ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.228 by root, Wed Jul 8 01:11:12 2009 UTC vs.
Revision 1.366 by root, Wed Aug 17 02:02:38 2011 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt and POE are various supported 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt
6event loops. 6and POE are various supported event loops/environments.
7 7
8=head1 SYNOPSIS 8=head1 SYNOPSIS
9 9
10 use AnyEvent; 10 use AnyEvent;
11 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
12 # file descriptor readable 15 # file handle or descriptor readable
13 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... }); 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
14 17
15 # one-shot or repeating timers 18 # one-shot or repeating timers
16 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... }); 19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
17 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ... 20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
18 21
19 print AnyEvent->now; # prints current event loop time 22 print AnyEvent->now; # prints current event loop time
20 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time. 23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
21 24
22 # POSIX signal 25 # POSIX signal
40=head1 INTRODUCTION/TUTORIAL 43=head1 INTRODUCTION/TUTORIAL
41 44
42This manpage is mainly a reference manual. If you are interested 45This manpage is mainly a reference manual. If you are interested
43in a tutorial or some gentle introduction, have a look at the 46in a tutorial or some gentle introduction, have a look at the
44L<AnyEvent::Intro> manpage. 47L<AnyEvent::Intro> manpage.
48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
45 58
46=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
47 60
48Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
49nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
65module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
66model you use. 79model you use.
67 80
68For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
69actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
70like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
71cannot use anything else, as they are simply incompatible to everything 84cannot use anything else, as they are simply incompatible to everything
72that isn't them. What's worse, all the potential users of your 85that isn't them. What's worse, all the potential users of your
73module are I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
74 87
75AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
76fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
77with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if 90with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module
78your module uses one of those, every user of your module has to use it, 91uses one of those, every user of your module has to use it, too. But if
79too. But if your module uses AnyEvent, it works transparently with all 92your module uses AnyEvent, it works transparently with all event models it
80event models it supports (including stuff like IO::Async, as long as those 93supports (including stuff like IO::Async, as long as those use one of the
81use one of the supported event loops. It is trivial to add new event loops 94supported event loops. It is easy to add new event loops to AnyEvent, too,
82to AnyEvent, too, so it is future-proof). 95so it is future-proof).
83 96
84In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
85model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
86modules, you get an enormous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
87follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
88offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
89technically possible. 102technically possible.
90 103
91Of course, AnyEvent comes with a big (and fully optional!) toolbox 104Of course, AnyEvent comes with a big (and fully optional!) toolbox
92of useful functionality, such as an asynchronous DNS resolver, 100% 105of useful functionality, such as an asynchronous DNS resolver, 100%
98useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
99model, you should I<not> use this module. 112model, you should I<not> use this module.
100 113
101=head1 DESCRIPTION 114=head1 DESCRIPTION
102 115
103L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
104allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
105users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
106peacefully at any one time). 119than one event loop cannot coexist peacefully).
107 120
108The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
109module. 122module.
110 123
111During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
112to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
113following modules is already loaded: L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Loop>,
114L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
115L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
116to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
117adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Loop> should always work, so
118be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
119found, AnyEvent will fall back to a pure-perl event loop, which is not
120very efficient, but should work everywhere.
121 132
122Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
123an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
124that model the default. For example: 135that model the default. For example:
125 136
127 use AnyEvent; 138 use AnyEvent;
128 139
129 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
130 141
131The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
132starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
133use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
134 146
135The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called C<AnyEvent::Loop>. Like
136C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148other event modules you can load it explicitly and enjoy the high
137explicitly and enjoy the high availability of that event loop :) 149availability of that event loop :)
138 150
139=head1 WATCHERS 151=head1 WATCHERS
140 152
141AnyEvent has the central concept of a I<watcher>, which is an object that 153AnyEvent has the central concept of a I<watcher>, which is an object that
142stores relevant data for each kind of event you are waiting for, such as 154stores relevant data for each kind of event you are waiting for, such as
147callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
148is in control). 160is in control).
149 161
150Note that B<callbacks must not permanently change global variables> 162Note that B<callbacks must not permanently change global variables>
151potentially in use by the event loop (such as C<$_> or C<$[>) and that B<< 163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
152callbacks must not C<die> >>. The former is good programming practise in 164callbacks must not C<die> >>. The former is good programming practice in
153Perl and the latter stems from the fact that exception handling differs 165Perl and the latter stems from the fact that exception handling differs
154widely between event loops. 166widely between event loops.
155 167
156To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
157variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
158to it). 170to it).
159 171
160All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
161 173
162Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
163example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
164 176
165An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
166 178
167 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
168 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
169 undef $w; 181 undef $w;
170 }); 182 });
173my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
174declared. 186declared.
175 187
176=head2 I/O WATCHERS 188=head2 I/O WATCHERS
177 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
178You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
179with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
180 198
181C<fh> is the Perl I<file handle> (I<not> file descriptor, see below) to 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
182watch for events (AnyEvent might or might not keep a reference to this 200for events (AnyEvent might or might not keep a reference to this file
183file handle). Note that only file handles pointing to things for which 201handle). Note that only file handles pointing to things for which
184non-blocking operation makes sense are allowed. This includes sockets, 202non-blocking operation makes sense are allowed. This includes sockets,
185most character devices, pipes, fifos and so on, but not for example files 203most character devices, pipes, fifos and so on, but not for example files
186or block devices. 204or block devices.
187 205
188C<poll> must be a string that is either C<r> or C<w>, which creates a 206C<poll> must be a string that is either C<r> or C<w>, which creates a
196 214
197The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
198You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
199underlying file descriptor. 217underlying file descriptor.
200 218
201Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
202always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
203handles. 221handles.
204 222
205Example: wait for readability of STDIN, then read a line and disable the 223Example: wait for readability of STDIN, then read a line and disable the
206watcher. 224watcher.
209 chomp (my $input = <STDIN>); 227 chomp (my $input = <STDIN>);
210 warn "read: $input\n"; 228 warn "read: $input\n";
211 undef $w; 229 undef $w;
212 }); 230 });
213 231
214=head3 GETTING A FILE HANDLE FROM A FILE DESCRIPTOR
215
216It is not uncommon to only have a file descriptor, while AnyEvent requires
217a Perl file handle.
218
219There are basically two methods to convert a file descriptor into a file handle. If you own
220the file descriptor, you can open it with C<&=>, as in:
221
222 open my $fh, "<&=$fileno" or die "xxx: ยง!";
223
224This will "own" the file descriptor, meaning that when C<$fh> is
225destroyed, it will automatically close the C<$fileno>. Also, note that
226the open mode (read, write, read/write) must correspond with how the
227underlying file descriptor was opened.
228
229In many cases, taking over the file descriptor is now what you want, in
230which case the only alternative is to dup the file descriptor:
231
232 open my $fh, "<&$fileno" or die "xxx: $!";
233
234This has the advantage of not closing the file descriptor and the
235disadvantage of making a slow copy.
236
237=head2 TIME WATCHERS 232=head2 TIME WATCHERS
233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
238 241
239You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
240method with the following mandatory arguments: 243method with the following mandatory arguments:
241 244
242C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
245 248
246Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
247presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
248callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
249 252
250The callback will normally be invoked once only. If you specify another 253The callback will normally be invoked only once. If you specify another
251parameter, C<interval>, as a strictly positive number (> 0), then the 254parameter, C<interval>, as a strictly positive number (> 0), then the
252callback will be invoked regularly at that interval (in fractional 255callback will be invoked regularly at that interval (in fractional
253seconds) after the first invocation. If C<interval> is specified with a 256seconds) after the first invocation. If C<interval> is specified with a
254false value, then it is treated as if it were missing. 257false value, then it is treated as if it were not specified at all.
255 258
256The callback will be rescheduled before invoking the callback, but no 259The callback will be rescheduled before invoking the callback, but no
257attempt is done to avoid timer drift in most backends, so the interval is 260attempt is made to avoid timer drift in most backends, so the interval is
258only approximate. 261only approximate.
259 262
260Example: fire an event after 7.7 seconds. 263Example: fire an event after 7.7 seconds.
261 264
262 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
280 283
281While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
282use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
283"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
284the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
285fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
286 289
287AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
288about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
289on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
290timers. 293timers.
291 294
292AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
293AnyEvent API. 296AnyEvent API.
315I<In almost all cases (in all cases if you don't care), this is the 318I<In almost all cases (in all cases if you don't care), this is the
316function to call when you want to know the current time.> 319function to call when you want to know the current time.>
317 320
318This function is also often faster then C<< AnyEvent->time >>, and 321This function is also often faster then C<< AnyEvent->time >>, and
319thus the preferred method if you want some timestamp (for example, 322thus the preferred method if you want some timestamp (for example,
320L<AnyEvent::Handle> uses this to update it's activity timeouts). 323L<AnyEvent::Handle> uses this to update its activity timeouts).
321 324
322The rest of this section is only of relevance if you try to be very exact 325The rest of this section is only of relevance if you try to be very exact
323with your timing, you can skip it without bad conscience. 326with your timing; you can skip it without a bad conscience.
324 327
325For a practical example of when these times differ, consider L<Event::Lib> 328For a practical example of when these times differ, consider L<Event::Lib>
326and L<EV> and the following set-up: 329and L<EV> and the following set-up:
327 330
328The event loop is running and has just invoked one of your callback at 331The event loop is running and has just invoked one of your callbacks at
329time=500 (assume no other callbacks delay processing). In your callback, 332time=500 (assume no other callbacks delay processing). In your callback,
330you wait a second by executing C<sleep 1> (blocking the process for a 333you wait a second by executing C<sleep 1> (blocking the process for a
331second) and then (at time=501) you create a relative timer that fires 334second) and then (at time=501) you create a relative timer that fires
332after three seconds. 335after three seconds.
333 336
353difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into 356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
354account. 357account.
355 358
356=item AnyEvent->now_update 359=item AnyEvent->now_update
357 360
358Some event loops (such as L<EV> or L<AnyEvent::Impl::Perl>) cache 361Some event loops (such as L<EV> or L<AnyEvent::Loop>) cache the current
359the current time for each loop iteration (see the discussion of L<< 362time for each loop iteration (see the discussion of L<< AnyEvent->now >>,
360AnyEvent->now >>, above). 363above).
361 364
362When a callback runs for a long time (or when the process sleeps), then 365When a callback runs for a long time (or when the process sleeps), then
363this "current" time will differ substantially from the real time, which 366this "current" time will differ substantially from the real time, which
364might affect timers and time-outs. 367might affect timers and time-outs.
365 368
366When this is the case, you can call this method, which will update the 369When this is the case, you can call this method, which will update the
367event loop's idea of "current time". 370event loop's idea of "current time".
368 371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
369Note that updating the time I<might> cause some events to be handled. 379Note that updating the time I<might> cause some events to be handled.
370 380
371=back 381=back
372 382
373=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
374 386
375You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
376I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
377callback to be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
378 390
384invocation, and callback invocation will be synchronous. Synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
385that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
386but it is guaranteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
387 399
388The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
389between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
390 403
391This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
392directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
393 407
394Example: exit on SIGINT 408Example: exit on SIGINT
395 409
396 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
397 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling) or
421"unsafe" (asynchronous) - the former might get delayed indefinitely, the
422latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
432callbacks to signals in a generic way, which is a pity, as you cannot
433do race-free signal handling in perl, requiring C libraries for
434this. AnyEvent will try to do its best, which means in some cases,
435signals will be delayed. The maximum time a signal might be delayed is
436specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
437variable can be changed only before the first signal watcher is created,
438and should be left alone otherwise. This variable determines how often
439AnyEvent polls for signals (in case a wake-up was missed). Higher values
440will cause fewer spurious wake-ups, which is better for power and CPU
441saving.
442
443All these problems can be avoided by installing the optional
444L<Async::Interrupt> module, which works with most event loops. It will not
445work with inherently broken event loops such as L<Event> or L<Event::Lib>
446(and not with L<POE> currently, as POE does its own workaround with
447one-second latency). For those, you just have to suffer the delays.
448
398=head2 CHILD PROCESS WATCHERS 449=head2 CHILD PROCESS WATCHERS
399 450
451 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
452
400You can also watch on a child process exit and catch its exit status. 453You can also watch for a child process exit and catch its exit status.
401 454
402The child process is specified by the C<pid> argument (if set to C<0>, it 455The child process is specified by the C<pid> argument (on some backends,
403watches for any child process exit). The watcher will triggered only when 456using C<0> watches for any child process exit, on others this will
404the child process has finished and an exit status is available, not on 457croak). The watcher will be triggered only when the child process has
405any trace events (stopped/continued). 458finished and an exit status is available, not on any trace events
459(stopped/continued).
406 460
407The callback will be called with the pid and exit status (as returned by 461The callback will be called with the pid and exit status (as returned by
408waitpid), so unlike other watcher types, you I<can> rely on child watcher 462waitpid), so unlike other watcher types, you I<can> rely on child watcher
409callback arguments. 463callback arguments.
410 464
426 480
427This means you cannot create a child watcher as the very first 481This means you cannot create a child watcher as the very first
428thing in an AnyEvent program, you I<have> to create at least one 482thing in an AnyEvent program, you I<have> to create at least one
429watcher before you C<fork> the child (alternatively, you can call 483watcher before you C<fork> the child (alternatively, you can call
430C<AnyEvent::detect>). 484C<AnyEvent::detect>).
485
486As most event loops do not support waiting for child events, they will be
487emulated by AnyEvent in most cases, in which case the latency and race
488problems mentioned in the description of signal watchers apply.
431 489
432Example: fork a process and wait for it 490Example: fork a process and wait for it
433 491
434 my $done = AnyEvent->condvar; 492 my $done = AnyEvent->condvar;
435 493
447 # do something else, then wait for process exit 505 # do something else, then wait for process exit
448 $done->recv; 506 $done->recv;
449 507
450=head2 IDLE WATCHERS 508=head2 IDLE WATCHERS
451 509
452Sometimes there is a need to do something, but it is not so important 510 $w = AnyEvent->idle (cb => <callback>);
453to do it instantly, but only when there is nothing better to do. This
454"nothing better to do" is usually defined to be "no other events need
455attention by the event loop".
456 511
457Idle watchers ideally get invoked when the event loop has nothing 512This will repeatedly invoke the callback after the process becomes idle,
458better to do, just before it would block the process to wait for new 513until either the watcher is destroyed or new events have been detected.
459events. Instead of blocking, the idle watcher is invoked.
460 514
461Most event loops unfortunately do not really support idle watchers (only 515Idle watchers are useful when there is a need to do something, but it
516is not so important (or wise) to do it instantly. The callback will be
517invoked only when there is "nothing better to do", which is usually
518defined as "all outstanding events have been handled and no new events
519have been detected". That means that idle watchers ideally get invoked
520when the event loop has just polled for new events but none have been
521detected. Instead of blocking to wait for more events, the idle watchers
522will be invoked.
523
524Unfortunately, most event loops do not really support idle watchers (only
462EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent 525EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
463will simply call the callback "from time to time". 526will simply call the callback "from time to time".
464 527
465Example: read lines from STDIN, but only process them when the 528Example: read lines from STDIN, but only process them when the
466program is otherwise idle: 529program is otherwise idle:
482 }); 545 });
483 }); 546 });
484 547
485=head2 CONDITION VARIABLES 548=head2 CONDITION VARIABLES
486 549
550 $cv = AnyEvent->condvar;
551
552 $cv->send (<list>);
553 my @res = $cv->recv;
554
487If you are familiar with some event loops you will know that all of them 555If you are familiar with some event loops you will know that all of them
488require you to run some blocking "loop", "run" or similar function that 556require you to run some blocking "loop", "run" or similar function that
489will actively watch for new events and call your callbacks. 557will actively watch for new events and call your callbacks.
490 558
491AnyEvent is different, it expects somebody else to run the event loop and 559AnyEvent is slightly different: it expects somebody else to run the event
492will only block when necessary (usually when told by the user). 560loop and will only block when necessary (usually when told by the user).
493 561
494The instrument to do that is called a "condition variable", so called 562The tool to do that is called a "condition variable", so called because
495because they represent a condition that must become true. 563they represent a condition that must become true.
564
565Now is probably a good time to look at the examples further below.
496 566
497Condition variables can be created by calling the C<< AnyEvent->condvar 567Condition variables can be created by calling the C<< AnyEvent->condvar
498>> method, usually without arguments. The only argument pair allowed is 568>> method, usually without arguments. The only argument pair allowed is
499
500C<cb>, which specifies a callback to be called when the condition variable 569C<cb>, which specifies a callback to be called when the condition variable
501becomes true, with the condition variable as the first argument (but not 570becomes true, with the condition variable as the first argument (but not
502the results). 571the results).
503 572
504After creation, the condition variable is "false" until it becomes "true" 573After creation, the condition variable is "false" until it becomes "true"
505by calling the C<send> method (or calling the condition variable as if it 574by calling the C<send> method (or calling the condition variable as if it
506were a callback, read about the caveats in the description for the C<< 575were a callback, read about the caveats in the description for the C<<
507->send >> method). 576->send >> method).
508 577
509Condition variables are similar to callbacks, except that you can 578Since condition variables are the most complex part of the AnyEvent API, here are
510optionally wait for them. They can also be called merge points - points 579some different mental models of what they are - pick the ones you can connect to:
511in time where multiple outstanding events have been processed. And yet 580
512another way to call them is transactions - each condition variable can be 581=over 4
513used to represent a transaction, which finishes at some point and delivers 582
514a result. 583=item * Condition variables are like callbacks - you can call them (and pass them instead
584of callbacks). Unlike callbacks however, you can also wait for them to be called.
585
586=item * Condition variables are signals - one side can emit or send them,
587the other side can wait for them, or install a handler that is called when
588the signal fires.
589
590=item * Condition variables are like "Merge Points" - points in your program
591where you merge multiple independent results/control flows into one.
592
593=item * Condition variables represent a transaction - functions that start
594some kind of transaction can return them, leaving the caller the choice
595between waiting in a blocking fashion, or setting a callback.
596
597=item * Condition variables represent future values, or promises to deliver
598some result, long before the result is available.
599
600=back
515 601
516Condition variables are very useful to signal that something has finished, 602Condition variables are very useful to signal that something has finished,
517for example, if you write a module that does asynchronous http requests, 603for example, if you write a module that does asynchronous http requests,
518then a condition variable would be the ideal candidate to signal the 604then a condition variable would be the ideal candidate to signal the
519availability of results. The user can either act when the callback is 605availability of results. The user can either act when the callback is
532 618
533Condition variables are represented by hash refs in perl, and the keys 619Condition variables are represented by hash refs in perl, and the keys
534used by AnyEvent itself are all named C<_ae_XXX> to make subclassing 620used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
535easy (it is often useful to build your own transaction class on top of 621easy (it is often useful to build your own transaction class on top of
536AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call 622AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
537it's C<new> method in your own C<new> method. 623its C<new> method in your own C<new> method.
538 624
539There are two "sides" to a condition variable - the "producer side" which 625There are two "sides" to a condition variable - the "producer side" which
540eventually calls C<< -> send >>, and the "consumer side", which waits 626eventually calls C<< -> send >>, and the "consumer side", which waits
541for the send to occur. 627for the send to occur.
542 628
543Example: wait for a timer. 629Example: wait for a timer.
544 630
545 # wait till the result is ready 631 # condition: "wait till the timer is fired"
546 my $result_ready = AnyEvent->condvar; 632 my $timer_fired = AnyEvent->condvar;
547 633
548 # do something such as adding a timer 634 # create the timer - we could wait for, say
549 # or socket watcher the calls $result_ready->send 635 # a handle becomign ready, or even an
550 # when the "result" is ready. 636 # AnyEvent::HTTP request to finish, but
551 # in this case, we simply use a timer: 637 # in this case, we simply use a timer:
552 my $w = AnyEvent->timer ( 638 my $w = AnyEvent->timer (
553 after => 1, 639 after => 1,
554 cb => sub { $result_ready->send }, 640 cb => sub { $timer_fired->send },
555 ); 641 );
556 642
557 # this "blocks" (while handling events) till the callback 643 # this "blocks" (while handling events) till the callback
558 # calls send 644 # calls ->send
559 $result_ready->recv; 645 $timer_fired->recv;
560 646
561Example: wait for a timer, but take advantage of the fact that 647Example: wait for a timer, but take advantage of the fact that condition
562condition variables are also code references. 648variables are also callable directly.
563 649
564 my $done = AnyEvent->condvar; 650 my $done = AnyEvent->condvar;
565 my $delay = AnyEvent->timer (after => 5, cb => $done); 651 my $delay = AnyEvent->timer (after => 5, cb => $done);
566 $done->recv; 652 $done->recv;
567 653
573 659
574 ... 660 ...
575 661
576 my @info = $couchdb->info->recv; 662 my @info = $couchdb->info->recv;
577 663
578And this is how you would just ste a callback to be called whenever the 664And this is how you would just set a callback to be called whenever the
579results are available: 665results are available:
580 666
581 $couchdb->info->cb (sub { 667 $couchdb->info->cb (sub {
582 my @info = $_[0]->recv; 668 my @info = $_[0]->recv;
583 }); 669 });
601immediately from within send. 687immediately from within send.
602 688
603Any arguments passed to the C<send> call will be returned by all 689Any arguments passed to the C<send> call will be returned by all
604future C<< ->recv >> calls. 690future C<< ->recv >> calls.
605 691
606Condition variables are overloaded so one can call them directly 692Condition variables are overloaded so one can call them directly (as if
607(as a code reference). Calling them directly is the same as calling 693they were a code reference). Calling them directly is the same as calling
608C<send>. Note, however, that many C-based event loops do not handle 694C<send>.
609overloading, so as tempting as it may be, passing a condition variable
610instead of a callback does not work. Both the pure perl and EV loops
611support overloading, however, as well as all functions that use perl to
612invoke a callback (as in L<AnyEvent::Socket> and L<AnyEvent::DNS> for
613example).
614 695
615=item $cv->croak ($error) 696=item $cv->croak ($error)
616 697
617Similar to send, but causes all call's to C<< ->recv >> to invoke 698Similar to send, but causes all calls to C<< ->recv >> to invoke
618C<Carp::croak> with the given error message/object/scalar. 699C<Carp::croak> with the given error message/object/scalar.
619 700
620This can be used to signal any errors to the condition variable 701This can be used to signal any errors to the condition variable
621user/consumer. 702user/consumer. Doing it this way instead of calling C<croak> directly
703delays the error detection, but has the overwhelming advantage that it
704diagnoses the error at the place where the result is expected, and not
705deep in some event callback with no connection to the actual code causing
706the problem.
622 707
623=item $cv->begin ([group callback]) 708=item $cv->begin ([group callback])
624 709
625=item $cv->end 710=item $cv->end
626 711
628one. For example, a function that pings many hosts in parallel might want 713one. For example, a function that pings many hosts in parallel might want
629to use a condition variable for the whole process. 714to use a condition variable for the whole process.
630 715
631Every call to C<< ->begin >> will increment a counter, and every call to 716Every call to C<< ->begin >> will increment a counter, and every call to
632C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 717C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
633>>, the (last) callback passed to C<begin> will be executed. That callback 718>>, the (last) callback passed to C<begin> will be executed, passing the
634is I<supposed> to call C<< ->send >>, but that is not required. If no 719condvar as first argument. That callback is I<supposed> to call C<< ->send
635callback was set, C<send> will be called without any arguments. 720>>, but that is not required. If no group callback was set, C<send> will
721be called without any arguments.
636 722
637You can think of C<< $cv->send >> giving you an OR condition (one call 723You can think of C<< $cv->send >> giving you an OR condition (one call
638sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND 724sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
639condition (all C<begin> calls must be C<end>'ed before the condvar sends). 725condition (all C<begin> calls must be C<end>'ed before the condvar sends).
640 726
662one call to C<begin>, so the condvar waits for all calls to C<end> before 748one call to C<begin>, so the condvar waits for all calls to C<end> before
663sending. 749sending.
664 750
665The ping example mentioned above is slightly more complicated, as the 751The ping example mentioned above is slightly more complicated, as the
666there are results to be passwd back, and the number of tasks that are 752there are results to be passwd back, and the number of tasks that are
667begung can potentially be zero: 753begun can potentially be zero:
668 754
669 my $cv = AnyEvent->condvar; 755 my $cv = AnyEvent->condvar;
670 756
671 my %result; 757 my %result;
672 $cv->begin (sub { $cv->send (\%result) }); 758 $cv->begin (sub { shift->send (\%result) });
673 759
674 for my $host (@list_of_hosts) { 760 for my $host (@list_of_hosts) {
675 $cv->begin; 761 $cv->begin;
676 ping_host_then_call_callback $host, sub { 762 ping_host_then_call_callback $host, sub {
677 $result{$host} = ...; 763 $result{$host} = ...;
693to be called once the counter reaches C<0>, and second, it ensures that 779to be called once the counter reaches C<0>, and second, it ensures that
694C<send> is called even when C<no> hosts are being pinged (the loop 780C<send> is called even when C<no> hosts are being pinged (the loop
695doesn't execute once). 781doesn't execute once).
696 782
697This is the general pattern when you "fan out" into multiple (but 783This is the general pattern when you "fan out" into multiple (but
698potentially none) subrequests: use an outer C<begin>/C<end> pair to set 784potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
699the callback and ensure C<end> is called at least once, and then, for each 785the callback and ensure C<end> is called at least once, and then, for each
700subrequest you start, call C<begin> and for each subrequest you finish, 786subrequest you start, call C<begin> and for each subrequest you finish,
701call C<end>. 787call C<end>.
702 788
703=back 789=back
710=over 4 796=over 4
711 797
712=item $cv->recv 798=item $cv->recv
713 799
714Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak 800Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
715>> methods have been called on c<$cv>, while servicing other watchers 801>> methods have been called on C<$cv>, while servicing other watchers
716normally. 802normally.
717 803
718You can only wait once on a condition - additional calls are valid but 804You can only wait once on a condition - additional calls are valid but
719will return immediately. 805will return immediately.
720 806
722function will call C<croak>. 808function will call C<croak>.
723 809
724In list context, all parameters passed to C<send> will be returned, 810In list context, all parameters passed to C<send> will be returned,
725in scalar context only the first one will be returned. 811in scalar context only the first one will be returned.
726 812
813Note that doing a blocking wait in a callback is not supported by any
814event loop, that is, recursive invocation of a blocking C<< ->recv
815>> is not allowed, and the C<recv> call will C<croak> if such a
816condition is detected. This condition can be slightly loosened by using
817L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
818any thread that doesn't run the event loop itself.
819
727Not all event models support a blocking wait - some die in that case 820Not all event models support a blocking wait - some die in that case
728(programs might want to do that to stay interactive), so I<if you are 821(programs might want to do that to stay interactive), so I<if you are
729using this from a module, never require a blocking wait>, but let the 822using this from a module, never require a blocking wait>. Instead, let the
730caller decide whether the call will block or not (for example, by coupling 823caller decide whether the call will block or not (for example, by coupling
731condition variables with some kind of request results and supporting 824condition variables with some kind of request results and supporting
732callbacks so the caller knows that getting the result will not block, 825callbacks so the caller knows that getting the result will not block,
733while still supporting blocking waits if the caller so desires). 826while still supporting blocking waits if the caller so desires).
734 827
735Another reason I<never> to C<< ->recv >> in a module is that you cannot
736sensibly have two C<< ->recv >>'s in parallel, as that would require
737multiple interpreters or coroutines/threads, none of which C<AnyEvent>
738can supply.
739
740The L<Coro> module, however, I<can> and I<does> supply coroutines and, in
741fact, L<Coro::AnyEvent> replaces AnyEvent's condvars by coroutine-safe
742versions and also integrates coroutines into AnyEvent, making blocking
743C<< ->recv >> calls perfectly safe as long as they are done from another
744coroutine (one that doesn't run the event loop).
745
746You can ensure that C<< -recv >> never blocks by setting a callback and 828You can ensure that C<< ->recv >> never blocks by setting a callback and
747only calling C<< ->recv >> from within that callback (or at a later 829only calling C<< ->recv >> from within that callback (or at a later
748time). This will work even when the event loop does not support blocking 830time). This will work even when the event loop does not support blocking
749waits otherwise. 831waits otherwise.
750 832
751=item $bool = $cv->ready 833=item $bool = $cv->ready
757 839
758This is a mutator function that returns the callback set and optionally 840This is a mutator function that returns the callback set and optionally
759replaces it before doing so. 841replaces it before doing so.
760 842
761The callback will be called when the condition becomes "true", i.e. when 843The callback will be called when the condition becomes "true", i.e. when
762C<send> or C<croak> are called, with the only argument being the condition 844C<send> or C<croak> are called, with the only argument being the
763variable itself. Calling C<recv> inside the callback or at any later time 845condition variable itself. If the condition is already true, the
764is guaranteed not to block. 846callback is called immediately when it is set. Calling C<recv> inside
847the callback or at any later time is guaranteed not to block.
765 848
766=back 849=back
767 850
851=head1 SUPPORTED EVENT LOOPS/BACKENDS
852
853The available backend classes are (every class has its own manpage):
854
855=over 4
856
857=item Backends that are autoprobed when no other event loop can be found.
858
859EV is the preferred backend when no other event loop seems to be in
860use. If EV is not installed, then AnyEvent will fall back to its own
861pure-perl implementation, which is available everywhere as it comes with
862AnyEvent itself.
863
864 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
865 AnyEvent::Impl::Perl pure-perl AnyEvent::Loop, fast and portable.
866
867=item Backends that are transparently being picked up when they are used.
868
869These will be used if they are already loaded when the first watcher
870is created, in which case it is assumed that the application is using
871them. This means that AnyEvent will automatically pick the right backend
872when the main program loads an event module before anything starts to
873create watchers. Nothing special needs to be done by the main program.
874
875 AnyEvent::Impl::Event based on Event, very stable, few glitches.
876 AnyEvent::Impl::Glib based on Glib, slow but very stable.
877 AnyEvent::Impl::Tk based on Tk, very broken.
878 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
879 AnyEvent::Impl::POE based on POE, very slow, some limitations.
880 AnyEvent::Impl::Irssi used when running within irssi.
881 AnyEvent::Impl::IOAsync based on IO::Async.
882 AnyEvent::Impl::Cocoa based on Cocoa::EventLoop.
883 AnyEvent::Impl::FLTK2 based on FLTK (fltk 2 binding).
884
885=item Backends with special needs.
886
887Qt requires the Qt::Application to be instantiated first, but will
888otherwise be picked up automatically. As long as the main program
889instantiates the application before any AnyEvent watchers are created,
890everything should just work.
891
892 AnyEvent::Impl::Qt based on Qt.
893
894=item Event loops that are indirectly supported via other backends.
895
896Some event loops can be supported via other modules:
897
898There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
899
900B<WxWidgets> has no support for watching file handles. However, you can
901use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
902polls 20 times per second, which was considered to be too horrible to even
903consider for AnyEvent.
904
905B<Prima> is not supported as nobody seems to be using it, but it has a POE
906backend, so it can be supported through POE.
907
908AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
909load L<POE> when detecting them, in the hope that POE will pick them up,
910in which case everything will be automatic.
911
912=back
913
768=head1 GLOBAL VARIABLES AND FUNCTIONS 914=head1 GLOBAL VARIABLES AND FUNCTIONS
769 915
916These are not normally required to use AnyEvent, but can be useful to
917write AnyEvent extension modules.
918
770=over 4 919=over 4
771 920
772=item $AnyEvent::MODEL 921=item $AnyEvent::MODEL
773 922
774Contains C<undef> until the first watcher is being created. Then it 923Contains C<undef> until the first watcher is being created, before the
924backend has been autodetected.
925
775contains the event model that is being used, which is the name of the 926Afterwards it contains the event model that is being used, which is the
776Perl class implementing the model. This class is usually one of the 927name of the Perl class implementing the model. This class is usually one
777C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 928of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
778AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 929case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
779 930will be C<urxvt::anyevent>).
780The known classes so far are:
781
782 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
783 AnyEvent::Impl::Event based on Event, second best choice.
784 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
785 AnyEvent::Impl::Glib based on Glib, third-best choice.
786 AnyEvent::Impl::Tk based on Tk, very bad choice.
787 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
788 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
789 AnyEvent::Impl::POE based on POE, not generic enough for full support.
790
791 # warning, support for IO::Async is only partial, as it is too broken
792 # and limited toe ven support the AnyEvent API. See AnyEvent::Impl::Async.
793 AnyEvent::Impl::IOAsync based on IO::Async, cannot be autoprobed (see its docs).
794
795There is no support for WxWidgets, as WxWidgets has no support for
796watching file handles. However, you can use WxWidgets through the
797POE Adaptor, as POE has a Wx backend that simply polls 20 times per
798second, which was considered to be too horrible to even consider for
799AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
800it's adaptor.
801
802AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
803autodetecting them.
804 931
805=item AnyEvent::detect 932=item AnyEvent::detect
806 933
807Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 934Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
808if necessary. You should only call this function right before you would 935if necessary. You should only call this function right before you would
809have created an AnyEvent watcher anyway, that is, as late as possible at 936have created an AnyEvent watcher anyway, that is, as late as possible at
810runtime. 937runtime, and not e.g. during initialisation of your module.
938
939The effect of calling this function is as if a watcher had been created
940(specifically, actions that happen "when the first watcher is created"
941happen when calling detetc as well).
942
943If you need to do some initialisation before AnyEvent watchers are
944created, use C<post_detect>.
811 945
812=item $guard = AnyEvent::post_detect { BLOCK } 946=item $guard = AnyEvent::post_detect { BLOCK }
813 947
814Arranges for the code block to be executed as soon as the event model is 948Arranges for the code block to be executed as soon as the event model is
815autodetected (or immediately if this has already happened). 949autodetected (or immediately if that has already happened).
950
951The block will be executed I<after> the actual backend has been detected
952(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
953created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
954other initialisations - see the sources of L<AnyEvent::Strict> or
955L<AnyEvent::AIO> to see how this is used.
956
957The most common usage is to create some global watchers, without forcing
958event module detection too early, for example, L<AnyEvent::AIO> creates
959and installs the global L<IO::AIO> watcher in a C<post_detect> block to
960avoid autodetecting the event module at load time.
816 961
817If called in scalar or list context, then it creates and returns an object 962If called in scalar or list context, then it creates and returns an object
818that automatically removes the callback again when it is destroyed. See 963that automatically removes the callback again when it is destroyed (or
964C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
819L<Coro::BDB> for a case where this is useful. 965a case where this is useful.
966
967Example: Create a watcher for the IO::AIO module and store it in
968C<$WATCHER>, but do so only do so after the event loop is initialised.
969
970 our WATCHER;
971
972 my $guard = AnyEvent::post_detect {
973 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
974 };
975
976 # the ||= is important in case post_detect immediately runs the block,
977 # as to not clobber the newly-created watcher. assigning both watcher and
978 # post_detect guard to the same variable has the advantage of users being
979 # able to just C<undef $WATCHER> if the watcher causes them grief.
980
981 $WATCHER ||= $guard;
820 982
821=item @AnyEvent::post_detect 983=item @AnyEvent::post_detect
822 984
823If there are any code references in this array (you can C<push> to it 985If there are any code references in this array (you can C<push> to it
824before or after loading AnyEvent), then they will called directly after 986before or after loading AnyEvent), then they will be called directly
825the event loop has been chosen. 987after the event loop has been chosen.
826 988
827You should check C<$AnyEvent::MODEL> before adding to this array, though: 989You should check C<$AnyEvent::MODEL> before adding to this array, though:
828if it contains a true value then the event loop has already been detected, 990if it is defined then the event loop has already been detected, and the
829and the array will be ignored. 991array will be ignored.
830 992
831Best use C<AnyEvent::post_detect { BLOCK }> instead. 993Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
994it, as it takes care of these details.
995
996This variable is mainly useful for modules that can do something useful
997when AnyEvent is used and thus want to know when it is initialised, but do
998not need to even load it by default. This array provides the means to hook
999into AnyEvent passively, without loading it.
1000
1001Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
1002together, you could put this into Coro (this is the actual code used by
1003Coro to accomplish this):
1004
1005 if (defined $AnyEvent::MODEL) {
1006 # AnyEvent already initialised, so load Coro::AnyEvent
1007 require Coro::AnyEvent;
1008 } else {
1009 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1010 # as soon as it is
1011 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1012 }
1013
1014=item AnyEvent::postpone { BLOCK }
1015
1016Arranges for the block to be executed as soon as possible, but not before
1017the call itself returns. In practise, the block will be executed just
1018before the event loop polls for new events, or shortly afterwards.
1019
1020This function never returns anything (to make the C<return postpone { ...
1021}> idiom more useful.
1022
1023To understand the usefulness of this function, consider a function that
1024asynchronously does something for you and returns some transaction
1025object or guard to let you cancel the operation. For example,
1026C<AnyEvent::Socket::tcp_connect>:
1027
1028 # start a conenction attempt unless one is active
1029 $self->{connect_guard} ||= AnyEvent::Socket::tcp_connect "www.example.net", 80, sub {
1030 delete $self->{connect_guard};
1031 ...
1032 };
1033
1034Imagine that this function could instantly call the callback, for
1035example, because it detects an obvious error such as a negative port
1036number. Invoking the callback before the function returns causes problems
1037however: the callback will be called and will try to delete the guard
1038object. But since the function hasn't returned yet, there is nothing to
1039delete. When the function eventually returns it will assign the guard
1040object to C<< $self->{connect_guard} >>, where it will likely never be
1041deleted, so the program thinks it is still trying to connect.
1042
1043This is where C<AnyEvent::postpone> should be used. Instead of calling the
1044callback directly on error:
1045
1046 $cb->(undef), return # signal error to callback, BAD!
1047 if $some_error_condition;
1048
1049It should use C<postpone>:
1050
1051 AnyEvent::postpone { $cb->(undef) }, return # signal error to callback, later
1052 if $some_error_condition;
1053
1054=item AnyEvent::log $level, $msg[, @args]
1055
1056Log the given C<$msg> at the given C<$level>.
1057
1058Loads AnyEvent::Log on first use and calls C<AnyEvent::Log::log> -
1059consequently, look at the L<AnyEvent::Log> documentation for details.
832 1060
833=back 1061=back
834 1062
835=head1 WHAT TO DO IN A MODULE 1063=head1 WHAT TO DO IN A MODULE
836 1064
847because it will stall the whole program, and the whole point of using 1075because it will stall the whole program, and the whole point of using
848events is to stay interactive. 1076events is to stay interactive.
849 1077
850It is fine, however, to call C<< ->recv >> when the user of your module 1078It is fine, however, to call C<< ->recv >> when the user of your module
851requests it (i.e. if you create a http request object ad have a method 1079requests it (i.e. if you create a http request object ad have a method
852called C<results> that returns the results, it should call C<< ->recv >> 1080called C<results> that returns the results, it may call C<< ->recv >>
853freely, as the user of your module knows what she is doing. always). 1081freely, as the user of your module knows what she is doing. Always).
854 1082
855=head1 WHAT TO DO IN THE MAIN PROGRAM 1083=head1 WHAT TO DO IN THE MAIN PROGRAM
856 1084
857There will always be a single main program - the only place that should 1085There will always be a single main program - the only place that should
858dictate which event model to use. 1086dictate which event model to use.
859 1087
860If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1088If the program is not event-based, it need not do anything special, even
861do anything special (it does not need to be event-based) and let AnyEvent 1089when it depends on a module that uses an AnyEvent. If the program itself
862decide which implementation to chose if some module relies on it. 1090uses AnyEvent, but does not care which event loop is used, all it needs
1091to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1092available loop implementation.
863 1093
864If the main program relies on a specific event model - for example, in 1094If the main program relies on a specific event model - for example, in
865Gtk2 programs you have to rely on the Glib module - you should load the 1095Gtk2 programs you have to rely on the Glib module - you should load the
866event module before loading AnyEvent or any module that uses it: generally 1096event module before loading AnyEvent or any module that uses it: generally
867speaking, you should load it as early as possible. The reason is that 1097speaking, you should load it as early as possible. The reason is that
868modules might create watchers when they are loaded, and AnyEvent will 1098modules might create watchers when they are loaded, and AnyEvent will
869decide on the event model to use as soon as it creates watchers, and it 1099decide on the event model to use as soon as it creates watchers, and it
870might chose the wrong one unless you load the correct one yourself. 1100might choose the wrong one unless you load the correct one yourself.
871 1101
872You can chose to use a pure-perl implementation by loading the 1102You can chose to use a pure-perl implementation by loading the
873C<AnyEvent::Impl::Perl> module, which gives you similar behaviour 1103C<AnyEvent::Loop> module, which gives you similar behaviour
874everywhere, but letting AnyEvent chose the model is generally better. 1104everywhere, but letting AnyEvent chose the model is generally better.
875 1105
876=head2 MAINLOOP EMULATION 1106=head2 MAINLOOP EMULATION
877 1107
878Sometimes (often for short test scripts, or even standalone programs who 1108Sometimes (often for short test scripts, or even standalone programs who
891 1121
892 1122
893=head1 OTHER MODULES 1123=head1 OTHER MODULES
894 1124
895The following is a non-exhaustive list of additional modules that use 1125The following is a non-exhaustive list of additional modules that use
896AnyEvent and can therefore be mixed easily with other AnyEvent modules 1126AnyEvent as a client and can therefore be mixed easily with other AnyEvent
897in the same program. Some of the modules come with AnyEvent, some are 1127modules and other event loops in the same program. Some of the modules
898available via CPAN. 1128come as part of AnyEvent, the others are available via CPAN.
899 1129
900=over 4 1130=over 4
901 1131
902=item L<AnyEvent::Util> 1132=item L<AnyEvent::Util>
903 1133
904Contains various utility functions that replace often-used but blocking 1134Contains various utility functions that replace often-used blocking
905functions such as C<inet_aton> by event-/callback-based versions. 1135functions such as C<inet_aton> with event/callback-based versions.
906 1136
907=item L<AnyEvent::Socket> 1137=item L<AnyEvent::Socket>
908 1138
909Provides various utility functions for (internet protocol) sockets, 1139Provides various utility functions for (internet protocol) sockets,
910addresses and name resolution. Also functions to create non-blocking tcp 1140addresses and name resolution. Also functions to create non-blocking tcp
912 1142
913=item L<AnyEvent::Handle> 1143=item L<AnyEvent::Handle>
914 1144
915Provide read and write buffers, manages watchers for reads and writes, 1145Provide read and write buffers, manages watchers for reads and writes,
916supports raw and formatted I/O, I/O queued and fully transparent and 1146supports raw and formatted I/O, I/O queued and fully transparent and
917non-blocking SSL/TLS. 1147non-blocking SSL/TLS (via L<AnyEvent::TLS>).
918 1148
919=item L<AnyEvent::DNS> 1149=item L<AnyEvent::DNS>
920 1150
921Provides rich asynchronous DNS resolver capabilities. 1151Provides rich asynchronous DNS resolver capabilities.
922 1152
1153=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1154
1155Implement event-based interfaces to the protocols of the same name (for
1156the curious, IGS is the International Go Server and FCP is the Freenet
1157Client Protocol).
1158
1159=item L<AnyEvent::Handle::UDP>
1160
1161Here be danger!
1162
1163As Pauli would put it, "Not only is it not right, it's not even wrong!" -
1164there are so many things wrong with AnyEvent::Handle::UDP, most notably
1165its use of a stream-based API with a protocol that isn't streamable, that
1166the only way to improve it is to delete it.
1167
1168It features data corruption (but typically only under load) and general
1169confusion. On top, the author is not only clueless about UDP but also
1170fact-resistant - some gems of his understanding: "connect doesn't work
1171with UDP", "UDP packets are not IP packets", "UDP only has datagrams, not
1172packets", "I don't need to implement proper error checking as UDP doesn't
1173support error checking" and so on - he doesn't even understand what's
1174wrong with his module when it is explained to him.
1175
923=item L<AnyEvent::HTTP> 1176=item L<AnyEvent::DBI>
924 1177
925A simple-to-use HTTP library that is capable of making a lot of concurrent 1178Executes L<DBI> requests asynchronously in a proxy process for you,
926HTTP requests. 1179notifying you in an event-based way when the operation is finished.
1180
1181=item L<AnyEvent::AIO>
1182
1183Truly asynchronous (as opposed to non-blocking) I/O, should be in the
1184toolbox of every event programmer. AnyEvent::AIO transparently fuses
1185L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1186file I/O, and much more.
927 1187
928=item L<AnyEvent::HTTPD> 1188=item L<AnyEvent::HTTPD>
929 1189
930Provides a simple web application server framework. 1190A simple embedded webserver.
931 1191
932=item L<AnyEvent::FastPing> 1192=item L<AnyEvent::FastPing>
933 1193
934The fastest ping in the west. 1194The fastest ping in the west.
935 1195
936=item L<AnyEvent::DBI>
937
938Executes L<DBI> requests asynchronously in a proxy process.
939
940=item L<AnyEvent::AIO>
941
942Truly asynchronous I/O, should be in the toolbox of every event
943programmer. AnyEvent::AIO transparently fuses L<IO::AIO> and AnyEvent
944together.
945
946=item L<AnyEvent::BDB>
947
948Truly asynchronous Berkeley DB access. AnyEvent::BDB transparently fuses
949L<BDB> and AnyEvent together.
950
951=item L<AnyEvent::GPSD>
952
953A non-blocking interface to gpsd, a daemon delivering GPS information.
954
955=item L<AnyEvent::IGS>
956
957A non-blocking interface to the Internet Go Server protocol (used by
958L<App::IGS>).
959
960=item L<AnyEvent::IRC>
961
962AnyEvent based IRC client module family (replacing the older Net::IRC3).
963
964=item L<Net::XMPP2>
965
966AnyEvent based XMPP (Jabber protocol) module family.
967
968=item L<Net::FCP>
969
970AnyEvent-based implementation of the Freenet Client Protocol, birthplace
971of AnyEvent.
972
973=item L<Event::ExecFlow>
974
975High level API for event-based execution flow control.
976
977=item L<Coro> 1196=item L<Coro>
978 1197
979Has special support for AnyEvent via L<Coro::AnyEvent>. 1198Has special support for AnyEvent via L<Coro::AnyEvent>.
980 1199
981=item L<IO::Lambda>
982
983The lambda approach to I/O - don't ask, look there. Can use AnyEvent.
984
985=back 1200=back
986 1201
987=cut 1202=cut
988 1203
989package AnyEvent; 1204package AnyEvent;
990 1205
991no warnings; 1206# basically a tuned-down version of common::sense
992use strict qw(vars subs); 1207sub common_sense {
1208 # from common:.sense 3.4
1209 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf0\x0f\xc0\xf0\xfc\x33\x00";
1210 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1211 $^H |= 0x00000600;
1212}
993 1213
1214BEGIN { AnyEvent::common_sense }
1215
994use Carp; 1216use Carp ();
995 1217
996our $VERSION = 4.8; 1218our $VERSION = '6.01';
997our $MODEL; 1219our $MODEL;
998 1220
999our $AUTOLOAD;
1000our @ISA; 1221our @ISA;
1001 1222
1002our @REGISTRY; 1223our @REGISTRY;
1003 1224
1004our $WIN32; 1225our $VERBOSE;
1005 1226
1006BEGIN { 1227BEGIN {
1007 eval "sub WIN32(){ " . (($^O =~ /mswin32/i)*1) ." }"; 1228 require "AnyEvent/constants.pl";
1229
1008 eval "sub TAINT(){ " . (${^TAINT}*1) . " }"; 1230 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
1009 1231
1010 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV} 1232 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1011 if ${^TAINT}; 1233 if ${^TAINT};
1012}
1013 1234
1014our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; 1235 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1;
1236}
1237
1238our $MAX_SIGNAL_LATENCY = 10;
1015 1239
1016our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred 1240our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
1017 1241
1018{ 1242{
1019 my $idx; 1243 my $idx;
1020 $PROTOCOL{$_} = ++$idx 1244 $PROTOCOL{$_} = ++$idx
1021 for reverse split /\s*,\s*/, 1245 for reverse split /\s*,\s*/,
1022 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1246 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
1023} 1247}
1024 1248
1249our @post_detect;
1250
1251sub post_detect(&) {
1252 my ($cb) = @_;
1253
1254 push @post_detect, $cb;
1255
1256 defined wantarray
1257 ? bless \$cb, "AnyEvent::Util::postdetect"
1258 : ()
1259}
1260
1261sub AnyEvent::Util::postdetect::DESTROY {
1262 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1263}
1264
1265our $POSTPONE_W;
1266our @POSTPONE;
1267
1268sub _postpone_exec {
1269 undef $POSTPONE_W;
1270
1271 &{ shift @POSTPONE }
1272 while @POSTPONE;
1273}
1274
1275sub postpone(&) {
1276 push @POSTPONE, shift;
1277
1278 $POSTPONE_W ||= AE::timer (0, 0, \&_postpone_exec);
1279
1280 ()
1281}
1282
1283sub log($$;@) {
1284 require AnyEvent::Log;
1285 # AnyEvent::Log overwrites this function
1286 goto &log;
1287}
1288
1025my @models = ( 1289our @models = (
1026 [EV:: => AnyEvent::Impl::EV::], 1290 [EV:: => AnyEvent::Impl::EV:: , 1],
1027 [Event:: => AnyEvent::Impl::Event::], 1291 [AnyEvent::Loop:: => AnyEvent::Impl::Perl:: , 1],
1028 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::],
1029 # everything below here will not be autoprobed 1292 # everything below here will not (normally) be autoprobed
1030 # as the pureperl backend should work everywhere 1293 # as the pure perl backend should work everywhere
1031 # and is usually faster 1294 # and is usually faster
1295 [Event:: => AnyEvent::Impl::Event::, 1],
1296 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1297 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1298 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
1032 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles 1299 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
1033 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
1034 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1035 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 1300 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
1036 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 1301 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
1037 [Wx:: => AnyEvent::Impl::POE::], 1302 [Wx:: => AnyEvent::Impl::POE::],
1038 [Prima:: => AnyEvent::Impl::POE::], 1303 [Prima:: => AnyEvent::Impl::POE::],
1039 # IO::Async is just too broken - we would need workaorunds for its 1304 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # a bitch to autodetect
1040 # byzantine signal and broken child handling, among others. 1305 [Cocoa::EventLoop:: => AnyEvent::Impl::Cocoa::],
1041 # IO::Async is rather hard to detect, as it doesn't have any 1306 [FLTK:: => AnyEvent::Impl::FLTK2::],
1042 # obvious default class.
1043# [IO::Async:: => AnyEvent::Impl::IOAsync::], # requires special main program
1044# [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # requires special main program
1045# [IO::Async::Notifier:: => AnyEvent::Impl::IOAsync::], # requires special main program
1046); 1307);
1047 1308
1048our %method = map +($_ => 1), 1309our @isa_hook;
1310
1311sub _isa_set {
1312 my @pkg = ("AnyEvent", (map $_->[0], grep defined, @isa_hook), $MODEL);
1313
1314 @{"$pkg[$_-1]::ISA"} = $pkg[$_]
1315 for 1 .. $#pkg;
1316
1317 grep $_ && $_->[1], @isa_hook
1318 and AE::_reset ();
1319}
1320
1321# used for hooking AnyEvent::Strict and AnyEvent::Debug::Wrap into the class hierarchy
1322sub _isa_hook($$;$) {
1323 my ($i, $pkg, $reset_ae) = @_;
1324
1325 $isa_hook[$i] = $pkg ? [$pkg, $reset_ae] : undef;
1326
1327 _isa_set;
1328}
1329
1330# all autoloaded methods reserve the complete glob, not just the method slot.
1331# due to bugs in perls method cache implementation.
1049 qw(io timer time now now_update signal child idle condvar one_event DESTROY); 1332our @methods = qw(io timer time now now_update signal child idle condvar);
1050 1333
1051our @post_detect;
1052
1053sub post_detect(&) { 1334sub detect() {
1054 my ($cb) = @_; 1335 return $MODEL if $MODEL; # some programs keep references to detect
1055 1336
1056 if ($MODEL) { 1337 local $!; # for good measure
1057 $cb->(); 1338 local $SIG{__DIE__}; # we use eval
1058 1339
1059 1 1340 # free some memory
1341 *detect = sub () { $MODEL };
1342 # undef &func doesn't correctly update the method cache. grmbl.
1343 # so we delete the whole glob. grmbl.
1344 # otoh, perl doesn't let me undef an active usb, but it lets me free
1345 # a glob with an active sub. hrm. i hope it works, but perl is
1346 # usually buggy in this department. sigh.
1347 delete @{"AnyEvent::"}{@methods};
1348 undef @methods;
1349
1350 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z0-9:]+)$/) {
1351 my $model = $1;
1352 $model = "AnyEvent::Impl::$model" unless $model =~ s/::$//;
1353 if (eval "require $model") {
1354 $MODEL = $model;
1355 AnyEvent::log 7 => "loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it."
1356 if $VERBOSE >= 7;
1060 } else { 1357 } else {
1061 push @post_detect, $cb; 1358 AnyEvent::log warn => "unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@";
1062 1359 }
1063 defined wantarray
1064 ? bless \$cb, "AnyEvent::Util::postdetect"
1065 : ()
1066 } 1360 }
1067}
1068 1361
1069sub AnyEvent::Util::postdetect::DESTROY { 1362 # check for already loaded models
1070 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1071}
1072
1073sub detect() {
1074 unless ($MODEL) { 1363 unless ($MODEL) {
1075 no strict 'refs'; 1364 for (@REGISTRY, @models) {
1076 local $SIG{__DIE__}; 1365 my ($package, $model) = @$_;
1077 1366 if (${"$package\::VERSION"} > 0) {
1078 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
1079 my $model = "AnyEvent::Impl::$1";
1080 if (eval "require $model") { 1367 if (eval "require $model") {
1081 $MODEL = $model; 1368 $MODEL = $model;
1082 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1369 AnyEvent::log 7 => "autodetected model '$model', using it."
1083 } else { 1370 if $VERBOSE >= 7;
1084 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose; 1371 last;
1372 }
1085 } 1373 }
1086 } 1374 }
1087 1375
1088 # check for already loaded models
1089 unless ($MODEL) { 1376 unless ($MODEL) {
1377 # try to autoload a model
1090 for (@REGISTRY, @models) { 1378 for (@REGISTRY, @models) {
1091 my ($package, $model) = @$_; 1379 my ($package, $model, $autoload) = @$_;
1380 if (
1381 $autoload
1382 and eval "require $package"
1092 if (${"$package\::VERSION"} > 0) { 1383 and ${"$package\::VERSION"} > 0
1093 if (eval "require $model") { 1384 and eval "require $model"
1385 ) {
1094 $MODEL = $model; 1386 $MODEL = $model;
1095 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1; 1387 AnyEvent::log 7 => "autoloaded model '$model', using it."
1388 if $VERBOSE >= 7;
1096 last; 1389 last;
1097 }
1098 } 1390 }
1099 } 1391 }
1100 1392
1101 unless ($MODEL) {
1102 # try to load a model
1103
1104 for (@REGISTRY, @models) {
1105 my ($package, $model) = @$_;
1106 if (eval "require $package"
1107 and ${"$package\::VERSION"} > 0
1108 and eval "require $model") {
1109 $MODEL = $model;
1110 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1;
1111 last;
1112 }
1113 }
1114
1115 $MODEL 1393 $MODEL
1116 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib.\n"; 1394 or die "AnyEvent: backend autodetection failed - did you properly install AnyEvent?";
1117 }
1118 } 1395 }
1119
1120 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1121
1122 unshift @ISA, $MODEL;
1123
1124 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
1125
1126 (shift @post_detect)->() while @post_detect;
1127 } 1396 }
1128 1397
1398 # free memory only needed for probing
1399 undef @models;
1400 undef @REGISTRY;
1401
1402 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1403
1404 # now nuke some methods that are overridden by the backend.
1405 # SUPER usage is not allowed in these.
1406 for (qw(time signal child idle)) {
1407 undef &{"AnyEvent::Base::$_"}
1408 if defined &{"$MODEL\::$_"};
1409 }
1410
1411 _isa_set;
1412
1413 if ($ENV{PERL_ANYEVENT_STRICT}) {
1414 require AnyEvent::Strict;
1415 }
1416
1417 if ($ENV{PERL_ANYEVENT_DEBUG_WRAP}) {
1418 require AnyEvent::Debug;
1419 AnyEvent::Debug::wrap ($ENV{PERL_ANYEVENT_DEBUG_WRAP});
1420 }
1421
1422 if (length $ENV{PERL_ANYEVENT_DEBUG_SHELL}) {
1423 require AnyEvent::Socket;
1424 require AnyEvent::Debug;
1425
1426 my $shell = $ENV{PERL_ANYEVENT_DEBUG_SHELL};
1427 $shell =~ s/\$\$/$$/g;
1428
1429 my ($host, $service) = AnyEvent::Socket::parse_hostport ($shell);
1430 $AnyEvent::Debug::SHELL = AnyEvent::Debug::shell ($host, $service);
1431 }
1432
1433 (shift @post_detect)->() while @post_detect;
1434 undef @post_detect;
1435
1436 *post_detect = sub(&) {
1437 shift->();
1438
1439 undef
1440 };
1441
1129 $MODEL 1442 $MODEL
1130} 1443}
1131 1444
1132sub AUTOLOAD { 1445for my $name (@methods) {
1133 (my $func = $AUTOLOAD) =~ s/.*://; 1446 *$name = sub {
1134 1447 detect;
1135 $method{$func} 1448 # we use goto because
1136 or croak "$func: not a valid method for AnyEvent objects"; 1449 # a) it makes the thunk more transparent
1137 1450 # b) it allows us to delete the thunk later
1138 detect unless $MODEL; 1451 goto &{ UNIVERSAL::can AnyEvent => "SUPER::$name" }
1139 1452 };
1140 my $class = shift;
1141 $class->$func (@_);
1142} 1453}
1143 1454
1144# utility function to dup a filehandle. this is used by many backends 1455# utility function to dup a filehandle. this is used by many backends
1145# to support binding more than one watcher per filehandle (they usually 1456# to support binding more than one watcher per filehandle (they usually
1146# allow only one watcher per fd, so we dup it to get a different one). 1457# allow only one watcher per fd, so we dup it to get a different one).
1147sub _dupfh($$;$$) { 1458sub _dupfh($$;$$) {
1148 my ($poll, $fh, $r, $w) = @_; 1459 my ($poll, $fh, $r, $w) = @_;
1149 1460
1150 # cygwin requires the fh mode to be matching, unix doesn't 1461 # cygwin requires the fh mode to be matching, unix doesn't
1151 my ($rw, $mode) = $poll eq "r" ? ($r, "<") 1462 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1152 : $poll eq "w" ? ($w, ">")
1153 : Carp::croak "AnyEvent->io requires poll set to either 'r' or 'w'";
1154 1463
1155 open my $fh2, "$mode&" . fileno $fh 1464 open my $fh2, $mode, $fh
1156 or die "cannot dup() filehandle: $!,"; 1465 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1157 1466
1158 # we assume CLOEXEC is already set by perl in all important cases 1467 # we assume CLOEXEC is already set by perl in all important cases
1159 1468
1160 ($fh2, $rw) 1469 ($fh2, $rw)
1161} 1470}
1162 1471
1472=head1 SIMPLIFIED AE API
1473
1474Starting with version 5.0, AnyEvent officially supports a second, much
1475simpler, API that is designed to reduce the calling, typing and memory
1476overhead by using function call syntax and a fixed number of parameters.
1477
1478See the L<AE> manpage for details.
1479
1480=cut
1481
1482package AE;
1483
1484our $VERSION = $AnyEvent::VERSION;
1485
1486sub _reset() {
1487 eval q{
1488 # fall back to the main API by default - backends and AnyEvent::Base
1489 # implementations can overwrite these.
1490
1491 sub io($$$) {
1492 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1493 }
1494
1495 sub timer($$$) {
1496 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1497 }
1498
1499 sub signal($$) {
1500 AnyEvent->signal (signal => $_[0], cb => $_[1])
1501 }
1502
1503 sub child($$) {
1504 AnyEvent->child (pid => $_[0], cb => $_[1])
1505 }
1506
1507 sub idle($) {
1508 AnyEvent->idle (cb => $_[0]);
1509 }
1510
1511 sub cv(;&) {
1512 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1513 }
1514
1515 sub now() {
1516 AnyEvent->now
1517 }
1518
1519 sub now_update() {
1520 AnyEvent->now_update
1521 }
1522
1523 sub time() {
1524 AnyEvent->time
1525 }
1526
1527 *postpone = \&AnyEvent::postpone;
1528 *log = \&AnyEvent::log;
1529 };
1530 die if $@;
1531}
1532
1533BEGIN { _reset }
1534
1163package AnyEvent::Base; 1535package AnyEvent::Base;
1164 1536
1165# default implementations for many methods 1537# default implementations for many methods
1166 1538
1167BEGIN { 1539sub time {
1540 eval q{ # poor man's autoloading {}
1541 # probe for availability of Time::HiRes
1168 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") { 1542 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1543 AnyEvent::log 8 => "AnyEvent: using Time::HiRes for sub-second timing accuracy."
1544 if $AnyEvent::VERBOSE >= 8;
1545 *time = sub { Time::HiRes::time () };
1169 *_time = \&Time::HiRes::time; 1546 *AE::time = \& Time::HiRes::time ;
1170 # if (eval "use POSIX (); (POSIX::times())... 1547 # if (eval "use POSIX (); (POSIX::times())...
1171 } else { 1548 } else {
1172 *_time = sub { time }; # epic fail 1549 AnyEvent::log critical => "using built-in time(), WARNING, no sub-second resolution!";
1550 *time = sub { CORE::time };
1551 *AE::time = sub (){ CORE::time };
1552 }
1553
1554 *now = \&time;
1555 };
1556 die if $@;
1557
1558 &time
1559}
1560
1561*now = \&time;
1562sub now_update { }
1563
1564sub _poll {
1565 Carp::croak "$AnyEvent::MODEL does not support blocking waits. Caught";
1566}
1567
1568# default implementation for ->condvar
1569# in fact, the default should not be overwritten
1570
1571sub condvar {
1572 eval q{ # poor man's autoloading {}
1573 *condvar = sub {
1574 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1575 };
1576
1577 *AE::cv = sub (;&) {
1578 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
1579 };
1580 };
1581 die if $@;
1582
1583 &condvar
1584}
1585
1586# default implementation for ->signal
1587
1588our $HAVE_ASYNC_INTERRUPT;
1589
1590sub _have_async_interrupt() {
1591 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1592 && eval "use Async::Interrupt 1.02 (); 1")
1593 unless defined $HAVE_ASYNC_INTERRUPT;
1594
1595 $HAVE_ASYNC_INTERRUPT
1596}
1597
1598our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1599our (%SIG_ASY, %SIG_ASY_W);
1600our ($SIG_COUNT, $SIG_TW);
1601
1602# install a dummy wakeup watcher to reduce signal catching latency
1603# used by Impls
1604sub _sig_add() {
1605 unless ($SIG_COUNT++) {
1606 # try to align timer on a full-second boundary, if possible
1607 my $NOW = AE::now;
1608
1609 $SIG_TW = AE::timer
1610 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1611 $MAX_SIGNAL_LATENCY,
1612 sub { } # just for the PERL_ASYNC_CHECK
1613 ;
1173 } 1614 }
1174} 1615}
1175 1616
1176sub time { _time } 1617sub _sig_del {
1177sub now { _time } 1618 undef $SIG_TW
1178sub now_update { } 1619 unless --$SIG_COUNT;
1179
1180# default implementation for ->condvar
1181
1182sub condvar {
1183 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1184} 1620}
1185 1621
1186# default implementation for ->signal 1622our $_sig_name_init; $_sig_name_init = sub {
1623 eval q{ # poor man's autoloading {}
1624 undef $_sig_name_init;
1187 1625
1188our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO); 1626 if (_have_async_interrupt) {
1627 *sig2num = \&Async::Interrupt::sig2num;
1628 *sig2name = \&Async::Interrupt::sig2name;
1629 } else {
1630 require Config;
1189 1631
1190sub _signal_exec { 1632 my %signame2num;
1191 sysread $SIGPIPE_R, my $dummy, 4; 1633 @signame2num{ split ' ', $Config::Config{sig_name} }
1634 = split ' ', $Config::Config{sig_num};
1192 1635
1193 while (%SIG_EV) { 1636 my @signum2name;
1194 for (keys %SIG_EV) { 1637 @signum2name[values %signame2num] = keys %signame2num;
1195 delete $SIG_EV{$_}; 1638
1196 $_->() for values %{ $SIG_CB{$_} || {} }; 1639 *sig2num = sub($) {
1640 $_[0] > 0 ? shift : $signame2num{+shift}
1641 };
1642 *sig2name = sub ($) {
1643 $_[0] > 0 ? $signum2name[+shift] : shift
1644 };
1197 } 1645 }
1198 } 1646 };
1199} 1647 die if $@;
1648};
1649
1650sub sig2num ($) { &$_sig_name_init; &sig2num }
1651sub sig2name($) { &$_sig_name_init; &sig2name }
1200 1652
1201sub signal { 1653sub signal {
1202 my (undef, %arg) = @_; 1654 eval q{ # poor man's autoloading {}
1655 # probe for availability of Async::Interrupt
1656 if (_have_async_interrupt) {
1657 AnyEvent::log 8 => "using Async::Interrupt for race-free signal handling."
1658 if $AnyEvent::VERBOSE >= 8;
1203 1659
1204 unless ($SIGPIPE_R) { 1660 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1205 require Fcntl; 1661 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1206 1662
1207 if (AnyEvent::WIN32) {
1208 require AnyEvent::Util;
1209
1210 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1211 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R) if $SIGPIPE_R;
1212 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W) if $SIGPIPE_W; # just in case
1213 } else { 1663 } else {
1664 AnyEvent::log 8 => "using emulated perl signal handling with latency timer."
1665 if $AnyEvent::VERBOSE >= 8;
1666
1667 if (AnyEvent::WIN32) {
1668 require AnyEvent::Util;
1669
1670 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1671 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1672 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1673 } else {
1214 pipe $SIGPIPE_R, $SIGPIPE_W; 1674 pipe $SIGPIPE_R, $SIGPIPE_W;
1215 fcntl $SIGPIPE_R, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_R; 1675 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1216 fcntl $SIGPIPE_W, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_W; # just in case 1676 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1217 1677
1218 # not strictly required, as $^F is normally 2, but let's make sure... 1678 # not strictly required, as $^F is normally 2, but let's make sure...
1219 fcntl $SIGPIPE_R, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC; 1679 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1220 fcntl $SIGPIPE_W, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC; 1680 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1681 }
1682
1683 $SIGPIPE_R
1684 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1685
1686 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1221 } 1687 }
1222 1688
1223 $SIGPIPE_R 1689 *signal = $HAVE_ASYNC_INTERRUPT
1224 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n"; 1690 ? sub {
1691 my (undef, %arg) = @_;
1225 1692
1226 $SIG_IO = AnyEvent->io (fh => $SIGPIPE_R, poll => "r", cb => \&_signal_exec); 1693 # async::interrupt
1227 }
1228
1229 my $signal = uc $arg{signal} 1694 my $signal = sig2num $arg{signal};
1230 or Carp::croak "required option 'signal' is missing";
1231
1232 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1695 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1696
1697 $SIG_ASY{$signal} ||= new Async::Interrupt
1698 cb => sub { undef $SIG_EV{$signal} },
1699 signal => $signal,
1700 pipe => [$SIGPIPE_R->filenos],
1701 pipe_autodrain => 0,
1702 ;
1703
1704 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1705 }
1706 : sub {
1707 my (undef, %arg) = @_;
1708
1709 # pure perl
1710 my $signal = sig2name $arg{signal};
1711 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1712
1233 $SIG{$signal} ||= sub { 1713 $SIG{$signal} ||= sub {
1234 local $!; 1714 local $!;
1235 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV; 1715 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1236 undef $SIG_EV{$signal}; 1716 undef $SIG_EV{$signal};
1717 };
1718
1719 # can't do signal processing without introducing races in pure perl,
1720 # so limit the signal latency.
1721 _sig_add;
1722
1723 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1724 }
1725 ;
1726
1727 *AnyEvent::Base::signal::DESTROY = sub {
1728 my ($signal, $cb) = @{$_[0]};
1729
1730 _sig_del;
1731
1732 delete $SIG_CB{$signal}{$cb};
1733
1734 $HAVE_ASYNC_INTERRUPT
1735 ? delete $SIG_ASY{$signal}
1736 : # delete doesn't work with older perls - they then
1737 # print weird messages, or just unconditionally exit
1738 # instead of getting the default action.
1739 undef $SIG{$signal}
1740 unless keys %{ $SIG_CB{$signal} };
1741 };
1742
1743 *_signal_exec = sub {
1744 $HAVE_ASYNC_INTERRUPT
1745 ? $SIGPIPE_R->drain
1746 : sysread $SIGPIPE_R, (my $dummy), 9;
1747
1748 while (%SIG_EV) {
1749 for (keys %SIG_EV) {
1750 delete $SIG_EV{$_};
1751 &$_ for values %{ $SIG_CB{$_} || {} };
1752 }
1753 }
1754 };
1237 }; 1755 };
1756 die if $@;
1238 1757
1239 bless [$signal, $arg{cb}], "AnyEvent::Base::signal" 1758 &signal
1240}
1241
1242sub AnyEvent::Base::signal::DESTROY {
1243 my ($signal, $cb) = @{$_[0]};
1244
1245 delete $SIG_CB{$signal}{$cb};
1246
1247 # delete doesn't work with older perls - they then
1248 # print weird messages, or just unconditionally exit
1249 # instead of getting the default action.
1250 undef $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
1251} 1759}
1252 1760
1253# default implementation for ->child 1761# default implementation for ->child
1254 1762
1255our %PID_CB; 1763our %PID_CB;
1256our $CHLD_W; 1764our $CHLD_W;
1257our $CHLD_DELAY_W; 1765our $CHLD_DELAY_W;
1258our $WNOHANG;
1259 1766
1260sub _sigchld { 1767# used by many Impl's
1261 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1768sub _emit_childstatus($$) {
1769 my (undef, $rpid, $rstatus) = @_;
1770
1771 $_->($rpid, $rstatus)
1262 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1772 for values %{ $PID_CB{$rpid} || {} },
1263 (values %{ $PID_CB{0} || {} }); 1773 values %{ $PID_CB{0} || {} };
1264 }
1265} 1774}
1266 1775
1267sub child { 1776sub child {
1777 eval q{ # poor man's autoloading {}
1778 *_sigchld = sub {
1779 my $pid;
1780
1781 AnyEvent->_emit_childstatus ($pid, $?)
1782 while ($pid = waitpid -1, WNOHANG) > 0;
1783 };
1784
1785 *child = sub {
1268 my (undef, %arg) = @_; 1786 my (undef, %arg) = @_;
1269 1787
1270 defined (my $pid = $arg{pid} + 0) 1788 my $pid = $arg{pid};
1271 or Carp::croak "required option 'pid' is missing"; 1789 my $cb = $arg{cb};
1272 1790
1273 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1791 $PID_CB{$pid}{$cb+0} = $cb;
1274 1792
1275 $WNOHANG ||= eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1276
1277 unless ($CHLD_W) { 1793 unless ($CHLD_W) {
1278 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1794 $CHLD_W = AE::signal CHLD => \&_sigchld;
1279 # child could be a zombie already, so make at least one round 1795 # child could be a zombie already, so make at least one round
1280 &_sigchld; 1796 &_sigchld;
1281 } 1797 }
1282 1798
1283 bless [$pid, $arg{cb}], "AnyEvent::Base::child" 1799 bless [$pid, $cb+0], "AnyEvent::Base::child"
1284} 1800 };
1285 1801
1286sub AnyEvent::Base::child::DESTROY { 1802 *AnyEvent::Base::child::DESTROY = sub {
1287 my ($pid, $cb) = @{$_[0]}; 1803 my ($pid, $icb) = @{$_[0]};
1288 1804
1289 delete $PID_CB{$pid}{$cb}; 1805 delete $PID_CB{$pid}{$icb};
1290 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1806 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1291 1807
1292 undef $CHLD_W unless keys %PID_CB; 1808 undef $CHLD_W unless keys %PID_CB;
1809 };
1810 };
1811 die if $@;
1812
1813 &child
1293} 1814}
1294 1815
1295# idle emulation is done by simply using a timer, regardless 1816# idle emulation is done by simply using a timer, regardless
1296# of whether the process is idle or not, and not letting 1817# of whether the process is idle or not, and not letting
1297# the callback use more than 50% of the time. 1818# the callback use more than 50% of the time.
1298sub idle { 1819sub idle {
1820 eval q{ # poor man's autoloading {}
1821 *idle = sub {
1299 my (undef, %arg) = @_; 1822 my (undef, %arg) = @_;
1300 1823
1301 my ($cb, $w, $rcb) = $arg{cb}; 1824 my ($cb, $w, $rcb) = $arg{cb};
1302 1825
1303 $rcb = sub { 1826 $rcb = sub {
1304 if ($cb) { 1827 if ($cb) {
1305 $w = _time; 1828 $w = AE::time;
1306 &$cb; 1829 &$cb;
1307 $w = _time - $w; 1830 $w = AE::time - $w;
1308 1831
1309 # never use more then 50% of the time for the idle watcher, 1832 # never use more then 50% of the time for the idle watcher,
1310 # within some limits 1833 # within some limits
1311 $w = 0.0001 if $w < 0.0001; 1834 $w = 0.0001 if $w < 0.0001;
1312 $w = 5 if $w > 5; 1835 $w = 5 if $w > 5;
1313 1836
1314 $w = AnyEvent->timer (after => $w, cb => $rcb); 1837 $w = AE::timer $w, 0, $rcb;
1315 } else { 1838 } else {
1316 # clean up... 1839 # clean up...
1317 undef $w; 1840 undef $w;
1318 undef $rcb; 1841 undef $rcb;
1842 }
1843 };
1844
1845 $w = AE::timer 0.05, 0, $rcb;
1846
1847 bless \\$cb, "AnyEvent::Base::idle"
1319 } 1848 };
1849
1850 *AnyEvent::Base::idle::DESTROY = sub {
1851 undef $${$_[0]};
1852 };
1320 }; 1853 };
1854 die if $@;
1321 1855
1322 $w = AnyEvent->timer (after => 0.05, cb => $rcb); 1856 &idle
1323
1324 bless \\$cb, "AnyEvent::Base::idle"
1325}
1326
1327sub AnyEvent::Base::idle::DESTROY {
1328 undef $${$_[0]};
1329} 1857}
1330 1858
1331package AnyEvent::CondVar; 1859package AnyEvent::CondVar;
1332 1860
1333our @ISA = AnyEvent::CondVar::Base::; 1861our @ISA = AnyEvent::CondVar::Base::;
1334 1862
1863# only to be used for subclassing
1864sub new {
1865 my $class = shift;
1866 bless AnyEvent->condvar (@_), $class
1867}
1868
1335package AnyEvent::CondVar::Base; 1869package AnyEvent::CondVar::Base;
1336 1870
1337use overload 1871#use overload
1338 '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, 1872# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1339 fallback => 1; 1873# fallback => 1;
1874
1875# save 300+ kilobytes by dirtily hardcoding overloading
1876${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1877*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1878*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1879${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1880
1881our $WAITING;
1340 1882
1341sub _send { 1883sub _send {
1342 # nop 1884 # nop
1885}
1886
1887sub _wait {
1888 AnyEvent->_poll until $_[0]{_ae_sent};
1343} 1889}
1344 1890
1345sub send { 1891sub send {
1346 my $cv = shift; 1892 my $cv = shift;
1347 $cv->{_ae_sent} = [@_]; 1893 $cv->{_ae_sent} = [@_];
1356 1902
1357sub ready { 1903sub ready {
1358 $_[0]{_ae_sent} 1904 $_[0]{_ae_sent}
1359} 1905}
1360 1906
1361sub _wait {
1362 AnyEvent->one_event while !$_[0]{_ae_sent};
1363}
1364
1365sub recv { 1907sub recv {
1908 unless ($_[0]{_ae_sent}) {
1909 $WAITING
1910 and Carp::croak "AnyEvent::CondVar: recursive blocking wait attempted";
1911
1912 local $WAITING = 1;
1366 $_[0]->_wait; 1913 $_[0]->_wait;
1914 }
1367 1915
1368 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1916 $_[0]{_ae_croak}
1369 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1917 and Carp::croak $_[0]{_ae_croak};
1918
1919 wantarray
1920 ? @{ $_[0]{_ae_sent} }
1921 : $_[0]{_ae_sent}[0]
1370} 1922}
1371 1923
1372sub cb { 1924sub cb {
1373 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1925 my $cv = shift;
1926
1927 @_
1928 and $cv->{_ae_cb} = shift
1929 and $cv->{_ae_sent}
1930 and (delete $cv->{_ae_cb})->($cv);
1931
1374 $_[0]{_ae_cb} 1932 $cv->{_ae_cb}
1375} 1933}
1376 1934
1377sub begin { 1935sub begin {
1378 ++$_[0]{_ae_counter}; 1936 ++$_[0]{_ae_counter};
1379 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 1937 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
1384 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } }; 1942 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } };
1385} 1943}
1386 1944
1387# undocumented/compatibility with pre-3.4 1945# undocumented/compatibility with pre-3.4
1388*broadcast = \&send; 1946*broadcast = \&send;
1389*wait = \&_wait; 1947*wait = \&recv;
1390 1948
1391=head1 ERROR AND EXCEPTION HANDLING 1949=head1 ERROR AND EXCEPTION HANDLING
1392 1950
1393In general, AnyEvent does not do any error handling - it relies on the 1951In general, AnyEvent does not do any error handling - it relies on the
1394caller to do that if required. The L<AnyEvent::Strict> module (see also 1952caller to do that if required. The L<AnyEvent::Strict> module (see also
1421 1979
1422By default, AnyEvent will be completely silent except in fatal 1980By default, AnyEvent will be completely silent except in fatal
1423conditions. You can set this environment variable to make AnyEvent more 1981conditions. You can set this environment variable to make AnyEvent more
1424talkative. 1982talkative.
1425 1983
1426When set to C<1> or higher, causes AnyEvent to warn about unexpected 1984When set to C<5> or higher, causes AnyEvent to warn about unexpected
1427conditions, such as not being able to load the event model specified by 1985conditions, such as not being able to load the event model specified by
1428C<PERL_ANYEVENT_MODEL>. 1986C<PERL_ANYEVENT_MODEL>.
1429 1987
1430When set to C<2> or higher, cause AnyEvent to report to STDERR which event 1988When set to C<7> or higher, cause AnyEvent to report to STDERR which event
1431model it chooses. 1989model it chooses.
1990
1991When set to C<8> or higher, then AnyEvent will report extra information on
1992which optional modules it loads and how it implements certain features.
1432 1993
1433=item C<PERL_ANYEVENT_STRICT> 1994=item C<PERL_ANYEVENT_STRICT>
1434 1995
1435AnyEvent does not do much argument checking by default, as thorough 1996AnyEvent does not do much argument checking by default, as thorough
1436argument checking is very costly. Setting this variable to a true value 1997argument checking is very costly. Setting this variable to a true value
1438check the arguments passed to most method calls. If it finds any problems, 1999check the arguments passed to most method calls. If it finds any problems,
1439it will croak. 2000it will croak.
1440 2001
1441In other words, enables "strict" mode. 2002In other words, enables "strict" mode.
1442 2003
1443Unlike C<use strict>, it is definitely recommended to keep it off in 2004Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
1444production. Keeping C<PERL_ANYEVENT_STRICT=1> in your environment while 2005>>, it is definitely recommended to keep it off in production. Keeping
1445developing programs can be very useful, however. 2006C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
2007can be very useful, however.
2008
2009=item C<PERL_ANYEVENT_DEBUG_SHELL>
2010
2011If this env variable is set, then its contents will be interpreted by
2012C<AnyEvent::Socket::parse_hostport> (after replacing every occurance of
2013C<$$> by the process pid) and an C<AnyEvent::Debug::shell> is bound on
2014that port. The shell object is saved in C<$AnyEvent::Debug::SHELL>.
2015
2016This takes place when the first watcher is created.
2017
2018For example, to bind a debug shell on a unix domain socket in
2019F<< /tmp/debug<pid>.sock >>, you could use this:
2020
2021 PERL_ANYEVENT_DEBUG_SHELL=/tmp/debug\$\$.sock perlprog
2022
2023Note that creating sockets in F</tmp> is very unsafe on multiuser
2024systems.
2025
2026=item C<PERL_ANYEVENT_DEBUG_WRAP>
2027
2028Can be set to C<0>, C<1> or C<2> and enables wrapping of all watchers for
2029debugging purposes. See C<AnyEvent::Debug::wrap> for details.
1446 2030
1447=item C<PERL_ANYEVENT_MODEL> 2031=item C<PERL_ANYEVENT_MODEL>
1448 2032
1449This can be used to specify the event model to be used by AnyEvent, before 2033This can be used to specify the event model to be used by AnyEvent, before
1450auto detection and -probing kicks in. It must be a string consisting 2034auto detection and -probing kicks in.
1451entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended 2035
2036It normally is a string consisting entirely of ASCII letters (e.g. C<EV>
2037or C<IOAsync>). The string C<AnyEvent::Impl::> gets prepended and the
1452and the resulting module name is loaded and if the load was successful, 2038resulting module name is loaded and - if the load was successful - used as
1453used as event model. If it fails to load AnyEvent will proceed with 2039event model backend. If it fails to load then AnyEvent will proceed with
1454auto detection and -probing. 2040auto detection and -probing.
1455 2041
1456This functionality might change in future versions. 2042If the string ends with C<::> instead (e.g. C<AnyEvent::Impl::EV::>) then
2043nothing gets prepended and the module name is used as-is (hint: C<::> at
2044the end of a string designates a module name and quotes it appropriately).
1457 2045
1458For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you 2046For example, to force the pure perl model (L<AnyEvent::Loop::Perl>) you
1459could start your program like this: 2047could start your program like this:
1460 2048
1461 PERL_ANYEVENT_MODEL=Perl perl ... 2049 PERL_ANYEVENT_MODEL=Perl perl ...
1462 2050
1463=item C<PERL_ANYEVENT_PROTOCOLS> 2051=item C<PERL_ANYEVENT_PROTOCOLS>
1512 2100
1513When neither C<ca_file> nor C<ca_path> was specified during 2101When neither C<ca_file> nor C<ca_path> was specified during
1514L<AnyEvent::TLS> context creation, and either of these environment 2102L<AnyEvent::TLS> context creation, and either of these environment
1515variables exist, they will be used to specify CA certificate locations 2103variables exist, they will be used to specify CA certificate locations
1516instead of a system-dependent default. 2104instead of a system-dependent default.
2105
2106=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
2107
2108When these are set to C<1>, then the respective modules are not
2109loaded. Mostly good for testing AnyEvent itself.
1517 2110
1518=back 2111=back
1519 2112
1520=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 2113=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1521 2114
1579 warn "read: $input\n"; # output what has been read 2172 warn "read: $input\n"; # output what has been read
1580 $cv->send if $input =~ /^q/i; # quit program if /^q/i 2173 $cv->send if $input =~ /^q/i; # quit program if /^q/i
1581 }, 2174 },
1582 ); 2175 );
1583 2176
1584 my $time_watcher; # can only be used once
1585
1586 sub new_timer {
1587 $timer = AnyEvent->timer (after => 1, cb => sub { 2177 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
1588 warn "timeout\n"; # print 'timeout' about every second 2178 warn "timeout\n"; # print 'timeout' at most every second
1589 &new_timer; # and restart the time
1590 }); 2179 });
1591 }
1592
1593 new_timer; # create first timer
1594 2180
1595 $cv->recv; # wait until user enters /^q/i 2181 $cv->recv; # wait until user enters /^q/i
1596 2182
1597=head1 REAL-WORLD EXAMPLE 2183=head1 REAL-WORLD EXAMPLE
1598 2184
1671 2257
1672The actual code goes further and collects all errors (C<die>s, exceptions) 2258The actual code goes further and collects all errors (C<die>s, exceptions)
1673that occurred during request processing. The C<result> method detects 2259that occurred during request processing. The C<result> method detects
1674whether an exception as thrown (it is stored inside the $txn object) 2260whether an exception as thrown (it is stored inside the $txn object)
1675and just throws the exception, which means connection errors and other 2261and just throws the exception, which means connection errors and other
1676problems get reported tot he code that tries to use the result, not in a 2262problems get reported to the code that tries to use the result, not in a
1677random callback. 2263random callback.
1678 2264
1679All of this enables the following usage styles: 2265All of this enables the following usage styles:
1680 2266
16811. Blocking: 22671. Blocking:
1729through AnyEvent. The benchmark creates a lot of timers (with a zero 2315through AnyEvent. The benchmark creates a lot of timers (with a zero
1730timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2316timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1731which it is), lets them fire exactly once and destroys them again. 2317which it is), lets them fire exactly once and destroys them again.
1732 2318
1733Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2319Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1734distribution. 2320distribution. It uses the L<AE> interface, which makes a real difference
2321for the EV and Perl backends only.
1735 2322
1736=head3 Explanation of the columns 2323=head3 Explanation of the columns
1737 2324
1738I<watcher> is the number of event watchers created/destroyed. Since 2325I<watcher> is the number of event watchers created/destroyed. Since
1739different event models feature vastly different performances, each event 2326different event models feature vastly different performances, each event
1760watcher. 2347watcher.
1761 2348
1762=head3 Results 2349=head3 Results
1763 2350
1764 name watchers bytes create invoke destroy comment 2351 name watchers bytes create invoke destroy comment
1765 EV/EV 400000 224 0.47 0.35 0.27 EV native interface 2352 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1766 EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers 2353 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1767 CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal 2354 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1768 Perl/Any 100000 452 4.13 0.73 0.95 pure perl implementation 2355 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1769 Event/Event 16000 517 32.20 31.80 0.81 Event native interface 2356 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1770 Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers 2357 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
1771 IOAsync/Any 16000 989 38.10 32.77 11.13 via IO::Async::Loop::IO_Poll 2358 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
1772 IOAsync/Any 16000 990 37.59 29.50 10.61 via IO::Async::Loop::Epoll 2359 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1773 Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour 2360 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1774 Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers 2361 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1775 POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event 2362 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1776 POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select 2363 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1777 2364
1778=head3 Discussion 2365=head3 Discussion
1779 2366
1780The benchmark does I<not> measure scalability of the event loop very 2367The benchmark does I<not> measure scalability of the event loop very
1781well. For example, a select-based event loop (such as the pure perl one) 2368well. For example, a select-based event loop (such as the pure perl one)
1793benchmark machine, handling an event takes roughly 1600 CPU cycles with 2380benchmark machine, handling an event takes roughly 1600 CPU cycles with
1794EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2381EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1795cycles with POE. 2382cycles with POE.
1796 2383
1797C<EV> is the sole leader regarding speed and memory use, which are both 2384C<EV> is the sole leader regarding speed and memory use, which are both
1798maximal/minimal, respectively. Even when going through AnyEvent, it uses 2385maximal/minimal, respectively. When using the L<AE> API there is zero
2386overhead (when going through the AnyEvent API create is about 5-6 times
2387slower, with other times being equal, so still uses far less memory than
1799far less memory than any other event loop and is still faster than Event 2388any other event loop and is still faster than Event natively).
1800natively.
1801 2389
1802The pure perl implementation is hit in a few sweet spots (both the 2390The pure perl implementation is hit in a few sweet spots (both the
1803constant timeout and the use of a single fd hit optimisations in the perl 2391constant timeout and the use of a single fd hit optimisations in the perl
1804interpreter and the backend itself). Nevertheless this shows that it 2392interpreter and the backend itself). Nevertheless this shows that it
1805adds very little overhead in itself. Like any select-based backend its 2393adds very little overhead in itself. Like any select-based backend its
1853(even when used without AnyEvent), but most event loops have acceptable 2441(even when used without AnyEvent), but most event loops have acceptable
1854performance with or without AnyEvent. 2442performance with or without AnyEvent.
1855 2443
1856=item * The overhead AnyEvent adds is usually much smaller than the overhead of 2444=item * The overhead AnyEvent adds is usually much smaller than the overhead of
1857the actual event loop, only with extremely fast event loops such as EV 2445the actual event loop, only with extremely fast event loops such as EV
1858adds AnyEvent significant overhead. 2446does AnyEvent add significant overhead.
1859 2447
1860=item * You should avoid POE like the plague if you want performance or 2448=item * You should avoid POE like the plague if you want performance or
1861reasonable memory usage. 2449reasonable memory usage.
1862 2450
1863=back 2451=back
1879In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2467In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1880(1%) are active. This mirrors the activity of large servers with many 2468(1%) are active. This mirrors the activity of large servers with many
1881connections, most of which are idle at any one point in time. 2469connections, most of which are idle at any one point in time.
1882 2470
1883Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2471Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1884distribution. 2472distribution. It uses the L<AE> interface, which makes a real difference
2473for the EV and Perl backends only.
1885 2474
1886=head3 Explanation of the columns 2475=head3 Explanation of the columns
1887 2476
1888I<sockets> is the number of sockets, and twice the number of "servers" (as 2477I<sockets> is the number of sockets, and twice the number of "servers" (as
1889each server has a read and write socket end). 2478each server has a read and write socket end).
1897a new one that moves the timeout into the future. 2486a new one that moves the timeout into the future.
1898 2487
1899=head3 Results 2488=head3 Results
1900 2489
1901 name sockets create request 2490 name sockets create request
1902 EV 20000 69.01 11.16 2491 EV 20000 62.66 7.99
1903 Perl 20000 73.32 35.87 2492 Perl 20000 68.32 32.64
1904 IOAsync 20000 157.00 98.14 epoll 2493 IOAsync 20000 174.06 101.15 epoll
1905 IOAsync 20000 159.31 616.06 poll 2494 IOAsync 20000 174.67 610.84 poll
1906 Event 20000 212.62 257.32 2495 Event 20000 202.69 242.91
1907 Glib 20000 651.16 1896.30 2496 Glib 20000 557.01 1689.52
1908 POE 20000 349.67 12317.24 uses POE::Loop::Event 2497 POE 20000 341.54 12086.32 uses POE::Loop::Event
1909 2498
1910=head3 Discussion 2499=head3 Discussion
1911 2500
1912This benchmark I<does> measure scalability and overall performance of the 2501This benchmark I<does> measure scalability and overall performance of the
1913particular event loop. 2502particular event loop.
2039As you can see, the AnyEvent + EV combination even beats the 2628As you can see, the AnyEvent + EV combination even beats the
2040hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl 2629hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2041backend easily beats IO::Lambda and POE. 2630backend easily beats IO::Lambda and POE.
2042 2631
2043And even the 100% non-blocking version written using the high-level (and 2632And even the 100% non-blocking version written using the high-level (and
2044slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda by a 2633slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2045large margin, even though it does all of DNS, tcp-connect and socket I/O 2634higher level ("unoptimised") abstractions by a large margin, even though
2046in a non-blocking way. 2635it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2047 2636
2048The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and 2637The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2049F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are 2638F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2050part of the IO::lambda distribution and were used without any changes. 2639part of the IO::Lambda distribution and were used without any changes.
2051 2640
2052 2641
2053=head1 SIGNALS 2642=head1 SIGNALS
2054 2643
2055AnyEvent currently installs handlers for these signals: 2644AnyEvent currently installs handlers for these signals:
2060 2649
2061A handler for C<SIGCHLD> is installed by AnyEvent's child watcher 2650A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
2062emulation for event loops that do not support them natively. Also, some 2651emulation for event loops that do not support them natively. Also, some
2063event loops install a similar handler. 2652event loops install a similar handler.
2064 2653
2065If, when AnyEvent is loaded, SIGCHLD is set to IGNORE, then AnyEvent will 2654Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2066reset it to default, to avoid losing child exit statuses. 2655AnyEvent will reset it to default, to avoid losing child exit statuses.
2067 2656
2068=item SIGPIPE 2657=item SIGPIPE
2069 2658
2070A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef> 2659A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
2071when AnyEvent gets loaded. 2660when AnyEvent gets loaded.
2089 if $SIG{CHLD} eq 'IGNORE'; 2678 if $SIG{CHLD} eq 'IGNORE';
2090 2679
2091$SIG{PIPE} = sub { } 2680$SIG{PIPE} = sub { }
2092 unless defined $SIG{PIPE}; 2681 unless defined $SIG{PIPE};
2093 2682
2683=head1 RECOMMENDED/OPTIONAL MODULES
2684
2685One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2686its built-in modules) are required to use it.
2687
2688That does not mean that AnyEvent won't take advantage of some additional
2689modules if they are installed.
2690
2691This section explains which additional modules will be used, and how they
2692affect AnyEvent's operation.
2693
2694=over 4
2695
2696=item L<Async::Interrupt>
2697
2698This slightly arcane module is used to implement fast signal handling: To
2699my knowledge, there is no way to do completely race-free and quick
2700signal handling in pure perl. To ensure that signals still get
2701delivered, AnyEvent will start an interval timer to wake up perl (and
2702catch the signals) with some delay (default is 10 seconds, look for
2703C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2704
2705If this module is available, then it will be used to implement signal
2706catching, which means that signals will not be delayed, and the event loop
2707will not be interrupted regularly, which is more efficient (and good for
2708battery life on laptops).
2709
2710This affects not just the pure-perl event loop, but also other event loops
2711that have no signal handling on their own (e.g. Glib, Tk, Qt).
2712
2713Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2714and either employ their own workarounds (POE) or use AnyEvent's workaround
2715(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2716does nothing for those backends.
2717
2718=item L<EV>
2719
2720This module isn't really "optional", as it is simply one of the backend
2721event loops that AnyEvent can use. However, it is simply the best event
2722loop available in terms of features, speed and stability: It supports
2723the AnyEvent API optimally, implements all the watcher types in XS, does
2724automatic timer adjustments even when no monotonic clock is available,
2725can take avdantage of advanced kernel interfaces such as C<epoll> and
2726C<kqueue>, and is the fastest backend I<by far>. You can even embed
2727L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2728
2729If you only use backends that rely on another event loop (e.g. C<Tk>),
2730then this module will do nothing for you.
2731
2732=item L<Guard>
2733
2734The guard module, when used, will be used to implement
2735C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2736lot less memory), but otherwise doesn't affect guard operation much. It is
2737purely used for performance.
2738
2739=item L<JSON> and L<JSON::XS>
2740
2741One of these modules is required when you want to read or write JSON data
2742via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2743advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2744
2745=item L<Net::SSLeay>
2746
2747Implementing TLS/SSL in Perl is certainly interesting, but not very
2748worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2749the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2750
2751=item L<Time::HiRes>
2752
2753This module is part of perl since release 5.008. It will be used when the
2754chosen event library does not come with a timing source of its own. The
2755pure-perl event loop (L<AnyEvent::Loop>) will additionally load it to
2756try to use a monotonic clock for timing stability.
2757
2758=back
2759
2760
2094=head1 FORK 2761=head1 FORK
2095 2762
2096Most event libraries are not fork-safe. The ones who are usually are 2763Most event libraries are not fork-safe. The ones who are usually are
2097because they rely on inefficient but fork-safe C<select> or C<poll> 2764because they rely on inefficient but fork-safe C<select> or C<poll> calls
2098calls. Only L<EV> is fully fork-aware. 2765- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2766are usually badly thought-out hacks that are incompatible with fork in
2767one way or another. Only L<EV> is fully fork-aware and ensures that you
2768continue event-processing in both parent and child (or both, if you know
2769what you are doing).
2770
2771This means that, in general, you cannot fork and do event processing in
2772the child if the event library was initialised before the fork (which
2773usually happens when the first AnyEvent watcher is created, or the library
2774is loaded).
2099 2775
2100If you have to fork, you must either do so I<before> creating your first 2776If you have to fork, you must either do so I<before> creating your first
2101watcher OR you must not use AnyEvent at all in the child. 2777watcher OR you must not use AnyEvent at all in the child OR you must do
2778something completely out of the scope of AnyEvent.
2779
2780The problem of doing event processing in the parent I<and> the child
2781is much more complicated: even for backends that I<are> fork-aware or
2782fork-safe, their behaviour is not usually what you want: fork clones all
2783watchers, that means all timers, I/O watchers etc. are active in both
2784parent and child, which is almost never what you want. USing C<exec>
2785to start worker children from some kind of manage rprocess is usually
2786preferred, because it is much easier and cleaner, at the expense of having
2787to have another binary.
2102 2788
2103 2789
2104=head1 SECURITY CONSIDERATIONS 2790=head1 SECURITY CONSIDERATIONS
2105 2791
2106AnyEvent can be forced to load any event model via 2792AnyEvent can be forced to load any event model via
2136pronounced). 2822pronounced).
2137 2823
2138 2824
2139=head1 SEE ALSO 2825=head1 SEE ALSO
2140 2826
2141Utility functions: L<AnyEvent::Util>. 2827Tutorial/Introduction: L<AnyEvent::Intro>.
2142 2828
2143Event modules: L<EV>, L<EV::Glib>, L<Glib::EV>, L<Event>, L<Glib::Event>, 2829FAQ: L<AnyEvent::FAQ>.
2144L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2830
2831Utility functions: L<AnyEvent::Util> (misc. grab-bag), L<AnyEvent::Log>
2832(simply logging).
2833
2834Development/Debugging: L<AnyEvent::Strict> (stricter checking),
2835L<AnyEvent::Debug> (interactive shell, watcher tracing).
2836
2837Supported event modules: L<AnyEvent::Loop>, L<EV>, L<EV::Glib>,
2838L<Glib::EV>, L<Event>, L<Glib::Event>, L<Glib>, L<Tk>, L<Event::Lib>,
2839L<Qt>, L<POE>, L<FLTK>.
2145 2840
2146Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 2841Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
2147L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 2842L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
2148L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 2843L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
2844L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>,
2149L<AnyEvent::Impl::POE>. 2845L<AnyEvent::Impl::FLTK>.
2150 2846
2151Non-blocking file handles, sockets, TCP clients and 2847Non-blocking handles, pipes, stream sockets, TCP clients and
2152servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>. 2848servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
2153 2849
2154Asynchronous DNS: L<AnyEvent::DNS>. 2850Asynchronous DNS: L<AnyEvent::DNS>.
2155 2851
2156Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>, 2852Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
2157 2853
2158Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 2854Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
2855L<AnyEvent::HTTP>.
2159 2856
2160 2857
2161=head1 AUTHOR 2858=head1 AUTHOR
2162 2859
2163 Marc Lehmann <schmorp@schmorp.de> 2860 Marc Lehmann <schmorp@schmorp.de>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines