ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.107 by root, Tue May 6 12:15:50 2008 UTC vs.
Revision 1.352 by root, Thu Aug 4 09:14:01 2011 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Coro::EV, Coro::Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt
6and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
15 # file handle or descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
17
18 # one-shot or repeating timers
19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
21
22 print AnyEvent->now; # prints current event loop time
23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
24
25 # POSIX signal
26 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
27
28 # child process exit
29 my $w = AnyEvent->child (pid => $pid, cb => sub {
30 my ($pid, $status) = @_;
12 ... 31 ...
13 }); 32 });
14 33
15 my $w = AnyEvent->timer (after => $seconds, cb => sub { 34 # called when event loop idle (if applicable)
16 ... 35 my $w = AnyEvent->idle (cb => sub { ... });
17 });
18 36
19 my $w = AnyEvent->condvar; # stores whether a condition was flagged 37 my $w = AnyEvent->condvar; # stores whether a condition was flagged
38 $w->send; # wake up current and all future recv's
20 $w->wait; # enters "main loop" till $condvar gets ->send 39 $w->recv; # enters "main loop" till $condvar gets ->send
21 $w->send; # wake up current and all future wait's 40 # use a condvar in callback mode:
41 $w->cb (sub { $_[0]->recv });
42
43=head1 INTRODUCTION/TUTORIAL
44
45This manpage is mainly a reference manual. If you are interested
46in a tutorial or some gentle introduction, have a look at the
47L<AnyEvent::Intro> manpage.
48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
22 58
23=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
24 60
25Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
26nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
27 63
28Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of 64Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of
29policy> and AnyEvent is I<small and efficient>. 65policy> and AnyEvent is I<small and efficient>.
30 66
31First and foremost, I<AnyEvent is not an event model> itself, it only 67First and foremost, I<AnyEvent is not an event model> itself, it only
32interfaces to whatever event model the main program happens to use in a 68interfaces to whatever event model the main program happens to use, in a
33pragmatic way. For event models and certain classes of immortals alike, 69pragmatic way. For event models and certain classes of immortals alike,
34the statement "there can only be one" is a bitter reality: In general, 70the statement "there can only be one" is a bitter reality: In general,
35only one event loop can be active at the same time in a process. AnyEvent 71only one event loop can be active at the same time in a process. AnyEvent
36helps hiding the differences between those event loops. 72cannot change this, but it can hide the differences between those event
73loops.
37 74
38The goal of AnyEvent is to offer module authors the ability to do event 75The goal of AnyEvent is to offer module authors the ability to do event
39programming (waiting for I/O or timer events) without subscribing to a 76programming (waiting for I/O or timer events) without subscribing to a
40religion, a way of living, and most importantly: without forcing your 77religion, a way of living, and most importantly: without forcing your
41module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
42model you use. 79model you use.
43 80
44For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
45actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
46like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
47cannot use anything else, as it is simply incompatible to everything that 84cannot use anything else, as they are simply incompatible to everything
48isn't itself. What's worse, all the potential users of your module are 85that isn't them. What's worse, all the potential users of your
49I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
50 87
51AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
52fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
53with the rest: POE + IO::Async? no go. Tk + Event? no go. Again: if 90with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module
54your module uses one of those, every user of your module has to use it, 91uses one of those, every user of your module has to use it, too. But if
55too. But if your module uses AnyEvent, it works transparently with all 92your module uses AnyEvent, it works transparently with all event models it
56event models it supports (including stuff like POE and IO::Async, as long 93supports (including stuff like IO::Async, as long as those use one of the
57as those use one of the supported event loops. It is trivial to add new 94supported event loops. It is easy to add new event loops to AnyEvent, too,
58event loops to AnyEvent, too, so it is future-proof). 95so it is future-proof).
59 96
60In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
61model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
62modules, you get an enourmous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
63follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
64offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
65technically possible. 102technically possible.
66 103
104Of course, AnyEvent comes with a big (and fully optional!) toolbox
105of useful functionality, such as an asynchronous DNS resolver, 100%
106non-blocking connects (even with TLS/SSL, IPv6 and on broken platforms
107such as Windows) and lots of real-world knowledge and workarounds for
108platform bugs and differences.
109
67Of course, if you want lots of policy (this can arguably be somewhat 110Now, if you I<do want> lots of policy (this can arguably be somewhat
68useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
69model, you should I<not> use this module. 112model, you should I<not> use this module.
70 113
71=head1 DESCRIPTION 114=head1 DESCRIPTION
72 115
73L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
74allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
75users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
76peacefully at any one time). 119than one event loop cannot coexist peacefully).
77 120
78The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
79module. 122module.
80 123
81During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
82to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
83following modules is already loaded: L<Coro::EV>, L<Coro::Event>, L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Loop>,
84L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
85L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
86to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
87adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Loop> should always work, so
88be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
89found, AnyEvent will fall back to a pure-perl event loop, which is not
90very efficient, but should work everywhere.
91 132
92Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
93an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
94that model the default. For example: 135that model the default. For example:
95 136
97 use AnyEvent; 138 use AnyEvent;
98 139
99 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
100 141
101The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
102starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
103use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
104 146
105The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called C<AnyEvent::Loop>. Like
106C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148other event modules you can load it explicitly and enjoy the high
107explicitly. 149availability of that event loop :)
108 150
109=head1 WATCHERS 151=head1 WATCHERS
110 152
111AnyEvent has the central concept of a I<watcher>, which is an object that 153AnyEvent has the central concept of a I<watcher>, which is an object that
112stores relevant data for each kind of event you are waiting for, such as 154stores relevant data for each kind of event you are waiting for, such as
113the callback to call, the filehandle to watch, etc. 155the callback to call, the file handle to watch, etc.
114 156
115These watchers are normal Perl objects with normal Perl lifetime. After 157These watchers are normal Perl objects with normal Perl lifetime. After
116creating a watcher it will immediately "watch" for events and invoke the 158creating a watcher it will immediately "watch" for events and invoke the
117callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
118is in control). 160is in control).
119 161
162Note that B<callbacks must not permanently change global variables>
163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
164callbacks must not C<die> >>. The former is good programming practice in
165Perl and the latter stems from the fact that exception handling differs
166widely between event loops.
167
120To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
121variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
122to it). 170to it).
123 171
124All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
125 173
126Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
127example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
128 176
129An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
130 178
131 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
132 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
133 undef $w; 181 undef $w;
134 }); 182 });
135 183
136Note that C<my $w; $w => combination. This is necessary because in Perl, 184Note that C<my $w; $w => combination. This is necessary because in Perl,
137my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
138declared. 186declared.
139 187
140=head2 I/O WATCHERS 188=head2 I/O WATCHERS
141 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
142You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
143with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
144 198
145C<fh> the Perl I<file handle> (I<not> file descriptor) to watch 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
200for events (AnyEvent might or might not keep a reference to this file
201handle). Note that only file handles pointing to things for which
202non-blocking operation makes sense are allowed. This includes sockets,
203most character devices, pipes, fifos and so on, but not for example files
204or block devices.
205
146for events. C<poll> must be a string that is either C<r> or C<w>, 206C<poll> must be a string that is either C<r> or C<w>, which creates a
147which creates a watcher waiting for "r"eadable or "w"ritable events, 207watcher waiting for "r"eadable or "w"ritable events, respectively.
208
148respectively. C<cb> is the callback to invoke each time the file handle 209C<cb> is the callback to invoke each time the file handle becomes ready.
149becomes ready.
150 210
151Although the callback might get passed parameters, their value and 211Although the callback might get passed parameters, their value and
152presence is undefined and you cannot rely on them. Portable AnyEvent 212presence is undefined and you cannot rely on them. Portable AnyEvent
153callbacks cannot use arguments passed to I/O watcher callbacks. 213callbacks cannot use arguments passed to I/O watcher callbacks.
154 214
155The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
156You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
157underlying file descriptor. 217underlying file descriptor.
158 218
159Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
160always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
161handles. 221handles.
162 222
163Example:
164
165 # wait for readability of STDIN, then read a line and disable the watcher 223Example: wait for readability of STDIN, then read a line and disable the
224watcher.
225
166 my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub { 226 my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
167 chomp (my $input = <STDIN>); 227 chomp (my $input = <STDIN>);
168 warn "read: $input\n"; 228 warn "read: $input\n";
169 undef $w; 229 undef $w;
170 }); 230 });
171 231
172=head2 TIME WATCHERS 232=head2 TIME WATCHERS
173 233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
241
174You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
175method with the following mandatory arguments: 243method with the following mandatory arguments:
176 244
177C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
178supported) the callback should be invoked. C<cb> is the callback to invoke 246supported) the callback should be invoked. C<cb> is the callback to invoke
180 248
181Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
182presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
183callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
184 252
185The timer callback will be invoked at most once: if you want a repeating 253The callback will normally be invoked only once. If you specify another
186timer you have to create a new watcher (this is a limitation by both Tk 254parameter, C<interval>, as a strictly positive number (> 0), then the
187and Glib). 255callback will be invoked regularly at that interval (in fractional
256seconds) after the first invocation. If C<interval> is specified with a
257false value, then it is treated as if it were not specified at all.
188 258
189Example: 259The callback will be rescheduled before invoking the callback, but no
260attempt is made to avoid timer drift in most backends, so the interval is
261only approximate.
190 262
191 # fire an event after 7.7 seconds 263Example: fire an event after 7.7 seconds.
264
192 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
193 warn "timeout\n"; 266 warn "timeout\n";
194 }); 267 });
195 268
196 # to cancel the timer: 269 # to cancel the timer:
197 undef $w; 270 undef $w;
198 271
199Example 2:
200
201 # fire an event after 0.5 seconds, then roughly every second 272Example 2: fire an event after 0.5 seconds, then roughly every second.
202 my $w;
203 273
204 my $cb = sub {
205 # cancel the old timer while creating a new one
206 $w = AnyEvent->timer (after => 1, cb => $cb); 274 my $w = AnyEvent->timer (after => 0.5, interval => 1, cb => sub {
275 warn "timeout\n";
207 }; 276 };
208
209 # start the "loop" by creating the first watcher
210 $w = AnyEvent->timer (after => 0.5, cb => $cb);
211 277
212=head3 TIMING ISSUES 278=head3 TIMING ISSUES
213 279
214There are two ways to handle timers: based on real time (relative, "fire 280There are two ways to handle timers: based on real time (relative, "fire
215in 10 seconds") and based on wallclock time (absolute, "fire at 12 281in 10 seconds") and based on wallclock time (absolute, "fire at 12
217 283
218While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
219use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
220"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
221the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
222fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
223 289
224AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
225about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
226on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
227timers. 293timers.
228 294
229AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
230AnyEvent API. 296AnyEvent API.
231 297
298AnyEvent has two additional methods that return the "current time":
299
300=over 4
301
302=item AnyEvent->time
303
304This returns the "current wallclock time" as a fractional number of
305seconds since the Epoch (the same thing as C<time> or C<Time::HiRes::time>
306return, and the result is guaranteed to be compatible with those).
307
308It progresses independently of any event loop processing, i.e. each call
309will check the system clock, which usually gets updated frequently.
310
311=item AnyEvent->now
312
313This also returns the "current wallclock time", but unlike C<time>, above,
314this value might change only once per event loop iteration, depending on
315the event loop (most return the same time as C<time>, above). This is the
316time that AnyEvent's timers get scheduled against.
317
318I<In almost all cases (in all cases if you don't care), this is the
319function to call when you want to know the current time.>
320
321This function is also often faster then C<< AnyEvent->time >>, and
322thus the preferred method if you want some timestamp (for example,
323L<AnyEvent::Handle> uses this to update its activity timeouts).
324
325The rest of this section is only of relevance if you try to be very exact
326with your timing; you can skip it without a bad conscience.
327
328For a practical example of when these times differ, consider L<Event::Lib>
329and L<EV> and the following set-up:
330
331The event loop is running and has just invoked one of your callbacks at
332time=500 (assume no other callbacks delay processing). In your callback,
333you wait a second by executing C<sleep 1> (blocking the process for a
334second) and then (at time=501) you create a relative timer that fires
335after three seconds.
336
337With L<Event::Lib>, C<< AnyEvent->time >> and C<< AnyEvent->now >> will
338both return C<501>, because that is the current time, and the timer will
339be scheduled to fire at time=504 (C<501> + C<3>).
340
341With L<EV>, C<< AnyEvent->time >> returns C<501> (as that is the current
342time), but C<< AnyEvent->now >> returns C<500>, as that is the time the
343last event processing phase started. With L<EV>, your timer gets scheduled
344to run at time=503 (C<500> + C<3>).
345
346In one sense, L<Event::Lib> is more exact, as it uses the current time
347regardless of any delays introduced by event processing. However, most
348callbacks do not expect large delays in processing, so this causes a
349higher drift (and a lot more system calls to get the current time).
350
351In another sense, L<EV> is more exact, as your timer will be scheduled at
352the same time, regardless of how long event processing actually took.
353
354In either case, if you care (and in most cases, you don't), then you
355can get whatever behaviour you want with any event loop, by taking the
356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
357account.
358
359=item AnyEvent->now_update
360
361Some event loops (such as L<EV> or L<AnyEvent::Loop>) cache the current
362time for each loop iteration (see the discussion of L<< AnyEvent->now >>,
363above).
364
365When a callback runs for a long time (or when the process sleeps), then
366this "current" time will differ substantially from the real time, which
367might affect timers and time-outs.
368
369When this is the case, you can call this method, which will update the
370event loop's idea of "current time".
371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
379Note that updating the time I<might> cause some events to be handled.
380
381=back
382
232=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
233 384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
386
234You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
235I<name> without any C<SIG> prefix, C<cb> is the Perl callback to 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
236be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
237 390
238Although the callback might get passed parameters, their value and 391Although the callback might get passed parameters, their value and
239presence is undefined and you cannot rely on them. Portable AnyEvent 392presence is undefined and you cannot rely on them. Portable AnyEvent
240callbacks cannot use arguments passed to signal watcher callbacks. 393callbacks cannot use arguments passed to signal watcher callbacks.
241 394
242Multiple signal occurances can be clumped together into one callback 395Multiple signal occurrences can be clumped together into one callback
243invocation, and callback invocation will be synchronous. synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
244that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
245but it is guarenteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
246 399
247The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
248between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
249 403
250This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
251directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
252 407
253Example: exit on SIGINT 408Example: exit on SIGINT
254 409
255 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
256 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling) or
421"unsafe" (asynchronous) - the former might get delayed indefinitely, the
422latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
432callbacks to signals in a generic way, which is a pity, as you cannot
433do race-free signal handling in perl, requiring C libraries for
434this. AnyEvent will try to do its best, which means in some cases,
435signals will be delayed. The maximum time a signal might be delayed is
436specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
437variable can be changed only before the first signal watcher is created,
438and should be left alone otherwise. This variable determines how often
439AnyEvent polls for signals (in case a wake-up was missed). Higher values
440will cause fewer spurious wake-ups, which is better for power and CPU
441saving.
442
443All these problems can be avoided by installing the optional
444L<Async::Interrupt> module, which works with most event loops. It will not
445work with inherently broken event loops such as L<Event> or L<Event::Lib>
446(and not with L<POE> currently, as POE does its own workaround with
447one-second latency). For those, you just have to suffer the delays.
448
257=head2 CHILD PROCESS WATCHERS 449=head2 CHILD PROCESS WATCHERS
258 450
451 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
452
259You can also watch on a child process exit and catch its exit status. 453You can also watch for a child process exit and catch its exit status.
260 454
261The child process is specified by the C<pid> argument (if set to C<0>, it 455The child process is specified by the C<pid> argument (on some backends,
262watches for any child process exit). The watcher will trigger as often 456using C<0> watches for any child process exit, on others this will
263as status change for the child are received. This works by installing a 457croak). The watcher will be triggered only when the child process has
264signal handler for C<SIGCHLD>. The callback will be called with the pid 458finished and an exit status is available, not on any trace events
265and exit status (as returned by waitpid), so unlike other watcher types, 459(stopped/continued).
266you I<can> rely on child watcher callback arguments. 460
461The callback will be called with the pid and exit status (as returned by
462waitpid), so unlike other watcher types, you I<can> rely on child watcher
463callback arguments.
464
465This watcher type works by installing a signal handler for C<SIGCHLD>,
466and since it cannot be shared, nothing else should use SIGCHLD or reap
467random child processes (waiting for specific child processes, e.g. inside
468C<system>, is just fine).
267 469
268There is a slight catch to child watchers, however: you usually start them 470There is a slight catch to child watchers, however: you usually start them
269I<after> the child process was created, and this means the process could 471I<after> the child process was created, and this means the process could
270have exited already (and no SIGCHLD will be sent anymore). 472have exited already (and no SIGCHLD will be sent anymore).
271 473
272Not all event models handle this correctly (POE doesn't), but even for 474Not all event models handle this correctly (neither POE nor IO::Async do,
475see their AnyEvent::Impl manpages for details), but even for event models
273event models that I<do> handle this correctly, they usually need to be 476that I<do> handle this correctly, they usually need to be loaded before
274loaded before the process exits (i.e. before you fork in the first place). 477the process exits (i.e. before you fork in the first place). AnyEvent's
478pure perl event loop handles all cases correctly regardless of when you
479start the watcher.
275 480
276This means you cannot create a child watcher as the very first thing in an 481This means you cannot create a child watcher as the very first
277AnyEvent program, you I<have> to create at least one watcher before you 482thing in an AnyEvent program, you I<have> to create at least one
278C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 483watcher before you C<fork> the child (alternatively, you can call
484C<AnyEvent::detect>).
485
486As most event loops do not support waiting for child events, they will be
487emulated by AnyEvent in most cases, in which case the latency and race
488problems mentioned in the description of signal watchers apply.
279 489
280Example: fork a process and wait for it 490Example: fork a process and wait for it
281 491
282 my $done = AnyEvent->condvar; 492 my $done = AnyEvent->condvar;
283 493
284 AnyEvent::detect; # force event module to be initialised
285
286 my $pid = fork or exit 5; 494 my $pid = fork or exit 5;
287 495
288 my $w = AnyEvent->child ( 496 my $w = AnyEvent->child (
289 pid => $pid, 497 pid => $pid,
290 cb => sub { 498 cb => sub {
291 my ($pid, $status) = @_; 499 my ($pid, $status) = @_;
292 warn "pid $pid exited with status $status"; 500 warn "pid $pid exited with status $status";
293 $done->send; 501 $done->send;
294 }, 502 },
295 ); 503 );
296 504
297 # do something else, then wait for process exit 505 # do something else, then wait for process exit
298 $done->wait; 506 $done->recv;
507
508=head2 IDLE WATCHERS
509
510 $w = AnyEvent->idle (cb => <callback>);
511
512This will repeatedly invoke the callback after the process becomes idle,
513until either the watcher is destroyed or new events have been detected.
514
515Idle watchers are useful when there is a need to do something, but it
516is not so important (or wise) to do it instantly. The callback will be
517invoked only when there is "nothing better to do", which is usually
518defined as "all outstanding events have been handled and no new events
519have been detected". That means that idle watchers ideally get invoked
520when the event loop has just polled for new events but none have been
521detected. Instead of blocking to wait for more events, the idle watchers
522will be invoked.
523
524Unfortunately, most event loops do not really support idle watchers (only
525EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
526will simply call the callback "from time to time".
527
528Example: read lines from STDIN, but only process them when the
529program is otherwise idle:
530
531 my @lines; # read data
532 my $idle_w;
533 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
534 push @lines, scalar <STDIN>;
535
536 # start an idle watcher, if not already done
537 $idle_w ||= AnyEvent->idle (cb => sub {
538 # handle only one line, when there are lines left
539 if (my $line = shift @lines) {
540 print "handled when idle: $line";
541 } else {
542 # otherwise disable the idle watcher again
543 undef $idle_w;
544 }
545 });
546 });
299 547
300=head2 CONDITION VARIABLES 548=head2 CONDITION VARIABLES
549
550 $cv = AnyEvent->condvar;
551
552 $cv->send (<list>);
553 my @res = $cv->recv;
301 554
302If you are familiar with some event loops you will know that all of them 555If you are familiar with some event loops you will know that all of them
303require you to run some blocking "loop", "run" or similar function that 556require you to run some blocking "loop", "run" or similar function that
304will actively watch for new events and call your callbacks. 557will actively watch for new events and call your callbacks.
305 558
306AnyEvent is different, it expects somebody else to run the event loop and 559AnyEvent is slightly different: it expects somebody else to run the event
307will only block when necessary (usually when told by the user). 560loop and will only block when necessary (usually when told by the user).
308 561
309The instrument to do that is called a "condition variable", so called 562The tool to do that is called a "condition variable", so called because
310because they represent a condition that must become true. 563they represent a condition that must become true.
564
565Now is probably a good time to look at the examples further below.
311 566
312Condition variables can be created by calling the C<< AnyEvent->condvar 567Condition variables can be created by calling the C<< AnyEvent->condvar
313>> method, usually without arguments. The only argument pair allowed is 568>> method, usually without arguments. The only argument pair allowed is
314C<cb>, which specifies a callback to be called when the condition variable 569C<cb>, which specifies a callback to be called when the condition variable
315becomes true. 570becomes true, with the condition variable as the first argument (but not
571the results).
316 572
317After creation, the conditon variable is "false" until it becomes "true" 573After creation, the condition variable is "false" until it becomes "true"
318by calling the C<send> method. 574by calling the C<send> method (or calling the condition variable as if it
575were a callback, read about the caveats in the description for the C<<
576->send >> method).
319 577
320Condition variables are similar to callbacks, except that you can 578Since condition variables are the most complex part of the AnyEvent API, here are
321optionally wait for them. They can also be called merge points - points 579some different mental models of what they are - pick the ones you can connect to:
322in time where multiple outstandign events have been processed. And yet 580
323another way to call them is transations - each condition variable can be 581=over 4
324used to represent a transaction, which finishes at some point and delivers 582
325a result. 583=item * Condition variables are like callbacks - you can call them (and pass them instead
584of callbacks). Unlike callbacks however, you can also wait for them to be called.
585
586=item * Condition variables are signals - one side can emit or send them,
587the other side can wait for them, or install a handler that is called when
588the signal fires.
589
590=item * Condition variables are like "Merge Points" - points in your program
591where you merge multiple independent results/control flows into one.
592
593=item * Condition variables represent a transaction - functions that start
594some kind of transaction can return them, leaving the caller the choice
595between waiting in a blocking fashion, or setting a callback.
596
597=item * Condition variables represent future values, or promises to deliver
598some result, long before the result is available.
599
600=back
326 601
327Condition variables are very useful to signal that something has finished, 602Condition variables are very useful to signal that something has finished,
328for example, if you write a module that does asynchronous http requests, 603for example, if you write a module that does asynchronous http requests,
329then a condition variable would be the ideal candidate to signal the 604then a condition variable would be the ideal candidate to signal the
330availability of results. The user can either act when the callback is 605availability of results. The user can either act when the callback is
331called or can synchronously C<< ->wait >> for the results. 606called or can synchronously C<< ->recv >> for the results.
332 607
333You can also use them to simulate traditional event loops - for example, 608You can also use them to simulate traditional event loops - for example,
334you can block your main program until an event occurs - for example, you 609you can block your main program until an event occurs - for example, you
335could C<< ->wait >> in your main program until the user clicks the Quit 610could C<< ->recv >> in your main program until the user clicks the Quit
336button of your app, which would C<< ->send >> the "quit" event. 611button of your app, which would C<< ->send >> the "quit" event.
337 612
338Note that condition variables recurse into the event loop - if you have 613Note that condition variables recurse into the event loop - if you have
339two pieces of code that call C<< ->wait >> in a round-robbin fashion, you 614two pieces of code that call C<< ->recv >> in a round-robin fashion, you
340lose. Therefore, condition variables are good to export to your caller, but 615lose. Therefore, condition variables are good to export to your caller, but
341you should avoid making a blocking wait yourself, at least in callbacks, 616you should avoid making a blocking wait yourself, at least in callbacks,
342as this asks for trouble. 617as this asks for trouble.
343 618
344Condition variables are represented by hash refs in perl, and the keys 619Condition variables are represented by hash refs in perl, and the keys
345used by AnyEvent itself are all named C<_ae_XXX> to make subclassing 620used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
346easy (it is often useful to build your own transaction class on top of 621easy (it is often useful to build your own transaction class on top of
347AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call 622AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
348it's C<new> method in your own C<new> method. 623its C<new> method in your own C<new> method.
349 624
350There are two "sides" to a condition variable - the "producer side" which 625There are two "sides" to a condition variable - the "producer side" which
351eventually calls C<< -> send >>, and the "consumer side", which waits 626eventually calls C<< -> send >>, and the "consumer side", which waits
352for the send to occur. 627for the send to occur.
353 628
354Example: 629Example: wait for a timer.
355 630
356 # wait till the result is ready 631 # condition: "wait till the timer is fired"
357 my $result_ready = AnyEvent->condvar; 632 my $timer_fired = AnyEvent->condvar;
358 633
359 # do something such as adding a timer 634 # create the timer - we could wait for, say
360 # or socket watcher the calls $result_ready->send 635 # a handle becomign ready, or even an
361 # when the "result" is ready. 636 # AnyEvent::HTTP request to finish, but
362 # in this case, we simply use a timer: 637 # in this case, we simply use a timer:
363 my $w = AnyEvent->timer ( 638 my $w = AnyEvent->timer (
364 after => 1, 639 after => 1,
365 cb => sub { $result_ready->send }, 640 cb => sub { $timer_fired->send },
366 ); 641 );
367 642
368 # this "blocks" (while handling events) till the callback 643 # this "blocks" (while handling events) till the callback
369 # calls send 644 # calls ->send
370 $result_ready->wait; 645 $timer_fired->recv;
646
647Example: wait for a timer, but take advantage of the fact that condition
648variables are also callable directly.
649
650 my $done = AnyEvent->condvar;
651 my $delay = AnyEvent->timer (after => 5, cb => $done);
652 $done->recv;
653
654Example: Imagine an API that returns a condvar and doesn't support
655callbacks. This is how you make a synchronous call, for example from
656the main program:
657
658 use AnyEvent::CouchDB;
659
660 ...
661
662 my @info = $couchdb->info->recv;
663
664And this is how you would just set a callback to be called whenever the
665results are available:
666
667 $couchdb->info->cb (sub {
668 my @info = $_[0]->recv;
669 });
371 670
372=head3 METHODS FOR PRODUCERS 671=head3 METHODS FOR PRODUCERS
373 672
374These methods should only be used by the producing side, i.e. the 673These methods should only be used by the producing side, i.e. the
375code/module that eventually sends the signal. Note that it is also 674code/module that eventually sends the signal. Note that it is also
378 677
379=over 4 678=over 4
380 679
381=item $cv->send (...) 680=item $cv->send (...)
382 681
383Flag the condition as ready - a running C<< ->wait >> and all further 682Flag the condition as ready - a running C<< ->recv >> and all further
384calls to C<wait> will (eventually) return after this method has been 683calls to C<recv> will (eventually) return after this method has been
385called. If nobody is waiting the send will be remembered. 684called. If nobody is waiting the send will be remembered.
386 685
387If a callback has been set on the condition variable, it is called 686If a callback has been set on the condition variable, it is called
388immediately from within send. 687immediately from within send.
389 688
390Any arguments passed to the C<send> call will be returned by all 689Any arguments passed to the C<send> call will be returned by all
391future C<< ->wait >> calls. 690future C<< ->recv >> calls.
691
692Condition variables are overloaded so one can call them directly (as if
693they were a code reference). Calling them directly is the same as calling
694C<send>.
392 695
393=item $cv->croak ($error) 696=item $cv->croak ($error)
394 697
395Similar to send, but causes all call's wait C<< ->wait >> to invoke 698Similar to send, but causes all calls to C<< ->recv >> to invoke
396C<Carp::croak> with the given error message/object/scalar. 699C<Carp::croak> with the given error message/object/scalar.
397 700
398This can be used to signal any errors to the condition variable 701This can be used to signal any errors to the condition variable
399user/consumer. 702user/consumer. Doing it this way instead of calling C<croak> directly
703delays the error detection, but has the overwhelming advantage that it
704diagnoses the error at the place where the result is expected, and not
705deep in some event callback with no connection to the actual code causing
706the problem.
400 707
401=item $cv->begin ([group callback]) 708=item $cv->begin ([group callback])
402 709
403=item $cv->end 710=item $cv->end
404 711
406one. For example, a function that pings many hosts in parallel might want 713one. For example, a function that pings many hosts in parallel might want
407to use a condition variable for the whole process. 714to use a condition variable for the whole process.
408 715
409Every call to C<< ->begin >> will increment a counter, and every call to 716Every call to C<< ->begin >> will increment a counter, and every call to
410C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 717C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
411>>, the (last) callback passed to C<begin> will be executed. That callback 718>>, the (last) callback passed to C<begin> will be executed, passing the
412is I<supposed> to call C<< ->send >>, but that is not required. If no 719condvar as first argument. That callback is I<supposed> to call C<< ->send
413callback was set, C<send> will be called without any arguments. 720>>, but that is not required. If no group callback was set, C<send> will
721be called without any arguments.
414 722
415Let's clarify this with the ping example: 723You can think of C<< $cv->send >> giving you an OR condition (one call
724sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
725condition (all C<begin> calls must be C<end>'ed before the condvar sends).
726
727Let's start with a simple example: you have two I/O watchers (for example,
728STDOUT and STDERR for a program), and you want to wait for both streams to
729close before activating a condvar:
416 730
417 my $cv = AnyEvent->condvar; 731 my $cv = AnyEvent->condvar;
418 732
733 $cv->begin; # first watcher
734 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
735 defined sysread $fh1, my $buf, 4096
736 or $cv->end;
737 });
738
739 $cv->begin; # second watcher
740 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
741 defined sysread $fh2, my $buf, 4096
742 or $cv->end;
743 });
744
745 $cv->recv;
746
747This works because for every event source (EOF on file handle), there is
748one call to C<begin>, so the condvar waits for all calls to C<end> before
749sending.
750
751The ping example mentioned above is slightly more complicated, as the
752there are results to be passwd back, and the number of tasks that are
753begun can potentially be zero:
754
755 my $cv = AnyEvent->condvar;
756
419 my %result; 757 my %result;
420 $cv->begin (sub { $cv->send (\%result) }); 758 $cv->begin (sub { shift->send (\%result) });
421 759
422 for my $host (@list_of_hosts) { 760 for my $host (@list_of_hosts) {
423 $cv->begin; 761 $cv->begin;
424 ping_host_then_call_callback $host, sub { 762 ping_host_then_call_callback $host, sub {
425 $result{$host} = ...; 763 $result{$host} = ...;
440loop, which serves two important purposes: first, it sets the callback 778loop, which serves two important purposes: first, it sets the callback
441to be called once the counter reaches C<0>, and second, it ensures that 779to be called once the counter reaches C<0>, and second, it ensures that
442C<send> is called even when C<no> hosts are being pinged (the loop 780C<send> is called even when C<no> hosts are being pinged (the loop
443doesn't execute once). 781doesn't execute once).
444 782
445This is the general pattern when you "fan out" into multiple subrequests: 783This is the general pattern when you "fan out" into multiple (but
446use an outer C<begin>/C<end> pair to set the callback and ensure C<end> 784potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
447is called at least once, and then, for each subrequest you start, call 785the callback and ensure C<end> is called at least once, and then, for each
448C<begin> and for eahc subrequest you finish, call C<end>. 786subrequest you start, call C<begin> and for each subrequest you finish,
787call C<end>.
449 788
450=back 789=back
451 790
452=head3 METHODS FOR CONSUMERS 791=head3 METHODS FOR CONSUMERS
453 792
454These methods should only be used by the consuming side, i.e. the 793These methods should only be used by the consuming side, i.e. the
455code awaits the condition. 794code awaits the condition.
456 795
457=over 4 796=over 4
458 797
459=item $cv->wait 798=item $cv->recv
460 799
461Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak 800Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
462>> methods have been called on c<$cv>, while servicing other watchers 801>> methods have been called on C<$cv>, while servicing other watchers
463normally. 802normally.
464 803
465You can only wait once on a condition - additional calls are valid but 804You can only wait once on a condition - additional calls are valid but
466will return immediately. 805will return immediately.
467 806
469function will call C<croak>. 808function will call C<croak>.
470 809
471In list context, all parameters passed to C<send> will be returned, 810In list context, all parameters passed to C<send> will be returned,
472in scalar context only the first one will be returned. 811in scalar context only the first one will be returned.
473 812
813Note that doing a blocking wait in a callback is not supported by any
814event loop, that is, recursive invocation of a blocking C<< ->recv
815>> is not allowed, and the C<recv> call will C<croak> if such a
816condition is detected. This condition can be slightly loosened by using
817L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
818any thread that doesn't run the event loop itself.
819
474Not all event models support a blocking wait - some die in that case 820Not all event models support a blocking wait - some die in that case
475(programs might want to do that to stay interactive), so I<if you are 821(programs might want to do that to stay interactive), so I<if you are
476using this from a module, never require a blocking wait>, but let the 822using this from a module, never require a blocking wait>. Instead, let the
477caller decide whether the call will block or not (for example, by coupling 823caller decide whether the call will block or not (for example, by coupling
478condition variables with some kind of request results and supporting 824condition variables with some kind of request results and supporting
479callbacks so the caller knows that getting the result will not block, 825callbacks so the caller knows that getting the result will not block,
480while still suppporting blocking waits if the caller so desires). 826while still supporting blocking waits if the caller so desires).
481 827
482Another reason I<never> to C<< ->wait >> in a module is that you cannot
483sensibly have two C<< ->wait >>'s in parallel, as that would require
484multiple interpreters or coroutines/threads, none of which C<AnyEvent>
485can supply (the coroutine-aware backends L<AnyEvent::Impl::CoroEV> and
486L<AnyEvent::Impl::CoroEvent> explicitly support concurrent C<< ->wait >>'s
487from different coroutines, however).
488
489You can ensure that C<< -wait >> never blocks by setting a callback and 828You can ensure that C<< ->recv >> never blocks by setting a callback and
490only calling C<< ->wait >> from within that callback (or at a later 829only calling C<< ->recv >> from within that callback (or at a later
491time). This will work even when the event loop does not support blocking 830time). This will work even when the event loop does not support blocking
492waits otherwise. 831waits otherwise.
493 832
494=item $bool = $cv->ready 833=item $bool = $cv->ready
495 834
496Returns true when the condition is "true", i.e. whether C<send> or 835Returns true when the condition is "true", i.e. whether C<send> or
497C<croak> have been called. 836C<croak> have been called.
498 837
499=item $cb = $cv->cb ([new callback]) 838=item $cb = $cv->cb ($cb->($cv))
500 839
501This is a mutator function that returns the callback set and optionally 840This is a mutator function that returns the callback set and optionally
502replaces it before doing so. 841replaces it before doing so.
503 842
504The callback will be called when the condition becomes "true", i.e. when 843The callback will be called when the condition becomes "true", i.e. when
505C<send> or C<croak> are called. Calling C<wait> inside the callback 844C<send> or C<croak> are called, with the only argument being the
845condition variable itself. If the condition is already true, the
846callback is called immediately when it is set. Calling C<recv> inside
506or at any later time is guaranteed not to block. 847the callback or at any later time is guaranteed not to block.
507 848
508=back 849=back
509 850
851=head1 SUPPORTED EVENT LOOPS/BACKENDS
852
853The available backend classes are (every class has its own manpage):
854
855=over 4
856
857=item Backends that are autoprobed when no other event loop can be found.
858
859EV is the preferred backend when no other event loop seems to be in
860use. If EV is not installed, then AnyEvent will fall back to its own
861pure-perl implementation, which is available everywhere as it comes with
862AnyEvent itself.
863
864 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
865 AnyEvent::Impl::Perl pure-perl AnyEvent::Loop, fast and portable.
866
867=item Backends that are transparently being picked up when they are used.
868
869These will be used if they are already loaded when the first watcher
870is created, in which case it is assumed that the application is using
871them. This means that AnyEvent will automatically pick the right backend
872when the main program loads an event module before anything starts to
873create watchers. Nothing special needs to be done by the main program.
874
875 AnyEvent::Impl::Event based on Event, very stable, few glitches.
876 AnyEvent::Impl::Glib based on Glib, slow but very stable.
877 AnyEvent::Impl::Tk based on Tk, very broken.
878 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
879 AnyEvent::Impl::POE based on POE, very slow, some limitations.
880 AnyEvent::Impl::Irssi used when running within irssi.
881 AnyEvent::Impl::IOAsync based on IO::Async.
882 AnyEvent::Impl::Cocoa based on Cocoa::EventLoop.
883 AnyEvent::Impl::FLTK based on FLTK.
884
885=item Backends with special needs.
886
887Qt requires the Qt::Application to be instantiated first, but will
888otherwise be picked up automatically. As long as the main program
889instantiates the application before any AnyEvent watchers are created,
890everything should just work.
891
892 AnyEvent::Impl::Qt based on Qt.
893
894=item Event loops that are indirectly supported via other backends.
895
896Some event loops can be supported via other modules:
897
898There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
899
900B<WxWidgets> has no support for watching file handles. However, you can
901use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
902polls 20 times per second, which was considered to be too horrible to even
903consider for AnyEvent.
904
905B<Prima> is not supported as nobody seems to be using it, but it has a POE
906backend, so it can be supported through POE.
907
908AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
909load L<POE> when detecting them, in the hope that POE will pick them up,
910in which case everything will be automatic.
911
912=back
913
510=head1 GLOBAL VARIABLES AND FUNCTIONS 914=head1 GLOBAL VARIABLES AND FUNCTIONS
511 915
916These are not normally required to use AnyEvent, but can be useful to
917write AnyEvent extension modules.
918
512=over 4 919=over 4
513 920
514=item $AnyEvent::MODEL 921=item $AnyEvent::MODEL
515 922
516Contains C<undef> until the first watcher is being created. Then it 923Contains C<undef> until the first watcher is being created, before the
924backend has been autodetected.
925
517contains the event model that is being used, which is the name of the 926Afterwards it contains the event model that is being used, which is the
518Perl class implementing the model. This class is usually one of the 927name of the Perl class implementing the model. This class is usually one
519C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 928of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
520AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 929case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
521 930will be C<urxvt::anyevent>).
522The known classes so far are:
523
524 AnyEvent::Impl::CoroEV based on Coro::EV, best choice.
525 AnyEvent::Impl::CoroEvent based on Coro::Event, second best choice.
526 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
527 AnyEvent::Impl::Event based on Event, second best choice.
528 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
529 AnyEvent::Impl::Glib based on Glib, third-best choice.
530 AnyEvent::Impl::Tk based on Tk, very bad choice.
531 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
532 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
533 AnyEvent::Impl::POE based on POE, not generic enough for full support.
534
535There is no support for WxWidgets, as WxWidgets has no support for
536watching file handles. However, you can use WxWidgets through the
537POE Adaptor, as POE has a Wx backend that simply polls 20 times per
538second, which was considered to be too horrible to even consider for
539AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
540it's adaptor.
541
542AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
543autodetecting them.
544 931
545=item AnyEvent::detect 932=item AnyEvent::detect
546 933
547Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 934Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
548if necessary. You should only call this function right before you would 935if necessary. You should only call this function right before you would
549have created an AnyEvent watcher anyway, that is, as late as possible at 936have created an AnyEvent watcher anyway, that is, as late as possible at
550runtime. 937runtime, and not e.g. during initialisation of your module.
938
939If you need to do some initialisation before AnyEvent watchers are
940created, use C<post_detect>.
941
942=item $guard = AnyEvent::post_detect { BLOCK }
943
944Arranges for the code block to be executed as soon as the event model is
945autodetected (or immediately if that has already happened).
946
947The block will be executed I<after> the actual backend has been detected
948(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
949created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
950other initialisations - see the sources of L<AnyEvent::Strict> or
951L<AnyEvent::AIO> to see how this is used.
952
953The most common usage is to create some global watchers, without forcing
954event module detection too early, for example, L<AnyEvent::AIO> creates
955and installs the global L<IO::AIO> watcher in a C<post_detect> block to
956avoid autodetecting the event module at load time.
957
958If called in scalar or list context, then it creates and returns an object
959that automatically removes the callback again when it is destroyed (or
960C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
961a case where this is useful.
962
963Example: Create a watcher for the IO::AIO module and store it in
964C<$WATCHER>, but do so only do so after the event loop is initialised.
965
966 our WATCHER;
967
968 my $guard = AnyEvent::post_detect {
969 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
970 };
971
972 # the ||= is important in case post_detect immediately runs the block,
973 # as to not clobber the newly-created watcher. assigning both watcher and
974 # post_detect guard to the same variable has the advantage of users being
975 # able to just C<undef $WATCHER> if the watcher causes them grief.
976
977 $WATCHER ||= $guard;
978
979=item @AnyEvent::post_detect
980
981If there are any code references in this array (you can C<push> to it
982before or after loading AnyEvent), then they will be called directly
983after the event loop has been chosen.
984
985You should check C<$AnyEvent::MODEL> before adding to this array, though:
986if it is defined then the event loop has already been detected, and the
987array will be ignored.
988
989Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
990it, as it takes care of these details.
991
992This variable is mainly useful for modules that can do something useful
993when AnyEvent is used and thus want to know when it is initialised, but do
994not need to even load it by default. This array provides the means to hook
995into AnyEvent passively, without loading it.
996
997Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
998together, you could put this into Coro (this is the actual code used by
999Coro to accomplish this):
1000
1001 if (defined $AnyEvent::MODEL) {
1002 # AnyEvent already initialised, so load Coro::AnyEvent
1003 require Coro::AnyEvent;
1004 } else {
1005 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1006 # as soon as it is
1007 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1008 }
551 1009
552=back 1010=back
553 1011
554=head1 WHAT TO DO IN A MODULE 1012=head1 WHAT TO DO IN A MODULE
555 1013
559Be careful when you create watchers in the module body - AnyEvent will 1017Be careful when you create watchers in the module body - AnyEvent will
560decide which event module to use as soon as the first method is called, so 1018decide which event module to use as soon as the first method is called, so
561by calling AnyEvent in your module body you force the user of your module 1019by calling AnyEvent in your module body you force the user of your module
562to load the event module first. 1020to load the event module first.
563 1021
564Never call C<< ->wait >> on a condition variable unless you I<know> that 1022Never call C<< ->recv >> on a condition variable unless you I<know> that
565the C<< ->send >> method has been called on it already. This is 1023the C<< ->send >> method has been called on it already. This is
566because it will stall the whole program, and the whole point of using 1024because it will stall the whole program, and the whole point of using
567events is to stay interactive. 1025events is to stay interactive.
568 1026
569It is fine, however, to call C<< ->wait >> when the user of your module 1027It is fine, however, to call C<< ->recv >> when the user of your module
570requests it (i.e. if you create a http request object ad have a method 1028requests it (i.e. if you create a http request object ad have a method
571called C<results> that returns the results, it should call C<< ->wait >> 1029called C<results> that returns the results, it may call C<< ->recv >>
572freely, as the user of your module knows what she is doing. always). 1030freely, as the user of your module knows what she is doing. Always).
573 1031
574=head1 WHAT TO DO IN THE MAIN PROGRAM 1032=head1 WHAT TO DO IN THE MAIN PROGRAM
575 1033
576There will always be a single main program - the only place that should 1034There will always be a single main program - the only place that should
577dictate which event model to use. 1035dictate which event model to use.
578 1036
579If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1037If the program is not event-based, it need not do anything special, even
580do anything special (it does not need to be event-based) and let AnyEvent 1038when it depends on a module that uses an AnyEvent. If the program itself
581decide which implementation to chose if some module relies on it. 1039uses AnyEvent, but does not care which event loop is used, all it needs
1040to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1041available loop implementation.
582 1042
583If the main program relies on a specific event model. For example, in 1043If the main program relies on a specific event model - for example, in
584Gtk2 programs you have to rely on the Glib module. You should load the 1044Gtk2 programs you have to rely on the Glib module - you should load the
585event module before loading AnyEvent or any module that uses it: generally 1045event module before loading AnyEvent or any module that uses it: generally
586speaking, you should load it as early as possible. The reason is that 1046speaking, you should load it as early as possible. The reason is that
587modules might create watchers when they are loaded, and AnyEvent will 1047modules might create watchers when they are loaded, and AnyEvent will
588decide on the event model to use as soon as it creates watchers, and it 1048decide on the event model to use as soon as it creates watchers, and it
589might chose the wrong one unless you load the correct one yourself. 1049might choose the wrong one unless you load the correct one yourself.
590 1050
591You can chose to use a rather inefficient pure-perl implementation by 1051You can chose to use a pure-perl implementation by loading the
592loading the C<AnyEvent::Impl::Perl> module, which gives you similar 1052C<AnyEvent::Loop> module, which gives you similar behaviour
593behaviour everywhere, but letting AnyEvent chose is generally better. 1053everywhere, but letting AnyEvent chose the model is generally better.
1054
1055=head2 MAINLOOP EMULATION
1056
1057Sometimes (often for short test scripts, or even standalone programs who
1058only want to use AnyEvent), you do not want to run a specific event loop.
1059
1060In that case, you can use a condition variable like this:
1061
1062 AnyEvent->condvar->recv;
1063
1064This has the effect of entering the event loop and looping forever.
1065
1066Note that usually your program has some exit condition, in which case
1067it is better to use the "traditional" approach of storing a condition
1068variable somewhere, waiting for it, and sending it when the program should
1069exit cleanly.
1070
594 1071
595=head1 OTHER MODULES 1072=head1 OTHER MODULES
596 1073
597The following is a non-exhaustive list of additional modules that use 1074The following is a non-exhaustive list of additional modules that use
598AnyEvent and can therefore be mixed easily with other AnyEvent modules 1075AnyEvent as a client and can therefore be mixed easily with other AnyEvent
599in the same program. Some of the modules come with AnyEvent, some are 1076modules and other event loops in the same program. Some of the modules
600available via CPAN. 1077come as part of AnyEvent, the others are available via CPAN.
601 1078
602=over 4 1079=over 4
603 1080
604=item L<AnyEvent::Util> 1081=item L<AnyEvent::Util>
605 1082
606Contains various utility functions that replace often-used but blocking 1083Contains various utility functions that replace often-used blocking
607functions such as C<inet_aton> by event-/callback-based versions. 1084functions such as C<inet_aton> with event/callback-based versions.
1085
1086=item L<AnyEvent::Socket>
1087
1088Provides various utility functions for (internet protocol) sockets,
1089addresses and name resolution. Also functions to create non-blocking tcp
1090connections or tcp servers, with IPv6 and SRV record support and more.
608 1091
609=item L<AnyEvent::Handle> 1092=item L<AnyEvent::Handle>
610 1093
611Provide read and write buffers and manages watchers for reads and writes. 1094Provide read and write buffers, manages watchers for reads and writes,
1095supports raw and formatted I/O, I/O queued and fully transparent and
1096non-blocking SSL/TLS (via L<AnyEvent::TLS>).
612 1097
613=item L<AnyEvent::Socket> 1098=item L<AnyEvent::DNS>
614 1099
615Provides a means to do non-blocking connects, accepts etc. 1100Provides rich asynchronous DNS resolver capabilities.
1101
1102=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1103
1104Implement event-based interfaces to the protocols of the same name (for
1105the curious, IGS is the International Go Server and FCP is the Freenet
1106Client Protocol).
1107
1108=item L<AnyEvent::Handle::UDP>
1109
1110Here be danger!
1111
1112As Pauli would put it, "Not only is it not right, it's not even wrong!" -
1113there are so many things wrong with AnyEvent::Handle::UDP, most notably
1114its use of a stream-based API with a protocol that isn't streamable, that
1115the only way to improve it is to delete it.
1116
1117It features data corruption (but typically only under load) and general
1118confusion. On top, the author is not only clueless about UDP but also
1119fact-resistant - some gems of his understanding: "connect doesn't work
1120with UDP", "UDP packets are not IP packets", "UDP only has datagrams, not
1121packets", "I don't need to implement proper error checking as UDP doesn't
1122support error checking" and so on - he doesn't even understand what's
1123wrong with his module when it is explained to him.
1124
1125=item L<AnyEvent::DBI>
1126
1127Executes L<DBI> requests asynchronously in a proxy process for you,
1128notifying you in an event-based way when the operation is finished.
1129
1130=item L<AnyEvent::AIO>
1131
1132Truly asynchronous (as opposed to non-blocking) I/O, should be in the
1133toolbox of every event programmer. AnyEvent::AIO transparently fuses
1134L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1135file I/O, and much more.
616 1136
617=item L<AnyEvent::HTTPD> 1137=item L<AnyEvent::HTTPD>
618 1138
619Provides a simple web application server framework. 1139A simple embedded webserver.
620
621=item L<AnyEvent::DNS>
622
623Provides asynchronous DNS resolver capabilities, beyond what
624L<AnyEvent::Util> offers.
625 1140
626=item L<AnyEvent::FastPing> 1141=item L<AnyEvent::FastPing>
627 1142
628The fastest ping in the west. 1143The fastest ping in the west.
629 1144
630=item L<Net::IRC3>
631
632AnyEvent based IRC client module family.
633
634=item L<Net::XMPP2>
635
636AnyEvent based XMPP (Jabber protocol) module family.
637
638=item L<Net::FCP>
639
640AnyEvent-based implementation of the Freenet Client Protocol, birthplace
641of AnyEvent.
642
643=item L<Event::ExecFlow>
644
645High level API for event-based execution flow control.
646
647=item L<Coro> 1145=item L<Coro>
648 1146
649Has special support for AnyEvent. 1147Has special support for AnyEvent via L<Coro::AnyEvent>.
650
651=item L<IO::Lambda>
652
653The lambda approach to I/O - don't ask, look there. Can use AnyEvent.
654
655=item L<IO::AIO>
656
657Truly asynchronous I/O, should be in the toolbox of every event
658programmer. Can be trivially made to use AnyEvent.
659
660=item L<BDB>
661
662Truly asynchronous Berkeley DB access. Can be trivially made to use
663AnyEvent.
664 1148
665=back 1149=back
666 1150
667=cut 1151=cut
668 1152
669package AnyEvent; 1153package AnyEvent;
670 1154
671no warnings; 1155# basically a tuned-down version of common::sense
672use strict; 1156sub common_sense {
1157 # from common:.sense 3.4
1158 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf0\x0f\xc0\xf0\xfc\x33\x00";
1159 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1160 $^H |= 0x00000600;
1161}
673 1162
1163BEGIN { AnyEvent::common_sense }
1164
674use Carp; 1165use Carp ();
675 1166
676our $VERSION = '3.3'; 1167our $VERSION = '5.34';
677our $MODEL; 1168our $MODEL;
678 1169
679our $AUTOLOAD; 1170our $AUTOLOAD;
680our @ISA; 1171our @ISA;
681 1172
682our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1;
683
684our @REGISTRY; 1173our @REGISTRY;
685 1174
1175our $VERBOSE;
1176
1177BEGIN {
1178 require "AnyEvent/constants.pl";
1179
1180 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
1181
1182 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1183 if ${^TAINT};
1184
1185 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1;
1186
1187}
1188
1189our $MAX_SIGNAL_LATENCY = 10;
1190
1191our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
1192
1193{
1194 my $idx;
1195 $PROTOCOL{$_} = ++$idx
1196 for reverse split /\s*,\s*/,
1197 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
1198}
1199
686my @models = ( 1200my @models = (
687 [Coro::EV:: => AnyEvent::Impl::CoroEV::],
688 [Coro::Event:: => AnyEvent::Impl::CoroEvent::],
689 [EV:: => AnyEvent::Impl::EV::], 1201 [EV:: => AnyEvent::Impl::EV:: , 1],
1202 [AnyEvent::Loop:: => AnyEvent::Impl::Perl:: , 1],
1203 # everything below here will not (normally) be autoprobed
1204 # as the pure perl backend should work everywhere
1205 # and is usually faster
690 [Event:: => AnyEvent::Impl::Event::], 1206 [Event:: => AnyEvent::Impl::Event::, 1],
1207 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1208 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1209 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
691 [Tk:: => AnyEvent::Impl::Tk::], 1210 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
1211 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
1212 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
692 [Wx:: => AnyEvent::Impl::POE::], 1213 [Wx:: => AnyEvent::Impl::POE::],
693 [Prima:: => AnyEvent::Impl::POE::], 1214 [Prima:: => AnyEvent::Impl::POE::],
694 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::], 1215 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::],
695 # everything below here will not be autoprobed as the pureperl backend should work everywhere 1216 [Cocoa::EventLoop:: => AnyEvent::Impl::Cocoa::],
696 [Glib:: => AnyEvent::Impl::Glib::], 1217 [FLTK:: => AnyEvent::Impl::FLTK::],
697 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
698 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
699 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
700); 1218);
701 1219
702our %method = map +($_ => 1), qw(io timer signal child condvar one_event DESTROY); 1220our %method = map +($_ => 1),
1221 qw(io timer time now now_update signal child idle condvar DESTROY);
1222
1223our @post_detect;
1224
1225sub post_detect(&) {
1226 my ($cb) = @_;
1227
1228 push @post_detect, $cb;
1229
1230 defined wantarray
1231 ? bless \$cb, "AnyEvent::Util::postdetect"
1232 : ()
1233}
1234
1235sub AnyEvent::Util::postdetect::DESTROY {
1236 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1237}
703 1238
704sub detect() { 1239sub detect() {
1240 # free some memory
1241 *detect = sub () { $MODEL };
1242
1243 local $!; # for good measure
1244 local $SIG{__DIE__};
1245
1246 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
1247 my $model = "AnyEvent::Impl::$1";
1248 if (eval "require $model") {
1249 $MODEL = $model;
1250 warn "AnyEvent: loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.\n" if $VERBOSE >= 2;
1251 } else {
1252 warn "AnyEvent: unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@" if $VERBOSE;
1253 }
1254 }
1255
1256 # check for already loaded models
705 unless ($MODEL) { 1257 unless ($MODEL) {
706 no strict 'refs'; 1258 for (@REGISTRY, @models) {
707 1259 my ($package, $model) = @$_;
708 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) { 1260 if (${"$package\::VERSION"} > 0) {
709 my $model = "AnyEvent::Impl::$1";
710 if (eval "require $model") { 1261 if (eval "require $model") {
711 $MODEL = $model; 1262 $MODEL = $model;
712 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1263 warn "AnyEvent: autodetected model '$model', using it.\n" if $VERBOSE >= 2;
713 } else { 1264 last;
714 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose; 1265 }
715 } 1266 }
716 } 1267 }
717 1268
718 # check for already loaded models
719 unless ($MODEL) { 1269 unless ($MODEL) {
1270 # try to autoload a model
720 for (@REGISTRY, @models) { 1271 for (@REGISTRY, @models) {
721 my ($package, $model) = @$_; 1272 my ($package, $model, $autoload) = @$_;
1273 if (
1274 $autoload
1275 and eval "require $package"
722 if (${"$package\::VERSION"} > 0) { 1276 and ${"$package\::VERSION"} > 0
723 if (eval "require $model") { 1277 and eval "require $model"
1278 ) {
724 $MODEL = $model; 1279 $MODEL = $model;
725 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1; 1280 warn "AnyEvent: autoloaded model '$model', using it.\n" if $VERBOSE >= 2;
726 last; 1281 last;
727 }
728 } 1282 }
729 } 1283 }
730 1284
731 unless ($MODEL) {
732 # try to load a model
733
734 for (@REGISTRY, @models) {
735 my ($package, $model) = @$_;
736 if (eval "require $package"
737 and ${"$package\::VERSION"} > 0
738 and eval "require $model") {
739 $MODEL = $model;
740 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1;
741 last;
742 }
743 }
744
745 $MODEL 1285 $MODEL
746 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV (or Coro+EV), Event (or Coro+Event) or Glib."; 1286 or die "AnyEvent: backend autodetection failed - did you properly install AnyEvent?\n";
747 }
748 } 1287 }
749
750 unshift @ISA, $MODEL;
751 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
752 } 1288 }
1289
1290 @models = (); # free probe data
1291
1292 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1293 unshift @ISA, $MODEL;
1294
1295 # now nuke some methods that are overridden by the backend.
1296 # SUPER is not allowed.
1297 for (qw(time signal child idle)) {
1298 undef &{"AnyEvent::Base::$_"}
1299 if defined &{"$MODEL\::$_"};
1300 }
1301
1302 if ($ENV{PERL_ANYEVENT_STRICT}) {
1303 eval { require AnyEvent::Strict };
1304 warn "AnyEvent: cannot load AnyEvent::Strict: $@"
1305 if $@ && $VERBOSE;
1306 }
1307
1308 (shift @post_detect)->() while @post_detect;
1309
1310 *post_detect = sub(&) {
1311 shift->();
1312
1313 undef
1314 };
753 1315
754 $MODEL 1316 $MODEL
755} 1317}
756 1318
757sub AUTOLOAD { 1319sub AUTOLOAD {
758 (my $func = $AUTOLOAD) =~ s/.*://; 1320 (my $func = $AUTOLOAD) =~ s/.*://;
759 1321
760 $method{$func} 1322 $method{$func}
761 or croak "$func: not a valid method for AnyEvent objects"; 1323 or Carp::croak "$func: not a valid AnyEvent class method";
762 1324
763 detect unless $MODEL; 1325 detect;
764 1326
765 my $class = shift; 1327 my $class = shift;
766 $class->$func (@_); 1328 $class->$func (@_);
767} 1329}
768 1330
1331# utility function to dup a filehandle. this is used by many backends
1332# to support binding more than one watcher per filehandle (they usually
1333# allow only one watcher per fd, so we dup it to get a different one).
1334sub _dupfh($$;$$) {
1335 my ($poll, $fh, $r, $w) = @_;
1336
1337 # cygwin requires the fh mode to be matching, unix doesn't
1338 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1339
1340 open my $fh2, $mode, $fh
1341 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1342
1343 # we assume CLOEXEC is already set by perl in all important cases
1344
1345 ($fh2, $rw)
1346}
1347
1348=head1 SIMPLIFIED AE API
1349
1350Starting with version 5.0, AnyEvent officially supports a second, much
1351simpler, API that is designed to reduce the calling, typing and memory
1352overhead by using function call syntax and a fixed number of parameters.
1353
1354See the L<AE> manpage for details.
1355
1356=cut
1357
1358package AE;
1359
1360our $VERSION = $AnyEvent::VERSION;
1361
1362# fall back to the main API by default - backends and AnyEvent::Base
1363# implementations can overwrite these.
1364
1365sub io($$$) {
1366 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1367}
1368
1369sub timer($$$) {
1370 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1371}
1372
1373sub signal($$) {
1374 AnyEvent->signal (signal => $_[0], cb => $_[1])
1375}
1376
1377sub child($$) {
1378 AnyEvent->child (pid => $_[0], cb => $_[1])
1379}
1380
1381sub idle($) {
1382 AnyEvent->idle (cb => $_[0])
1383}
1384
1385sub cv(;&) {
1386 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1387}
1388
1389sub now() {
1390 AnyEvent->now
1391}
1392
1393sub now_update() {
1394 AnyEvent->now_update
1395}
1396
1397sub time() {
1398 AnyEvent->time
1399}
1400
769package AnyEvent::Base; 1401package AnyEvent::Base;
770 1402
1403# default implementations for many methods
1404
1405sub time {
1406 eval q{ # poor man's autoloading {}
1407 # probe for availability of Time::HiRes
1408 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1409 warn "AnyEvent: using Time::HiRes for sub-second timing accuracy.\n" if $VERBOSE >= 8;
1410 *AE::time = \&Time::HiRes::time;
1411 # if (eval "use POSIX (); (POSIX::times())...
1412 } else {
1413 warn "AnyEvent: using built-in time(), WARNING, no sub-second resolution!\n" if $VERBOSE;
1414 *AE::time = sub (){ time }; # epic fail
1415 }
1416
1417 *time = sub { AE::time }; # different prototypes
1418 };
1419 die if $@;
1420
1421 &time
1422}
1423
1424*now = \&time;
1425
1426sub now_update { }
1427
1428sub _poll {
1429 Carp::croak "$AnyEvent::MODEL does not support blocking waits. Caught";
1430}
1431
771# default implementation for ->condvar, ->wait, ->broadcast 1432# default implementation for ->condvar
1433# in fact,t he default should not be overwritten
772 1434
773sub condvar { 1435sub condvar {
774 bless \my $flag, "AnyEvent::Base::CondVar" 1436 eval q{ # poor man's autoloading {}
775} 1437 *condvar = sub {
1438 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1439 };
776 1440
777sub AnyEvent::Base::CondVar::broadcast { 1441 *AE::cv = sub (;&) {
778 ${$_[0]}++; 1442 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
779} 1443 };
1444 };
1445 die if $@;
780 1446
781sub AnyEvent::Base::CondVar::wait { 1447 &condvar
782 AnyEvent->one_event while !${$_[0]};
783} 1448}
784 1449
785# default implementation for ->signal 1450# default implementation for ->signal
786 1451
787our %SIG_CB; 1452our $HAVE_ASYNC_INTERRUPT;
1453
1454sub _have_async_interrupt() {
1455 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1456 && eval "use Async::Interrupt 1.02 (); 1")
1457 unless defined $HAVE_ASYNC_INTERRUPT;
1458
1459 $HAVE_ASYNC_INTERRUPT
1460}
1461
1462our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1463our (%SIG_ASY, %SIG_ASY_W);
1464our ($SIG_COUNT, $SIG_TW);
1465
1466# install a dummy wakeup watcher to reduce signal catching latency
1467# used by Impls
1468sub _sig_add() {
1469 unless ($SIG_COUNT++) {
1470 # try to align timer on a full-second boundary, if possible
1471 my $NOW = AE::now;
1472
1473 $SIG_TW = AE::timer
1474 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1475 $MAX_SIGNAL_LATENCY,
1476 sub { } # just for the PERL_ASYNC_CHECK
1477 ;
1478 }
1479}
1480
1481sub _sig_del {
1482 undef $SIG_TW
1483 unless --$SIG_COUNT;
1484}
1485
1486our $_sig_name_init; $_sig_name_init = sub {
1487 eval q{ # poor man's autoloading {}
1488 undef $_sig_name_init;
1489
1490 if (_have_async_interrupt) {
1491 *sig2num = \&Async::Interrupt::sig2num;
1492 *sig2name = \&Async::Interrupt::sig2name;
1493 } else {
1494 require Config;
1495
1496 my %signame2num;
1497 @signame2num{ split ' ', $Config::Config{sig_name} }
1498 = split ' ', $Config::Config{sig_num};
1499
1500 my @signum2name;
1501 @signum2name[values %signame2num] = keys %signame2num;
1502
1503 *sig2num = sub($) {
1504 $_[0] > 0 ? shift : $signame2num{+shift}
1505 };
1506 *sig2name = sub ($) {
1507 $_[0] > 0 ? $signum2name[+shift] : shift
1508 };
1509 }
1510 };
1511 die if $@;
1512};
1513
1514sub sig2num ($) { &$_sig_name_init; &sig2num }
1515sub sig2name($) { &$_sig_name_init; &sig2name }
788 1516
789sub signal { 1517sub signal {
1518 eval q{ # poor man's autoloading {}
1519 # probe for availability of Async::Interrupt
1520 if (_have_async_interrupt) {
1521 warn "AnyEvent: using Async::Interrupt for race-free signal handling.\n" if $VERBOSE >= 8;
1522
1523 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1524 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1525
1526 } else {
1527 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8;
1528
1529 if (AnyEvent::WIN32) {
1530 require AnyEvent::Util;
1531
1532 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1533 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1534 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1535 } else {
1536 pipe $SIGPIPE_R, $SIGPIPE_W;
1537 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1538 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1539
1540 # not strictly required, as $^F is normally 2, but let's make sure...
1541 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1542 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1543 }
1544
1545 $SIGPIPE_R
1546 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1547
1548 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1549 }
1550
1551 *signal = $HAVE_ASYNC_INTERRUPT
1552 ? sub {
790 my (undef, %arg) = @_; 1553 my (undef, %arg) = @_;
791 1554
1555 # async::interrupt
792 my $signal = uc $arg{signal} 1556 my $signal = sig2num $arg{signal};
793 or Carp::croak "required option 'signal' is missing";
794
795 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1557 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1558
1559 $SIG_ASY{$signal} ||= new Async::Interrupt
1560 cb => sub { undef $SIG_EV{$signal} },
1561 signal => $signal,
1562 pipe => [$SIGPIPE_R->filenos],
1563 pipe_autodrain => 0,
1564 ;
1565
1566 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1567 }
1568 : sub {
1569 my (undef, %arg) = @_;
1570
1571 # pure perl
1572 my $signal = sig2name $arg{signal};
1573 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1574
796 $SIG{$signal} ||= sub { 1575 $SIG{$signal} ||= sub {
1576 local $!;
1577 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1578 undef $SIG_EV{$signal};
1579 };
1580
1581 # can't do signal processing without introducing races in pure perl,
1582 # so limit the signal latency.
1583 _sig_add;
1584
1585 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1586 }
1587 ;
1588
1589 *AnyEvent::Base::signal::DESTROY = sub {
1590 my ($signal, $cb) = @{$_[0]};
1591
1592 _sig_del;
1593
1594 delete $SIG_CB{$signal}{$cb};
1595
1596 $HAVE_ASYNC_INTERRUPT
1597 ? delete $SIG_ASY{$signal}
1598 : # delete doesn't work with older perls - they then
1599 # print weird messages, or just unconditionally exit
1600 # instead of getting the default action.
1601 undef $SIG{$signal}
1602 unless keys %{ $SIG_CB{$signal} };
1603 };
1604
1605 *_signal_exec = sub {
1606 $HAVE_ASYNC_INTERRUPT
1607 ? $SIGPIPE_R->drain
1608 : sysread $SIGPIPE_R, (my $dummy), 9;
1609
1610 while (%SIG_EV) {
1611 for (keys %SIG_EV) {
1612 delete $SIG_EV{$_};
797 $_->() for values %{ $SIG_CB{$signal} || {} }; 1613 $_->() for values %{ $SIG_CB{$_} || {} };
1614 }
1615 }
1616 };
798 }; 1617 };
1618 die if $@;
799 1619
800 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1620 &signal
801}
802
803sub AnyEvent::Base::Signal::DESTROY {
804 my ($signal, $cb) = @{$_[0]};
805
806 delete $SIG_CB{$signal}{$cb};
807
808 $SIG{$signal} = 'DEFAULT' unless keys %{ $SIG_CB{$signal} };
809} 1621}
810 1622
811# default implementation for ->child 1623# default implementation for ->child
812 1624
813our %PID_CB; 1625our %PID_CB;
814our $CHLD_W; 1626our $CHLD_W;
815our $CHLD_DELAY_W; 1627our $CHLD_DELAY_W;
816our $PID_IDLE;
817our $WNOHANG;
818 1628
819sub _child_wait { 1629# used by many Impl's
820 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1630sub _emit_childstatus($$) {
1631 my (undef, $rpid, $rstatus) = @_;
1632
1633 $_->($rpid, $rstatus)
821 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1634 for values %{ $PID_CB{$rpid} || {} },
822 (values %{ $PID_CB{0} || {} }); 1635 values %{ $PID_CB{0} || {} };
1636}
1637
1638sub child {
1639 eval q{ # poor man's autoloading {}
1640 *_sigchld = sub {
1641 my $pid;
1642
1643 AnyEvent->_emit_childstatus ($pid, $?)
1644 while ($pid = waitpid -1, WNOHANG) > 0;
1645 };
1646
1647 *child = sub {
1648 my (undef, %arg) = @_;
1649
1650 my $pid = $arg{pid};
1651 my $cb = $arg{cb};
1652
1653 $PID_CB{$pid}{$cb+0} = $cb;
1654
1655 unless ($CHLD_W) {
1656 $CHLD_W = AE::signal CHLD => \&_sigchld;
1657 # child could be a zombie already, so make at least one round
1658 &_sigchld;
1659 }
1660
1661 bless [$pid, $cb+0], "AnyEvent::Base::child"
1662 };
1663
1664 *AnyEvent::Base::child::DESTROY = sub {
1665 my ($pid, $icb) = @{$_[0]};
1666
1667 delete $PID_CB{$pid}{$icb};
1668 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1669
1670 undef $CHLD_W unless keys %PID_CB;
1671 };
1672 };
1673 die if $@;
1674
1675 &child
1676}
1677
1678# idle emulation is done by simply using a timer, regardless
1679# of whether the process is idle or not, and not letting
1680# the callback use more than 50% of the time.
1681sub idle {
1682 eval q{ # poor man's autoloading {}
1683 *idle = sub {
1684 my (undef, %arg) = @_;
1685
1686 my ($cb, $w, $rcb) = $arg{cb};
1687
1688 $rcb = sub {
1689 if ($cb) {
1690 $w = _time;
1691 &$cb;
1692 $w = _time - $w;
1693
1694 # never use more then 50% of the time for the idle watcher,
1695 # within some limits
1696 $w = 0.0001 if $w < 0.0001;
1697 $w = 5 if $w > 5;
1698
1699 $w = AE::timer $w, 0, $rcb;
1700 } else {
1701 # clean up...
1702 undef $w;
1703 undef $rcb;
1704 }
1705 };
1706
1707 $w = AE::timer 0.05, 0, $rcb;
1708
1709 bless \\$cb, "AnyEvent::Base::idle"
1710 };
1711
1712 *AnyEvent::Base::idle::DESTROY = sub {
1713 undef $${$_[0]};
1714 };
1715 };
1716 die if $@;
1717
1718 &idle
1719}
1720
1721package AnyEvent::CondVar;
1722
1723our @ISA = AnyEvent::CondVar::Base::;
1724
1725# only to be used for subclassing
1726sub new {
1727 my $class = shift;
1728 bless AnyEvent->condvar (@_), $class
1729}
1730
1731package AnyEvent::CondVar::Base;
1732
1733#use overload
1734# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1735# fallback => 1;
1736
1737# save 300+ kilobytes by dirtily hardcoding overloading
1738${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1739*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1740*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1741${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1742
1743our $WAITING;
1744
1745sub _send {
1746 # nop
1747}
1748
1749sub _wait {
1750 AnyEvent->_poll until $_[0]{_ae_sent};
1751}
1752
1753sub send {
1754 my $cv = shift;
1755 $cv->{_ae_sent} = [@_];
1756 (delete $cv->{_ae_cb})->($cv) if $cv->{_ae_cb};
1757 $cv->_send;
1758}
1759
1760sub croak {
1761 $_[0]{_ae_croak} = $_[1];
1762 $_[0]->send;
1763}
1764
1765sub ready {
1766 $_[0]{_ae_sent}
1767}
1768
1769sub recv {
1770 unless ($_[0]{_ae_sent}) {
1771 $WAITING
1772 and Carp::croak "AnyEvent::CondVar: recursive blocking wait attempted";
1773
1774 local $WAITING = 1;
1775 $_[0]->_wait;
823 } 1776 }
824 1777
825 undef $PID_IDLE; 1778 $_[0]{_ae_croak}
826} 1779 and Carp::croak $_[0]{_ae_croak};
827 1780
828sub _sigchld { 1781 wantarray
829 # make sure we deliver these changes "synchronous" with the event loop. 1782 ? @{ $_[0]{_ae_sent} }
830 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub { 1783 : $_[0]{_ae_sent}[0]
831 undef $CHLD_DELAY_W;
832 &_child_wait;
833 });
834} 1784}
835 1785
836sub child { 1786sub cb {
837 my (undef, %arg) = @_; 1787 my $cv = shift;
838 1788
839 defined (my $pid = $arg{pid} + 0) 1789 @_
840 or Carp::croak "required option 'pid' is missing"; 1790 and $cv->{_ae_cb} = shift
1791 and $cv->{_ae_sent}
1792 and (delete $cv->{_ae_cb})->($cv);
841 1793
842 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1794 $cv->{_ae_cb}
843
844 unless ($WNOHANG) {
845 $WNOHANG = eval { require POSIX; &POSIX::WNOHANG } || 1;
846 }
847
848 unless ($CHLD_W) {
849 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld);
850 # child could be a zombie already, so make at least one round
851 &_sigchld;
852 }
853
854 bless [$pid, $arg{cb}], "AnyEvent::Base::Child"
855} 1795}
856 1796
857sub AnyEvent::Base::Child::DESTROY { 1797sub begin {
858 my ($pid, $cb) = @{$_[0]}; 1798 ++$_[0]{_ae_counter};
859 1799 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
860 delete $PID_CB{$pid}{$cb};
861 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
862
863 undef $CHLD_W unless keys %PID_CB;
864} 1800}
1801
1802sub end {
1803 return if --$_[0]{_ae_counter};
1804 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } };
1805}
1806
1807# undocumented/compatibility with pre-3.4
1808*broadcast = \&send;
1809*wait = \&recv;
1810
1811=head1 ERROR AND EXCEPTION HANDLING
1812
1813In general, AnyEvent does not do any error handling - it relies on the
1814caller to do that if required. The L<AnyEvent::Strict> module (see also
1815the C<PERL_ANYEVENT_STRICT> environment variable, below) provides strict
1816checking of all AnyEvent methods, however, which is highly useful during
1817development.
1818
1819As for exception handling (i.e. runtime errors and exceptions thrown while
1820executing a callback), this is not only highly event-loop specific, but
1821also not in any way wrapped by this module, as this is the job of the main
1822program.
1823
1824The pure perl event loop simply re-throws the exception (usually
1825within C<< condvar->recv >>), the L<Event> and L<EV> modules call C<<
1826$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
1827so on.
1828
1829=head1 ENVIRONMENT VARIABLES
1830
1831The following environment variables are used by this module or its
1832submodules.
1833
1834Note that AnyEvent will remove I<all> environment variables starting with
1835C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
1836enabled.
1837
1838=over 4
1839
1840=item C<PERL_ANYEVENT_VERBOSE>
1841
1842By default, AnyEvent will be completely silent except in fatal
1843conditions. You can set this environment variable to make AnyEvent more
1844talkative.
1845
1846When set to C<1> or higher, causes AnyEvent to warn about unexpected
1847conditions, such as not being able to load the event model specified by
1848C<PERL_ANYEVENT_MODEL>.
1849
1850When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1851model it chooses.
1852
1853When set to C<8> or higher, then AnyEvent will report extra information on
1854which optional modules it loads and how it implements certain features.
1855
1856=item C<PERL_ANYEVENT_STRICT>
1857
1858AnyEvent does not do much argument checking by default, as thorough
1859argument checking is very costly. Setting this variable to a true value
1860will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1861check the arguments passed to most method calls. If it finds any problems,
1862it will croak.
1863
1864In other words, enables "strict" mode.
1865
1866Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
1867>>, it is definitely recommended to keep it off in production. Keeping
1868C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
1869can be very useful, however.
1870
1871=item C<PERL_ANYEVENT_MODEL>
1872
1873This can be used to specify the event model to be used by AnyEvent, before
1874auto detection and -probing kicks in. It must be a string consisting
1875entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1876and the resulting module name is loaded and if the load was successful,
1877used as event model. If it fails to load AnyEvent will proceed with
1878auto detection and -probing.
1879
1880This functionality might change in future versions.
1881
1882For example, to force the pure perl model (L<AnyEvent::Loop::Perl>) you
1883could start your program like this:
1884
1885 PERL_ANYEVENT_MODEL=Perl perl ...
1886
1887=item C<PERL_ANYEVENT_PROTOCOLS>
1888
1889Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1890for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1891of auto probing).
1892
1893Must be set to a comma-separated list of protocols or address families,
1894current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1895used, and preference will be given to protocols mentioned earlier in the
1896list.
1897
1898This variable can effectively be used for denial-of-service attacks
1899against local programs (e.g. when setuid), although the impact is likely
1900small, as the program has to handle conenction and other failures anyways.
1901
1902Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1903but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1904- only support IPv4, never try to resolve or contact IPv6
1905addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1906IPv6, but prefer IPv6 over IPv4.
1907
1908=item C<PERL_ANYEVENT_EDNS0>
1909
1910Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1911for DNS. This extension is generally useful to reduce DNS traffic, but
1912some (broken) firewalls drop such DNS packets, which is why it is off by
1913default.
1914
1915Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1916EDNS0 in its DNS requests.
1917
1918=item C<PERL_ANYEVENT_MAX_FORKS>
1919
1920The maximum number of child processes that C<AnyEvent::Util::fork_call>
1921will create in parallel.
1922
1923=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
1924
1925The default value for the C<max_outstanding> parameter for the default DNS
1926resolver - this is the maximum number of parallel DNS requests that are
1927sent to the DNS server.
1928
1929=item C<PERL_ANYEVENT_RESOLV_CONF>
1930
1931The file to use instead of F</etc/resolv.conf> (or OS-specific
1932configuration) in the default resolver. When set to the empty string, no
1933default config will be used.
1934
1935=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
1936
1937When neither C<ca_file> nor C<ca_path> was specified during
1938L<AnyEvent::TLS> context creation, and either of these environment
1939variables exist, they will be used to specify CA certificate locations
1940instead of a system-dependent default.
1941
1942=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
1943
1944When these are set to C<1>, then the respective modules are not
1945loaded. Mostly good for testing AnyEvent itself.
1946
1947=back
865 1948
866=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 1949=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
867 1950
868This is an advanced topic that you do not normally need to use AnyEvent in 1951This is an advanced topic that you do not normally need to use AnyEvent in
869a module. This section is only of use to event loop authors who want to 1952a module. This section is only of use to event loop authors who want to
903 1986
904I<rxvt-unicode> also cheats a bit by not providing blocking access to 1987I<rxvt-unicode> also cheats a bit by not providing blocking access to
905condition variables: code blocking while waiting for a condition will 1988condition variables: code blocking while waiting for a condition will
906C<die>. This still works with most modules/usages, and blocking calls must 1989C<die>. This still works with most modules/usages, and blocking calls must
907not be done in an interactive application, so it makes sense. 1990not be done in an interactive application, so it makes sense.
908
909=head1 ENVIRONMENT VARIABLES
910
911The following environment variables are used by this module:
912
913=over 4
914
915=item C<PERL_ANYEVENT_VERBOSE>
916
917By default, AnyEvent will be completely silent except in fatal
918conditions. You can set this environment variable to make AnyEvent more
919talkative.
920
921When set to C<1> or higher, causes AnyEvent to warn about unexpected
922conditions, such as not being able to load the event model specified by
923C<PERL_ANYEVENT_MODEL>.
924
925When set to C<2> or higher, cause AnyEvent to report to STDERR which event
926model it chooses.
927
928=item C<PERL_ANYEVENT_MODEL>
929
930This can be used to specify the event model to be used by AnyEvent, before
931autodetection and -probing kicks in. It must be a string consisting
932entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
933and the resulting module name is loaded and if the load was successful,
934used as event model. If it fails to load AnyEvent will proceed with
935autodetection and -probing.
936
937This functionality might change in future versions.
938
939For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
940could start your program like this:
941
942 PERL_ANYEVENT_MODEL=Perl perl ...
943
944=back
945 1991
946=head1 EXAMPLE PROGRAM 1992=head1 EXAMPLE PROGRAM
947 1993
948The following program uses an I/O watcher to read data from STDIN, a timer 1994The following program uses an I/O watcher to read data from STDIN, a timer
949to display a message once per second, and a condition variable to quit the 1995to display a message once per second, and a condition variable to quit the
958 poll => 'r', 2004 poll => 'r',
959 cb => sub { 2005 cb => sub {
960 warn "io event <$_[0]>\n"; # will always output <r> 2006 warn "io event <$_[0]>\n"; # will always output <r>
961 chomp (my $input = <STDIN>); # read a line 2007 chomp (my $input = <STDIN>); # read a line
962 warn "read: $input\n"; # output what has been read 2008 warn "read: $input\n"; # output what has been read
963 $cv->broadcast if $input =~ /^q/i; # quit program if /^q/i 2009 $cv->send if $input =~ /^q/i; # quit program if /^q/i
964 }, 2010 },
965 ); 2011 );
966 2012
967 my $time_watcher; # can only be used once
968
969 sub new_timer {
970 $timer = AnyEvent->timer (after => 1, cb => sub { 2013 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
971 warn "timeout\n"; # print 'timeout' about every second 2014 warn "timeout\n"; # print 'timeout' at most every second
972 &new_timer; # and restart the time
973 }); 2015 });
974 }
975 2016
976 new_timer; # create first timer
977
978 $cv->wait; # wait until user enters /^q/i 2017 $cv->recv; # wait until user enters /^q/i
979 2018
980=head1 REAL-WORLD EXAMPLE 2019=head1 REAL-WORLD EXAMPLE
981 2020
982Consider the L<Net::FCP> module. It features (among others) the following 2021Consider the L<Net::FCP> module. It features (among others) the following
983API calls, which are to freenet what HTTP GET requests are to http: 2022API calls, which are to freenet what HTTP GET requests are to http:
1033 syswrite $txn->{fh}, $txn->{request} 2072 syswrite $txn->{fh}, $txn->{request}
1034 or die "connection or write error"; 2073 or die "connection or write error";
1035 $txn->{w} = AnyEvent->io (fh => $txn->{fh}, poll => 'r', cb => sub { $txn->fh_ready_r }); 2074 $txn->{w} = AnyEvent->io (fh => $txn->{fh}, poll => 'r', cb => sub { $txn->fh_ready_r });
1036 2075
1037Again, C<fh_ready_r> waits till all data has arrived, and then stores the 2076Again, C<fh_ready_r> waits till all data has arrived, and then stores the
1038result and signals any possible waiters that the request ahs finished: 2077result and signals any possible waiters that the request has finished:
1039 2078
1040 sysread $txn->{fh}, $txn->{buf}, length $txn->{$buf}; 2079 sysread $txn->{fh}, $txn->{buf}, length $txn->{$buf};
1041 2080
1042 if (end-of-file or data complete) { 2081 if (end-of-file or data complete) {
1043 $txn->{result} = $txn->{buf}; 2082 $txn->{result} = $txn->{buf};
1044 $txn->{finished}->broadcast; 2083 $txn->{finished}->send;
1045 $txb->{cb}->($txn) of $txn->{cb}; # also call callback 2084 $txb->{cb}->($txn) of $txn->{cb}; # also call callback
1046 } 2085 }
1047 2086
1048The C<result> method, finally, just waits for the finished signal (if the 2087The C<result> method, finally, just waits for the finished signal (if the
1049request was already finished, it doesn't wait, of course, and returns the 2088request was already finished, it doesn't wait, of course, and returns the
1050data: 2089data:
1051 2090
1052 $txn->{finished}->wait; 2091 $txn->{finished}->recv;
1053 return $txn->{result}; 2092 return $txn->{result};
1054 2093
1055The actual code goes further and collects all errors (C<die>s, exceptions) 2094The actual code goes further and collects all errors (C<die>s, exceptions)
1056that occured during request processing. The C<result> method detects 2095that occurred during request processing. The C<result> method detects
1057whether an exception as thrown (it is stored inside the $txn object) 2096whether an exception as thrown (it is stored inside the $txn object)
1058and just throws the exception, which means connection errors and other 2097and just throws the exception, which means connection errors and other
1059problems get reported tot he code that tries to use the result, not in a 2098problems get reported to the code that tries to use the result, not in a
1060random callback. 2099random callback.
1061 2100
1062All of this enables the following usage styles: 2101All of this enables the following usage styles:
1063 2102
10641. Blocking: 21031. Blocking:
1092 2131
1093 my $quit = AnyEvent->condvar; 2132 my $quit = AnyEvent->condvar;
1094 2133
1095 $fcp->txn_client_get ($url)->cb (sub { 2134 $fcp->txn_client_get ($url)->cb (sub {
1096 ... 2135 ...
1097 $quit->broadcast; 2136 $quit->send;
1098 }); 2137 });
1099 2138
1100 $quit->wait; 2139 $quit->recv;
1101 2140
1102 2141
1103=head1 BENCHMARKS 2142=head1 BENCHMARKS
1104 2143
1105To give you an idea of the performance and overheads that AnyEvent adds 2144To give you an idea of the performance and overheads that AnyEvent adds
1107of various event loops I prepared some benchmarks. 2146of various event loops I prepared some benchmarks.
1108 2147
1109=head2 BENCHMARKING ANYEVENT OVERHEAD 2148=head2 BENCHMARKING ANYEVENT OVERHEAD
1110 2149
1111Here is a benchmark of various supported event models used natively and 2150Here is a benchmark of various supported event models used natively and
1112through anyevent. The benchmark creates a lot of timers (with a zero 2151through AnyEvent. The benchmark creates a lot of timers (with a zero
1113timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2152timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1114which it is), lets them fire exactly once and destroys them again. 2153which it is), lets them fire exactly once and destroys them again.
1115 2154
1116Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2155Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1117distribution. 2156distribution. It uses the L<AE> interface, which makes a real difference
2157for the EV and Perl backends only.
1118 2158
1119=head3 Explanation of the columns 2159=head3 Explanation of the columns
1120 2160
1121I<watcher> is the number of event watchers created/destroyed. Since 2161I<watcher> is the number of event watchers created/destroyed. Since
1122different event models feature vastly different performances, each event 2162different event models feature vastly different performances, each event
1134all watchers, to avoid adding memory overhead. That means closure creation 2174all watchers, to avoid adding memory overhead. That means closure creation
1135and memory usage is not included in the figures. 2175and memory usage is not included in the figures.
1136 2176
1137I<invoke> is the time, in microseconds, used to invoke a simple 2177I<invoke> is the time, in microseconds, used to invoke a simple
1138callback. The callback simply counts down a Perl variable and after it was 2178callback. The callback simply counts down a Perl variable and after it was
1139invoked "watcher" times, it would C<< ->broadcast >> a condvar once to 2179invoked "watcher" times, it would C<< ->send >> a condvar once to
1140signal the end of this phase. 2180signal the end of this phase.
1141 2181
1142I<destroy> is the time, in microseconds, that it takes to destroy a single 2182I<destroy> is the time, in microseconds, that it takes to destroy a single
1143watcher. 2183watcher.
1144 2184
1145=head3 Results 2185=head3 Results
1146 2186
1147 name watchers bytes create invoke destroy comment 2187 name watchers bytes create invoke destroy comment
1148 EV/EV 400000 244 0.56 0.46 0.31 EV native interface 2188 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1149 EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers 2189 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1150 CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal 2190 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1151 Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation 2191 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1152 Event/Event 16000 516 31.88 31.30 0.85 Event native interface 2192 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1153 Event/Any 16000 590 35.75 31.42 1.08 Event + AnyEvent watchers 2193 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2194 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2195 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1154 Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour 2196 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1155 Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers 2197 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1156 POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event 2198 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1157 POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select 2199 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1158 2200
1159=head3 Discussion 2201=head3 Discussion
1160 2202
1161The benchmark does I<not> measure scalability of the event loop very 2203The benchmark does I<not> measure scalability of the event loop very
1162well. For example, a select-based event loop (such as the pure perl one) 2204well. For example, a select-based event loop (such as the pure perl one)
1174benchmark machine, handling an event takes roughly 1600 CPU cycles with 2216benchmark machine, handling an event takes roughly 1600 CPU cycles with
1175EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2217EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1176cycles with POE. 2218cycles with POE.
1177 2219
1178C<EV> is the sole leader regarding speed and memory use, which are both 2220C<EV> is the sole leader regarding speed and memory use, which are both
1179maximal/minimal, respectively. Even when going through AnyEvent, it uses 2221maximal/minimal, respectively. When using the L<AE> API there is zero
2222overhead (when going through the AnyEvent API create is about 5-6 times
2223slower, with other times being equal, so still uses far less memory than
1180far less memory than any other event loop and is still faster than Event 2224any other event loop and is still faster than Event natively).
1181natively.
1182 2225
1183The pure perl implementation is hit in a few sweet spots (both the 2226The pure perl implementation is hit in a few sweet spots (both the
1184constant timeout and the use of a single fd hit optimisations in the perl 2227constant timeout and the use of a single fd hit optimisations in the perl
1185interpreter and the backend itself). Nevertheless this shows that it 2228interpreter and the backend itself). Nevertheless this shows that it
1186adds very little overhead in itself. Like any select-based backend its 2229adds very little overhead in itself. Like any select-based backend its
1187performance becomes really bad with lots of file descriptors (and few of 2230performance becomes really bad with lots of file descriptors (and few of
1188them active), of course, but this was not subject of this benchmark. 2231them active), of course, but this was not subject of this benchmark.
1189 2232
1190The C<Event> module has a relatively high setup and callback invocation 2233The C<Event> module has a relatively high setup and callback invocation
1191cost, but overall scores in on the third place. 2234cost, but overall scores in on the third place.
2235
2236C<IO::Async> performs admirably well, about on par with C<Event>, even
2237when using its pure perl backend.
1192 2238
1193C<Glib>'s memory usage is quite a bit higher, but it features a 2239C<Glib>'s memory usage is quite a bit higher, but it features a
1194faster callback invocation and overall ends up in the same class as 2240faster callback invocation and overall ends up in the same class as
1195C<Event>. However, Glib scales extremely badly, doubling the number of 2241C<Event>. However, Glib scales extremely badly, doubling the number of
1196watchers increases the processing time by more than a factor of four, 2242watchers increases the processing time by more than a factor of four,
1240 2286
1241=back 2287=back
1242 2288
1243=head2 BENCHMARKING THE LARGE SERVER CASE 2289=head2 BENCHMARKING THE LARGE SERVER CASE
1244 2290
1245This benchmark atcually benchmarks the event loop itself. It works by 2291This benchmark actually benchmarks the event loop itself. It works by
1246creating a number of "servers": each server consists of a socketpair, a 2292creating a number of "servers": each server consists of a socket pair, a
1247timeout watcher that gets reset on activity (but never fires), and an I/O 2293timeout watcher that gets reset on activity (but never fires), and an I/O
1248watcher waiting for input on one side of the socket. Each time the socket 2294watcher waiting for input on one side of the socket. Each time the socket
1249watcher reads a byte it will write that byte to a random other "server". 2295watcher reads a byte it will write that byte to a random other "server".
1250 2296
1251The effect is that there will be a lot of I/O watchers, only part of which 2297The effect is that there will be a lot of I/O watchers, only part of which
1252are active at any one point (so there is a constant number of active 2298are active at any one point (so there is a constant number of active
1253fds for each loop iterstaion, but which fds these are is random). The 2299fds for each loop iteration, but which fds these are is random). The
1254timeout is reset each time something is read because that reflects how 2300timeout is reset each time something is read because that reflects how
1255most timeouts work (and puts extra pressure on the event loops). 2301most timeouts work (and puts extra pressure on the event loops).
1256 2302
1257In this benchmark, we use 10000 socketpairs (20000 sockets), of which 100 2303In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1258(1%) are active. This mirrors the activity of large servers with many 2304(1%) are active. This mirrors the activity of large servers with many
1259connections, most of which are idle at any one point in time. 2305connections, most of which are idle at any one point in time.
1260 2306
1261Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2307Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1262distribution. 2308distribution. It uses the L<AE> interface, which makes a real difference
2309for the EV and Perl backends only.
1263 2310
1264=head3 Explanation of the columns 2311=head3 Explanation of the columns
1265 2312
1266I<sockets> is the number of sockets, and twice the number of "servers" (as 2313I<sockets> is the number of sockets, and twice the number of "servers" (as
1267each server has a read and write socket end). 2314each server has a read and write socket end).
1268 2315
1269I<create> is the time it takes to create a socketpair (which is 2316I<create> is the time it takes to create a socket pair (which is
1270nontrivial) and two watchers: an I/O watcher and a timeout watcher. 2317nontrivial) and two watchers: an I/O watcher and a timeout watcher.
1271 2318
1272I<request>, the most important value, is the time it takes to handle a 2319I<request>, the most important value, is the time it takes to handle a
1273single "request", that is, reading the token from the pipe and forwarding 2320single "request", that is, reading the token from the pipe and forwarding
1274it to another server. This includes deleting the old timeout and creating 2321it to another server. This includes deleting the old timeout and creating
1275a new one that moves the timeout into the future. 2322a new one that moves the timeout into the future.
1276 2323
1277=head3 Results 2324=head3 Results
1278 2325
1279 name sockets create request 2326 name sockets create request
1280 EV 20000 69.01 11.16 2327 EV 20000 62.66 7.99
1281 Perl 20000 73.32 35.87 2328 Perl 20000 68.32 32.64
1282 Event 20000 212.62 257.32 2329 IOAsync 20000 174.06 101.15 epoll
1283 Glib 20000 651.16 1896.30 2330 IOAsync 20000 174.67 610.84 poll
2331 Event 20000 202.69 242.91
2332 Glib 20000 557.01 1689.52
1284 POE 20000 349.67 12317.24 uses POE::Loop::Event 2333 POE 20000 341.54 12086.32 uses POE::Loop::Event
1285 2334
1286=head3 Discussion 2335=head3 Discussion
1287 2336
1288This benchmark I<does> measure scalability and overall performance of the 2337This benchmark I<does> measure scalability and overall performance of the
1289particular event loop. 2338particular event loop.
1291EV is again fastest. Since it is using epoll on my system, the setup time 2340EV is again fastest. Since it is using epoll on my system, the setup time
1292is relatively high, though. 2341is relatively high, though.
1293 2342
1294Perl surprisingly comes second. It is much faster than the C-based event 2343Perl surprisingly comes second. It is much faster than the C-based event
1295loops Event and Glib. 2344loops Event and Glib.
2345
2346IO::Async performs very well when using its epoll backend, and still quite
2347good compared to Glib when using its pure perl backend.
1296 2348
1297Event suffers from high setup time as well (look at its code and you will 2349Event suffers from high setup time as well (look at its code and you will
1298understand why). Callback invocation also has a high overhead compared to 2350understand why). Callback invocation also has a high overhead compared to
1299the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2351the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1300uses select or poll in basically all documented configurations. 2352uses select or poll in basically all documented configurations.
1347speed most when you have lots of watchers, not when you only have a few of 2399speed most when you have lots of watchers, not when you only have a few of
1348them). 2400them).
1349 2401
1350EV is again fastest. 2402EV is again fastest.
1351 2403
1352Perl again comes second. It is noticably faster than the C-based event 2404Perl again comes second. It is noticeably faster than the C-based event
1353loops Event and Glib, although the difference is too small to really 2405loops Event and Glib, although the difference is too small to really
1354matter. 2406matter.
1355 2407
1356POE also performs much better in this case, but is is still far behind the 2408POE also performs much better in this case, but is is still far behind the
1357others. 2409others.
1363=item * C-based event loops perform very well with small number of 2415=item * C-based event loops perform very well with small number of
1364watchers, as the management overhead dominates. 2416watchers, as the management overhead dominates.
1365 2417
1366=back 2418=back
1367 2419
2420=head2 THE IO::Lambda BENCHMARK
2421
2422Recently I was told about the benchmark in the IO::Lambda manpage, which
2423could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2424simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2425shouldn't come as a surprise to anybody). As such, the benchmark is
2426fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2427very optimal. But how would AnyEvent compare when used without the extra
2428baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2429
2430The benchmark itself creates an echo-server, and then, for 500 times,
2431connects to the echo server, sends a line, waits for the reply, and then
2432creates the next connection. This is a rather bad benchmark, as it doesn't
2433test the efficiency of the framework or much non-blocking I/O, but it is a
2434benchmark nevertheless.
2435
2436 name runtime
2437 Lambda/select 0.330 sec
2438 + optimized 0.122 sec
2439 Lambda/AnyEvent 0.327 sec
2440 + optimized 0.138 sec
2441 Raw sockets/select 0.077 sec
2442 POE/select, components 0.662 sec
2443 POE/select, raw sockets 0.226 sec
2444 POE/select, optimized 0.404 sec
2445
2446 AnyEvent/select/nb 0.085 sec
2447 AnyEvent/EV/nb 0.068 sec
2448 +state machine 0.134 sec
2449
2450The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2451benchmarks actually make blocking connects and use 100% blocking I/O,
2452defeating the purpose of an event-based solution. All of the newly
2453written AnyEvent benchmarks use 100% non-blocking connects (using
2454AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2455resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2456generally require a lot more bookkeeping and event handling than blocking
2457connects (which involve a single syscall only).
2458
2459The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2460offers similar expressive power as POE and IO::Lambda, using conventional
2461Perl syntax. This means that both the echo server and the client are 100%
2462non-blocking, further placing it at a disadvantage.
2463
2464As you can see, the AnyEvent + EV combination even beats the
2465hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2466backend easily beats IO::Lambda and POE.
2467
2468And even the 100% non-blocking version written using the high-level (and
2469slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2470higher level ("unoptimised") abstractions by a large margin, even though
2471it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2472
2473The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2474F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2475part of the IO::Lambda distribution and were used without any changes.
2476
2477
2478=head1 SIGNALS
2479
2480AnyEvent currently installs handlers for these signals:
2481
2482=over 4
2483
2484=item SIGCHLD
2485
2486A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
2487emulation for event loops that do not support them natively. Also, some
2488event loops install a similar handler.
2489
2490Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2491AnyEvent will reset it to default, to avoid losing child exit statuses.
2492
2493=item SIGPIPE
2494
2495A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
2496when AnyEvent gets loaded.
2497
2498The rationale for this is that AnyEvent users usually do not really depend
2499on SIGPIPE delivery (which is purely an optimisation for shell use, or
2500badly-written programs), but C<SIGPIPE> can cause spurious and rare
2501program exits as a lot of people do not expect C<SIGPIPE> when writing to
2502some random socket.
2503
2504The rationale for installing a no-op handler as opposed to ignoring it is
2505that this way, the handler will be restored to defaults on exec.
2506
2507Feel free to install your own handler, or reset it to defaults.
2508
2509=back
2510
2511=cut
2512
2513undef $SIG{CHLD}
2514 if $SIG{CHLD} eq 'IGNORE';
2515
2516$SIG{PIPE} = sub { }
2517 unless defined $SIG{PIPE};
2518
2519=head1 RECOMMENDED/OPTIONAL MODULES
2520
2521One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2522its built-in modules) are required to use it.
2523
2524That does not mean that AnyEvent won't take advantage of some additional
2525modules if they are installed.
2526
2527This section explains which additional modules will be used, and how they
2528affect AnyEvent's operation.
2529
2530=over 4
2531
2532=item L<Async::Interrupt>
2533
2534This slightly arcane module is used to implement fast signal handling: To
2535my knowledge, there is no way to do completely race-free and quick
2536signal handling in pure perl. To ensure that signals still get
2537delivered, AnyEvent will start an interval timer to wake up perl (and
2538catch the signals) with some delay (default is 10 seconds, look for
2539C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2540
2541If this module is available, then it will be used to implement signal
2542catching, which means that signals will not be delayed, and the event loop
2543will not be interrupted regularly, which is more efficient (and good for
2544battery life on laptops).
2545
2546This affects not just the pure-perl event loop, but also other event loops
2547that have no signal handling on their own (e.g. Glib, Tk, Qt).
2548
2549Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2550and either employ their own workarounds (POE) or use AnyEvent's workaround
2551(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2552does nothing for those backends.
2553
2554=item L<EV>
2555
2556This module isn't really "optional", as it is simply one of the backend
2557event loops that AnyEvent can use. However, it is simply the best event
2558loop available in terms of features, speed and stability: It supports
2559the AnyEvent API optimally, implements all the watcher types in XS, does
2560automatic timer adjustments even when no monotonic clock is available,
2561can take avdantage of advanced kernel interfaces such as C<epoll> and
2562C<kqueue>, and is the fastest backend I<by far>. You can even embed
2563L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2564
2565If you only use backends that rely on another event loop (e.g. C<Tk>),
2566then this module will do nothing for you.
2567
2568=item L<Guard>
2569
2570The guard module, when used, will be used to implement
2571C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2572lot less memory), but otherwise doesn't affect guard operation much. It is
2573purely used for performance.
2574
2575=item L<JSON> and L<JSON::XS>
2576
2577One of these modules is required when you want to read or write JSON data
2578via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2579advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2580
2581=item L<Net::SSLeay>
2582
2583Implementing TLS/SSL in Perl is certainly interesting, but not very
2584worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2585the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2586
2587=item L<Time::HiRes>
2588
2589This module is part of perl since release 5.008. It will be used when the
2590chosen event library does not come with a timing source of its own. The
2591pure-perl event loop (L<AnyEvent::Loop>) will additionally load it to
2592try to use a monotonic clock for timing stability.
2593
2594=back
2595
1368 2596
1369=head1 FORK 2597=head1 FORK
1370 2598
1371Most event libraries are not fork-safe. The ones who are usually are 2599Most event libraries are not fork-safe. The ones who are usually are
1372because they rely on inefficient but fork-safe C<select> or C<poll> 2600because they rely on inefficient but fork-safe C<select> or C<poll> calls
1373calls. Only L<EV> is fully fork-aware. 2601- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2602are usually badly thought-out hacks that are incompatible with fork in
2603one way or another. Only L<EV> is fully fork-aware and ensures that you
2604continue event-processing in both parent and child (or both, if you know
2605what you are doing).
2606
2607This means that, in general, you cannot fork and do event processing in
2608the child if the event library was initialised before the fork (which
2609usually happens when the first AnyEvent watcher is created, or the library
2610is loaded).
1374 2611
1375If you have to fork, you must either do so I<before> creating your first 2612If you have to fork, you must either do so I<before> creating your first
1376watcher OR you must not use AnyEvent at all in the child. 2613watcher OR you must not use AnyEvent at all in the child OR you must do
2614something completely out of the scope of AnyEvent.
2615
2616The problem of doing event processing in the parent I<and> the child
2617is much more complicated: even for backends that I<are> fork-aware or
2618fork-safe, their behaviour is not usually what you want: fork clones all
2619watchers, that means all timers, I/O watchers etc. are active in both
2620parent and child, which is almost never what you want. USing C<exec>
2621to start worker children from some kind of manage rprocess is usually
2622preferred, because it is much easier and cleaner, at the expense of having
2623to have another binary.
1377 2624
1378 2625
1379=head1 SECURITY CONSIDERATIONS 2626=head1 SECURITY CONSIDERATIONS
1380 2627
1381AnyEvent can be forced to load any event model via 2628AnyEvent can be forced to load any event model via
1386specified in the variable. 2633specified in the variable.
1387 2634
1388You can make AnyEvent completely ignore this variable by deleting it 2635You can make AnyEvent completely ignore this variable by deleting it
1389before the first watcher gets created, e.g. with a C<BEGIN> block: 2636before the first watcher gets created, e.g. with a C<BEGIN> block:
1390 2637
1391 BEGIN { delete $ENV{PERL_ANYEVENT_MODEL} } 2638 BEGIN { delete $ENV{PERL_ANYEVENT_MODEL} }
1392 2639
1393 use AnyEvent; 2640 use AnyEvent;
1394 2641
1395Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2642Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1396be used to probe what backend is used and gain other information (which is 2643be used to probe what backend is used and gain other information (which is
1397probably even less useful to an attacker than PERL_ANYEVENT_MODEL). 2644probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
2645$ENV{PERL_ANYEVENT_STRICT}.
2646
2647Note that AnyEvent will remove I<all> environment variables starting with
2648C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2649enabled.
2650
2651
2652=head1 BUGS
2653
2654Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
2655to work around. If you suffer from memleaks, first upgrade to Perl 5.10
2656and check wether the leaks still show up. (Perl 5.10.0 has other annoying
2657memleaks, such as leaking on C<map> and C<grep> but it is usually not as
2658pronounced).
1398 2659
1399 2660
1400=head1 SEE ALSO 2661=head1 SEE ALSO
1401 2662
2663Tutorial/Introduction: L<AnyEvent::Intro>.
2664
2665FAQ: L<AnyEvent::FAQ>.
2666
2667Utility functions: L<AnyEvent::Util>.
2668
1402Event modules: L<Coro::EV>, L<EV>, L<EV::Glib>, L<Glib::EV>, 2669Event modules: L<AnyEvent::Loop>, L<EV>, L<EV::Glib>, L<Glib::EV>,
1403L<Coro::Event>, L<Event>, L<Glib::Event>, L<Glib>, L<Coro>, L<Tk>, 2670L<Event>, L<Glib::Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>.
1404L<Event::Lib>, L<Qt>, L<POE>.
1405 2671
1406Implementations: L<AnyEvent::Impl::CoroEV>, L<AnyEvent::Impl::EV>, 2672Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
2673L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
2674L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
1407L<AnyEvent::Impl::CoroEvent>, L<AnyEvent::Impl::Event>, L<AnyEvent::Impl::Glib>, 2675L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>.
1408L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, L<AnyEvent::Impl::EventLib>,
1409L<AnyEvent::Impl::Qt>, L<AnyEvent::Impl::POE>.
1410 2676
2677Non-blocking file handles, sockets, TCP clients and
2678servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
2679
2680Asynchronous DNS: L<AnyEvent::DNS>.
2681
2682Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
2683
1411Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>. 2684Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
2685L<AnyEvent::HTTP>.
1412 2686
1413 2687
1414=head1 AUTHOR 2688=head1 AUTHOR
1415 2689
1416 Marc Lehmann <schmorp@schmorp.de> 2690 Marc Lehmann <schmorp@schmorp.de>
1417 http://home.schmorp.de/ 2691 http://home.schmorp.de/
1418 2692
1419=cut 2693=cut
1420 2694
14211 26951
1422 2696

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines