @post_detect;
1368
1369 *post_detect = sub(&) {
1370 shift->();
1371
1372 undef
1373 };
1374
1375 # recover a few more bytes
1376 postpone {
1377 undef &AUTOLOAD;
1378 };
1379
994 $MODEL 1380 $MODEL
995} 1381}
1382
1383our %method = map +($_ => 1),
1384 qw(io timer time now now_update signal child idle condvar DESTROY);
996 1385
997sub AUTOLOAD { 1386sub AUTOLOAD {
998 (my $func = $AUTOLOAD) =~ s/.*://; 1387 (my $func = $AUTOLOAD) =~ s/.*://;
999 1388
1000 $method{$func} 1389 $method{$func}
1001 or croak "$func: not a valid method for AnyEvent objects"; 1390 or Carp::croak "$func: not a valid AnyEvent class method";
1002 1391
1003 detect unless $MODEL; 1392 # free some memory
1393 undef %method;
1394
1395 detect;
1004 1396
1005 my $class = shift; 1397 my $class = shift;
1006 $class->$func (@_); 1398 $class->$func (@_);
1007} 1399}
1008 1400
1009# utility function to dup a filehandle. this is used by many backends 1401# utility function to dup a filehandle. this is used by many backends
1010# to support binding more than one watcher per filehandle (they usually 1402# to support binding more than one watcher per filehandle (they usually
1011# allow only one watcher per fd, so we dup it to get a different one). 1403# allow only one watcher per fd, so we dup it to get a different one).
1012sub _dupfh($$$$) { 1404sub _dupfh($$;$$) {
1013 my ($poll, $fh, $r, $w) = @_; 1405 my ($poll, $fh, $r, $w) = @_;
1014 1406
1015 # cygwin requires the fh mode to be matching, unix doesn't 1407 # cygwin requires the fh mode to be matching, unix doesn't
1016 my ($rw, $mode) = $poll eq "r" ? ($r, "<") 1408 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1017 : $poll eq "w" ? ($w, ">")
1018 : Carp::croak "AnyEvent->io requires poll set to either 'r' or 'w'";
1019 1409
1020 open my $fh2, "$mode&" . fileno $fh 1410 open my $fh2, $mode, $fh
1021 or die "cannot dup() filehandle: $!"; 1411 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1022 1412
1023 # we assume CLOEXEC is already set by perl in all important cases 1413 # we assume CLOEXEC is already set by perl in all important cases
1024 1414
1025 ($fh2, $rw) 1415 ($fh2, $rw)
1026} 1416}
1027 1417
1418=head1 SIMPLIFIED AE API
1419
1420Starting with version 5.0, AnyEvent officially supports a second, much
1421simpler, API that is designed to reduce the calling, typing and memory
1422overhead by using function call syntax and a fixed number of parameters.
1423
1424See the L<AE> manpage for details.
1425
1426=cut
1427
1428package AE;
1429
1430our $VERSION = $AnyEvent::VERSION;
1431
1432
1433sub _reset() {
1434 eval q{
1435 # fall back to the main API by default - backends and AnyEvent::Base
1436 # implementations can overwrite these.
1437
1438 sub io($$$) {
1439 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1440 }
1441
1442 sub timer($$$) {
1443 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1444 }
1445
1446 sub signal($$) {
1447 AnyEvent->signal (signal => $_[0], cb => $_[1])
1448 }
1449
1450 sub child($$) {
1451 AnyEvent->child (pid => $_[0], cb => $_[1])
1452 }
1453
1454 sub idle($) {
1455 AnyEvent->idle (cb => $_[0])
1456 }
1457
1458 sub cv(;&) {
1459 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1460 }
1461
1462 sub now() {
1463 AnyEvent->now
1464 }
1465
1466 sub now_update() {
1467 AnyEvent->now_update
1468 }
1469
1470 sub time() {
1471 AnyEvent->time
1472 }
1473
1474 *postpone = \&AnyEvent::postpone;
1475 };
1476 die if $@;
1477}
1478
1479BEGIN { _reset }
1480
1028package AnyEvent::Base; 1481package AnyEvent::Base;
1029 1482
1030# default implementation for now and time 1483# default implementations for many methods
1031 1484
1032BEGIN { 1485sub time {
1486 eval q{ # poor man's autoloading {}
1487 # probe for availability of Time::HiRes
1033 if (eval "use Time::HiRes (); time (); 1") { 1488 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1489 warn "AnyEvent: using Time::HiRes for sub-second timing accuracy.\n" if $VERBOSE >= 8;
1034 *_time = \&Time::HiRes::time; 1490 *AE::time = \&Time::HiRes::time;
1035 # if (eval "use POSIX (); (POSIX::times())... 1491 # if (eval "use POSIX (); (POSIX::times())...
1036 } else { 1492 } else {
1493 warn "AnyEvent: using built-in time(), WARNING, no sub-second resolution!\n" if $VERBOSE;
1037 *_time = sub { time }; # epic fail 1494 *AE::time = sub (){ time }; # epic fail
1495 }
1496
1497 *time = sub { AE::time }; # different prototypes
1498 };
1499 die if $@;
1500
1501 &time
1502}
1503
1504*now = \&time;
1505
1506sub now_update { }
1507
1508sub _poll {
1509 Carp::croak "$AnyEvent::MODEL does not support blocking waits. Caught";
1510}
1511
1512# default implementation for ->condvar
1513# in fact, the default should not be overwritten
1514
1515sub condvar {
1516 eval q{ # poor man's autoloading {}
1517 *condvar = sub {
1518 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1519 };
1520
1521 *AE::cv = sub (;&) {
1522 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
1523 };
1524 };
1525 die if $@;
1526
1527 &condvar
1528}
1529
1530# default implementation for ->signal
1531
1532our $HAVE_ASYNC_INTERRUPT;
1533
1534sub _have_async_interrupt() {
1535 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1536 && eval "use Async::Interrupt 1.02 (); 1")
1537 unless defined $HAVE_ASYNC_INTERRUPT;
1538
1539 $HAVE_ASYNC_INTERRUPT
1540}
1541
1542our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1543our (%SIG_ASY, %SIG_ASY_W);
1544our ($SIG_COUNT, $SIG_TW);
1545
1546# install a dummy wakeup watcher to reduce signal catching latency
1547# used by Impls
1548sub _sig_add() {
1549 unless ($SIG_COUNT++) {
1550 # try to align timer on a full-second boundary, if possible
1551 my $NOW = AE::now;
1552
1553 $SIG_TW = AE::timer
1554 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1555 $MAX_SIGNAL_LATENCY,
1556 sub { } # just for the PERL_ASYNC_CHECK
1557 ;
1038 } 1558 }
1039} 1559}
1040 1560
1041sub time { _time } 1561sub _sig_del {
1042sub now { _time } 1562 undef $SIG_TW
1043 1563 unless --$SIG_COUNT;
1044# default implementation for ->condvar
1045
1046sub condvar {
1047 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar::
1048} 1564}
1049 1565
1050# default implementation for ->signal 1566our $_sig_name_init; $_sig_name_init = sub {
1567 eval q{ # poor man's autoloading {}
1568 undef $_sig_name_init;
1051 1569
1052our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO); 1570 if (_have_async_interrupt) {
1571 *sig2num = \&Async::Interrupt::sig2num;
1572 *sig2name = \&Async::Interrupt::sig2name;
1573 } else {
1574 require Config;
1053 1575
1054sub _signal_exec { 1576 my %signame2num;
1055 sysread $SIGPIPE_R, my $dummy, 4; 1577 @signame2num{ split ' ', $Config::Config{sig_name} }
1578 = split ' ', $Config::Config{sig_num};
1056 1579
1057 while (%SIG_EV) { 1580 my @signum2name;
1058 for (keys %SIG_EV) { 1581 @signum2name[values %signame2num] = keys %signame2num;
1059 delete $SIG_EV{$_}; 1582
1060 $_->() for values %{ $SIG_CB{$_} || {} }; 1583 *sig2num = sub($) {
1584 $_[0] > 0 ? shift : $signame2num{+shift}
1585 };
1586 *sig2name = sub ($) {
1587 $_[0] > 0 ? $signum2name[+shift] : shift
1588 };
1061 } 1589 }
1062 } 1590 };
1063} 1591 die if $@;
1592};
1593
1594sub sig2num ($) { &$_sig_name_init; &sig2num }
1595sub sig2name($) { &$_sig_name_init; &sig2name }
1064 1596
1065sub signal { 1597sub signal {
1066 my (undef, %arg) = @_; 1598 eval q{ # poor man's autoloading {}
1599 # probe for availability of Async::Interrupt
1600 if (_have_async_interrupt) {
1601 warn "AnyEvent: using Async::Interrupt for race-free signal handling.\n" if $VERBOSE >= 8;
1067 1602
1068 unless ($SIGPIPE_R) { 1603 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1069 if (AnyEvent::WIN32) { 1604 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1070 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe (); 1605
1071 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R) if $SIGPIPE_R;
1072 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W) if $SIGPIPE_W; # just in case
1073 } else { 1606 } else {
1607 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8;
1608
1609 if (AnyEvent::WIN32) {
1610 require AnyEvent::Util;
1611
1612 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1613 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1614 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1615 } else {
1074 pipe $SIGPIPE_R, $SIGPIPE_W; 1616 pipe $SIGPIPE_R, $SIGPIPE_W;
1075 require Fcntl;
1076 fcntl $SIGPIPE_R, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_R; 1617 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1077 fcntl $SIGPIPE_W, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_W; # just in case 1618 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1619
1620 # not strictly required, as $^F is normally 2, but let's make sure...
1621 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1622 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1623 }
1624
1625 $SIGPIPE_R
1626 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1627
1628 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1078 } 1629 }
1079 1630
1080 $SIGPIPE_R 1631 *signal = $HAVE_ASYNC_INTERRUPT
1081 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n"; 1632 ? sub {
1633 my (undef, %arg) = @_;
1082 1634
1083 $SIG_IO = AnyEvent->io (fh => $SIGPIPE_R, poll => "r", cb => \&_signal_exec); 1635 # async::interrupt
1084 }
1085
1086 my $signal = uc $arg{signal} 1636 my $signal = sig2num $arg{signal};
1087 or Carp::croak "required option 'signal' is missing";
1088
1089 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1637 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1638
1639 $SIG_ASY{$signal} ||= new Async::Interrupt
1640 cb => sub { undef $SIG_EV{$signal} },
1641 signal => $signal,
1642 pipe => [$SIGPIPE_R->filenos],
1643 pipe_autodrain => 0,
1644 ;
1645
1646 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1647 }
1648 : sub {
1649 my (undef, %arg) = @_;
1650
1651 # pure perl
1652 my $signal = sig2name $arg{signal};
1653 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1654
1090 $SIG{$signal} ||= sub { 1655 $SIG{$signal} ||= sub {
1656 local $!;
1091 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV; 1657 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1092 undef $SIG_EV{$signal}; 1658 undef $SIG_EV{$signal};
1659 };
1660
1661 # can't do signal processing without introducing races in pure perl,
1662 # so limit the signal latency.
1663 _sig_add;
1664
1665 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1666 }
1667 ;
1668
1669 *AnyEvent::Base::signal::DESTROY = sub {
1670 my ($signal, $cb) = @{$_[0]};
1671
1672 _sig_del;
1673
1674 delete $SIG_CB{$signal}{$cb};
1675
1676 $HAVE_ASYNC_INTERRUPT
1677 ? delete $SIG_ASY{$signal}
1678 : # delete doesn't work with older perls - they then
1679 # print weird messages, or just unconditionally exit
1680 # instead of getting the default action.
1681 undef $SIG{$signal}
1682 unless keys %{ $SIG_CB{$signal} };
1683 };
1684
1685 *_signal_exec = sub {
1686 $HAVE_ASYNC_INTERRUPT
1687 ? $SIGPIPE_R->drain
1688 : sysread $SIGPIPE_R, (my $dummy), 9;
1689
1690 while (%SIG_EV) {
1691 for (keys %SIG_EV) {
1692 delete $SIG_EV{$_};
1693 &$_ for values %{ $SIG_CB{$_} || {} };
1694 }
1695 }
1696 };
1093 }; 1697 };
1698 die if $@;
1094 1699
1095 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1700 &signal
1096}
1097
1098sub AnyEvent::Base::Signal::DESTROY {
1099 my ($signal, $cb) = @{$_[0]};
1100
1101 delete $SIG_CB{$signal}{$cb};
1102
1103 delete $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
1104} 1701}
1105 1702
1106# default implementation for ->child 1703# default implementation for ->child
1107 1704
1108our %PID_CB; 1705our %PID_CB;
1109our $CHLD_W; 1706our $CHLD_W;
1110our $CHLD_DELAY_W; 1707our $CHLD_DELAY_W;
1111our $PID_IDLE;
1112our $WNOHANG;
1113 1708
1114sub _child_wait { 1709# used by many Impl's
1115 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1710sub _emit_childstatus($$) {
1711 my (undef, $rpid, $rstatus) = @_;
1712
1713 $_->($rpid, $rstatus)
1116 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1714 for values %{ $PID_CB{$rpid} || {} },
1117 (values %{ $PID_CB{0} || {} }); 1715 values %{ $PID_CB{0} || {} };
1118 }
1119
1120 undef $PID_IDLE;
1121}
1122
1123sub _sigchld {
1124 # make sure we deliver these changes "synchronous" with the event loop.
1125 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub {
1126 undef $CHLD_DELAY_W;
1127 &_child_wait;
1128 });
1129} 1716}
1130 1717
1131sub child { 1718sub child {
1719 eval q{ # poor man's autoloading {}
1720 *_sigchld = sub {
1721 my $pid;
1722
1723 AnyEvent->_emit_childstatus ($pid, $?)
1724 while ($pid = waitpid -1, WNOHANG) > 0;
1725 };
1726
1727 *child = sub {
1132 my (undef, %arg) = @_; 1728 my (undef, %arg) = @_;
1133 1729
1134 defined (my $pid = $arg{pid} + 0) 1730 my $pid = $arg{pid};
1135 or Carp::croak "required option 'pid' is missing"; 1731 my $cb = $arg{cb};
1136 1732
1137 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1733 $PID_CB{$pid}{$cb+0} = $cb;
1138 1734
1139 unless ($WNOHANG) {
1140 $WNOHANG = eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1141 }
1142
1143 unless ($CHLD_W) { 1735 unless ($CHLD_W) {
1144 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1736 $CHLD_W = AE::signal CHLD => \&_sigchld;
1145 # child could be a zombie already, so make at least one round 1737 # child could be a zombie already, so make at least one round
1146 &_sigchld; 1738 &_sigchld;
1147 } 1739 }
1148 1740
1149 bless [$pid, $arg{cb}], "AnyEvent::Base::Child" 1741 bless [$pid, $cb+0], "AnyEvent::Base::child"
1150} 1742 };
1151 1743
1152sub AnyEvent::Base::Child::DESTROY { 1744 *AnyEvent::Base::child::DESTROY = sub {
1153 my ($pid, $cb) = @{$_[0]}; 1745 my ($pid, $icb) = @{$_[0]};
1154 1746
1155 delete $PID_CB{$pid}{$cb}; 1747 delete $PID_CB{$pid}{$icb};
1156 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1748 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1157 1749
1158 undef $CHLD_W unless keys %PID_CB; 1750 undef $CHLD_W unless keys %PID_CB;
1751 };
1752 };
1753 die if $@;
1754
1755 &child
1756}
1757
1758# idle emulation is done by simply using a timer, regardless
1759# of whether the process is idle or not, and not letting
1760# the callback use more than 50% of the time.
1761sub idle {
1762 eval q{ # poor man's autoloading {}
1763 *idle = sub {
1764 my (undef, %arg) = @_;
1765
1766 my ($cb, $w, $rcb) = $arg{cb};
1767
1768 $rcb = sub {
1769 if ($cb) {
1770 $w = AE::time;
1771 &$cb;
1772 $w = AE::time - $w;
1773
1774 # never use more then 50% of the time for the idle watcher,
1775 # within some limits
1776 $w = 0.0001 if $w < 0.0001;
1777 $w = 5 if $w > 5;
1778
1779 $w = AE::timer $w, 0, $rcb;
1780 } else {
1781 # clean up...
1782 undef $w;
1783 undef $rcb;
1784 }
1785 };
1786
1787 $w = AE::timer 0.05, 0, $rcb;
1788
1789 bless \\$cb, "AnyEvent::Base::idle"
1790 };
1791
1792 *AnyEvent::Base::idle::DESTROY = sub {
1793 undef $${$_[0]};
1794 };
1795 };
1796 die if $@;
1797
1798 &idle
1159} 1799}
1160 1800
1161package AnyEvent::CondVar; 1801package AnyEvent::CondVar;
1162 1802
1163our @ISA = AnyEvent::CondVar::Base::; 1803our @ISA = AnyEvent::CondVar::Base::;
1164 1804
1805# only to be used for subclassing
1806sub new {
1807 my $class = shift;
1808 bless AnyEvent->condvar (@_), $class
1809}
1810
1165package AnyEvent::CondVar::Base; 1811package AnyEvent::CondVar::Base;
1166 1812
1167use overload 1813#use overload
1168 '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, 1814# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1169 fallback => 1; 1815# fallback => 1;
1816
1817# save 300+ kilobytes by dirtily hardcoding overloading
1818${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1819*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1820*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1821${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1822
1823our $WAITING;
1170 1824
1171sub _send { 1825sub _send {
1172 # nop 1826 # nop
1827}
1828
1829sub _wait {
1830 AnyEvent->_poll until $_[0]{_ae_sent};
1173} 1831}
1174 1832
1175sub send { 1833sub send {
1176 my $cv = shift; 1834 my $cv = shift;
1177 $cv->{_ae_sent} = [@_]; 1835 $cv->{_ae_sent} = [@_];
1186 1844
1187sub ready { 1845sub ready {
1188 $_[0]{_ae_sent} 1846 $_[0]{_ae_sent}
1189} 1847}
1190 1848
1191sub _wait {
1192 AnyEvent->one_event while !$_[0]{_ae_sent};
1193}
1194
1195sub recv { 1849sub recv {
1850 unless ($_[0]{_ae_sent}) {
1851 $WAITING
1852 and Carp::croak "AnyEvent::CondVar: recursive blocking wait attempted";
1853
1854 local $WAITING = 1;
1196 $_[0]->_wait; 1855 $_[0]->_wait;
1856 }
1197 1857
1198 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1858 $_[0]{_ae_croak}
1199 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1859 and Carp::croak $_[0]{_ae_croak};
1860
1861 wantarray
1862 ? @{ $_[0]{_ae_sent} }
1863 : $_[0]{_ae_sent}[0]
1200} 1864}
1201 1865
1202sub cb { 1866sub cb {
1203 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1867 my $cv = shift;
1868
1869 @_
1870 and $cv->{_ae_cb} = shift
1871 and $cv->{_ae_sent}
1872 and (delete $cv->{_ae_cb})->($cv);
1873
1204 $_[0]{_ae_cb} 1874 $cv->{_ae_cb}
1205} 1875}
1206 1876
1207sub begin { 1877sub begin {
1208 ++$_[0]{_ae_counter}; 1878 ++$_[0]{_ae_counter};
1209 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 1879 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
1214 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } }; 1884 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } };
1215} 1885}
1216 1886
1217# undocumented/compatibility with pre-3.4 1887# undocumented/compatibility with pre-3.4
1218*broadcast = \&send; 1888*broadcast = \&send;
1219*wait = \&_wait; 1889*wait = \&recv;
1220 1890
1221=head1 ERROR AND EXCEPTION HANDLING 1891=head1 ERROR AND EXCEPTION HANDLING
1222 1892
1223In general, AnyEvent does not do any error handling - it relies on the 1893In general, AnyEvent does not do any error handling - it relies on the
1224caller to do that if required. The L<AnyEvent::Strict> module (see also 1894caller to do that if required. The L<AnyEvent::Strict> module (see also
1237so on. 1907so on.
1238 1908
1239=head1 ENVIRONMENT VARIABLES 1909=head1 ENVIRONMENT VARIABLES
1240 1910
1241The following environment variables are used by this module or its 1911The following environment variables are used by this module or its
1242submodules: 1912submodules.
1913
1914Note that AnyEvent will remove I<all> environment variables starting with
1915C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
1916enabled.
1243 1917
1244=over 4 1918=over 4
1245 1919
1246=item C<PERL_ANYEVENT_VERBOSE> 1920=item C<PERL_ANYEVENT_VERBOSE>
1247 1921
1254C<PERL_ANYEVENT_MODEL>. 1928C<PERL_ANYEVENT_MODEL>.
1255 1929
1256When set to C<2> or higher, cause AnyEvent to report to STDERR which event 1930When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1257model it chooses. 1931model it chooses.
1258 1932
1933When set to C<8> or higher, then AnyEvent will report extra information on
1934which optional modules it loads and how it implements certain features.
1935
1259=item C<PERL_ANYEVENT_STRICT> 1936=item C<PERL_ANYEVENT_STRICT>
1260 1937
1261AnyEvent does not do much argument checking by default, as thorough 1938AnyEvent does not do much argument checking by default, as thorough
1262argument checking is very costly. Setting this variable to a true value 1939argument checking is very costly. Setting this variable to a true value
1263will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly 1940will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1264check the arguments passed to most method calls. If it finds any problems 1941check the arguments passed to most method calls. If it finds any problems,
1265it will croak. 1942it will croak.
1266 1943
1267In other words, enables "strict" mode. 1944In other words, enables "strict" mode.
1268 1945
1269Unlike C<use strict>, it is definitely recommended ot keep it off in 1946Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
1270production. Keeping C<PERL_ANYEVENT_STRICT=1> in your environment while 1947>>, it is definitely recommended to keep it off in production. Keeping
1271developing programs can be very useful, however. 1948C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
1949can be very useful, however.
1272 1950
1273=item C<PERL_ANYEVENT_MODEL> 1951=item C<PERL_ANYEVENT_MODEL>
1274 1952
1275This can be used to specify the event model to be used by AnyEvent, before 1953This can be used to specify the event model to be used by AnyEvent, before
1276auto detection and -probing kicks in. It must be a string consisting 1954auto detection and -probing kicks in.
1277entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended 1955
1956It normally is a string consisting entirely of ASCII letters (e.g. C<EV>
1957or C<IOAsync>). The string C<AnyEvent::Impl::> gets prepended and the
1278and the resulting module name is loaded and if the load was successful, 1958resulting module name is loaded and - if the load was successful - used as
1279used as event model. If it fails to load AnyEvent will proceed with 1959event model backend. If it fails to load then AnyEvent will proceed with
1280auto detection and -probing. 1960auto detection and -probing.
1281 1961
1282This functionality might change in future versions. 1962If the string ends with C<::> instead (e.g. C<AnyEvent::Impl::EV::>) then
1963nothing gets prepended and the module name is used as-is (hint: C<::> at
1964the end of a string designates a module name and quotes it appropriately).
1283 1965
1284For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you 1966For example, to force the pure perl model (L<AnyEvent::Loop::Perl>) you
1285could start your program like this: 1967could start your program like this:
1286 1968
1287 PERL_ANYEVENT_MODEL=Perl perl ... 1969 PERL_ANYEVENT_MODEL=Perl perl ...
1288 1970
1289=item C<PERL_ANYEVENT_PROTOCOLS> 1971=item C<PERL_ANYEVENT_PROTOCOLS>
1319 2001
1320=item C<PERL_ANYEVENT_MAX_FORKS> 2002=item C<PERL_ANYEVENT_MAX_FORKS>
1321 2003
1322The maximum number of child processes that C<AnyEvent::Util::fork_call> 2004The maximum number of child processes that C<AnyEvent::Util::fork_call>
1323will create in parallel. 2005will create in parallel.
2006
2007=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
2008
2009The default value for the C<max_outstanding> parameter for the default DNS
2010resolver - this is the maximum number of parallel DNS requests that are
2011sent to the DNS server.
2012
2013=item C<PERL_ANYEVENT_RESOLV_CONF>
2014
2015The file to use instead of F</etc/resolv.conf> (or OS-specific
2016configuration) in the default resolver. When set to the empty string, no
2017default config will be used.
2018
2019=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
2020
2021When neither C<ca_file> nor C<ca_path> was specified during
2022L<AnyEvent::TLS> context creation, and either of these environment
2023variables exist, they will be used to specify CA certificate locations
2024instead of a system-dependent default.
2025
2026=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
2027
2028When these are set to C<1>, then the respective modules are not
2029loaded. Mostly good for testing AnyEvent itself.
1324 2030
1325=back 2031=back
1326 2032
1327=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 2033=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1328 2034
1386 warn "read: $input\n"; # output what has been read 2092 warn "read: $input\n"; # output what has been read
1387 $cv->send if $input =~ /^q/i; # quit program if /^q/i 2093 $cv->send if $input =~ /^q/i; # quit program if /^q/i
1388 }, 2094 },
1389 ); 2095 );
1390 2096
1391 my $time_watcher; # can only be used once
1392
1393 sub new_timer {
1394 $timer = AnyEvent->timer (after => 1, cb => sub { 2097 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
1395 warn "timeout\n"; # print 'timeout' about every second 2098 warn "timeout\n"; # print 'timeout' at most every second
1396 &new_timer; # and restart the time
1397 }); 2099 });
1398 }
1399
1400 new_timer; # create first timer
1401 2100
1402 $cv->recv; # wait until user enters /^q/i 2101 $cv->recv; # wait until user enters /^q/i
1403 2102
1404=head1 REAL-WORLD EXAMPLE 2103=head1 REAL-WORLD EXAMPLE
1405 2104
1478 2177
1479The actual code goes further and collects all errors (C<die>s, exceptions) 2178The actual code goes further and collects all errors (C<die>s, exceptions)
1480that occurred during request processing. The C<result> method detects 2179that occurred during request processing. The C<result> method detects
1481whether an exception as thrown (it is stored inside the $txn object) 2180whether an exception as thrown (it is stored inside the $txn object)
1482and just throws the exception, which means connection errors and other 2181and just throws the exception, which means connection errors and other
1483problems get reported tot he code that tries to use the result, not in a 2182problems get reported to the code that tries to use the result, not in a
1484random callback. 2183random callback.
1485 2184
1486All of this enables the following usage styles: 2185All of this enables the following usage styles:
1487 2186
14881. Blocking: 21871. Blocking:
1536through AnyEvent. The benchmark creates a lot of timers (with a zero 2235through AnyEvent. The benchmark creates a lot of timers (with a zero
1537timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2236timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1538which it is), lets them fire exactly once and destroys them again. 2237which it is), lets them fire exactly once and destroys them again.
1539 2238
1540Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2239Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1541distribution. 2240distribution. It uses the L<AE> interface, which makes a real difference
2241for the EV and Perl backends only.
1542 2242
1543=head3 Explanation of the columns 2243=head3 Explanation of the columns
1544 2244
1545I<watcher> is the number of event watchers created/destroyed. Since 2245I<watcher> is the number of event watchers created/destroyed. Since
1546different event models feature vastly different performances, each event 2246different event models feature vastly different performances, each event
1567watcher. 2267watcher.
1568 2268
1569=head3 Results 2269=head3 Results
1570 2270
1571 name watchers bytes create invoke destroy comment 2271 name watchers bytes create invoke destroy comment
1572 EV/EV 400000 224 0.47 0.35 0.27 EV native interface 2272 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1573 EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers 2273 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1574 CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal 2274 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1575 Perl/Any 100000 452 4.13 0.73 0.95 pure perl implementation 2275 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1576 Event/Event 16000 517 32.20 31.80 0.81 Event native interface 2276 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1577 Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers 2277 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2278 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2279 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1578 Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour 2280 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1579 Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers 2281 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1580 POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event 2282 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1581 POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select 2283 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1582 2284
1583=head3 Discussion 2285=head3 Discussion
1584 2286
1585The benchmark does I<not> measure scalability of the event loop very 2287The benchmark does I<not> measure scalability of the event loop very
1586well. For example, a select-based event loop (such as the pure perl one) 2288well. For example, a select-based event loop (such as the pure perl one)
1598benchmark machine, handling an event takes roughly 1600 CPU cycles with 2300benchmark machine, handling an event takes roughly 1600 CPU cycles with
1599EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2301EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1600cycles with POE. 2302cycles with POE.
1601 2303
1602C<EV> is the sole leader regarding speed and memory use, which are both 2304C<EV> is the sole leader regarding speed and memory use, which are both
1603maximal/minimal, respectively. Even when going through AnyEvent, it uses 2305maximal/minimal, respectively. When using the L<AE> API there is zero
2306overhead (when going through the AnyEvent API create is about 5-6 times
2307slower, with other times being equal, so still uses far less memory than
1604far less memory than any other event loop and is still faster than Event 2308any other event loop and is still faster than Event natively).
1605natively.
1606 2309
1607The pure perl implementation is hit in a few sweet spots (both the 2310The pure perl implementation is hit in a few sweet spots (both the
1608constant timeout and the use of a single fd hit optimisations in the perl 2311constant timeout and the use of a single fd hit optimisations in the perl
1609interpreter and the backend itself). Nevertheless this shows that it 2312interpreter and the backend itself). Nevertheless this shows that it
1610adds very little overhead in itself. Like any select-based backend its 2313adds very little overhead in itself. Like any select-based backend its
1611performance becomes really bad with lots of file descriptors (and few of 2314performance becomes really bad with lots of file descriptors (and few of
1612them active), of course, but this was not subject of this benchmark. 2315them active), of course, but this was not subject of this benchmark.
1613 2316
1614The C<Event> module has a relatively high setup and callback invocation 2317The C<Event> module has a relatively high setup and callback invocation
1615cost, but overall scores in on the third place. 2318cost, but overall scores in on the third place.
2319
2320C<IO::Async> performs admirably well, about on par with C<Event>, even
2321when using its pure perl backend.
1616 2322
1617C<Glib>'s memory usage is quite a bit higher, but it features a 2323C<Glib>'s memory usage is quite a bit higher, but it features a
1618faster callback invocation and overall ends up in the same class as 2324faster callback invocation and overall ends up in the same class as
1619C<Event>. However, Glib scales extremely badly, doubling the number of 2325C<Event>. However, Glib scales extremely badly, doubling the number of
1620watchers increases the processing time by more than a factor of four, 2326watchers increases the processing time by more than a factor of four,
1681In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2387In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1682(1%) are active. This mirrors the activity of large servers with many 2388(1%) are active. This mirrors the activity of large servers with many
1683connections, most of which are idle at any one point in time. 2389connections, most of which are idle at any one point in time.
1684 2390
1685Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2391Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1686distribution. 2392distribution. It uses the L<AE> interface, which makes a real difference
2393for the EV and Perl backends only.
1687 2394
1688=head3 Explanation of the columns 2395=head3 Explanation of the columns
1689 2396
1690I<sockets> is the number of sockets, and twice the number of "servers" (as 2397I<sockets> is the number of sockets, and twice the number of "servers" (as
1691each server has a read and write socket end). 2398each server has a read and write socket end).
1698it to another server. This includes deleting the old timeout and creating 2405it to another server. This includes deleting the old timeout and creating
1699a new one that moves the timeout into the future. 2406a new one that moves the timeout into the future.
1700 2407
1701=head3 Results 2408=head3 Results
1702 2409
1703 name sockets create request 2410 name sockets create request
1704 EV 20000 69.01 11.16 2411 EV 20000 62.66 7.99
1705 Perl 20000 73.32 35.87 2412 Perl 20000 68.32 32.64
1706 Event 20000 212.62 257.32 2413 IOAsync 20000 174.06 101.15 epoll
1707 Glib 20000 651.16 1896.30 2414 IOAsync 20000 174.67 610.84 poll
2415 Event 20000 202.69 242.91
2416 Glib 20000 557.01 1689.52
1708 POE 20000 349.67 12317.24 uses POE::Loop::Event 2417 POE 20000 341.54 12086.32 uses POE::Loop::Event
1709 2418
1710=head3 Discussion 2419=head3 Discussion
1711 2420
1712This benchmark I<does> measure scalability and overall performance of the 2421This benchmark I<does> measure scalability and overall performance of the
1713particular event loop. 2422particular event loop.
1715EV is again fastest. Since it is using epoll on my system, the setup time 2424EV is again fastest. Since it is using epoll on my system, the setup time
1716is relatively high, though. 2425is relatively high, though.
1717 2426
1718Perl surprisingly comes second. It is much faster than the C-based event 2427Perl surprisingly comes second. It is much faster than the C-based event
1719loops Event and Glib. 2428loops Event and Glib.
2429
2430IO::Async performs very well when using its epoll backend, and still quite
2431good compared to Glib when using its pure perl backend.
1720 2432
1721Event suffers from high setup time as well (look at its code and you will 2433Event suffers from high setup time as well (look at its code and you will
1722understand why). Callback invocation also has a high overhead compared to 2434understand why). Callback invocation also has a high overhead compared to
1723the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2435the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1724uses select or poll in basically all documented configurations. 2436uses select or poll in basically all documented configurations.
1787=item * C-based event loops perform very well with small number of 2499=item * C-based event loops perform very well with small number of
1788watchers, as the management overhead dominates. 2500watchers, as the management overhead dominates.
1789 2501
1790=back 2502=back
1791 2503
2504=head2 THE IO::Lambda BENCHMARK
2505
2506Recently I was told about the benchmark in the IO::Lambda manpage, which
2507could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2508simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2509shouldn't come as a surprise to anybody). As such, the benchmark is
2510fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2511very optimal. But how would AnyEvent compare when used without the extra
2512baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2513
2514The benchmark itself creates an echo-server, and then, for 500 times,
2515connects to the echo server, sends a line, waits for the reply, and then
2516creates the next connection. This is a rather bad benchmark, as it doesn't
2517test the efficiency of the framework or much non-blocking I/O, but it is a
2518benchmark nevertheless.
2519
2520 name runtime
2521 Lambda/select 0.330 sec
2522 + optimized 0.122 sec
2523 Lambda/AnyEvent 0.327 sec
2524 + optimized 0.138 sec
2525 Raw sockets/select 0.077 sec
2526 POE/select, components 0.662 sec
2527 POE/select, raw sockets 0.226 sec
2528 POE/select, optimized 0.404 sec
2529
2530 AnyEvent/select/nb 0.085 sec
2531 AnyEvent/EV/nb 0.068 sec
2532 +state machine 0.134 sec
2533
2534The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2535benchmarks actually make blocking connects and use 100% blocking I/O,
2536defeating the purpose of an event-based solution. All of the newly
2537written AnyEvent benchmarks use 100% non-blocking connects (using
2538AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2539resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2540generally require a lot more bookkeeping and event handling than blocking
2541connects (which involve a single syscall only).
2542
2543The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2544offers similar expressive power as POE and IO::Lambda, using conventional
2545Perl syntax. This means that both the echo server and the client are 100%
2546non-blocking, further placing it at a disadvantage.
2547
2548As you can see, the AnyEvent + EV combination even beats the
2549hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2550backend easily beats IO::Lambda and POE.
2551
2552And even the 100% non-blocking version written using the high-level (and
2553slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2554higher level ("unoptimised") abstractions by a large margin, even though
2555it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2556
2557The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2558F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2559part of the IO::Lambda distribution and were used without any changes.
2560
1792 2561
1793=head1 SIGNALS 2562=head1 SIGNALS
1794 2563
1795AnyEvent currently installs handlers for these signals: 2564AnyEvent currently installs handlers for these signals:
1796 2565
1799=item SIGCHLD 2568=item SIGCHLD
1800 2569
1801A handler for C<SIGCHLD> is installed by AnyEvent's child watcher 2570A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
1802emulation for event loops that do not support them natively. Also, some 2571emulation for event loops that do not support them natively. Also, some
1803event loops install a similar handler. 2572event loops install a similar handler.
2573
2574Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2575AnyEvent will reset it to default, to avoid losing child exit statuses.
1804 2576
1805=item SIGPIPE 2577=item SIGPIPE
1806 2578
1807A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef> 2579A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
1808when AnyEvent gets loaded. 2580when AnyEvent gets loaded.
1820 2592
1821=back 2593=back
1822 2594
1823=cut 2595=cut
1824 2596
2597undef $SIG{CHLD}
2598 if $SIG{CHLD} eq 'IGNORE';
2599
1825$SIG{PIPE} = sub { } 2600$SIG{PIPE} = sub { }
1826 unless defined $SIG{PIPE}; 2601 unless defined $SIG{PIPE};
1827 2602
2603=head1 RECOMMENDED/OPTIONAL MODULES
2604
2605One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2606its built-in modules) are required to use it.
2607
2608That does not mean that AnyEvent won't take advantage of some additional
2609modules if they are installed.
2610
2611This section explains which additional modules will be used, and how they
2612affect AnyEvent's operation.
2613
2614=over 4
2615
2616=item L<Async::Interrupt>
2617
2618This slightly arcane module is used to implement fast signal handling: To
2619my knowledge, there is no way to do completely race-free and quick
2620signal handling in pure perl. To ensure that signals still get
2621delivered, AnyEvent will start an interval timer to wake up perl (and
2622catch the signals) with some delay (default is 10 seconds, look for
2623C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2624
2625If this module is available, then it will be used to implement signal
2626catching, which means that signals will not be delayed, and the event loop
2627will not be interrupted regularly, which is more efficient (and good for
2628battery life on laptops).
2629
2630This affects not just the pure-perl event loop, but also other event loops
2631that have no signal handling on their own (e.g. Glib, Tk, Qt).
2632
2633Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2634and either employ their own workarounds (POE) or use AnyEvent's workaround
2635(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2636does nothing for those backends.
2637
2638=item L<EV>
2639
2640This module isn't really "optional", as it is simply one of the backend
2641event loops that AnyEvent can use. However, it is simply the best event
2642loop available in terms of features, speed and stability: It supports
2643the AnyEvent API optimally, implements all the watcher types in XS, does
2644automatic timer adjustments even when no monotonic clock is available,
2645can take avdantage of advanced kernel interfaces such as C<epoll> and
2646C<kqueue>, and is the fastest backend I<by far>. You can even embed
2647L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2648
2649If you only use backends that rely on another event loop (e.g. C<Tk>),
2650then this module will do nothing for you.
2651
2652=item L<Guard>
2653
2654The guard module, when used, will be used to implement
2655C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2656lot less memory), but otherwise doesn't affect guard operation much. It is
2657purely used for performance.
2658
2659=item L<JSON> and L<JSON::XS>
2660
2661One of these modules is required when you want to read or write JSON data
2662via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2663advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2664
2665=item L<Net::SSLeay>
2666
2667Implementing TLS/SSL in Perl is certainly interesting, but not very
2668worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2669the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2670
2671=item L<Time::HiRes>
2672
2673This module is part of perl since release 5.008. It will be used when the
2674chosen event library does not come with a timing source of its own. The
2675pure-perl event loop (L<AnyEvent::Loop>) will additionally load it to
2676try to use a monotonic clock for timing stability.
2677
2678=back
2679
1828 2680
1829=head1 FORK 2681=head1 FORK
1830 2682
1831Most event libraries are not fork-safe. The ones who are usually are 2683Most event libraries are not fork-safe. The ones who are usually are
1832because they rely on inefficient but fork-safe C<select> or C<poll> 2684because they rely on inefficient but fork-safe C<select> or C<poll> calls
1833calls. Only L<EV> is fully fork-aware. 2685- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2686are usually badly thought-out hacks that are incompatible with fork in
2687one way or another. Only L<EV> is fully fork-aware and ensures that you
2688continue event-processing in both parent and child (or both, if you know
2689what you are doing).
2690
2691This means that, in general, you cannot fork and do event processing in
2692the child if the event library was initialised before the fork (which
2693usually happens when the first AnyEvent watcher is created, or the library
2694is loaded).
1834 2695
1835If you have to fork, you must either do so I<before> creating your first 2696If you have to fork, you must either do so I<before> creating your first
1836watcher OR you must not use AnyEvent at all in the child. 2697watcher OR you must not use AnyEvent at all in the child OR you must do
2698something completely out of the scope of AnyEvent.
2699
2700The problem of doing event processing in the parent I<and> the child
2701is much more complicated: even for backends that I<are> fork-aware or
2702fork-safe, their behaviour is not usually what you want: fork clones all
2703watchers, that means all timers, I/O watchers etc. are active in both
2704parent and child, which is almost never what you want. USing C<exec>
2705to start worker children from some kind of manage rprocess is usually
2706preferred, because it is much easier and cleaner, at the expense of having
2707to have another binary.
1837 2708
1838 2709
1839=head1 SECURITY CONSIDERATIONS 2710=head1 SECURITY CONSIDERATIONS
1840 2711
1841AnyEvent can be forced to load any event model via 2712AnyEvent can be forced to load any event model via
1853 use AnyEvent; 2724 use AnyEvent;
1854 2725
1855Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2726Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1856be used to probe what backend is used and gain other information (which is 2727be used to probe what backend is used and gain other information (which is
1857probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and 2728probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
1858$ENV{PERL_ANYEGENT_STRICT}. 2729$ENV{PERL_ANYEVENT_STRICT}.
2730
2731Note that AnyEvent will remove I<all> environment variables starting with
2732C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2733enabled.
1859 2734
1860 2735
1861=head1 BUGS 2736=head1 BUGS
1862 2737
1863Perl 5.8 has numerous memleaks that sometimes hit this module and are hard 2738Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
1867pronounced). 2742pronounced).
1868 2743
1869 2744
1870=head1 SEE ALSO 2745=head1 SEE ALSO
1871 2746
2747Tutorial/Introduction: L<AnyEvent::Intro>.
2748
2749FAQ: L<AnyEvent::FAQ>.
2750
1872Utility functions: L<AnyEvent::Util>. 2751Utility functions: L<AnyEvent::Util>.
1873 2752
1874Event modules: L<EV>, L<EV::Glib>, L<Glib::EV>, L<Event>, L<Glib::Event>, 2753Event modules: L<AnyEvent::Loop>, L<EV>, L<EV::Glib>, L<Glib::EV>,
1875L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2754L<Event>, L<Glib::Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>.
1876 2755
1877Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 2756Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
1878L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 2757L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
1879L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 2758L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
1880L<AnyEvent::Impl::POE>. 2759L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>.
1881 2760
1882Non-blocking file handles, sockets, TCP clients and 2761Non-blocking file handles, sockets, TCP clients and
1883servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>. 2762servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
1884 2763
1885Asynchronous DNS: L<AnyEvent::DNS>. 2764Asynchronous DNS: L<AnyEvent::DNS>.
1886 2765
1887Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>, 2766Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
1888 2767
1889Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 2768Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
2769L<AnyEvent::HTTP>.
1890 2770
1891 2771
1892=head1 AUTHOR 2772=head1 AUTHOR
1893 2773
1894 Marc Lehmann <schmorp@schmorp.de> 2774 Marc Lehmann <schmorp@schmorp.de>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines