ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.277 by root, Sun Aug 9 13:27:23 2009 UTC vs.
Revision 1.322 by root, Sat May 8 07:51:39 2010 UTC

7 7
8=head1 SYNOPSIS 8=head1 SYNOPSIS
9 9
10 use AnyEvent; 10 use AnyEvent;
11 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
12 # file descriptor readable 15 # file handle or descriptor readable
13 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... }); 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
14 17
15 # one-shot or repeating timers 18 # one-shot or repeating timers
16 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... }); 19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
17 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ... 20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...
363might affect timers and time-outs. 366might affect timers and time-outs.
364 367
365When this is the case, you can call this method, which will update the 368When this is the case, you can call this method, which will update the
366event loop's idea of "current time". 369event loop's idea of "current time".
367 370
371A typical example would be a script in a web server (e.g. C<mod_perl>) -
372when mod_perl executes the script, then the event loop will have the wrong
373idea about the "current time" (being potentially far in the past, when the
374script ran the last time). In that case you should arrange a call to C<<
375AnyEvent->now_update >> each time the web server process wakes up again
376(e.g. at the start of your script, or in a handler).
377
368Note that updating the time I<might> cause some events to be handled. 378Note that updating the time I<might> cause some events to be handled.
369 379
370=back 380=back
371 381
372=head2 SIGNAL WATCHERS 382=head2 SIGNAL WATCHERS
395correctly. 405correctly.
396 406
397Example: exit on SIGINT 407Example: exit on SIGINT
398 408
399 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 409 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
410
411=head3 Restart Behaviour
412
413While restart behaviour is up to the event loop implementation, most will
414not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
415pure perl implementation).
416
417=head3 Safe/Unsafe Signals
418
419Perl signals can be either "safe" (synchronous to opcode handling) or
420"unsafe" (asynchronous) - the former might get delayed indefinitely, the
421latter might corrupt your memory.
422
423AnyEvent signal handlers are, in addition, synchronous to the event loop,
424i.e. they will not interrupt your running perl program but will only be
425called as part of the normal event handling (just like timer, I/O etc.
426callbacks, too).
400 427
401=head3 Signal Races, Delays and Workarounds 428=head3 Signal Races, Delays and Workarounds
402 429
403Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching 430Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
404callbacks to signals in a generic way, which is a pity, as you cannot 431callbacks to signals in a generic way, which is a pity, as you cannot
479 506
480=head2 IDLE WATCHERS 507=head2 IDLE WATCHERS
481 508
482 $w = AnyEvent->idle (cb => <callback>); 509 $w = AnyEvent->idle (cb => <callback>);
483 510
484Sometimes there is a need to do something, but it is not so important 511Repeatedly invoke the callback after the process becomes idle, until
485to do it instantly, but only when there is nothing better to do. This 512either the watcher is destroyed or new events have been detected.
486"nothing better to do" is usually defined to be "no other events need
487attention by the event loop".
488 513
489Idle watchers ideally get invoked when the event loop has nothing 514Idle watchers are useful when there is a need to do something, but it
490better to do, just before it would block the process to wait for new 515is not so important (or wise) to do it instantly. The callback will be
491events. Instead of blocking, the idle watcher is invoked. 516invoked only when there is "nothing better to do", which is usually
517defined as "all outstanding events have been handled and no new events
518have been detected". That means that idle watchers ideally get invoked
519when the event loop has just polled for new events but none have been
520detected. Instead of blocking to wait for more events, the idle watchers
521will be invoked.
492 522
493Most event loops unfortunately do not really support idle watchers (only 523Unfortunately, most event loops do not really support idle watchers (only
494EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent 524EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
495will simply call the callback "from time to time". 525will simply call the callback "from time to time".
496 526
497Example: read lines from STDIN, but only process them when the 527Example: read lines from STDIN, but only process them when the
498program is otherwise idle: 528program is otherwise idle:
579eventually calls C<< -> send >>, and the "consumer side", which waits 609eventually calls C<< -> send >>, and the "consumer side", which waits
580for the send to occur. 610for the send to occur.
581 611
582Example: wait for a timer. 612Example: wait for a timer.
583 613
584 # wait till the result is ready 614 # condition: "wait till the timer is fired"
585 my $result_ready = AnyEvent->condvar; 615 my $timer_fired = AnyEvent->condvar;
586 616
587 # do something such as adding a timer 617 # create the timer - we could wait for, say
588 # or socket watcher the calls $result_ready->send 618 # a handle becomign ready, or even an
589 # when the "result" is ready. 619 # AnyEvent::HTTP request to finish, but
590 # in this case, we simply use a timer: 620 # in this case, we simply use a timer:
591 my $w = AnyEvent->timer ( 621 my $w = AnyEvent->timer (
592 after => 1, 622 after => 1,
593 cb => sub { $result_ready->send }, 623 cb => sub { $timer_fired->send },
594 ); 624 );
595 625
596 # this "blocks" (while handling events) till the callback 626 # this "blocks" (while handling events) till the callback
597 # calls -<send 627 # calls ->send
598 $result_ready->recv; 628 $timer_fired->recv;
599 629
600Example: wait for a timer, but take advantage of the fact that condition 630Example: wait for a timer, but take advantage of the fact that condition
601variables are also callable directly. 631variables are also callable directly.
602 632
603 my $done = AnyEvent->condvar; 633 my $done = AnyEvent->condvar;
666one. For example, a function that pings many hosts in parallel might want 696one. For example, a function that pings many hosts in parallel might want
667to use a condition variable for the whole process. 697to use a condition variable for the whole process.
668 698
669Every call to C<< ->begin >> will increment a counter, and every call to 699Every call to C<< ->begin >> will increment a counter, and every call to
670C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 700C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
671>>, the (last) callback passed to C<begin> will be executed. That callback 701>>, the (last) callback passed to C<begin> will be executed, passing the
672is I<supposed> to call C<< ->send >>, but that is not required. If no 702condvar as first argument. That callback is I<supposed> to call C<< ->send
673callback was set, C<send> will be called without any arguments. 703>>, but that is not required. If no group callback was set, C<send> will
704be called without any arguments.
674 705
675You can think of C<< $cv->send >> giving you an OR condition (one call 706You can think of C<< $cv->send >> giving you an OR condition (one call
676sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND 707sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
677condition (all C<begin> calls must be C<end>'ed before the condvar sends). 708condition (all C<begin> calls must be C<end>'ed before the condvar sends).
678 709
705begung can potentially be zero: 736begung can potentially be zero:
706 737
707 my $cv = AnyEvent->condvar; 738 my $cv = AnyEvent->condvar;
708 739
709 my %result; 740 my %result;
710 $cv->begin (sub { $cv->send (\%result) }); 741 $cv->begin (sub { shift->send (\%result) });
711 742
712 for my $host (@list_of_hosts) { 743 for my $host (@list_of_hosts) {
713 $cv->begin; 744 $cv->begin;
714 ping_host_then_call_callback $host, sub { 745 ping_host_then_call_callback $host, sub {
715 $result{$host} = ...; 746 $result{$host} = ...;
941You should check C<$AnyEvent::MODEL> before adding to this array, though: 972You should check C<$AnyEvent::MODEL> before adding to this array, though:
942if it is defined then the event loop has already been detected, and the 973if it is defined then the event loop has already been detected, and the
943array will be ignored. 974array will be ignored.
944 975
945Best use C<AnyEvent::post_detect { BLOCK }> when your application allows 976Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
946it,as it takes care of these details. 977it, as it takes care of these details.
947 978
948This variable is mainly useful for modules that can do something useful 979This variable is mainly useful for modules that can do something useful
949when AnyEvent is used and thus want to know when it is initialised, but do 980when AnyEvent is used and thus want to know when it is initialised, but do
950not need to even load it by default. This array provides the means to hook 981not need to even load it by default. This array provides the means to hook
951into AnyEvent passively, without loading it. 982into AnyEvent passively, without loading it.
983
984Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
985together, you could put this into Coro (this is the actual code used by
986Coro to accomplish this):
987
988 if (defined $AnyEvent::MODEL) {
989 # AnyEvent already initialised, so load Coro::AnyEvent
990 require Coro::AnyEvent;
991 } else {
992 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
993 # as soon as it is
994 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
995 }
952 996
953=back 997=back
954 998
955=head1 WHAT TO DO IN A MODULE 999=head1 WHAT TO DO IN A MODULE
956 1000
1105 1149
1106package AnyEvent; 1150package AnyEvent;
1107 1151
1108# basically a tuned-down version of common::sense 1152# basically a tuned-down version of common::sense
1109sub common_sense { 1153sub common_sense {
1110 # no warnings 1154 # from common:.sense 1.0
1111 ${^WARNING_BITS} ^= ${^WARNING_BITS}; 1155 ${^WARNING_BITS} = "\xfc\x3f\x33\x00\x0f\xf3\xcf\xc0\xf3\xfc\x33\x00";
1112 # use strict vars subs 1156 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1113 $^H |= 0x00000600; 1157 $^H |= 0x00000600;
1114} 1158}
1115 1159
1116BEGIN { AnyEvent::common_sense } 1160BEGIN { AnyEvent::common_sense }
1117 1161
1118use Carp (); 1162use Carp ();
1119 1163
1120our $VERSION = 4.92; 1164our $VERSION = '5.261';
1121our $MODEL; 1165our $MODEL;
1122 1166
1123our $AUTOLOAD; 1167our $AUTOLOAD;
1124our @ISA; 1168our @ISA;
1125 1169
1126our @REGISTRY; 1170our @REGISTRY;
1127 1171
1128our $WIN32;
1129
1130our $VERBOSE; 1172our $VERBOSE;
1131 1173
1132BEGIN { 1174BEGIN {
1133 eval "sub WIN32(){ " . (($^O =~ /mswin32/i)*1) ." }"; 1175 require "AnyEvent/constants.pl";
1176
1134 eval "sub TAINT(){ " . (${^TAINT}*1) . " }"; 1177 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
1135 1178
1136 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV} 1179 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1137 if ${^TAINT}; 1180 if ${^TAINT};
1138 1181
1139 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1; 1182 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1;
1182our @post_detect; 1225our @post_detect;
1183 1226
1184sub post_detect(&) { 1227sub post_detect(&) {
1185 my ($cb) = @_; 1228 my ($cb) = @_;
1186 1229
1187 if ($MODEL) {
1188 $cb->();
1189
1190 undef
1191 } else {
1192 push @post_detect, $cb; 1230 push @post_detect, $cb;
1193 1231
1194 defined wantarray 1232 defined wantarray
1195 ? bless \$cb, "AnyEvent::Util::postdetect" 1233 ? bless \$cb, "AnyEvent::Util::postdetect"
1196 : () 1234 : ()
1197 }
1198} 1235}
1199 1236
1200sub AnyEvent::Util::postdetect::DESTROY { 1237sub AnyEvent::Util::postdetect::DESTROY {
1201 @post_detect = grep $_ != ${$_[0]}, @post_detect; 1238 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1202} 1239}
1203 1240
1204sub detect() { 1241sub detect() {
1242 # free some memory
1243 *detect = sub () { $MODEL };
1244
1245 local $!; # for good measure
1246 local $SIG{__DIE__};
1247
1248 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
1249 my $model = "AnyEvent::Impl::$1";
1250 if (eval "require $model") {
1251 $MODEL = $model;
1252 warn "AnyEvent: loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.\n" if $VERBOSE >= 2;
1253 } else {
1254 warn "AnyEvent: unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@" if $VERBOSE;
1255 }
1256 }
1257
1258 # check for already loaded models
1205 unless ($MODEL) { 1259 unless ($MODEL) {
1206 local $SIG{__DIE__}; 1260 for (@REGISTRY, @models) {
1207 1261 my ($package, $model) = @$_;
1208 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) { 1262 if (${"$package\::VERSION"} > 0) {
1209 my $model = "AnyEvent::Impl::$1";
1210 if (eval "require $model") { 1263 if (eval "require $model") {
1211 $MODEL = $model; 1264 $MODEL = $model;
1212 warn "AnyEvent: loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.\n" if $VERBOSE >= 2; 1265 warn "AnyEvent: autodetected model '$model', using it.\n" if $VERBOSE >= 2;
1213 } else { 1266 last;
1214 warn "AnyEvent: unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@" if $VERBOSE; 1267 }
1215 } 1268 }
1216 } 1269 }
1217 1270
1218 # check for already loaded models
1219 unless ($MODEL) { 1271 unless ($MODEL) {
1272 # try to autoload a model
1220 for (@REGISTRY, @models) { 1273 for (@REGISTRY, @models) {
1221 my ($package, $model) = @$_; 1274 my ($package, $model, $autoload) = @$_;
1275 if (
1276 $autoload
1277 and eval "require $package"
1222 if (${"$package\::VERSION"} > 0) { 1278 and ${"$package\::VERSION"} > 0
1223 if (eval "require $model") { 1279 and eval "require $model"
1280 ) {
1224 $MODEL = $model; 1281 $MODEL = $model;
1225 warn "AnyEvent: autodetected model '$model', using it.\n" if $VERBOSE >= 2; 1282 warn "AnyEvent: autoloaded model '$model', using it.\n" if $VERBOSE >= 2;
1226 last; 1283 last;
1227 }
1228 } 1284 }
1229 } 1285 }
1230 1286
1231 unless ($MODEL) {
1232 # try to autoload a model
1233 for (@REGISTRY, @models) {
1234 my ($package, $model, $autoload) = @$_;
1235 if (
1236 $autoload
1237 and eval "require $package"
1238 and ${"$package\::VERSION"} > 0
1239 and eval "require $model"
1240 ) {
1241 $MODEL = $model;
1242 warn "AnyEvent: autoloaded model '$model', using it.\n" if $VERBOSE >= 2;
1243 last;
1244 }
1245 }
1246
1247 $MODEL 1287 $MODEL
1248 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib.\n"; 1288 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib.\n";
1249 }
1250 } 1289 }
1251
1252 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1253
1254 unshift @ISA, $MODEL;
1255
1256 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
1257
1258 (shift @post_detect)->() while @post_detect;
1259 } 1290 }
1291
1292 @models = (); # free probe data
1293
1294 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1295 unshift @ISA, $MODEL;
1296
1297 # now nuke some methods that are overriden by the backend.
1298 # SUPER is not allowed.
1299 for (qw(time signal child idle)) {
1300 undef &{"AnyEvent::Base::$_"}
1301 if defined &{"$MODEL\::$_"};
1302 }
1303
1304 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
1305
1306 (shift @post_detect)->() while @post_detect;
1307
1308 *post_detect = sub(&) {
1309 shift->();
1310
1311 undef
1312 };
1260 1313
1261 $MODEL 1314 $MODEL
1262} 1315}
1263 1316
1264sub AUTOLOAD { 1317sub AUTOLOAD {
1265 (my $func = $AUTOLOAD) =~ s/.*://; 1318 (my $func = $AUTOLOAD) =~ s/.*://;
1266 1319
1267 $method{$func} 1320 $method{$func}
1268 or Carp::croak "$func: not a valid method for AnyEvent objects"; 1321 or Carp::croak "$func: not a valid AnyEvent class method";
1269 1322
1270 detect unless $MODEL; 1323 detect;
1271 1324
1272 my $class = shift; 1325 my $class = shift;
1273 $class->$func (@_); 1326 $class->$func (@_);
1274} 1327}
1275 1328
1288 # we assume CLOEXEC is already set by perl in all important cases 1341 # we assume CLOEXEC is already set by perl in all important cases
1289 1342
1290 ($fh2, $rw) 1343 ($fh2, $rw)
1291} 1344}
1292 1345
1293############################################################################# 1346=head1 SIMPLIFIED AE API
1294# "new" API, currently only emulation of it 1347
1295############################################################################# 1348Starting with version 5.0, AnyEvent officially supports a second, much
1349simpler, API that is designed to reduce the calling, typing and memory
1350overhead by using function call syntax and a fixed number of parameters.
1351
1352See the L<AE> manpage for details.
1353
1354=cut
1296 1355
1297package AE; 1356package AE;
1298 1357
1299our $VERSION = $AnyEvent::VERSION; 1358our $VERSION = $AnyEvent::VERSION;
1359
1360# fall back to the main API by default - backends and AnyEvent::Base
1361# implementations can overwrite these.
1300 1362
1301sub io($$$) { 1363sub io($$$) {
1302 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2]) 1364 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1303} 1365}
1304 1366
1336 1398
1337package AnyEvent::Base; 1399package AnyEvent::Base;
1338 1400
1339# default implementations for many methods 1401# default implementations for many methods
1340 1402
1341sub _time { 1403sub time {
1404 eval q{ # poor man's autoloading {}
1342 # probe for availability of Time::HiRes 1405 # probe for availability of Time::HiRes
1343 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") { 1406 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1344 warn "AnyEvent: using Time::HiRes for sub-second timing accuracy.\n" if $VERBOSE >= 8; 1407 warn "AnyEvent: using Time::HiRes for sub-second timing accuracy.\n" if $VERBOSE >= 8;
1345 *_time = \&Time::HiRes::time; 1408 *AE::time = \&Time::HiRes::time;
1346 # if (eval "use POSIX (); (POSIX::times())... 1409 # if (eval "use POSIX (); (POSIX::times())...
1347 } else { 1410 } else {
1348 warn "AnyEvent: using built-in time(), WARNING, no sub-second resolution!\n" if $VERBOSE; 1411 warn "AnyEvent: using built-in time(), WARNING, no sub-second resolution!\n" if $VERBOSE;
1349 *_time = sub { time }; # epic fail 1412 *AE::time = sub (){ time }; # epic fail
1413 }
1414
1415 *time = sub { AE::time }; # different prototypes
1350 } 1416 };
1417 die if $@;
1351 1418
1352 &_time 1419 &time
1353} 1420}
1354 1421
1355sub time { _time } 1422*now = \&time;
1356sub now { _time } 1423
1357sub now_update { } 1424sub now_update { }
1358 1425
1359# default implementation for ->condvar 1426# default implementation for ->condvar
1360 1427
1361sub condvar { 1428sub condvar {
1429 eval q{ # poor man's autoloading {}
1430 *condvar = sub {
1362 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar" 1431 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1432 };
1433
1434 *AE::cv = sub (;&) {
1435 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
1436 };
1437 };
1438 die if $@;
1439
1440 &condvar
1363} 1441}
1364 1442
1365# default implementation for ->signal 1443# default implementation for ->signal
1366 1444
1367our $HAVE_ASYNC_INTERRUPT; 1445our $HAVE_ASYNC_INTERRUPT;
1368 1446
1369sub _have_async_interrupt() { 1447sub _have_async_interrupt() {
1370 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT} 1448 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1371 && eval "use Async::Interrupt 1.0 (); 1") 1449 && eval "use Async::Interrupt 1.02 (); 1")
1372 unless defined $HAVE_ASYNC_INTERRUPT; 1450 unless defined $HAVE_ASYNC_INTERRUPT;
1373 1451
1374 $HAVE_ASYNC_INTERRUPT 1452 $HAVE_ASYNC_INTERRUPT
1375} 1453}
1376 1454
1377our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO); 1455our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1378our (%SIG_ASY, %SIG_ASY_W); 1456our (%SIG_ASY, %SIG_ASY_W);
1379our ($SIG_COUNT, $SIG_TW); 1457our ($SIG_COUNT, $SIG_TW);
1380 1458
1381sub _signal_exec {
1382 $HAVE_ASYNC_INTERRUPT
1383 ? $SIGPIPE_R->drain
1384 : sysread $SIGPIPE_R, my $dummy, 9;
1385
1386 while (%SIG_EV) {
1387 for (keys %SIG_EV) {
1388 delete $SIG_EV{$_};
1389 $_->() for values %{ $SIG_CB{$_} || {} };
1390 }
1391 }
1392}
1393
1394# install a dummy wakeup watcher to reduce signal catching latency 1459# install a dummy wakeup watcher to reduce signal catching latency
1460# used by Impls
1395sub _sig_add() { 1461sub _sig_add() {
1396 unless ($SIG_COUNT++) { 1462 unless ($SIG_COUNT++) {
1397 # try to align timer on a full-second boundary, if possible 1463 # try to align timer on a full-second boundary, if possible
1398 my $NOW = AE::now; 1464 my $NOW = AE::now;
1399 1465
1409 undef $SIG_TW 1475 undef $SIG_TW
1410 unless --$SIG_COUNT; 1476 unless --$SIG_COUNT;
1411} 1477}
1412 1478
1413our $_sig_name_init; $_sig_name_init = sub { 1479our $_sig_name_init; $_sig_name_init = sub {
1414 eval q{ # poor man's autoloading 1480 eval q{ # poor man's autoloading {}
1415 undef $_sig_name_init; 1481 undef $_sig_name_init;
1416 1482
1417 if (_have_async_interrupt) { 1483 if (_have_async_interrupt) {
1418 *sig2num = \&Async::Interrupt::sig2num; 1484 *sig2num = \&Async::Interrupt::sig2num;
1419 *sig2name = \&Async::Interrupt::sig2name; 1485 *sig2name = \&Async::Interrupt::sig2name;
1451 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec; 1517 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1452 1518
1453 } else { 1519 } else {
1454 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8; 1520 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8;
1455 1521
1456 require Fcntl;
1457
1458 if (AnyEvent::WIN32) { 1522 if (AnyEvent::WIN32) {
1459 require AnyEvent::Util; 1523 require AnyEvent::Util;
1460 1524
1461 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe (); 1525 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1462 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R; 1526 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1463 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case 1527 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1464 } else { 1528 } else {
1465 pipe $SIGPIPE_R, $SIGPIPE_W; 1529 pipe $SIGPIPE_R, $SIGPIPE_W;
1466 fcntl $SIGPIPE_R, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_R; 1530 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1467 fcntl $SIGPIPE_W, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_W; # just in case 1531 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1468 1532
1469 # not strictly required, as $^F is normally 2, but let's make sure... 1533 # not strictly required, as $^F is normally 2, but let's make sure...
1470 fcntl $SIGPIPE_R, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC; 1534 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1471 fcntl $SIGPIPE_W, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC; 1535 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1472 } 1536 }
1473 1537
1474 $SIGPIPE_R 1538 $SIGPIPE_R
1475 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n"; 1539 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1476 1540
1477 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec; 1541 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1478 } 1542 }
1479 1543
1480 *signal = sub { 1544 *signal = $HAVE_ASYNC_INTERRUPT
1545 ? sub {
1481 my (undef, %arg) = @_; 1546 my (undef, %arg) = @_;
1482 1547
1483 my $signal = uc $arg{signal}
1484 or Carp::croak "required option 'signal' is missing";
1485
1486 if ($HAVE_ASYNC_INTERRUPT) {
1487 # async::interrupt 1548 # async::interrupt
1488
1489 $signal = sig2num $signal; 1549 my $signal = sig2num $arg{signal};
1490 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1550 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1491 1551
1492 $SIG_ASY{$signal} ||= new Async::Interrupt 1552 $SIG_ASY{$signal} ||= new Async::Interrupt
1493 cb => sub { undef $SIG_EV{$signal} }, 1553 cb => sub { undef $SIG_EV{$signal} },
1494 signal => $signal, 1554 signal => $signal,
1495 pipe => [$SIGPIPE_R->filenos], 1555 pipe => [$SIGPIPE_R->filenos],
1496 pipe_autodrain => 0, 1556 pipe_autodrain => 0,
1497 ; 1557 ;
1498 1558
1499 } else { 1559 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1560 }
1561 : sub {
1562 my (undef, %arg) = @_;
1563
1500 # pure perl 1564 # pure perl
1501
1502 # AE::Util has been loaded in signal
1503 $signal = sig2name $signal; 1565 my $signal = sig2name $arg{signal};
1504 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1566 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1505 1567
1506 $SIG{$signal} ||= sub { 1568 $SIG{$signal} ||= sub {
1507 local $!; 1569 local $!;
1508 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV; 1570 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1509 undef $SIG_EV{$signal}; 1571 undef $SIG_EV{$signal};
1510 }; 1572 };
1511 1573
1512 # can't do signal processing without introducing races in pure perl, 1574 # can't do signal processing without introducing races in pure perl,
1513 # so limit the signal latency. 1575 # so limit the signal latency.
1514 _sig_add; 1576 _sig_add;
1515 }
1516 1577
1517 bless [$signal, $arg{cb}], "AnyEvent::Base::signal" 1578 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1579 }
1518 }; 1580 ;
1519 1581
1520 *AnyEvent::Base::signal::DESTROY = sub { 1582 *AnyEvent::Base::signal::DESTROY = sub {
1521 my ($signal, $cb) = @{$_[0]}; 1583 my ($signal, $cb) = @{$_[0]};
1522 1584
1523 _sig_del; 1585 _sig_del;
1530 # print weird messages, or just unconditionally exit 1592 # print weird messages, or just unconditionally exit
1531 # instead of getting the default action. 1593 # instead of getting the default action.
1532 undef $SIG{$signal} 1594 undef $SIG{$signal}
1533 unless keys %{ $SIG_CB{$signal} }; 1595 unless keys %{ $SIG_CB{$signal} };
1534 }; 1596 };
1597
1598 *_signal_exec = sub {
1599 $HAVE_ASYNC_INTERRUPT
1600 ? $SIGPIPE_R->drain
1601 : sysread $SIGPIPE_R, (my $dummy), 9;
1602
1603 while (%SIG_EV) {
1604 for (keys %SIG_EV) {
1605 delete $SIG_EV{$_};
1606 $_->() for values %{ $SIG_CB{$_} || {} };
1607 }
1608 }
1609 };
1535 }; 1610 };
1536 die if $@; 1611 die if $@;
1612
1537 &signal 1613 &signal
1538} 1614}
1539 1615
1540# default implementation for ->child 1616# default implementation for ->child
1541 1617
1542our %PID_CB; 1618our %PID_CB;
1543our $CHLD_W; 1619our $CHLD_W;
1544our $CHLD_DELAY_W; 1620our $CHLD_DELAY_W;
1545our $WNOHANG; 1621our $WNOHANG;
1546 1622
1623# used by many Impl's
1547sub _emit_childstatus($$) { 1624sub _emit_childstatus($$) {
1548 my (undef, $rpid, $rstatus) = @_; 1625 my (undef, $rpid, $rstatus) = @_;
1549 1626
1550 $_->($rpid, $rstatus) 1627 $_->($rpid, $rstatus)
1551 for values %{ $PID_CB{$rpid} || {} }, 1628 for values %{ $PID_CB{$rpid} || {} },
1552 values %{ $PID_CB{0} || {} }; 1629 values %{ $PID_CB{0} || {} };
1553} 1630}
1554 1631
1555sub _sigchld {
1556 my $pid;
1557
1558 AnyEvent->_emit_childstatus ($pid, $?)
1559 while ($pid = waitpid -1, $WNOHANG) > 0;
1560}
1561
1562sub child { 1632sub child {
1633 eval q{ # poor man's autoloading {}
1634 *_sigchld = sub {
1635 my $pid;
1636
1637 AnyEvent->_emit_childstatus ($pid, $?)
1638 while ($pid = waitpid -1, $WNOHANG) > 0;
1639 };
1640
1641 *child = sub {
1563 my (undef, %arg) = @_; 1642 my (undef, %arg) = @_;
1564 1643
1565 defined (my $pid = $arg{pid} + 0) 1644 defined (my $pid = $arg{pid} + 0)
1566 or Carp::croak "required option 'pid' is missing"; 1645 or Carp::croak "required option 'pid' is missing";
1567 1646
1568 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1647 $PID_CB{$pid}{$arg{cb}} = $arg{cb};
1569 1648
1570 # WNOHANG is almost cetrainly 1 everywhere 1649 # WNOHANG is almost cetrainly 1 everywhere
1571 $WNOHANG ||= $^O =~ /^(?:openbsd|netbsd|linux|freebsd|cygwin|MSWin32)$/ 1650 $WNOHANG ||= $^O =~ /^(?:openbsd|netbsd|linux|freebsd|cygwin|MSWin32)$/
1572 ? 1 1651 ? 1
1573 : eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1; 1652 : eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1574 1653
1575 unless ($CHLD_W) { 1654 unless ($CHLD_W) {
1576 $CHLD_W = AE::signal CHLD => \&_sigchld; 1655 $CHLD_W = AE::signal CHLD => \&_sigchld;
1577 # child could be a zombie already, so make at least one round 1656 # child could be a zombie already, so make at least one round
1578 &_sigchld; 1657 &_sigchld;
1579 } 1658 }
1580 1659
1581 bless [$pid, $arg{cb}], "AnyEvent::Base::child" 1660 bless [$pid, $arg{cb}], "AnyEvent::Base::child"
1582} 1661 };
1583 1662
1584sub AnyEvent::Base::child::DESTROY { 1663 *AnyEvent::Base::child::DESTROY = sub {
1585 my ($pid, $cb) = @{$_[0]}; 1664 my ($pid, $cb) = @{$_[0]};
1586 1665
1587 delete $PID_CB{$pid}{$cb}; 1666 delete $PID_CB{$pid}{$cb};
1588 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1667 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1589 1668
1590 undef $CHLD_W unless keys %PID_CB; 1669 undef $CHLD_W unless keys %PID_CB;
1670 };
1671 };
1672 die if $@;
1673
1674 &child
1591} 1675}
1592 1676
1593# idle emulation is done by simply using a timer, regardless 1677# idle emulation is done by simply using a timer, regardless
1594# of whether the process is idle or not, and not letting 1678# of whether the process is idle or not, and not letting
1595# the callback use more than 50% of the time. 1679# the callback use more than 50% of the time.
1596sub idle { 1680sub idle {
1681 eval q{ # poor man's autoloading {}
1682 *idle = sub {
1597 my (undef, %arg) = @_; 1683 my (undef, %arg) = @_;
1598 1684
1599 my ($cb, $w, $rcb) = $arg{cb}; 1685 my ($cb, $w, $rcb) = $arg{cb};
1600 1686
1601 $rcb = sub { 1687 $rcb = sub {
1602 if ($cb) { 1688 if ($cb) {
1603 $w = _time; 1689 $w = _time;
1604 &$cb; 1690 &$cb;
1605 $w = _time - $w; 1691 $w = _time - $w;
1606 1692
1607 # never use more then 50% of the time for the idle watcher, 1693 # never use more then 50% of the time for the idle watcher,
1608 # within some limits 1694 # within some limits
1609 $w = 0.0001 if $w < 0.0001; 1695 $w = 0.0001 if $w < 0.0001;
1610 $w = 5 if $w > 5; 1696 $w = 5 if $w > 5;
1611 1697
1612 $w = AE::timer $w, 0, $rcb; 1698 $w = AE::timer $w, 0, $rcb;
1613 } else { 1699 } else {
1614 # clean up... 1700 # clean up...
1615 undef $w; 1701 undef $w;
1616 undef $rcb; 1702 undef $rcb;
1703 }
1704 };
1705
1706 $w = AE::timer 0.05, 0, $rcb;
1707
1708 bless \\$cb, "AnyEvent::Base::idle"
1617 } 1709 };
1710
1711 *AnyEvent::Base::idle::DESTROY = sub {
1712 undef $${$_[0]};
1713 };
1618 }; 1714 };
1715 die if $@;
1619 1716
1620 $w = AE::timer 0.05, 0, $rcb; 1717 &idle
1621
1622 bless \\$cb, "AnyEvent::Base::idle"
1623}
1624
1625sub AnyEvent::Base::idle::DESTROY {
1626 undef $${$_[0]};
1627} 1718}
1628 1719
1629package AnyEvent::CondVar; 1720package AnyEvent::CondVar;
1630 1721
1631our @ISA = AnyEvent::CondVar::Base::; 1722our @ISA = AnyEvent::CondVar::Base::;
1905 warn "read: $input\n"; # output what has been read 1996 warn "read: $input\n"; # output what has been read
1906 $cv->send if $input =~ /^q/i; # quit program if /^q/i 1997 $cv->send if $input =~ /^q/i; # quit program if /^q/i
1907 }, 1998 },
1908 ); 1999 );
1909 2000
1910 my $time_watcher; # can only be used once
1911
1912 sub new_timer {
1913 $timer = AnyEvent->timer (after => 1, cb => sub { 2001 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
1914 warn "timeout\n"; # print 'timeout' about every second 2002 warn "timeout\n"; # print 'timeout' at most every second
1915 &new_timer; # and restart the time
1916 }); 2003 });
1917 }
1918
1919 new_timer; # create first timer
1920 2004
1921 $cv->recv; # wait until user enters /^q/i 2005 $cv->recv; # wait until user enters /^q/i
1922 2006
1923=head1 REAL-WORLD EXAMPLE 2007=head1 REAL-WORLD EXAMPLE
1924 2008
1997 2081
1998The actual code goes further and collects all errors (C<die>s, exceptions) 2082The actual code goes further and collects all errors (C<die>s, exceptions)
1999that occurred during request processing. The C<result> method detects 2083that occurred during request processing. The C<result> method detects
2000whether an exception as thrown (it is stored inside the $txn object) 2084whether an exception as thrown (it is stored inside the $txn object)
2001and just throws the exception, which means connection errors and other 2085and just throws the exception, which means connection errors and other
2002problems get reported tot he code that tries to use the result, not in a 2086problems get reported to the code that tries to use the result, not in a
2003random callback. 2087random callback.
2004 2088
2005All of this enables the following usage styles: 2089All of this enables the following usage styles:
2006 2090
20071. Blocking: 20911. Blocking:
2055through AnyEvent. The benchmark creates a lot of timers (with a zero 2139through AnyEvent. The benchmark creates a lot of timers (with a zero
2056timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2140timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
2057which it is), lets them fire exactly once and destroys them again. 2141which it is), lets them fire exactly once and destroys them again.
2058 2142
2059Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2143Source code for this benchmark is found as F<eg/bench> in the AnyEvent
2060distribution. 2144distribution. It uses the L<AE> interface, which makes a real difference
2145for the EV and Perl backends only.
2061 2146
2062=head3 Explanation of the columns 2147=head3 Explanation of the columns
2063 2148
2064I<watcher> is the number of event watchers created/destroyed. Since 2149I<watcher> is the number of event watchers created/destroyed. Since
2065different event models feature vastly different performances, each event 2150different event models feature vastly different performances, each event
2086watcher. 2171watcher.
2087 2172
2088=head3 Results 2173=head3 Results
2089 2174
2090 name watchers bytes create invoke destroy comment 2175 name watchers bytes create invoke destroy comment
2091 EV/EV 400000 224 0.47 0.35 0.27 EV native interface 2176 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
2092 EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers 2177 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
2093 CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal 2178 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
2094 Perl/Any 100000 452 4.13 0.73 0.95 pure perl implementation 2179 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
2095 Event/Event 16000 517 32.20 31.80 0.81 Event native interface 2180 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
2096 Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers 2181 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2097 IOAsync/Any 16000 989 38.10 32.77 11.13 via IO::Async::Loop::IO_Poll 2182 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2098 IOAsync/Any 16000 990 37.59 29.50 10.61 via IO::Async::Loop::Epoll 2183 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
2099 Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour 2184 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
2100 Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers 2185 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
2101 POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event 2186 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
2102 POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select 2187 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
2103 2188
2104=head3 Discussion 2189=head3 Discussion
2105 2190
2106The benchmark does I<not> measure scalability of the event loop very 2191The benchmark does I<not> measure scalability of the event loop very
2107well. For example, a select-based event loop (such as the pure perl one) 2192well. For example, a select-based event loop (such as the pure perl one)
2119benchmark machine, handling an event takes roughly 1600 CPU cycles with 2204benchmark machine, handling an event takes roughly 1600 CPU cycles with
2120EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2205EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
2121cycles with POE. 2206cycles with POE.
2122 2207
2123C<EV> is the sole leader regarding speed and memory use, which are both 2208C<EV> is the sole leader regarding speed and memory use, which are both
2124maximal/minimal, respectively. Even when going through AnyEvent, it uses 2209maximal/minimal, respectively. When using the L<AE> API there is zero
2210overhead (when going through the AnyEvent API create is about 5-6 times
2211slower, with other times being equal, so still uses far less memory than
2125far less memory than any other event loop and is still faster than Event 2212any other event loop and is still faster than Event natively).
2126natively.
2127 2213
2128The pure perl implementation is hit in a few sweet spots (both the 2214The pure perl implementation is hit in a few sweet spots (both the
2129constant timeout and the use of a single fd hit optimisations in the perl 2215constant timeout and the use of a single fd hit optimisations in the perl
2130interpreter and the backend itself). Nevertheless this shows that it 2216interpreter and the backend itself). Nevertheless this shows that it
2131adds very little overhead in itself. Like any select-based backend its 2217adds very little overhead in itself. Like any select-based backend its
2205In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2291In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
2206(1%) are active. This mirrors the activity of large servers with many 2292(1%) are active. This mirrors the activity of large servers with many
2207connections, most of which are idle at any one point in time. 2293connections, most of which are idle at any one point in time.
2208 2294
2209Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2295Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
2210distribution. 2296distribution. It uses the L<AE> interface, which makes a real difference
2297for the EV and Perl backends only.
2211 2298
2212=head3 Explanation of the columns 2299=head3 Explanation of the columns
2213 2300
2214I<sockets> is the number of sockets, and twice the number of "servers" (as 2301I<sockets> is the number of sockets, and twice the number of "servers" (as
2215each server has a read and write socket end). 2302each server has a read and write socket end).
2223a new one that moves the timeout into the future. 2310a new one that moves the timeout into the future.
2224 2311
2225=head3 Results 2312=head3 Results
2226 2313
2227 name sockets create request 2314 name sockets create request
2228 EV 20000 69.01 11.16 2315 EV 20000 62.66 7.99
2229 Perl 20000 73.32 35.87 2316 Perl 20000 68.32 32.64
2230 IOAsync 20000 157.00 98.14 epoll 2317 IOAsync 20000 174.06 101.15 epoll
2231 IOAsync 20000 159.31 616.06 poll 2318 IOAsync 20000 174.67 610.84 poll
2232 Event 20000 212.62 257.32 2319 Event 20000 202.69 242.91
2233 Glib 20000 651.16 1896.30 2320 Glib 20000 557.01 1689.52
2234 POE 20000 349.67 12317.24 uses POE::Loop::Event 2321 POE 20000 341.54 12086.32 uses POE::Loop::Event
2235 2322
2236=head3 Discussion 2323=head3 Discussion
2237 2324
2238This benchmark I<does> measure scalability and overall performance of the 2325This benchmark I<does> measure scalability and overall performance of the
2239particular event loop. 2326particular event loop.
2365As you can see, the AnyEvent + EV combination even beats the 2452As you can see, the AnyEvent + EV combination even beats the
2366hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl 2453hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2367backend easily beats IO::Lambda and POE. 2454backend easily beats IO::Lambda and POE.
2368 2455
2369And even the 100% non-blocking version written using the high-level (and 2456And even the 100% non-blocking version written using the high-level (and
2370slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda by a 2457slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2371large margin, even though it does all of DNS, tcp-connect and socket I/O 2458higher level ("unoptimised") abstractions by a large margin, even though
2372in a non-blocking way. 2459it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2373 2460
2374The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and 2461The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2375F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are 2462F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2376part of the IO::lambda distribution and were used without any changes. 2463part of the IO::Lambda distribution and were used without any changes.
2377 2464
2378 2465
2379=head1 SIGNALS 2466=head1 SIGNALS
2380 2467
2381AnyEvent currently installs handlers for these signals: 2468AnyEvent currently installs handlers for these signals:
2423it's built-in modules) are required to use it. 2510it's built-in modules) are required to use it.
2424 2511
2425That does not mean that AnyEvent won't take advantage of some additional 2512That does not mean that AnyEvent won't take advantage of some additional
2426modules if they are installed. 2513modules if they are installed.
2427 2514
2428This section epxlains which additional modules will be used, and how they 2515This section explains which additional modules will be used, and how they
2429affect AnyEvent's operetion. 2516affect AnyEvent's operation.
2430 2517
2431=over 4 2518=over 4
2432 2519
2433=item L<Async::Interrupt> 2520=item L<Async::Interrupt>
2434 2521
2439catch the signals) with some delay (default is 10 seconds, look for 2526catch the signals) with some delay (default is 10 seconds, look for
2440C<$AnyEvent::MAX_SIGNAL_LATENCY>). 2527C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2441 2528
2442If this module is available, then it will be used to implement signal 2529If this module is available, then it will be used to implement signal
2443catching, which means that signals will not be delayed, and the event loop 2530catching, which means that signals will not be delayed, and the event loop
2444will not be interrupted regularly, which is more efficient (And good for 2531will not be interrupted regularly, which is more efficient (and good for
2445battery life on laptops). 2532battery life on laptops).
2446 2533
2447This affects not just the pure-perl event loop, but also other event loops 2534This affects not just the pure-perl event loop, but also other event loops
2448that have no signal handling on their own (e.g. Glib, Tk, Qt). 2535that have no signal handling on their own (e.g. Glib, Tk, Qt).
2449 2536
2461automatic timer adjustments even when no monotonic clock is available, 2548automatic timer adjustments even when no monotonic clock is available,
2462can take avdantage of advanced kernel interfaces such as C<epoll> and 2549can take avdantage of advanced kernel interfaces such as C<epoll> and
2463C<kqueue>, and is the fastest backend I<by far>. You can even embed 2550C<kqueue>, and is the fastest backend I<by far>. You can even embed
2464L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>). 2551L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2465 2552
2553If you only use backends that rely on another event loop (e.g. C<Tk>),
2554then this module will do nothing for you.
2555
2466=item L<Guard> 2556=item L<Guard>
2467 2557
2468The guard module, when used, will be used to implement 2558The guard module, when used, will be used to implement
2469C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a 2559C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2470lot less memory), but otherwise doesn't affect guard operation much. It is 2560lot less memory), but otherwise doesn't affect guard operation much. It is
2471purely used for performance. 2561purely used for performance.
2472 2562
2473=item L<JSON> and L<JSON::XS> 2563=item L<JSON> and L<JSON::XS>
2474 2564
2475This module is required when you want to read or write JSON data via 2565One of these modules is required when you want to read or write JSON data
2476L<AnyEvent::Handle>. It is also written in pure-perl, but can take 2566via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2477advantage of the ultra-high-speed L<JSON::XS> module when it is installed. 2567advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2478
2479In fact, L<AnyEvent::Handle> will use L<JSON::XS> by default if it is
2480installed.
2481 2568
2482=item L<Net::SSLeay> 2569=item L<Net::SSLeay>
2483 2570
2484Implementing TLS/SSL in Perl is certainly interesting, but not very 2571Implementing TLS/SSL in Perl is certainly interesting, but not very
2485worthwhile: If this module is installed, then L<AnyEvent::Handle> (with 2572worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2496 2583
2497 2584
2498=head1 FORK 2585=head1 FORK
2499 2586
2500Most event libraries are not fork-safe. The ones who are usually are 2587Most event libraries are not fork-safe. The ones who are usually are
2501because they rely on inefficient but fork-safe C<select> or C<poll> 2588because they rely on inefficient but fork-safe C<select> or C<poll> calls
2502calls. Only L<EV> is fully fork-aware. 2589- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2590are usually badly thought-out hacks that are incompatible with fork in
2591one way or another. Only L<EV> is fully fork-aware and ensures that you
2592continue event-processing in both parent and child (or both, if you know
2593what you are doing).
2594
2595This means that, in general, you cannot fork and do event processing in
2596the child if the event library was initialised before the fork (which
2597usually happens when the first AnyEvent watcher is created, or the library
2598is loaded).
2503 2599
2504If you have to fork, you must either do so I<before> creating your first 2600If you have to fork, you must either do so I<before> creating your first
2505watcher OR you must not use AnyEvent at all in the child OR you must do 2601watcher OR you must not use AnyEvent at all in the child OR you must do
2506something completely out of the scope of AnyEvent. 2602something completely out of the scope of AnyEvent.
2603
2604The problem of doing event processing in the parent I<and> the child
2605is much more complicated: even for backends that I<are> fork-aware or
2606fork-safe, their behaviour is not usually what you want: fork clones all
2607watchers, that means all timers, I/O watchers etc. are active in both
2608parent and child, which is almost never what you want. USing C<exec>
2609to start worker children from some kind of manage rprocess is usually
2610preferred, because it is much easier and cleaner, at the expense of having
2611to have another binary.
2507 2612
2508 2613
2509=head1 SECURITY CONSIDERATIONS 2614=head1 SECURITY CONSIDERATIONS
2510 2615
2511AnyEvent can be forced to load any event model via 2616AnyEvent can be forced to load any event model via

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines