ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.93 by root, Sat Apr 26 04:19:52 2008 UTC vs.
Revision 1.352 by root, Thu Aug 4 09:14:01 2011 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Coro::EV, Coro::Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt
6and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
15 # file handle or descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
17
18 # one-shot or repeating timers
19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
21
22 print AnyEvent->now; # prints current event loop time
23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
24
25 # POSIX signal
26 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
27
28 # child process exit
29 my $w = AnyEvent->child (pid => $pid, cb => sub {
30 my ($pid, $status) = @_;
12 ... 31 ...
13 }); 32 });
14 33
15 my $w = AnyEvent->timer (after => $seconds, cb => sub { 34 # called when event loop idle (if applicable)
16 ... 35 my $w = AnyEvent->idle (cb => sub { ... });
17 });
18 36
19 my $w = AnyEvent->condvar; # stores whether a condition was flagged 37 my $w = AnyEvent->condvar; # stores whether a condition was flagged
38 $w->send; # wake up current and all future recv's
20 $w->wait; # enters "main loop" till $condvar gets ->broadcast 39 $w->recv; # enters "main loop" till $condvar gets ->send
21 $w->broadcast; # wake up current and all future wait's 40 # use a condvar in callback mode:
41 $w->cb (sub { $_[0]->recv });
42
43=head1 INTRODUCTION/TUTORIAL
44
45This manpage is mainly a reference manual. If you are interested
46in a tutorial or some gentle introduction, have a look at the
47L<AnyEvent::Intro> manpage.
48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
22 58
23=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
24 60
25Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
26nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
27 63
28Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of 64Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of
29policy> and AnyEvent is I<small and efficient>. 65policy> and AnyEvent is I<small and efficient>.
30 66
31First and foremost, I<AnyEvent is not an event model> itself, it only 67First and foremost, I<AnyEvent is not an event model> itself, it only
32interfaces to whatever event model the main program happens to use in a 68interfaces to whatever event model the main program happens to use, in a
33pragmatic way. For event models and certain classes of immortals alike, 69pragmatic way. For event models and certain classes of immortals alike,
34the statement "there can only be one" is a bitter reality: In general, 70the statement "there can only be one" is a bitter reality: In general,
35only one event loop can be active at the same time in a process. AnyEvent 71only one event loop can be active at the same time in a process. AnyEvent
36helps hiding the differences between those event loops. 72cannot change this, but it can hide the differences between those event
73loops.
37 74
38The goal of AnyEvent is to offer module authors the ability to do event 75The goal of AnyEvent is to offer module authors the ability to do event
39programming (waiting for I/O or timer events) without subscribing to a 76programming (waiting for I/O or timer events) without subscribing to a
40religion, a way of living, and most importantly: without forcing your 77religion, a way of living, and most importantly: without forcing your
41module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
42model you use. 79model you use.
43 80
44For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
45actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
46like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
47cannot use anything else, as it is simply incompatible to everything that 84cannot use anything else, as they are simply incompatible to everything
48isn't itself. What's worse, all the potential users of your module are 85that isn't them. What's worse, all the potential users of your
49I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
50 87
51AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
52fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
53with the rest: POE + IO::Async? no go. Tk + Event? no go. Again: if 90with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module
54your module uses one of those, every user of your module has to use it, 91uses one of those, every user of your module has to use it, too. But if
55too. But if your module uses AnyEvent, it works transparently with all 92your module uses AnyEvent, it works transparently with all event models it
56event models it supports (including stuff like POE and IO::Async, as long 93supports (including stuff like IO::Async, as long as those use one of the
57as those use one of the supported event loops. It is trivial to add new 94supported event loops. It is easy to add new event loops to AnyEvent, too,
58event loops to AnyEvent, too, so it is future-proof). 95so it is future-proof).
59 96
60In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
61model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
62modules, you get an enourmous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
63follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
64offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
65technically possible. 102technically possible.
66 103
104Of course, AnyEvent comes with a big (and fully optional!) toolbox
105of useful functionality, such as an asynchronous DNS resolver, 100%
106non-blocking connects (even with TLS/SSL, IPv6 and on broken platforms
107such as Windows) and lots of real-world knowledge and workarounds for
108platform bugs and differences.
109
67Of course, if you want lots of policy (this can arguably be somewhat 110Now, if you I<do want> lots of policy (this can arguably be somewhat
68useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
69model, you should I<not> use this module. 112model, you should I<not> use this module.
70 113
71
72=head1 DESCRIPTION 114=head1 DESCRIPTION
73 115
74L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
75allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
76users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
77peacefully at any one time). 119than one event loop cannot coexist peacefully).
78 120
79The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
80module. 122module.
81 123
82During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
83to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
84following modules is already loaded: L<Coro::EV>, L<Coro::Event>, L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Loop>,
85L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
86L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
87to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
88adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Loop> should always work, so
89be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
90found, AnyEvent will fall back to a pure-perl event loop, which is not
91very efficient, but should work everywhere.
92 132
93Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
94an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
95that model the default. For example: 135that model the default. For example:
96 136
98 use AnyEvent; 138 use AnyEvent;
99 139
100 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
101 141
102The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
103starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
104use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
105 146
106The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called C<AnyEvent::Loop>. Like
107C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148other event modules you can load it explicitly and enjoy the high
108explicitly. 149availability of that event loop :)
109 150
110=head1 WATCHERS 151=head1 WATCHERS
111 152
112AnyEvent has the central concept of a I<watcher>, which is an object that 153AnyEvent has the central concept of a I<watcher>, which is an object that
113stores relevant data for each kind of event you are waiting for, such as 154stores relevant data for each kind of event you are waiting for, such as
114the callback to call, the filehandle to watch, etc. 155the callback to call, the file handle to watch, etc.
115 156
116These watchers are normal Perl objects with normal Perl lifetime. After 157These watchers are normal Perl objects with normal Perl lifetime. After
117creating a watcher it will immediately "watch" for events and invoke the 158creating a watcher it will immediately "watch" for events and invoke the
118callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
119is in control). 160is in control).
120 161
162Note that B<callbacks must not permanently change global variables>
163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
164callbacks must not C<die> >>. The former is good programming practice in
165Perl and the latter stems from the fact that exception handling differs
166widely between event loops.
167
121To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
122variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
123to it). 170to it).
124 171
125All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
126 173
127Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
128example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
129 176
130An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
131 178
132 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
133 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
134 undef $w; 181 undef $w;
135 }); 182 });
136 183
137Note that C<my $w; $w => combination. This is necessary because in Perl, 184Note that C<my $w; $w => combination. This is necessary because in Perl,
138my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
139declared. 186declared.
140 187
141=head2 I/O WATCHERS 188=head2 I/O WATCHERS
142 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
143You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
144with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
145 198
146C<fh> the Perl I<file handle> (I<not> file descriptor) to watch 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
200for events (AnyEvent might or might not keep a reference to this file
201handle). Note that only file handles pointing to things for which
202non-blocking operation makes sense are allowed. This includes sockets,
203most character devices, pipes, fifos and so on, but not for example files
204or block devices.
205
147for events. C<poll> must be a string that is either C<r> or C<w>, 206C<poll> must be a string that is either C<r> or C<w>, which creates a
148which creates a watcher waiting for "r"eadable or "w"ritable events, 207watcher waiting for "r"eadable or "w"ritable events, respectively.
208
149respectively. C<cb> is the callback to invoke each time the file handle 209C<cb> is the callback to invoke each time the file handle becomes ready.
150becomes ready.
151 210
152Although the callback might get passed parameters, their value and 211Although the callback might get passed parameters, their value and
153presence is undefined and you cannot rely on them. Portable AnyEvent 212presence is undefined and you cannot rely on them. Portable AnyEvent
154callbacks cannot use arguments passed to I/O watcher callbacks. 213callbacks cannot use arguments passed to I/O watcher callbacks.
155 214
156The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
157You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
158underlying file descriptor. 217underlying file descriptor.
159 218
160Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
161always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
162handles. 221handles.
163 222
164Example:
165
166 # wait for readability of STDIN, then read a line and disable the watcher 223Example: wait for readability of STDIN, then read a line and disable the
224watcher.
225
167 my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub { 226 my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
168 chomp (my $input = <STDIN>); 227 chomp (my $input = <STDIN>);
169 warn "read: $input\n"; 228 warn "read: $input\n";
170 undef $w; 229 undef $w;
171 }); 230 });
172 231
173=head2 TIME WATCHERS 232=head2 TIME WATCHERS
174 233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
241
175You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
176method with the following mandatory arguments: 243method with the following mandatory arguments:
177 244
178C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
179supported) the callback should be invoked. C<cb> is the callback to invoke 246supported) the callback should be invoked. C<cb> is the callback to invoke
181 248
182Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
183presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
184callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
185 252
186The timer callback will be invoked at most once: if you want a repeating 253The callback will normally be invoked only once. If you specify another
187timer you have to create a new watcher (this is a limitation by both Tk 254parameter, C<interval>, as a strictly positive number (> 0), then the
188and Glib). 255callback will be invoked regularly at that interval (in fractional
256seconds) after the first invocation. If C<interval> is specified with a
257false value, then it is treated as if it were not specified at all.
189 258
190Example: 259The callback will be rescheduled before invoking the callback, but no
260attempt is made to avoid timer drift in most backends, so the interval is
261only approximate.
191 262
192 # fire an event after 7.7 seconds 263Example: fire an event after 7.7 seconds.
264
193 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
194 warn "timeout\n"; 266 warn "timeout\n";
195 }); 267 });
196 268
197 # to cancel the timer: 269 # to cancel the timer:
198 undef $w; 270 undef $w;
199 271
200Example 2:
201
202 # fire an event after 0.5 seconds, then roughly every second 272Example 2: fire an event after 0.5 seconds, then roughly every second.
203 my $w;
204 273
205 my $cb = sub {
206 # cancel the old timer while creating a new one
207 $w = AnyEvent->timer (after => 1, cb => $cb); 274 my $w = AnyEvent->timer (after => 0.5, interval => 1, cb => sub {
275 warn "timeout\n";
208 }; 276 };
209
210 # start the "loop" by creating the first watcher
211 $w = AnyEvent->timer (after => 0.5, cb => $cb);
212 277
213=head3 TIMING ISSUES 278=head3 TIMING ISSUES
214 279
215There are two ways to handle timers: based on real time (relative, "fire 280There are two ways to handle timers: based on real time (relative, "fire
216in 10 seconds") and based on wallclock time (absolute, "fire at 12 281in 10 seconds") and based on wallclock time (absolute, "fire at 12
218 283
219While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
220use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
221"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
222the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
223fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
224 289
225AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
226about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
227on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
228timers. 293timers.
229 294
230AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
231AnyEvent API. 296AnyEvent API.
232 297
298AnyEvent has two additional methods that return the "current time":
299
300=over 4
301
302=item AnyEvent->time
303
304This returns the "current wallclock time" as a fractional number of
305seconds since the Epoch (the same thing as C<time> or C<Time::HiRes::time>
306return, and the result is guaranteed to be compatible with those).
307
308It progresses independently of any event loop processing, i.e. each call
309will check the system clock, which usually gets updated frequently.
310
311=item AnyEvent->now
312
313This also returns the "current wallclock time", but unlike C<time>, above,
314this value might change only once per event loop iteration, depending on
315the event loop (most return the same time as C<time>, above). This is the
316time that AnyEvent's timers get scheduled against.
317
318I<In almost all cases (in all cases if you don't care), this is the
319function to call when you want to know the current time.>
320
321This function is also often faster then C<< AnyEvent->time >>, and
322thus the preferred method if you want some timestamp (for example,
323L<AnyEvent::Handle> uses this to update its activity timeouts).
324
325The rest of this section is only of relevance if you try to be very exact
326with your timing; you can skip it without a bad conscience.
327
328For a practical example of when these times differ, consider L<Event::Lib>
329and L<EV> and the following set-up:
330
331The event loop is running and has just invoked one of your callbacks at
332time=500 (assume no other callbacks delay processing). In your callback,
333you wait a second by executing C<sleep 1> (blocking the process for a
334second) and then (at time=501) you create a relative timer that fires
335after three seconds.
336
337With L<Event::Lib>, C<< AnyEvent->time >> and C<< AnyEvent->now >> will
338both return C<501>, because that is the current time, and the timer will
339be scheduled to fire at time=504 (C<501> + C<3>).
340
341With L<EV>, C<< AnyEvent->time >> returns C<501> (as that is the current
342time), but C<< AnyEvent->now >> returns C<500>, as that is the time the
343last event processing phase started. With L<EV>, your timer gets scheduled
344to run at time=503 (C<500> + C<3>).
345
346In one sense, L<Event::Lib> is more exact, as it uses the current time
347regardless of any delays introduced by event processing. However, most
348callbacks do not expect large delays in processing, so this causes a
349higher drift (and a lot more system calls to get the current time).
350
351In another sense, L<EV> is more exact, as your timer will be scheduled at
352the same time, regardless of how long event processing actually took.
353
354In either case, if you care (and in most cases, you don't), then you
355can get whatever behaviour you want with any event loop, by taking the
356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
357account.
358
359=item AnyEvent->now_update
360
361Some event loops (such as L<EV> or L<AnyEvent::Loop>) cache the current
362time for each loop iteration (see the discussion of L<< AnyEvent->now >>,
363above).
364
365When a callback runs for a long time (or when the process sleeps), then
366this "current" time will differ substantially from the real time, which
367might affect timers and time-outs.
368
369When this is the case, you can call this method, which will update the
370event loop's idea of "current time".
371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
379Note that updating the time I<might> cause some events to be handled.
380
381=back
382
233=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
234 384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
386
235You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
236I<name> without any C<SIG> prefix, C<cb> is the Perl callback to 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
237be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
238 390
239Although the callback might get passed parameters, their value and 391Although the callback might get passed parameters, their value and
240presence is undefined and you cannot rely on them. Portable AnyEvent 392presence is undefined and you cannot rely on them. Portable AnyEvent
241callbacks cannot use arguments passed to signal watcher callbacks. 393callbacks cannot use arguments passed to signal watcher callbacks.
242 394
243Multiple signal occurances can be clumped together into one callback 395Multiple signal occurrences can be clumped together into one callback
244invocation, and callback invocation will be synchronous. synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
245that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
246but it is guarenteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
247 399
248The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
249between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
250 403
251This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
252directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
253 407
254Example: exit on SIGINT 408Example: exit on SIGINT
255 409
256 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
257 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling) or
421"unsafe" (asynchronous) - the former might get delayed indefinitely, the
422latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
432callbacks to signals in a generic way, which is a pity, as you cannot
433do race-free signal handling in perl, requiring C libraries for
434this. AnyEvent will try to do its best, which means in some cases,
435signals will be delayed. The maximum time a signal might be delayed is
436specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
437variable can be changed only before the first signal watcher is created,
438and should be left alone otherwise. This variable determines how often
439AnyEvent polls for signals (in case a wake-up was missed). Higher values
440will cause fewer spurious wake-ups, which is better for power and CPU
441saving.
442
443All these problems can be avoided by installing the optional
444L<Async::Interrupt> module, which works with most event loops. It will not
445work with inherently broken event loops such as L<Event> or L<Event::Lib>
446(and not with L<POE> currently, as POE does its own workaround with
447one-second latency). For those, you just have to suffer the delays.
448
258=head2 CHILD PROCESS WATCHERS 449=head2 CHILD PROCESS WATCHERS
259 450
451 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
452
260You can also watch on a child process exit and catch its exit status. 453You can also watch for a child process exit and catch its exit status.
261 454
262The child process is specified by the C<pid> argument (if set to C<0>, it 455The child process is specified by the C<pid> argument (on some backends,
263watches for any child process exit). The watcher will trigger as often 456using C<0> watches for any child process exit, on others this will
264as status change for the child are received. This works by installing a 457croak). The watcher will be triggered only when the child process has
265signal handler for C<SIGCHLD>. The callback will be called with the pid 458finished and an exit status is available, not on any trace events
266and exit status (as returned by waitpid), so unlike other watcher types, 459(stopped/continued).
267you I<can> rely on child watcher callback arguments. 460
461The callback will be called with the pid and exit status (as returned by
462waitpid), so unlike other watcher types, you I<can> rely on child watcher
463callback arguments.
464
465This watcher type works by installing a signal handler for C<SIGCHLD>,
466and since it cannot be shared, nothing else should use SIGCHLD or reap
467random child processes (waiting for specific child processes, e.g. inside
468C<system>, is just fine).
268 469
269There is a slight catch to child watchers, however: you usually start them 470There is a slight catch to child watchers, however: you usually start them
270I<after> the child process was created, and this means the process could 471I<after> the child process was created, and this means the process could
271have exited already (and no SIGCHLD will be sent anymore). 472have exited already (and no SIGCHLD will be sent anymore).
272 473
273Not all event models handle this correctly (POE doesn't), but even for 474Not all event models handle this correctly (neither POE nor IO::Async do,
475see their AnyEvent::Impl manpages for details), but even for event models
274event models that I<do> handle this correctly, they usually need to be 476that I<do> handle this correctly, they usually need to be loaded before
275loaded before the process exits (i.e. before you fork in the first place). 477the process exits (i.e. before you fork in the first place). AnyEvent's
478pure perl event loop handles all cases correctly regardless of when you
479start the watcher.
276 480
277This means you cannot create a child watcher as the very first thing in an 481This means you cannot create a child watcher as the very first
278AnyEvent program, you I<have> to create at least one watcher before you 482thing in an AnyEvent program, you I<have> to create at least one
279C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 483watcher before you C<fork> the child (alternatively, you can call
484C<AnyEvent::detect>).
485
486As most event loops do not support waiting for child events, they will be
487emulated by AnyEvent in most cases, in which case the latency and race
488problems mentioned in the description of signal watchers apply.
280 489
281Example: fork a process and wait for it 490Example: fork a process and wait for it
282 491
283 my $done = AnyEvent->condvar; 492 my $done = AnyEvent->condvar;
284 493
285 AnyEvent::detect; # force event module to be initialised
286
287 my $pid = fork or exit 5; 494 my $pid = fork or exit 5;
288 495
289 my $w = AnyEvent->child ( 496 my $w = AnyEvent->child (
290 pid => $pid, 497 pid => $pid,
291 cb => sub { 498 cb => sub {
292 my ($pid, $status) = @_; 499 my ($pid, $status) = @_;
293 warn "pid $pid exited with status $status"; 500 warn "pid $pid exited with status $status";
294 $done->broadcast; 501 $done->send;
295 }, 502 },
296 ); 503 );
297 504
298 # do something else, then wait for process exit 505 # do something else, then wait for process exit
299 $done->wait; 506 $done->recv;
507
508=head2 IDLE WATCHERS
509
510 $w = AnyEvent->idle (cb => <callback>);
511
512This will repeatedly invoke the callback after the process becomes idle,
513until either the watcher is destroyed or new events have been detected.
514
515Idle watchers are useful when there is a need to do something, but it
516is not so important (or wise) to do it instantly. The callback will be
517invoked only when there is "nothing better to do", which is usually
518defined as "all outstanding events have been handled and no new events
519have been detected". That means that idle watchers ideally get invoked
520when the event loop has just polled for new events but none have been
521detected. Instead of blocking to wait for more events, the idle watchers
522will be invoked.
523
524Unfortunately, most event loops do not really support idle watchers (only
525EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
526will simply call the callback "from time to time".
527
528Example: read lines from STDIN, but only process them when the
529program is otherwise idle:
530
531 my @lines; # read data
532 my $idle_w;
533 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
534 push @lines, scalar <STDIN>;
535
536 # start an idle watcher, if not already done
537 $idle_w ||= AnyEvent->idle (cb => sub {
538 # handle only one line, when there are lines left
539 if (my $line = shift @lines) {
540 print "handled when idle: $line";
541 } else {
542 # otherwise disable the idle watcher again
543 undef $idle_w;
544 }
545 });
546 });
300 547
301=head2 CONDITION VARIABLES 548=head2 CONDITION VARIABLES
302 549
550 $cv = AnyEvent->condvar;
551
552 $cv->send (<list>);
553 my @res = $cv->recv;
554
555If you are familiar with some event loops you will know that all of them
556require you to run some blocking "loop", "run" or similar function that
557will actively watch for new events and call your callbacks.
558
559AnyEvent is slightly different: it expects somebody else to run the event
560loop and will only block when necessary (usually when told by the user).
561
562The tool to do that is called a "condition variable", so called because
563they represent a condition that must become true.
564
565Now is probably a good time to look at the examples further below.
566
303Condition variables can be created by calling the C<< AnyEvent->condvar >> 567Condition variables can be created by calling the C<< AnyEvent->condvar
304method without any arguments. 568>> method, usually without arguments. The only argument pair allowed is
569C<cb>, which specifies a callback to be called when the condition variable
570becomes true, with the condition variable as the first argument (but not
571the results).
305 572
306A condition variable waits for a condition - precisely that the C<< 573After creation, the condition variable is "false" until it becomes "true"
307->broadcast >> method has been called. 574by calling the C<send> method (or calling the condition variable as if it
575were a callback, read about the caveats in the description for the C<<
576->send >> method).
308 577
309They are very useful to signal that a condition has been fulfilled, for 578Since condition variables are the most complex part of the AnyEvent API, here are
579some different mental models of what they are - pick the ones you can connect to:
580
581=over 4
582
583=item * Condition variables are like callbacks - you can call them (and pass them instead
584of callbacks). Unlike callbacks however, you can also wait for them to be called.
585
586=item * Condition variables are signals - one side can emit or send them,
587the other side can wait for them, or install a handler that is called when
588the signal fires.
589
590=item * Condition variables are like "Merge Points" - points in your program
591where you merge multiple independent results/control flows into one.
592
593=item * Condition variables represent a transaction - functions that start
594some kind of transaction can return them, leaving the caller the choice
595between waiting in a blocking fashion, or setting a callback.
596
597=item * Condition variables represent future values, or promises to deliver
598some result, long before the result is available.
599
600=back
601
602Condition variables are very useful to signal that something has finished,
310example, if you write a module that does asynchronous http requests, 603for example, if you write a module that does asynchronous http requests,
311then a condition variable would be the ideal candidate to signal the 604then a condition variable would be the ideal candidate to signal the
312availability of results. 605availability of results. The user can either act when the callback is
606called or can synchronously C<< ->recv >> for the results.
313 607
314You can also use condition variables to block your main program until 608You can also use them to simulate traditional event loops - for example,
315an event occurs - for example, you could C<< ->wait >> in your main 609you can block your main program until an event occurs - for example, you
316program until the user clicks the Quit button in your app, which would C<< 610could C<< ->recv >> in your main program until the user clicks the Quit
317->broadcast >> the "quit" event. 611button of your app, which would C<< ->send >> the "quit" event.
318 612
319Note that condition variables recurse into the event loop - if you have 613Note that condition variables recurse into the event loop - if you have
320two pirces of code that call C<< ->wait >> in a round-robbin fashion, you 614two pieces of code that call C<< ->recv >> in a round-robin fashion, you
321lose. Therefore, condition variables are good to export to your caller, but 615lose. Therefore, condition variables are good to export to your caller, but
322you should avoid making a blocking wait yourself, at least in callbacks, 616you should avoid making a blocking wait yourself, at least in callbacks,
323as this asks for trouble. 617as this asks for trouble.
324 618
325This object has two methods: 619Condition variables are represented by hash refs in perl, and the keys
620used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
621easy (it is often useful to build your own transaction class on top of
622AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
623its C<new> method in your own C<new> method.
624
625There are two "sides" to a condition variable - the "producer side" which
626eventually calls C<< -> send >>, and the "consumer side", which waits
627for the send to occur.
628
629Example: wait for a timer.
630
631 # condition: "wait till the timer is fired"
632 my $timer_fired = AnyEvent->condvar;
633
634 # create the timer - we could wait for, say
635 # a handle becomign ready, or even an
636 # AnyEvent::HTTP request to finish, but
637 # in this case, we simply use a timer:
638 my $w = AnyEvent->timer (
639 after => 1,
640 cb => sub { $timer_fired->send },
641 );
642
643 # this "blocks" (while handling events) till the callback
644 # calls ->send
645 $timer_fired->recv;
646
647Example: wait for a timer, but take advantage of the fact that condition
648variables are also callable directly.
649
650 my $done = AnyEvent->condvar;
651 my $delay = AnyEvent->timer (after => 5, cb => $done);
652 $done->recv;
653
654Example: Imagine an API that returns a condvar and doesn't support
655callbacks. This is how you make a synchronous call, for example from
656the main program:
657
658 use AnyEvent::CouchDB;
659
660 ...
661
662 my @info = $couchdb->info->recv;
663
664And this is how you would just set a callback to be called whenever the
665results are available:
666
667 $couchdb->info->cb (sub {
668 my @info = $_[0]->recv;
669 });
670
671=head3 METHODS FOR PRODUCERS
672
673These methods should only be used by the producing side, i.e. the
674code/module that eventually sends the signal. Note that it is also
675the producer side which creates the condvar in most cases, but it isn't
676uncommon for the consumer to create it as well.
326 677
327=over 4 678=over 4
328 679
680=item $cv->send (...)
681
682Flag the condition as ready - a running C<< ->recv >> and all further
683calls to C<recv> will (eventually) return after this method has been
684called. If nobody is waiting the send will be remembered.
685
686If a callback has been set on the condition variable, it is called
687immediately from within send.
688
689Any arguments passed to the C<send> call will be returned by all
690future C<< ->recv >> calls.
691
692Condition variables are overloaded so one can call them directly (as if
693they were a code reference). Calling them directly is the same as calling
694C<send>.
695
696=item $cv->croak ($error)
697
698Similar to send, but causes all calls to C<< ->recv >> to invoke
699C<Carp::croak> with the given error message/object/scalar.
700
701This can be used to signal any errors to the condition variable
702user/consumer. Doing it this way instead of calling C<croak> directly
703delays the error detection, but has the overwhelming advantage that it
704diagnoses the error at the place where the result is expected, and not
705deep in some event callback with no connection to the actual code causing
706the problem.
707
708=item $cv->begin ([group callback])
709
329=item $cv->wait 710=item $cv->end
330 711
331Wait (blocking if necessary) until the C<< ->broadcast >> method has been 712These two methods can be used to combine many transactions/events into
332called on c<$cv>, while servicing other watchers normally. 713one. For example, a function that pings many hosts in parallel might want
714to use a condition variable for the whole process.
333 715
716Every call to C<< ->begin >> will increment a counter, and every call to
717C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
718>>, the (last) callback passed to C<begin> will be executed, passing the
719condvar as first argument. That callback is I<supposed> to call C<< ->send
720>>, but that is not required. If no group callback was set, C<send> will
721be called without any arguments.
722
723You can think of C<< $cv->send >> giving you an OR condition (one call
724sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
725condition (all C<begin> calls must be C<end>'ed before the condvar sends).
726
727Let's start with a simple example: you have two I/O watchers (for example,
728STDOUT and STDERR for a program), and you want to wait for both streams to
729close before activating a condvar:
730
731 my $cv = AnyEvent->condvar;
732
733 $cv->begin; # first watcher
734 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
735 defined sysread $fh1, my $buf, 4096
736 or $cv->end;
737 });
738
739 $cv->begin; # second watcher
740 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
741 defined sysread $fh2, my $buf, 4096
742 or $cv->end;
743 });
744
745 $cv->recv;
746
747This works because for every event source (EOF on file handle), there is
748one call to C<begin>, so the condvar waits for all calls to C<end> before
749sending.
750
751The ping example mentioned above is slightly more complicated, as the
752there are results to be passwd back, and the number of tasks that are
753begun can potentially be zero:
754
755 my $cv = AnyEvent->condvar;
756
757 my %result;
758 $cv->begin (sub { shift->send (\%result) });
759
760 for my $host (@list_of_hosts) {
761 $cv->begin;
762 ping_host_then_call_callback $host, sub {
763 $result{$host} = ...;
764 $cv->end;
765 };
766 }
767
768 $cv->end;
769
770This code fragment supposedly pings a number of hosts and calls
771C<send> after results for all then have have been gathered - in any
772order. To achieve this, the code issues a call to C<begin> when it starts
773each ping request and calls C<end> when it has received some result for
774it. Since C<begin> and C<end> only maintain a counter, the order in which
775results arrive is not relevant.
776
777There is an additional bracketing call to C<begin> and C<end> outside the
778loop, which serves two important purposes: first, it sets the callback
779to be called once the counter reaches C<0>, and second, it ensures that
780C<send> is called even when C<no> hosts are being pinged (the loop
781doesn't execute once).
782
783This is the general pattern when you "fan out" into multiple (but
784potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
785the callback and ensure C<end> is called at least once, and then, for each
786subrequest you start, call C<begin> and for each subrequest you finish,
787call C<end>.
788
789=back
790
791=head3 METHODS FOR CONSUMERS
792
793These methods should only be used by the consuming side, i.e. the
794code awaits the condition.
795
796=over 4
797
798=item $cv->recv
799
800Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
801>> methods have been called on C<$cv>, while servicing other watchers
802normally.
803
334You can only wait once on a condition - additional calls will return 804You can only wait once on a condition - additional calls are valid but
335immediately. 805will return immediately.
806
807If an error condition has been set by calling C<< ->croak >>, then this
808function will call C<croak>.
809
810In list context, all parameters passed to C<send> will be returned,
811in scalar context only the first one will be returned.
812
813Note that doing a blocking wait in a callback is not supported by any
814event loop, that is, recursive invocation of a blocking C<< ->recv
815>> is not allowed, and the C<recv> call will C<croak> if such a
816condition is detected. This condition can be slightly loosened by using
817L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
818any thread that doesn't run the event loop itself.
336 819
337Not all event models support a blocking wait - some die in that case 820Not all event models support a blocking wait - some die in that case
338(programs might want to do that to stay interactive), so I<if you are 821(programs might want to do that to stay interactive), so I<if you are
339using this from a module, never require a blocking wait>, but let the 822using this from a module, never require a blocking wait>. Instead, let the
340caller decide whether the call will block or not (for example, by coupling 823caller decide whether the call will block or not (for example, by coupling
341condition variables with some kind of request results and supporting 824condition variables with some kind of request results and supporting
342callbacks so the caller knows that getting the result will not block, 825callbacks so the caller knows that getting the result will not block,
343while still suppporting blocking waits if the caller so desires). 826while still supporting blocking waits if the caller so desires).
344 827
345Another reason I<never> to C<< ->wait >> in a module is that you cannot 828You can ensure that C<< ->recv >> never blocks by setting a callback and
346sensibly have two C<< ->wait >>'s in parallel, as that would require 829only calling C<< ->recv >> from within that callback (or at a later
347multiple interpreters or coroutines/threads, none of which C<AnyEvent> 830time). This will work even when the event loop does not support blocking
348can supply (the coroutine-aware backends L<AnyEvent::Impl::CoroEV> and 831waits otherwise.
349L<AnyEvent::Impl::CoroEvent> explicitly support concurrent C<< ->wait >>'s
350from different coroutines, however).
351 832
352=item $cv->broadcast 833=item $bool = $cv->ready
353 834
354Flag the condition as ready - a running C<< ->wait >> and all further 835Returns true when the condition is "true", i.e. whether C<send> or
355calls to C<wait> will (eventually) return after this method has been 836C<croak> have been called.
356called. If nobody is waiting the broadcast will be remembered.. 837
838=item $cb = $cv->cb ($cb->($cv))
839
840This is a mutator function that returns the callback set and optionally
841replaces it before doing so.
842
843The callback will be called when the condition becomes "true", i.e. when
844C<send> or C<croak> are called, with the only argument being the
845condition variable itself. If the condition is already true, the
846callback is called immediately when it is set. Calling C<recv> inside
847the callback or at any later time is guaranteed not to block.
357 848
358=back 849=back
359 850
360Example: 851=head1 SUPPORTED EVENT LOOPS/BACKENDS
361 852
362 # wait till the result is ready 853The available backend classes are (every class has its own manpage):
363 my $result_ready = AnyEvent->condvar;
364 854
365 # do something such as adding a timer 855=over 4
366 # or socket watcher the calls $result_ready->broadcast
367 # when the "result" is ready.
368 # in this case, we simply use a timer:
369 my $w = AnyEvent->timer (
370 after => 1,
371 cb => sub { $result_ready->broadcast },
372 );
373 856
374 # this "blocks" (while handling events) till the watcher 857=item Backends that are autoprobed when no other event loop can be found.
375 # calls broadcast 858
376 $result_ready->wait; 859EV is the preferred backend when no other event loop seems to be in
860use. If EV is not installed, then AnyEvent will fall back to its own
861pure-perl implementation, which is available everywhere as it comes with
862AnyEvent itself.
863
864 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
865 AnyEvent::Impl::Perl pure-perl AnyEvent::Loop, fast and portable.
866
867=item Backends that are transparently being picked up when they are used.
868
869These will be used if they are already loaded when the first watcher
870is created, in which case it is assumed that the application is using
871them. This means that AnyEvent will automatically pick the right backend
872when the main program loads an event module before anything starts to
873create watchers. Nothing special needs to be done by the main program.
874
875 AnyEvent::Impl::Event based on Event, very stable, few glitches.
876 AnyEvent::Impl::Glib based on Glib, slow but very stable.
877 AnyEvent::Impl::Tk based on Tk, very broken.
878 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
879 AnyEvent::Impl::POE based on POE, very slow, some limitations.
880 AnyEvent::Impl::Irssi used when running within irssi.
881 AnyEvent::Impl::IOAsync based on IO::Async.
882 AnyEvent::Impl::Cocoa based on Cocoa::EventLoop.
883 AnyEvent::Impl::FLTK based on FLTK.
884
885=item Backends with special needs.
886
887Qt requires the Qt::Application to be instantiated first, but will
888otherwise be picked up automatically. As long as the main program
889instantiates the application before any AnyEvent watchers are created,
890everything should just work.
891
892 AnyEvent::Impl::Qt based on Qt.
893
894=item Event loops that are indirectly supported via other backends.
895
896Some event loops can be supported via other modules:
897
898There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
899
900B<WxWidgets> has no support for watching file handles. However, you can
901use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
902polls 20 times per second, which was considered to be too horrible to even
903consider for AnyEvent.
904
905B<Prima> is not supported as nobody seems to be using it, but it has a POE
906backend, so it can be supported through POE.
907
908AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
909load L<POE> when detecting them, in the hope that POE will pick them up,
910in which case everything will be automatic.
911
912=back
377 913
378=head1 GLOBAL VARIABLES AND FUNCTIONS 914=head1 GLOBAL VARIABLES AND FUNCTIONS
379 915
916These are not normally required to use AnyEvent, but can be useful to
917write AnyEvent extension modules.
918
380=over 4 919=over 4
381 920
382=item $AnyEvent::MODEL 921=item $AnyEvent::MODEL
383 922
384Contains C<undef> until the first watcher is being created. Then it 923Contains C<undef> until the first watcher is being created, before the
924backend has been autodetected.
925
385contains the event model that is being used, which is the name of the 926Afterwards it contains the event model that is being used, which is the
386Perl class implementing the model. This class is usually one of the 927name of the Perl class implementing the model. This class is usually one
387C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 928of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
388AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 929case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
389 930will be C<urxvt::anyevent>).
390The known classes so far are:
391
392 AnyEvent::Impl::CoroEV based on Coro::EV, best choice.
393 AnyEvent::Impl::CoroEvent based on Coro::Event, second best choice.
394 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
395 AnyEvent::Impl::Event based on Event, second best choice.
396 AnyEvent::Impl::Glib based on Glib, third-best choice.
397 AnyEvent::Impl::Perl pure-perl implementation, inefficient but portable.
398 AnyEvent::Impl::Tk based on Tk, very bad choice.
399 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
400 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
401 AnyEvent::Impl::POE based on POE, not generic enough for full support.
402
403There is no support for WxWidgets, as WxWidgets has no support for
404watching file handles. However, you can use WxWidgets through the
405POE Adaptor, as POE has a Wx backend that simply polls 20 times per
406second, which was considered to be too horrible to even consider for
407AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
408it's adaptor.
409
410AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
411autodetecting them.
412 931
413=item AnyEvent::detect 932=item AnyEvent::detect
414 933
415Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 934Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
416if necessary. You should only call this function right before you would 935if necessary. You should only call this function right before you would
417have created an AnyEvent watcher anyway, that is, as late as possible at 936have created an AnyEvent watcher anyway, that is, as late as possible at
418runtime. 937runtime, and not e.g. during initialisation of your module.
938
939If you need to do some initialisation before AnyEvent watchers are
940created, use C<post_detect>.
941
942=item $guard = AnyEvent::post_detect { BLOCK }
943
944Arranges for the code block to be executed as soon as the event model is
945autodetected (or immediately if that has already happened).
946
947The block will be executed I<after> the actual backend has been detected
948(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
949created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
950other initialisations - see the sources of L<AnyEvent::Strict> or
951L<AnyEvent::AIO> to see how this is used.
952
953The most common usage is to create some global watchers, without forcing
954event module detection too early, for example, L<AnyEvent::AIO> creates
955and installs the global L<IO::AIO> watcher in a C<post_detect> block to
956avoid autodetecting the event module at load time.
957
958If called in scalar or list context, then it creates and returns an object
959that automatically removes the callback again when it is destroyed (or
960C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
961a case where this is useful.
962
963Example: Create a watcher for the IO::AIO module and store it in
964C<$WATCHER>, but do so only do so after the event loop is initialised.
965
966 our WATCHER;
967
968 my $guard = AnyEvent::post_detect {
969 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
970 };
971
972 # the ||= is important in case post_detect immediately runs the block,
973 # as to not clobber the newly-created watcher. assigning both watcher and
974 # post_detect guard to the same variable has the advantage of users being
975 # able to just C<undef $WATCHER> if the watcher causes them grief.
976
977 $WATCHER ||= $guard;
978
979=item @AnyEvent::post_detect
980
981If there are any code references in this array (you can C<push> to it
982before or after loading AnyEvent), then they will be called directly
983after the event loop has been chosen.
984
985You should check C<$AnyEvent::MODEL> before adding to this array, though:
986if it is defined then the event loop has already been detected, and the
987array will be ignored.
988
989Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
990it, as it takes care of these details.
991
992This variable is mainly useful for modules that can do something useful
993when AnyEvent is used and thus want to know when it is initialised, but do
994not need to even load it by default. This array provides the means to hook
995into AnyEvent passively, without loading it.
996
997Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
998together, you could put this into Coro (this is the actual code used by
999Coro to accomplish this):
1000
1001 if (defined $AnyEvent::MODEL) {
1002 # AnyEvent already initialised, so load Coro::AnyEvent
1003 require Coro::AnyEvent;
1004 } else {
1005 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1006 # as soon as it is
1007 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1008 }
419 1009
420=back 1010=back
421 1011
422=head1 WHAT TO DO IN A MODULE 1012=head1 WHAT TO DO IN A MODULE
423 1013
427Be careful when you create watchers in the module body - AnyEvent will 1017Be careful when you create watchers in the module body - AnyEvent will
428decide which event module to use as soon as the first method is called, so 1018decide which event module to use as soon as the first method is called, so
429by calling AnyEvent in your module body you force the user of your module 1019by calling AnyEvent in your module body you force the user of your module
430to load the event module first. 1020to load the event module first.
431 1021
432Never call C<< ->wait >> on a condition variable unless you I<know> that 1022Never call C<< ->recv >> on a condition variable unless you I<know> that
433the C<< ->broadcast >> method has been called on it already. This is 1023the C<< ->send >> method has been called on it already. This is
434because it will stall the whole program, and the whole point of using 1024because it will stall the whole program, and the whole point of using
435events is to stay interactive. 1025events is to stay interactive.
436 1026
437It is fine, however, to call C<< ->wait >> when the user of your module 1027It is fine, however, to call C<< ->recv >> when the user of your module
438requests it (i.e. if you create a http request object ad have a method 1028requests it (i.e. if you create a http request object ad have a method
439called C<results> that returns the results, it should call C<< ->wait >> 1029called C<results> that returns the results, it may call C<< ->recv >>
440freely, as the user of your module knows what she is doing. always). 1030freely, as the user of your module knows what she is doing. Always).
441 1031
442=head1 WHAT TO DO IN THE MAIN PROGRAM 1032=head1 WHAT TO DO IN THE MAIN PROGRAM
443 1033
444There will always be a single main program - the only place that should 1034There will always be a single main program - the only place that should
445dictate which event model to use. 1035dictate which event model to use.
446 1036
447If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1037If the program is not event-based, it need not do anything special, even
448do anything special (it does not need to be event-based) and let AnyEvent 1038when it depends on a module that uses an AnyEvent. If the program itself
449decide which implementation to chose if some module relies on it. 1039uses AnyEvent, but does not care which event loop is used, all it needs
1040to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1041available loop implementation.
450 1042
451If the main program relies on a specific event model. For example, in 1043If the main program relies on a specific event model - for example, in
452Gtk2 programs you have to rely on the Glib module. You should load the 1044Gtk2 programs you have to rely on the Glib module - you should load the
453event module before loading AnyEvent or any module that uses it: generally 1045event module before loading AnyEvent or any module that uses it: generally
454speaking, you should load it as early as possible. The reason is that 1046speaking, you should load it as early as possible. The reason is that
455modules might create watchers when they are loaded, and AnyEvent will 1047modules might create watchers when they are loaded, and AnyEvent will
456decide on the event model to use as soon as it creates watchers, and it 1048decide on the event model to use as soon as it creates watchers, and it
457might chose the wrong one unless you load the correct one yourself. 1049might choose the wrong one unless you load the correct one yourself.
458 1050
459You can chose to use a rather inefficient pure-perl implementation by 1051You can chose to use a pure-perl implementation by loading the
460loading the C<AnyEvent::Impl::Perl> module, which gives you similar 1052C<AnyEvent::Loop> module, which gives you similar behaviour
461behaviour everywhere, but letting AnyEvent chose is generally better. 1053everywhere, but letting AnyEvent chose the model is generally better.
1054
1055=head2 MAINLOOP EMULATION
1056
1057Sometimes (often for short test scripts, or even standalone programs who
1058only want to use AnyEvent), you do not want to run a specific event loop.
1059
1060In that case, you can use a condition variable like this:
1061
1062 AnyEvent->condvar->recv;
1063
1064This has the effect of entering the event loop and looping forever.
1065
1066Note that usually your program has some exit condition, in which case
1067it is better to use the "traditional" approach of storing a condition
1068variable somewhere, waiting for it, and sending it when the program should
1069exit cleanly.
1070
1071
1072=head1 OTHER MODULES
1073
1074The following is a non-exhaustive list of additional modules that use
1075AnyEvent as a client and can therefore be mixed easily with other AnyEvent
1076modules and other event loops in the same program. Some of the modules
1077come as part of AnyEvent, the others are available via CPAN.
1078
1079=over 4
1080
1081=item L<AnyEvent::Util>
1082
1083Contains various utility functions that replace often-used blocking
1084functions such as C<inet_aton> with event/callback-based versions.
1085
1086=item L<AnyEvent::Socket>
1087
1088Provides various utility functions for (internet protocol) sockets,
1089addresses and name resolution. Also functions to create non-blocking tcp
1090connections or tcp servers, with IPv6 and SRV record support and more.
1091
1092=item L<AnyEvent::Handle>
1093
1094Provide read and write buffers, manages watchers for reads and writes,
1095supports raw and formatted I/O, I/O queued and fully transparent and
1096non-blocking SSL/TLS (via L<AnyEvent::TLS>).
1097
1098=item L<AnyEvent::DNS>
1099
1100Provides rich asynchronous DNS resolver capabilities.
1101
1102=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1103
1104Implement event-based interfaces to the protocols of the same name (for
1105the curious, IGS is the International Go Server and FCP is the Freenet
1106Client Protocol).
1107
1108=item L<AnyEvent::Handle::UDP>
1109
1110Here be danger!
1111
1112As Pauli would put it, "Not only is it not right, it's not even wrong!" -
1113there are so many things wrong with AnyEvent::Handle::UDP, most notably
1114its use of a stream-based API with a protocol that isn't streamable, that
1115the only way to improve it is to delete it.
1116
1117It features data corruption (but typically only under load) and general
1118confusion. On top, the author is not only clueless about UDP but also
1119fact-resistant - some gems of his understanding: "connect doesn't work
1120with UDP", "UDP packets are not IP packets", "UDP only has datagrams, not
1121packets", "I don't need to implement proper error checking as UDP doesn't
1122support error checking" and so on - he doesn't even understand what's
1123wrong with his module when it is explained to him.
1124
1125=item L<AnyEvent::DBI>
1126
1127Executes L<DBI> requests asynchronously in a proxy process for you,
1128notifying you in an event-based way when the operation is finished.
1129
1130=item L<AnyEvent::AIO>
1131
1132Truly asynchronous (as opposed to non-blocking) I/O, should be in the
1133toolbox of every event programmer. AnyEvent::AIO transparently fuses
1134L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1135file I/O, and much more.
1136
1137=item L<AnyEvent::HTTPD>
1138
1139A simple embedded webserver.
1140
1141=item L<AnyEvent::FastPing>
1142
1143The fastest ping in the west.
1144
1145=item L<Coro>
1146
1147Has special support for AnyEvent via L<Coro::AnyEvent>.
1148
1149=back
462 1150
463=cut 1151=cut
464 1152
465package AnyEvent; 1153package AnyEvent;
466 1154
467no warnings; 1155# basically a tuned-down version of common::sense
468use strict; 1156sub common_sense {
1157 # from common:.sense 3.4
1158 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf0\x0f\xc0\xf0\xfc\x33\x00";
1159 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1160 $^H |= 0x00000600;
1161}
469 1162
1163BEGIN { AnyEvent::common_sense }
1164
470use Carp; 1165use Carp ();
471 1166
472our $VERSION = '3.3'; 1167our $VERSION = '5.34';
473our $MODEL; 1168our $MODEL;
474 1169
475our $AUTOLOAD; 1170our $AUTOLOAD;
476our @ISA; 1171our @ISA;
477 1172
478our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1;
479
480our @REGISTRY; 1173our @REGISTRY;
481 1174
1175our $VERBOSE;
1176
1177BEGIN {
1178 require "AnyEvent/constants.pl";
1179
1180 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
1181
1182 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1183 if ${^TAINT};
1184
1185 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1;
1186
1187}
1188
1189our $MAX_SIGNAL_LATENCY = 10;
1190
1191our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
1192
1193{
1194 my $idx;
1195 $PROTOCOL{$_} = ++$idx
1196 for reverse split /\s*,\s*/,
1197 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
1198}
1199
482my @models = ( 1200my @models = (
483 [Coro::EV:: => AnyEvent::Impl::CoroEV::],
484 [Coro::Event:: => AnyEvent::Impl::CoroEvent::],
485 [EV:: => AnyEvent::Impl::EV::], 1201 [EV:: => AnyEvent::Impl::EV:: , 1],
1202 [AnyEvent::Loop:: => AnyEvent::Impl::Perl:: , 1],
1203 # everything below here will not (normally) be autoprobed
1204 # as the pure perl backend should work everywhere
1205 # and is usually faster
486 [Event:: => AnyEvent::Impl::Event::], 1206 [Event:: => AnyEvent::Impl::Event::, 1],
487 [Glib:: => AnyEvent::Impl::Glib::], 1207 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1208 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1209 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
488 [Tk:: => AnyEvent::Impl::Tk::], 1210 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
1211 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
1212 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
489 [Wx:: => AnyEvent::Impl::POE::], 1213 [Wx:: => AnyEvent::Impl::POE::],
490 [Prima:: => AnyEvent::Impl::POE::], 1214 [Prima:: => AnyEvent::Impl::POE::],
491 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::], 1215 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::],
492 # everything below here will not be autoprobed as the pureperl backend should work everywhere 1216 [Cocoa::EventLoop:: => AnyEvent::Impl::Cocoa::],
493 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy 1217 [FLTK:: => AnyEvent::Impl::FLTK::],
494 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
495 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
496); 1218);
497 1219
498our %method = map +($_ => 1), qw(io timer signal child condvar broadcast wait one_event DESTROY); 1220our %method = map +($_ => 1),
1221 qw(io timer time now now_update signal child idle condvar DESTROY);
1222
1223our @post_detect;
1224
1225sub post_detect(&) {
1226 my ($cb) = @_;
1227
1228 push @post_detect, $cb;
1229
1230 defined wantarray
1231 ? bless \$cb, "AnyEvent::Util::postdetect"
1232 : ()
1233}
1234
1235sub AnyEvent::Util::postdetect::DESTROY {
1236 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1237}
499 1238
500sub detect() { 1239sub detect() {
1240 # free some memory
1241 *detect = sub () { $MODEL };
1242
1243 local $!; # for good measure
1244 local $SIG{__DIE__};
1245
1246 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
1247 my $model = "AnyEvent::Impl::$1";
1248 if (eval "require $model") {
1249 $MODEL = $model;
1250 warn "AnyEvent: loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.\n" if $VERBOSE >= 2;
1251 } else {
1252 warn "AnyEvent: unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@" if $VERBOSE;
1253 }
1254 }
1255
1256 # check for already loaded models
501 unless ($MODEL) { 1257 unless ($MODEL) {
502 no strict 'refs'; 1258 for (@REGISTRY, @models) {
503 1259 my ($package, $model) = @$_;
504 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) { 1260 if (${"$package\::VERSION"} > 0) {
505 my $model = "AnyEvent::Impl::$1";
506 if (eval "require $model") { 1261 if (eval "require $model") {
507 $MODEL = $model; 1262 $MODEL = $model;
508 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1263 warn "AnyEvent: autodetected model '$model', using it.\n" if $VERBOSE >= 2;
509 } else { 1264 last;
510 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose; 1265 }
511 } 1266 }
512 } 1267 }
513 1268
514 # check for already loaded models
515 unless ($MODEL) { 1269 unless ($MODEL) {
1270 # try to autoload a model
516 for (@REGISTRY, @models) { 1271 for (@REGISTRY, @models) {
517 my ($package, $model) = @$_; 1272 my ($package, $model, $autoload) = @$_;
1273 if (
1274 $autoload
1275 and eval "require $package"
518 if (${"$package\::VERSION"} > 0) { 1276 and ${"$package\::VERSION"} > 0
519 if (eval "require $model") { 1277 and eval "require $model"
1278 ) {
520 $MODEL = $model; 1279 $MODEL = $model;
521 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1; 1280 warn "AnyEvent: autoloaded model '$model', using it.\n" if $VERBOSE >= 2;
522 last; 1281 last;
523 }
524 } 1282 }
525 } 1283 }
526 1284
527 unless ($MODEL) {
528 # try to load a model
529
530 for (@REGISTRY, @models) {
531 my ($package, $model) = @$_;
532 if (eval "require $package"
533 and ${"$package\::VERSION"} > 0
534 and eval "require $model") {
535 $MODEL = $model;
536 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1;
537 last;
538 }
539 }
540
541 $MODEL 1285 $MODEL
542 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV (or Coro+EV), Event (or Coro+Event) or Glib."; 1286 or die "AnyEvent: backend autodetection failed - did you properly install AnyEvent?\n";
543 }
544 } 1287 }
545
546 unshift @ISA, $MODEL;
547 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
548 } 1288 }
1289
1290 @models = (); # free probe data
1291
1292 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1293 unshift @ISA, $MODEL;
1294
1295 # now nuke some methods that are overridden by the backend.
1296 # SUPER is not allowed.
1297 for (qw(time signal child idle)) {
1298 undef &{"AnyEvent::Base::$_"}
1299 if defined &{"$MODEL\::$_"};
1300 }
1301
1302 if ($ENV{PERL_ANYEVENT_STRICT}) {
1303 eval { require AnyEvent::Strict };
1304 warn "AnyEvent: cannot load AnyEvent::Strict: $@"
1305 if $@ && $VERBOSE;
1306 }
1307
1308 (shift @post_detect)->() while @post_detect;
1309
1310 *post_detect = sub(&) {
1311 shift->();
1312
1313 undef
1314 };
549 1315
550 $MODEL 1316 $MODEL
551} 1317}
552 1318
553sub AUTOLOAD { 1319sub AUTOLOAD {
554 (my $func = $AUTOLOAD) =~ s/.*://; 1320 (my $func = $AUTOLOAD) =~ s/.*://;
555 1321
556 $method{$func} 1322 $method{$func}
557 or croak "$func: not a valid method for AnyEvent objects"; 1323 or Carp::croak "$func: not a valid AnyEvent class method";
558 1324
559 detect unless $MODEL; 1325 detect;
560 1326
561 my $class = shift; 1327 my $class = shift;
562 $class->$func (@_); 1328 $class->$func (@_);
563} 1329}
564 1330
1331# utility function to dup a filehandle. this is used by many backends
1332# to support binding more than one watcher per filehandle (they usually
1333# allow only one watcher per fd, so we dup it to get a different one).
1334sub _dupfh($$;$$) {
1335 my ($poll, $fh, $r, $w) = @_;
1336
1337 # cygwin requires the fh mode to be matching, unix doesn't
1338 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1339
1340 open my $fh2, $mode, $fh
1341 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1342
1343 # we assume CLOEXEC is already set by perl in all important cases
1344
1345 ($fh2, $rw)
1346}
1347
1348=head1 SIMPLIFIED AE API
1349
1350Starting with version 5.0, AnyEvent officially supports a second, much
1351simpler, API that is designed to reduce the calling, typing and memory
1352overhead by using function call syntax and a fixed number of parameters.
1353
1354See the L<AE> manpage for details.
1355
1356=cut
1357
1358package AE;
1359
1360our $VERSION = $AnyEvent::VERSION;
1361
1362# fall back to the main API by default - backends and AnyEvent::Base
1363# implementations can overwrite these.
1364
1365sub io($$$) {
1366 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1367}
1368
1369sub timer($$$) {
1370 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1371}
1372
1373sub signal($$) {
1374 AnyEvent->signal (signal => $_[0], cb => $_[1])
1375}
1376
1377sub child($$) {
1378 AnyEvent->child (pid => $_[0], cb => $_[1])
1379}
1380
1381sub idle($) {
1382 AnyEvent->idle (cb => $_[0])
1383}
1384
1385sub cv(;&) {
1386 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1387}
1388
1389sub now() {
1390 AnyEvent->now
1391}
1392
1393sub now_update() {
1394 AnyEvent->now_update
1395}
1396
1397sub time() {
1398 AnyEvent->time
1399}
1400
565package AnyEvent::Base; 1401package AnyEvent::Base;
566 1402
1403# default implementations for many methods
1404
1405sub time {
1406 eval q{ # poor man's autoloading {}
1407 # probe for availability of Time::HiRes
1408 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1409 warn "AnyEvent: using Time::HiRes for sub-second timing accuracy.\n" if $VERBOSE >= 8;
1410 *AE::time = \&Time::HiRes::time;
1411 # if (eval "use POSIX (); (POSIX::times())...
1412 } else {
1413 warn "AnyEvent: using built-in time(), WARNING, no sub-second resolution!\n" if $VERBOSE;
1414 *AE::time = sub (){ time }; # epic fail
1415 }
1416
1417 *time = sub { AE::time }; # different prototypes
1418 };
1419 die if $@;
1420
1421 &time
1422}
1423
1424*now = \&time;
1425
1426sub now_update { }
1427
1428sub _poll {
1429 Carp::croak "$AnyEvent::MODEL does not support blocking waits. Caught";
1430}
1431
567# default implementation for ->condvar, ->wait, ->broadcast 1432# default implementation for ->condvar
1433# in fact,t he default should not be overwritten
568 1434
569sub condvar { 1435sub condvar {
570 bless \my $flag, "AnyEvent::Base::CondVar" 1436 eval q{ # poor man's autoloading {}
571} 1437 *condvar = sub {
1438 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1439 };
572 1440
573sub AnyEvent::Base::CondVar::broadcast { 1441 *AE::cv = sub (;&) {
574 ${$_[0]}++; 1442 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
575} 1443 };
1444 };
1445 die if $@;
576 1446
577sub AnyEvent::Base::CondVar::wait { 1447 &condvar
578 AnyEvent->one_event while !${$_[0]};
579} 1448}
580 1449
581# default implementation for ->signal 1450# default implementation for ->signal
582 1451
583our %SIG_CB; 1452our $HAVE_ASYNC_INTERRUPT;
1453
1454sub _have_async_interrupt() {
1455 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1456 && eval "use Async::Interrupt 1.02 (); 1")
1457 unless defined $HAVE_ASYNC_INTERRUPT;
1458
1459 $HAVE_ASYNC_INTERRUPT
1460}
1461
1462our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1463our (%SIG_ASY, %SIG_ASY_W);
1464our ($SIG_COUNT, $SIG_TW);
1465
1466# install a dummy wakeup watcher to reduce signal catching latency
1467# used by Impls
1468sub _sig_add() {
1469 unless ($SIG_COUNT++) {
1470 # try to align timer on a full-second boundary, if possible
1471 my $NOW = AE::now;
1472
1473 $SIG_TW = AE::timer
1474 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1475 $MAX_SIGNAL_LATENCY,
1476 sub { } # just for the PERL_ASYNC_CHECK
1477 ;
1478 }
1479}
1480
1481sub _sig_del {
1482 undef $SIG_TW
1483 unless --$SIG_COUNT;
1484}
1485
1486our $_sig_name_init; $_sig_name_init = sub {
1487 eval q{ # poor man's autoloading {}
1488 undef $_sig_name_init;
1489
1490 if (_have_async_interrupt) {
1491 *sig2num = \&Async::Interrupt::sig2num;
1492 *sig2name = \&Async::Interrupt::sig2name;
1493 } else {
1494 require Config;
1495
1496 my %signame2num;
1497 @signame2num{ split ' ', $Config::Config{sig_name} }
1498 = split ' ', $Config::Config{sig_num};
1499
1500 my @signum2name;
1501 @signum2name[values %signame2num] = keys %signame2num;
1502
1503 *sig2num = sub($) {
1504 $_[0] > 0 ? shift : $signame2num{+shift}
1505 };
1506 *sig2name = sub ($) {
1507 $_[0] > 0 ? $signum2name[+shift] : shift
1508 };
1509 }
1510 };
1511 die if $@;
1512};
1513
1514sub sig2num ($) { &$_sig_name_init; &sig2num }
1515sub sig2name($) { &$_sig_name_init; &sig2name }
584 1516
585sub signal { 1517sub signal {
1518 eval q{ # poor man's autoloading {}
1519 # probe for availability of Async::Interrupt
1520 if (_have_async_interrupt) {
1521 warn "AnyEvent: using Async::Interrupt for race-free signal handling.\n" if $VERBOSE >= 8;
1522
1523 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1524 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1525
1526 } else {
1527 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8;
1528
1529 if (AnyEvent::WIN32) {
1530 require AnyEvent::Util;
1531
1532 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1533 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1534 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1535 } else {
1536 pipe $SIGPIPE_R, $SIGPIPE_W;
1537 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1538 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1539
1540 # not strictly required, as $^F is normally 2, but let's make sure...
1541 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1542 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1543 }
1544
1545 $SIGPIPE_R
1546 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1547
1548 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1549 }
1550
1551 *signal = $HAVE_ASYNC_INTERRUPT
1552 ? sub {
586 my (undef, %arg) = @_; 1553 my (undef, %arg) = @_;
587 1554
1555 # async::interrupt
588 my $signal = uc $arg{signal} 1556 my $signal = sig2num $arg{signal};
589 or Carp::croak "required option 'signal' is missing";
590
591 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1557 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1558
1559 $SIG_ASY{$signal} ||= new Async::Interrupt
1560 cb => sub { undef $SIG_EV{$signal} },
1561 signal => $signal,
1562 pipe => [$SIGPIPE_R->filenos],
1563 pipe_autodrain => 0,
1564 ;
1565
1566 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1567 }
1568 : sub {
1569 my (undef, %arg) = @_;
1570
1571 # pure perl
1572 my $signal = sig2name $arg{signal};
1573 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1574
592 $SIG{$signal} ||= sub { 1575 $SIG{$signal} ||= sub {
1576 local $!;
1577 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1578 undef $SIG_EV{$signal};
1579 };
1580
1581 # can't do signal processing without introducing races in pure perl,
1582 # so limit the signal latency.
1583 _sig_add;
1584
1585 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1586 }
1587 ;
1588
1589 *AnyEvent::Base::signal::DESTROY = sub {
1590 my ($signal, $cb) = @{$_[0]};
1591
1592 _sig_del;
1593
1594 delete $SIG_CB{$signal}{$cb};
1595
1596 $HAVE_ASYNC_INTERRUPT
1597 ? delete $SIG_ASY{$signal}
1598 : # delete doesn't work with older perls - they then
1599 # print weird messages, or just unconditionally exit
1600 # instead of getting the default action.
1601 undef $SIG{$signal}
1602 unless keys %{ $SIG_CB{$signal} };
1603 };
1604
1605 *_signal_exec = sub {
1606 $HAVE_ASYNC_INTERRUPT
1607 ? $SIGPIPE_R->drain
1608 : sysread $SIGPIPE_R, (my $dummy), 9;
1609
1610 while (%SIG_EV) {
1611 for (keys %SIG_EV) {
1612 delete $SIG_EV{$_};
593 $_->() for values %{ $SIG_CB{$signal} || {} }; 1613 $_->() for values %{ $SIG_CB{$_} || {} };
1614 }
1615 }
1616 };
594 }; 1617 };
1618 die if $@;
595 1619
596 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1620 &signal
597}
598
599sub AnyEvent::Base::Signal::DESTROY {
600 my ($signal, $cb) = @{$_[0]};
601
602 delete $SIG_CB{$signal}{$cb};
603
604 $SIG{$signal} = 'DEFAULT' unless keys %{ $SIG_CB{$signal} };
605} 1621}
606 1622
607# default implementation for ->child 1623# default implementation for ->child
608 1624
609our %PID_CB; 1625our %PID_CB;
610our $CHLD_W; 1626our $CHLD_W;
611our $CHLD_DELAY_W; 1627our $CHLD_DELAY_W;
612our $PID_IDLE;
613our $WNOHANG;
614 1628
615sub _child_wait { 1629# used by many Impl's
616 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1630sub _emit_childstatus($$) {
1631 my (undef, $rpid, $rstatus) = @_;
1632
1633 $_->($rpid, $rstatus)
617 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1634 for values %{ $PID_CB{$rpid} || {} },
618 (values %{ $PID_CB{0} || {} }); 1635 values %{ $PID_CB{0} || {} };
1636}
1637
1638sub child {
1639 eval q{ # poor man's autoloading {}
1640 *_sigchld = sub {
1641 my $pid;
1642
1643 AnyEvent->_emit_childstatus ($pid, $?)
1644 while ($pid = waitpid -1, WNOHANG) > 0;
1645 };
1646
1647 *child = sub {
1648 my (undef, %arg) = @_;
1649
1650 my $pid = $arg{pid};
1651 my $cb = $arg{cb};
1652
1653 $PID_CB{$pid}{$cb+0} = $cb;
1654
1655 unless ($CHLD_W) {
1656 $CHLD_W = AE::signal CHLD => \&_sigchld;
1657 # child could be a zombie already, so make at least one round
1658 &_sigchld;
1659 }
1660
1661 bless [$pid, $cb+0], "AnyEvent::Base::child"
1662 };
1663
1664 *AnyEvent::Base::child::DESTROY = sub {
1665 my ($pid, $icb) = @{$_[0]};
1666
1667 delete $PID_CB{$pid}{$icb};
1668 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1669
1670 undef $CHLD_W unless keys %PID_CB;
1671 };
1672 };
1673 die if $@;
1674
1675 &child
1676}
1677
1678# idle emulation is done by simply using a timer, regardless
1679# of whether the process is idle or not, and not letting
1680# the callback use more than 50% of the time.
1681sub idle {
1682 eval q{ # poor man's autoloading {}
1683 *idle = sub {
1684 my (undef, %arg) = @_;
1685
1686 my ($cb, $w, $rcb) = $arg{cb};
1687
1688 $rcb = sub {
1689 if ($cb) {
1690 $w = _time;
1691 &$cb;
1692 $w = _time - $w;
1693
1694 # never use more then 50% of the time for the idle watcher,
1695 # within some limits
1696 $w = 0.0001 if $w < 0.0001;
1697 $w = 5 if $w > 5;
1698
1699 $w = AE::timer $w, 0, $rcb;
1700 } else {
1701 # clean up...
1702 undef $w;
1703 undef $rcb;
1704 }
1705 };
1706
1707 $w = AE::timer 0.05, 0, $rcb;
1708
1709 bless \\$cb, "AnyEvent::Base::idle"
1710 };
1711
1712 *AnyEvent::Base::idle::DESTROY = sub {
1713 undef $${$_[0]};
1714 };
1715 };
1716 die if $@;
1717
1718 &idle
1719}
1720
1721package AnyEvent::CondVar;
1722
1723our @ISA = AnyEvent::CondVar::Base::;
1724
1725# only to be used for subclassing
1726sub new {
1727 my $class = shift;
1728 bless AnyEvent->condvar (@_), $class
1729}
1730
1731package AnyEvent::CondVar::Base;
1732
1733#use overload
1734# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1735# fallback => 1;
1736
1737# save 300+ kilobytes by dirtily hardcoding overloading
1738${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1739*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1740*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1741${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1742
1743our $WAITING;
1744
1745sub _send {
1746 # nop
1747}
1748
1749sub _wait {
1750 AnyEvent->_poll until $_[0]{_ae_sent};
1751}
1752
1753sub send {
1754 my $cv = shift;
1755 $cv->{_ae_sent} = [@_];
1756 (delete $cv->{_ae_cb})->($cv) if $cv->{_ae_cb};
1757 $cv->_send;
1758}
1759
1760sub croak {
1761 $_[0]{_ae_croak} = $_[1];
1762 $_[0]->send;
1763}
1764
1765sub ready {
1766 $_[0]{_ae_sent}
1767}
1768
1769sub recv {
1770 unless ($_[0]{_ae_sent}) {
1771 $WAITING
1772 and Carp::croak "AnyEvent::CondVar: recursive blocking wait attempted";
1773
1774 local $WAITING = 1;
1775 $_[0]->_wait;
619 } 1776 }
620 1777
621 undef $PID_IDLE; 1778 $_[0]{_ae_croak}
622} 1779 and Carp::croak $_[0]{_ae_croak};
623 1780
624sub _sigchld { 1781 wantarray
625 # make sure we deliver these changes "synchronous" with the event loop. 1782 ? @{ $_[0]{_ae_sent} }
626 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub { 1783 : $_[0]{_ae_sent}[0]
627 undef $CHLD_DELAY_W;
628 &_child_wait;
629 });
630} 1784}
631 1785
632sub child { 1786sub cb {
633 my (undef, %arg) = @_; 1787 my $cv = shift;
634 1788
635 defined (my $pid = $arg{pid} + 0) 1789 @_
636 or Carp::croak "required option 'pid' is missing"; 1790 and $cv->{_ae_cb} = shift
1791 and $cv->{_ae_sent}
1792 and (delete $cv->{_ae_cb})->($cv);
637 1793
638 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1794 $cv->{_ae_cb}
639
640 unless ($WNOHANG) {
641 $WNOHANG = eval { require POSIX; &POSIX::WNOHANG } || 1;
642 }
643
644 unless ($CHLD_W) {
645 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld);
646 # child could be a zombie already, so make at least one round
647 &_sigchld;
648 }
649
650 bless [$pid, $arg{cb}], "AnyEvent::Base::Child"
651} 1795}
652 1796
653sub AnyEvent::Base::Child::DESTROY { 1797sub begin {
654 my ($pid, $cb) = @{$_[0]}; 1798 ++$_[0]{_ae_counter};
655 1799 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
656 delete $PID_CB{$pid}{$cb};
657 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
658
659 undef $CHLD_W unless keys %PID_CB;
660} 1800}
1801
1802sub end {
1803 return if --$_[0]{_ae_counter};
1804 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } };
1805}
1806
1807# undocumented/compatibility with pre-3.4
1808*broadcast = \&send;
1809*wait = \&recv;
1810
1811=head1 ERROR AND EXCEPTION HANDLING
1812
1813In general, AnyEvent does not do any error handling - it relies on the
1814caller to do that if required. The L<AnyEvent::Strict> module (see also
1815the C<PERL_ANYEVENT_STRICT> environment variable, below) provides strict
1816checking of all AnyEvent methods, however, which is highly useful during
1817development.
1818
1819As for exception handling (i.e. runtime errors and exceptions thrown while
1820executing a callback), this is not only highly event-loop specific, but
1821also not in any way wrapped by this module, as this is the job of the main
1822program.
1823
1824The pure perl event loop simply re-throws the exception (usually
1825within C<< condvar->recv >>), the L<Event> and L<EV> modules call C<<
1826$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
1827so on.
1828
1829=head1 ENVIRONMENT VARIABLES
1830
1831The following environment variables are used by this module or its
1832submodules.
1833
1834Note that AnyEvent will remove I<all> environment variables starting with
1835C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
1836enabled.
1837
1838=over 4
1839
1840=item C<PERL_ANYEVENT_VERBOSE>
1841
1842By default, AnyEvent will be completely silent except in fatal
1843conditions. You can set this environment variable to make AnyEvent more
1844talkative.
1845
1846When set to C<1> or higher, causes AnyEvent to warn about unexpected
1847conditions, such as not being able to load the event model specified by
1848C<PERL_ANYEVENT_MODEL>.
1849
1850When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1851model it chooses.
1852
1853When set to C<8> or higher, then AnyEvent will report extra information on
1854which optional modules it loads and how it implements certain features.
1855
1856=item C<PERL_ANYEVENT_STRICT>
1857
1858AnyEvent does not do much argument checking by default, as thorough
1859argument checking is very costly. Setting this variable to a true value
1860will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1861check the arguments passed to most method calls. If it finds any problems,
1862it will croak.
1863
1864In other words, enables "strict" mode.
1865
1866Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
1867>>, it is definitely recommended to keep it off in production. Keeping
1868C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
1869can be very useful, however.
1870
1871=item C<PERL_ANYEVENT_MODEL>
1872
1873This can be used to specify the event model to be used by AnyEvent, before
1874auto detection and -probing kicks in. It must be a string consisting
1875entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1876and the resulting module name is loaded and if the load was successful,
1877used as event model. If it fails to load AnyEvent will proceed with
1878auto detection and -probing.
1879
1880This functionality might change in future versions.
1881
1882For example, to force the pure perl model (L<AnyEvent::Loop::Perl>) you
1883could start your program like this:
1884
1885 PERL_ANYEVENT_MODEL=Perl perl ...
1886
1887=item C<PERL_ANYEVENT_PROTOCOLS>
1888
1889Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1890for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1891of auto probing).
1892
1893Must be set to a comma-separated list of protocols or address families,
1894current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1895used, and preference will be given to protocols mentioned earlier in the
1896list.
1897
1898This variable can effectively be used for denial-of-service attacks
1899against local programs (e.g. when setuid), although the impact is likely
1900small, as the program has to handle conenction and other failures anyways.
1901
1902Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1903but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1904- only support IPv4, never try to resolve or contact IPv6
1905addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1906IPv6, but prefer IPv6 over IPv4.
1907
1908=item C<PERL_ANYEVENT_EDNS0>
1909
1910Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1911for DNS. This extension is generally useful to reduce DNS traffic, but
1912some (broken) firewalls drop such DNS packets, which is why it is off by
1913default.
1914
1915Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1916EDNS0 in its DNS requests.
1917
1918=item C<PERL_ANYEVENT_MAX_FORKS>
1919
1920The maximum number of child processes that C<AnyEvent::Util::fork_call>
1921will create in parallel.
1922
1923=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
1924
1925The default value for the C<max_outstanding> parameter for the default DNS
1926resolver - this is the maximum number of parallel DNS requests that are
1927sent to the DNS server.
1928
1929=item C<PERL_ANYEVENT_RESOLV_CONF>
1930
1931The file to use instead of F</etc/resolv.conf> (or OS-specific
1932configuration) in the default resolver. When set to the empty string, no
1933default config will be used.
1934
1935=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
1936
1937When neither C<ca_file> nor C<ca_path> was specified during
1938L<AnyEvent::TLS> context creation, and either of these environment
1939variables exist, they will be used to specify CA certificate locations
1940instead of a system-dependent default.
1941
1942=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
1943
1944When these are set to C<1>, then the respective modules are not
1945loaded. Mostly good for testing AnyEvent itself.
1946
1947=back
661 1948
662=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 1949=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
663 1950
664This is an advanced topic that you do not normally need to use AnyEvent in 1951This is an advanced topic that you do not normally need to use AnyEvent in
665a module. This section is only of use to event loop authors who want to 1952a module. This section is only of use to event loop authors who want to
699 1986
700I<rxvt-unicode> also cheats a bit by not providing blocking access to 1987I<rxvt-unicode> also cheats a bit by not providing blocking access to
701condition variables: code blocking while waiting for a condition will 1988condition variables: code blocking while waiting for a condition will
702C<die>. This still works with most modules/usages, and blocking calls must 1989C<die>. This still works with most modules/usages, and blocking calls must
703not be done in an interactive application, so it makes sense. 1990not be done in an interactive application, so it makes sense.
704
705=head1 ENVIRONMENT VARIABLES
706
707The following environment variables are used by this module:
708
709=over 4
710
711=item C<PERL_ANYEVENT_VERBOSE>
712
713By default, AnyEvent will be completely silent except in fatal
714conditions. You can set this environment variable to make AnyEvent more
715talkative.
716
717When set to C<1> or higher, causes AnyEvent to warn about unexpected
718conditions, such as not being able to load the event model specified by
719C<PERL_ANYEVENT_MODEL>.
720
721When set to C<2> or higher, cause AnyEvent to report to STDERR which event
722model it chooses.
723
724=item C<PERL_ANYEVENT_MODEL>
725
726This can be used to specify the event model to be used by AnyEvent, before
727autodetection and -probing kicks in. It must be a string consisting
728entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
729and the resulting module name is loaded and if the load was successful,
730used as event model. If it fails to load AnyEvent will proceed with
731autodetection and -probing.
732
733This functionality might change in future versions.
734
735For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
736could start your program like this:
737
738 PERL_ANYEVENT_MODEL=Perl perl ...
739
740=back
741 1991
742=head1 EXAMPLE PROGRAM 1992=head1 EXAMPLE PROGRAM
743 1993
744The following program uses an I/O watcher to read data from STDIN, a timer 1994The following program uses an I/O watcher to read data from STDIN, a timer
745to display a message once per second, and a condition variable to quit the 1995to display a message once per second, and a condition variable to quit the
754 poll => 'r', 2004 poll => 'r',
755 cb => sub { 2005 cb => sub {
756 warn "io event <$_[0]>\n"; # will always output <r> 2006 warn "io event <$_[0]>\n"; # will always output <r>
757 chomp (my $input = <STDIN>); # read a line 2007 chomp (my $input = <STDIN>); # read a line
758 warn "read: $input\n"; # output what has been read 2008 warn "read: $input\n"; # output what has been read
759 $cv->broadcast if $input =~ /^q/i; # quit program if /^q/i 2009 $cv->send if $input =~ /^q/i; # quit program if /^q/i
760 }, 2010 },
761 ); 2011 );
762 2012
763 my $time_watcher; # can only be used once
764
765 sub new_timer {
766 $timer = AnyEvent->timer (after => 1, cb => sub { 2013 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
767 warn "timeout\n"; # print 'timeout' about every second 2014 warn "timeout\n"; # print 'timeout' at most every second
768 &new_timer; # and restart the time
769 }); 2015 });
770 }
771 2016
772 new_timer; # create first timer
773
774 $cv->wait; # wait until user enters /^q/i 2017 $cv->recv; # wait until user enters /^q/i
775 2018
776=head1 REAL-WORLD EXAMPLE 2019=head1 REAL-WORLD EXAMPLE
777 2020
778Consider the L<Net::FCP> module. It features (among others) the following 2021Consider the L<Net::FCP> module. It features (among others) the following
779API calls, which are to freenet what HTTP GET requests are to http: 2022API calls, which are to freenet what HTTP GET requests are to http:
829 syswrite $txn->{fh}, $txn->{request} 2072 syswrite $txn->{fh}, $txn->{request}
830 or die "connection or write error"; 2073 or die "connection or write error";
831 $txn->{w} = AnyEvent->io (fh => $txn->{fh}, poll => 'r', cb => sub { $txn->fh_ready_r }); 2074 $txn->{w} = AnyEvent->io (fh => $txn->{fh}, poll => 'r', cb => sub { $txn->fh_ready_r });
832 2075
833Again, C<fh_ready_r> waits till all data has arrived, and then stores the 2076Again, C<fh_ready_r> waits till all data has arrived, and then stores the
834result and signals any possible waiters that the request ahs finished: 2077result and signals any possible waiters that the request has finished:
835 2078
836 sysread $txn->{fh}, $txn->{buf}, length $txn->{$buf}; 2079 sysread $txn->{fh}, $txn->{buf}, length $txn->{$buf};
837 2080
838 if (end-of-file or data complete) { 2081 if (end-of-file or data complete) {
839 $txn->{result} = $txn->{buf}; 2082 $txn->{result} = $txn->{buf};
840 $txn->{finished}->broadcast; 2083 $txn->{finished}->send;
841 $txb->{cb}->($txn) of $txn->{cb}; # also call callback 2084 $txb->{cb}->($txn) of $txn->{cb}; # also call callback
842 } 2085 }
843 2086
844The C<result> method, finally, just waits for the finished signal (if the 2087The C<result> method, finally, just waits for the finished signal (if the
845request was already finished, it doesn't wait, of course, and returns the 2088request was already finished, it doesn't wait, of course, and returns the
846data: 2089data:
847 2090
848 $txn->{finished}->wait; 2091 $txn->{finished}->recv;
849 return $txn->{result}; 2092 return $txn->{result};
850 2093
851The actual code goes further and collects all errors (C<die>s, exceptions) 2094The actual code goes further and collects all errors (C<die>s, exceptions)
852that occured during request processing. The C<result> method detects 2095that occurred during request processing. The C<result> method detects
853whether an exception as thrown (it is stored inside the $txn object) 2096whether an exception as thrown (it is stored inside the $txn object)
854and just throws the exception, which means connection errors and other 2097and just throws the exception, which means connection errors and other
855problems get reported tot he code that tries to use the result, not in a 2098problems get reported to the code that tries to use the result, not in a
856random callback. 2099random callback.
857 2100
858All of this enables the following usage styles: 2101All of this enables the following usage styles:
859 2102
8601. Blocking: 21031. Blocking:
888 2131
889 my $quit = AnyEvent->condvar; 2132 my $quit = AnyEvent->condvar;
890 2133
891 $fcp->txn_client_get ($url)->cb (sub { 2134 $fcp->txn_client_get ($url)->cb (sub {
892 ... 2135 ...
893 $quit->broadcast; 2136 $quit->send;
894 }); 2137 });
895 2138
896 $quit->wait; 2139 $quit->recv;
897 2140
898 2141
899=head1 BENCHMARKS 2142=head1 BENCHMARKS
900 2143
901To give you an idea of the performance and overheads that AnyEvent adds 2144To give you an idea of the performance and overheads that AnyEvent adds
903of various event loops I prepared some benchmarks. 2146of various event loops I prepared some benchmarks.
904 2147
905=head2 BENCHMARKING ANYEVENT OVERHEAD 2148=head2 BENCHMARKING ANYEVENT OVERHEAD
906 2149
907Here is a benchmark of various supported event models used natively and 2150Here is a benchmark of various supported event models used natively and
908through anyevent. The benchmark creates a lot of timers (with a zero 2151through AnyEvent. The benchmark creates a lot of timers (with a zero
909timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2152timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
910which it is), lets them fire exactly once and destroys them again. 2153which it is), lets them fire exactly once and destroys them again.
911 2154
912Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2155Source code for this benchmark is found as F<eg/bench> in the AnyEvent
913distribution. 2156distribution. It uses the L<AE> interface, which makes a real difference
2157for the EV and Perl backends only.
914 2158
915=head3 Explanation of the columns 2159=head3 Explanation of the columns
916 2160
917I<watcher> is the number of event watchers created/destroyed. Since 2161I<watcher> is the number of event watchers created/destroyed. Since
918different event models feature vastly different performances, each event 2162different event models feature vastly different performances, each event
930all watchers, to avoid adding memory overhead. That means closure creation 2174all watchers, to avoid adding memory overhead. That means closure creation
931and memory usage is not included in the figures. 2175and memory usage is not included in the figures.
932 2176
933I<invoke> is the time, in microseconds, used to invoke a simple 2177I<invoke> is the time, in microseconds, used to invoke a simple
934callback. The callback simply counts down a Perl variable and after it was 2178callback. The callback simply counts down a Perl variable and after it was
935invoked "watcher" times, it would C<< ->broadcast >> a condvar once to 2179invoked "watcher" times, it would C<< ->send >> a condvar once to
936signal the end of this phase. 2180signal the end of this phase.
937 2181
938I<destroy> is the time, in microseconds, that it takes to destroy a single 2182I<destroy> is the time, in microseconds, that it takes to destroy a single
939watcher. 2183watcher.
940 2184
941=head3 Results 2185=head3 Results
942 2186
943 name watchers bytes create invoke destroy comment 2187 name watchers bytes create invoke destroy comment
944 EV/EV 400000 244 0.56 0.46 0.31 EV native interface 2188 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
945 EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers 2189 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
946 CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal 2190 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
947 Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation 2191 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
948 Event/Event 16000 516 31.88 31.30 0.85 Event native interface 2192 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
949 Event/Any 16000 936 39.17 33.63 1.43 Event + AnyEvent watchers 2193 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2194 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2195 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
950 Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour 2196 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
951 Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers 2197 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
952 POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event 2198 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
953 POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select 2199 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
954 2200
955=head3 Discussion 2201=head3 Discussion
956 2202
957The benchmark does I<not> measure scalability of the event loop very 2203The benchmark does I<not> measure scalability of the event loop very
958well. For example, a select-based event loop (such as the pure perl one) 2204well. For example, a select-based event loop (such as the pure perl one)
959can never compete with an event loop that uses epoll when the number of 2205can never compete with an event loop that uses epoll when the number of
960file descriptors grows high. In this benchmark, all events become ready at 2206file descriptors grows high. In this benchmark, all events become ready at
961the same time, so select/poll-based implementations get an unnatural speed 2207the same time, so select/poll-based implementations get an unnatural speed
962boost. 2208boost.
963 2209
2210Also, note that the number of watchers usually has a nonlinear effect on
2211overall speed, that is, creating twice as many watchers doesn't take twice
2212the time - usually it takes longer. This puts event loops tested with a
2213higher number of watchers at a disadvantage.
2214
2215To put the range of results into perspective, consider that on the
2216benchmark machine, handling an event takes roughly 1600 CPU cycles with
2217EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
2218cycles with POE.
2219
964C<EV> is the sole leader regarding speed and memory use, which are both 2220C<EV> is the sole leader regarding speed and memory use, which are both
965maximal/minimal, respectively. Even when going through AnyEvent, it uses 2221maximal/minimal, respectively. When using the L<AE> API there is zero
2222overhead (when going through the AnyEvent API create is about 5-6 times
2223slower, with other times being equal, so still uses far less memory than
966far less memory than any other event loop and is still faster than Event 2224any other event loop and is still faster than Event natively).
967natively.
968 2225
969The pure perl implementation is hit in a few sweet spots (both the 2226The pure perl implementation is hit in a few sweet spots (both the
970constant timeout and the use of a single fd hit optimisations in the perl 2227constant timeout and the use of a single fd hit optimisations in the perl
971interpreter and the backend itself). Nevertheless this shows that it 2228interpreter and the backend itself). Nevertheless this shows that it
972adds very little overhead in itself. Like any select-based backend its 2229adds very little overhead in itself. Like any select-based backend its
973performance becomes really bad with lots of file descriptors (and few of 2230performance becomes really bad with lots of file descriptors (and few of
974them active), of course, but this was not subject of this benchmark. 2231them active), of course, but this was not subject of this benchmark.
975 2232
976The C<Event> module has a relatively high setup and callback invocation 2233The C<Event> module has a relatively high setup and callback invocation
977cost, but overall scores in on the third place. 2234cost, but overall scores in on the third place.
2235
2236C<IO::Async> performs admirably well, about on par with C<Event>, even
2237when using its pure perl backend.
978 2238
979C<Glib>'s memory usage is quite a bit higher, but it features a 2239C<Glib>'s memory usage is quite a bit higher, but it features a
980faster callback invocation and overall ends up in the same class as 2240faster callback invocation and overall ends up in the same class as
981C<Event>. However, Glib scales extremely badly, doubling the number of 2241C<Event>. However, Glib scales extremely badly, doubling the number of
982watchers increases the processing time by more than a factor of four, 2242watchers increases the processing time by more than a factor of four,
990file descriptor is dup()ed for each watcher. This shows that the dup() 2250file descriptor is dup()ed for each watcher. This shows that the dup()
991employed by some adaptors is not a big performance issue (it does incur a 2251employed by some adaptors is not a big performance issue (it does incur a
992hidden memory cost inside the kernel which is not reflected in the figures 2252hidden memory cost inside the kernel which is not reflected in the figures
993above). 2253above).
994 2254
995C<POE>, regardless of underlying event loop (whether using its pure 2255C<POE>, regardless of underlying event loop (whether using its pure perl
996perl select-based backend or the Event module, the POE-EV backend 2256select-based backend or the Event module, the POE-EV backend couldn't
997couldn't be tested because it wasn't working) shows abysmal performance 2257be tested because it wasn't working) shows abysmal performance and
998and memory usage: Watchers use almost 30 times as much memory as 2258memory usage with AnyEvent: Watchers use almost 30 times as much memory
999EV watchers, and 10 times as much memory as Event (the high memory 2259as EV watchers, and 10 times as much memory as Event (the high memory
1000requirements are caused by requiring a session for each watcher). Watcher 2260requirements are caused by requiring a session for each watcher). Watcher
1001invocation speed is almost 900 times slower than with AnyEvent's pure perl 2261invocation speed is almost 900 times slower than with AnyEvent's pure perl
2262implementation.
2263
1002implementation. The design of the POE adaptor class in AnyEvent can not 2264The design of the POE adaptor class in AnyEvent can not really account
1003really account for this, as session creation overhead is small compared 2265for the performance issues, though, as session creation overhead is
1004to execution of the state machine, which is coded pretty optimally within 2266small compared to execution of the state machine, which is coded pretty
1005L<AnyEvent::Impl::POE>. POE simply seems to be abysmally slow. 2267optimally within L<AnyEvent::Impl::POE> (and while everybody agrees that
2268using multiple sessions is not a good approach, especially regarding
2269memory usage, even the author of POE could not come up with a faster
2270design).
1006 2271
1007=head3 Summary 2272=head3 Summary
1008 2273
1009=over 4 2274=over 4
1010 2275
1021 2286
1022=back 2287=back
1023 2288
1024=head2 BENCHMARKING THE LARGE SERVER CASE 2289=head2 BENCHMARKING THE LARGE SERVER CASE
1025 2290
1026This benchmark atcually benchmarks the event loop itself. It works by 2291This benchmark actually benchmarks the event loop itself. It works by
1027creating a number of "servers": each server consists of a socketpair, a 2292creating a number of "servers": each server consists of a socket pair, a
1028timeout watcher that gets reset on activity (but never fires), and an I/O 2293timeout watcher that gets reset on activity (but never fires), and an I/O
1029watcher waiting for input on one side of the socket. Each time the socket 2294watcher waiting for input on one side of the socket. Each time the socket
1030watcher reads a byte it will write that byte to a random other "server". 2295watcher reads a byte it will write that byte to a random other "server".
1031 2296
1032The effect is that there will be a lot of I/O watchers, only part of which 2297The effect is that there will be a lot of I/O watchers, only part of which
1033are active at any one point (so there is a constant number of active 2298are active at any one point (so there is a constant number of active
1034fds for each loop iterstaion, but which fds these are is random). The 2299fds for each loop iteration, but which fds these are is random). The
1035timeout is reset each time something is read because that reflects how 2300timeout is reset each time something is read because that reflects how
1036most timeouts work (and puts extra pressure on the event loops). 2301most timeouts work (and puts extra pressure on the event loops).
1037 2302
1038In this benchmark, we use 10000 socketpairs (20000 sockets), of which 100 2303In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1039(1%) are active. This mirrors the activity of large servers with many 2304(1%) are active. This mirrors the activity of large servers with many
1040connections, most of which are idle at any one point in time. 2305connections, most of which are idle at any one point in time.
1041 2306
1042Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2307Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1043distribution. 2308distribution. It uses the L<AE> interface, which makes a real difference
2309for the EV and Perl backends only.
1044 2310
1045=head3 Explanation of the columns 2311=head3 Explanation of the columns
1046 2312
1047I<sockets> is the number of sockets, and twice the number of "servers" (as 2313I<sockets> is the number of sockets, and twice the number of "servers" (as
1048eahc server has a read and write socket end). 2314each server has a read and write socket end).
1049 2315
1050I<create> is the time it takes to create a socketpair (which is 2316I<create> is the time it takes to create a socket pair (which is
1051nontrivial) and two watchers: an I/O watcher and a timeout watcher. 2317nontrivial) and two watchers: an I/O watcher and a timeout watcher.
1052 2318
1053I<request>, the most important value, is the time it takes to handle a 2319I<request>, the most important value, is the time it takes to handle a
1054single "request", that is, reading the token from the pipe and forwarding 2320single "request", that is, reading the token from the pipe and forwarding
1055it to another server. This includes deleting the old timeout and creating 2321it to another server. This includes deleting the old timeout and creating
1056a new one that moves the timeout into the future. 2322a new one that moves the timeout into the future.
1057 2323
1058=head3 Results 2324=head3 Results
1059 2325
1060 name sockets create request 2326 name sockets create request
1061 EV 20000 69.01 11.16 2327 EV 20000 62.66 7.99
1062 Perl 20000 75.28 112.76 2328 Perl 20000 68.32 32.64
1063 Event 20000 212.62 257.32 2329 IOAsync 20000 174.06 101.15 epoll
1064 Glib 20000 651.16 1896.30 2330 IOAsync 20000 174.67 610.84 poll
2331 Event 20000 202.69 242.91
2332 Glib 20000 557.01 1689.52
1065 POE 20000 349.67 12317.24 uses POE::Loop::Event 2333 POE 20000 341.54 12086.32 uses POE::Loop::Event
1066 2334
1067=head3 Discussion 2335=head3 Discussion
1068 2336
1069This benchmark I<does> measure scalability and overall performance of the 2337This benchmark I<does> measure scalability and overall performance of the
1070particular event loop. 2338particular event loop.
1072EV is again fastest. Since it is using epoll on my system, the setup time 2340EV is again fastest. Since it is using epoll on my system, the setup time
1073is relatively high, though. 2341is relatively high, though.
1074 2342
1075Perl surprisingly comes second. It is much faster than the C-based event 2343Perl surprisingly comes second. It is much faster than the C-based event
1076loops Event and Glib. 2344loops Event and Glib.
2345
2346IO::Async performs very well when using its epoll backend, and still quite
2347good compared to Glib when using its pure perl backend.
1077 2348
1078Event suffers from high setup time as well (look at its code and you will 2349Event suffers from high setup time as well (look at its code and you will
1079understand why). Callback invocation also has a high overhead compared to 2350understand why). Callback invocation also has a high overhead compared to
1080the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2351the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1081uses select or poll in basically all documented configurations. 2352uses select or poll in basically all documented configurations.
1089 2360
1090=head3 Summary 2361=head3 Summary
1091 2362
1092=over 4 2363=over 4
1093 2364
1094=item * The pure perl implementation performs extremely well, considering 2365=item * The pure perl implementation performs extremely well.
1095that it uses select.
1096 2366
1097=item * Avoid Glib or POE in large projects where performance matters. 2367=item * Avoid Glib or POE in large projects where performance matters.
1098 2368
1099=back 2369=back
1100 2370
1113 2383
1114=head3 Results 2384=head3 Results
1115 2385
1116 name sockets create request 2386 name sockets create request
1117 EV 16 20.00 6.54 2387 EV 16 20.00 6.54
2388 Perl 16 25.75 12.62
1118 Event 16 81.27 35.86 2389 Event 16 81.27 35.86
1119 Glib 16 32.63 15.48 2390 Glib 16 32.63 15.48
1120 Perl 16 24.62 162.37
1121 POE 16 261.87 276.28 uses POE::Loop::Event 2391 POE 16 261.87 276.28 uses POE::Loop::Event
1122 2392
1123=head3 Discussion 2393=head3 Discussion
1124 2394
1125The benchmark tries to test the performance of a typical small 2395The benchmark tries to test the performance of a typical small
1126server. While knowing how various event loops perform is interesting, keep 2396server. While knowing how various event loops perform is interesting, keep
1127in mind that their overhead in this case is usually not as important, due 2397in mind that their overhead in this case is usually not as important, due
1128to the small absolute number of watchers. 2398to the small absolute number of watchers (that is, you need efficiency and
2399speed most when you have lots of watchers, not when you only have a few of
2400them).
1129 2401
1130EV is again fastest. 2402EV is again fastest.
1131 2403
1132The C-based event loops Event and Glib come in second this time, as the 2404Perl again comes second. It is noticeably faster than the C-based event
1133overhead of running an iteration is much smaller in C than in Perl (little 2405loops Event and Glib, although the difference is too small to really
1134code to execute in the inner loop, and perl's function calling overhead is 2406matter.
1135high, and updating all the data structures is costly).
1136 2407
1137The pure perl event loop is much slower, but still competitive.
1138
1139POE also performs much better in this case, but is is stillf ar behind the 2408POE also performs much better in this case, but is is still far behind the
1140others. 2409others.
1141 2410
1142=head3 Summary 2411=head3 Summary
1143 2412
1144=over 4 2413=over 4
1146=item * C-based event loops perform very well with small number of 2415=item * C-based event loops perform very well with small number of
1147watchers, as the management overhead dominates. 2416watchers, as the management overhead dominates.
1148 2417
1149=back 2418=back
1150 2419
2420=head2 THE IO::Lambda BENCHMARK
2421
2422Recently I was told about the benchmark in the IO::Lambda manpage, which
2423could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2424simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2425shouldn't come as a surprise to anybody). As such, the benchmark is
2426fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2427very optimal. But how would AnyEvent compare when used without the extra
2428baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2429
2430The benchmark itself creates an echo-server, and then, for 500 times,
2431connects to the echo server, sends a line, waits for the reply, and then
2432creates the next connection. This is a rather bad benchmark, as it doesn't
2433test the efficiency of the framework or much non-blocking I/O, but it is a
2434benchmark nevertheless.
2435
2436 name runtime
2437 Lambda/select 0.330 sec
2438 + optimized 0.122 sec
2439 Lambda/AnyEvent 0.327 sec
2440 + optimized 0.138 sec
2441 Raw sockets/select 0.077 sec
2442 POE/select, components 0.662 sec
2443 POE/select, raw sockets 0.226 sec
2444 POE/select, optimized 0.404 sec
2445
2446 AnyEvent/select/nb 0.085 sec
2447 AnyEvent/EV/nb 0.068 sec
2448 +state machine 0.134 sec
2449
2450The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2451benchmarks actually make blocking connects and use 100% blocking I/O,
2452defeating the purpose of an event-based solution. All of the newly
2453written AnyEvent benchmarks use 100% non-blocking connects (using
2454AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2455resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2456generally require a lot more bookkeeping and event handling than blocking
2457connects (which involve a single syscall only).
2458
2459The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2460offers similar expressive power as POE and IO::Lambda, using conventional
2461Perl syntax. This means that both the echo server and the client are 100%
2462non-blocking, further placing it at a disadvantage.
2463
2464As you can see, the AnyEvent + EV combination even beats the
2465hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2466backend easily beats IO::Lambda and POE.
2467
2468And even the 100% non-blocking version written using the high-level (and
2469slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2470higher level ("unoptimised") abstractions by a large margin, even though
2471it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2472
2473The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2474F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2475part of the IO::Lambda distribution and were used without any changes.
2476
2477
2478=head1 SIGNALS
2479
2480AnyEvent currently installs handlers for these signals:
2481
2482=over 4
2483
2484=item SIGCHLD
2485
2486A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
2487emulation for event loops that do not support them natively. Also, some
2488event loops install a similar handler.
2489
2490Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2491AnyEvent will reset it to default, to avoid losing child exit statuses.
2492
2493=item SIGPIPE
2494
2495A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
2496when AnyEvent gets loaded.
2497
2498The rationale for this is that AnyEvent users usually do not really depend
2499on SIGPIPE delivery (which is purely an optimisation for shell use, or
2500badly-written programs), but C<SIGPIPE> can cause spurious and rare
2501program exits as a lot of people do not expect C<SIGPIPE> when writing to
2502some random socket.
2503
2504The rationale for installing a no-op handler as opposed to ignoring it is
2505that this way, the handler will be restored to defaults on exec.
2506
2507Feel free to install your own handler, or reset it to defaults.
2508
2509=back
2510
2511=cut
2512
2513undef $SIG{CHLD}
2514 if $SIG{CHLD} eq 'IGNORE';
2515
2516$SIG{PIPE} = sub { }
2517 unless defined $SIG{PIPE};
2518
2519=head1 RECOMMENDED/OPTIONAL MODULES
2520
2521One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2522its built-in modules) are required to use it.
2523
2524That does not mean that AnyEvent won't take advantage of some additional
2525modules if they are installed.
2526
2527This section explains which additional modules will be used, and how they
2528affect AnyEvent's operation.
2529
2530=over 4
2531
2532=item L<Async::Interrupt>
2533
2534This slightly arcane module is used to implement fast signal handling: To
2535my knowledge, there is no way to do completely race-free and quick
2536signal handling in pure perl. To ensure that signals still get
2537delivered, AnyEvent will start an interval timer to wake up perl (and
2538catch the signals) with some delay (default is 10 seconds, look for
2539C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2540
2541If this module is available, then it will be used to implement signal
2542catching, which means that signals will not be delayed, and the event loop
2543will not be interrupted regularly, which is more efficient (and good for
2544battery life on laptops).
2545
2546This affects not just the pure-perl event loop, but also other event loops
2547that have no signal handling on their own (e.g. Glib, Tk, Qt).
2548
2549Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2550and either employ their own workarounds (POE) or use AnyEvent's workaround
2551(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2552does nothing for those backends.
2553
2554=item L<EV>
2555
2556This module isn't really "optional", as it is simply one of the backend
2557event loops that AnyEvent can use. However, it is simply the best event
2558loop available in terms of features, speed and stability: It supports
2559the AnyEvent API optimally, implements all the watcher types in XS, does
2560automatic timer adjustments even when no monotonic clock is available,
2561can take avdantage of advanced kernel interfaces such as C<epoll> and
2562C<kqueue>, and is the fastest backend I<by far>. You can even embed
2563L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2564
2565If you only use backends that rely on another event loop (e.g. C<Tk>),
2566then this module will do nothing for you.
2567
2568=item L<Guard>
2569
2570The guard module, when used, will be used to implement
2571C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2572lot less memory), but otherwise doesn't affect guard operation much. It is
2573purely used for performance.
2574
2575=item L<JSON> and L<JSON::XS>
2576
2577One of these modules is required when you want to read or write JSON data
2578via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2579advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2580
2581=item L<Net::SSLeay>
2582
2583Implementing TLS/SSL in Perl is certainly interesting, but not very
2584worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2585the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2586
2587=item L<Time::HiRes>
2588
2589This module is part of perl since release 5.008. It will be used when the
2590chosen event library does not come with a timing source of its own. The
2591pure-perl event loop (L<AnyEvent::Loop>) will additionally load it to
2592try to use a monotonic clock for timing stability.
2593
2594=back
2595
1151 2596
1152=head1 FORK 2597=head1 FORK
1153 2598
1154Most event libraries are not fork-safe. The ones who are usually are 2599Most event libraries are not fork-safe. The ones who are usually are
1155because they are so inefficient. Only L<EV> is fully fork-aware. 2600because they rely on inefficient but fork-safe C<select> or C<poll> calls
2601- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2602are usually badly thought-out hacks that are incompatible with fork in
2603one way or another. Only L<EV> is fully fork-aware and ensures that you
2604continue event-processing in both parent and child (or both, if you know
2605what you are doing).
2606
2607This means that, in general, you cannot fork and do event processing in
2608the child if the event library was initialised before the fork (which
2609usually happens when the first AnyEvent watcher is created, or the library
2610is loaded).
1156 2611
1157If you have to fork, you must either do so I<before> creating your first 2612If you have to fork, you must either do so I<before> creating your first
1158watcher OR you must not use AnyEvent at all in the child. 2613watcher OR you must not use AnyEvent at all in the child OR you must do
2614something completely out of the scope of AnyEvent.
2615
2616The problem of doing event processing in the parent I<and> the child
2617is much more complicated: even for backends that I<are> fork-aware or
2618fork-safe, their behaviour is not usually what you want: fork clones all
2619watchers, that means all timers, I/O watchers etc. are active in both
2620parent and child, which is almost never what you want. USing C<exec>
2621to start worker children from some kind of manage rprocess is usually
2622preferred, because it is much easier and cleaner, at the expense of having
2623to have another binary.
1159 2624
1160 2625
1161=head1 SECURITY CONSIDERATIONS 2626=head1 SECURITY CONSIDERATIONS
1162 2627
1163AnyEvent can be forced to load any event model via 2628AnyEvent can be forced to load any event model via
1168specified in the variable. 2633specified in the variable.
1169 2634
1170You can make AnyEvent completely ignore this variable by deleting it 2635You can make AnyEvent completely ignore this variable by deleting it
1171before the first watcher gets created, e.g. with a C<BEGIN> block: 2636before the first watcher gets created, e.g. with a C<BEGIN> block:
1172 2637
1173 BEGIN { delete $ENV{PERL_ANYEVENT_MODEL} } 2638 BEGIN { delete $ENV{PERL_ANYEVENT_MODEL} }
1174 2639
1175 use AnyEvent; 2640 use AnyEvent;
2641
2642Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
2643be used to probe what backend is used and gain other information (which is
2644probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
2645$ENV{PERL_ANYEVENT_STRICT}.
2646
2647Note that AnyEvent will remove I<all> environment variables starting with
2648C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2649enabled.
2650
2651
2652=head1 BUGS
2653
2654Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
2655to work around. If you suffer from memleaks, first upgrade to Perl 5.10
2656and check wether the leaks still show up. (Perl 5.10.0 has other annoying
2657memleaks, such as leaking on C<map> and C<grep> but it is usually not as
2658pronounced).
1176 2659
1177 2660
1178=head1 SEE ALSO 2661=head1 SEE ALSO
1179 2662
2663Tutorial/Introduction: L<AnyEvent::Intro>.
2664
2665FAQ: L<AnyEvent::FAQ>.
2666
2667Utility functions: L<AnyEvent::Util>.
2668
1180Event modules: L<Coro::EV>, L<EV>, L<EV::Glib>, L<Glib::EV>, 2669Event modules: L<AnyEvent::Loop>, L<EV>, L<EV::Glib>, L<Glib::EV>,
1181L<Coro::Event>, L<Event>, L<Glib::Event>, L<Glib>, L<Coro>, L<Tk>, 2670L<Event>, L<Glib::Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>.
1182L<Event::Lib>, L<Qt>, L<POE>.
1183 2671
1184Implementations: L<AnyEvent::Impl::CoroEV>, L<AnyEvent::Impl::EV>, 2672Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
2673L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
2674L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
1185L<AnyEvent::Impl::CoroEvent>, L<AnyEvent::Impl::Event>, L<AnyEvent::Impl::Glib>, 2675L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>.
1186L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, L<AnyEvent::Impl::EventLib>,
1187L<AnyEvent::Impl::Qt>, L<AnyEvent::Impl::POE>.
1188 2676
2677Non-blocking file handles, sockets, TCP clients and
2678servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
2679
2680Asynchronous DNS: L<AnyEvent::DNS>.
2681
2682Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
2683
1189Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>. 2684Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
2685L<AnyEvent::HTTP>.
1190 2686
1191 2687
1192=head1 AUTHOR 2688=head1 AUTHOR
1193 2689
1194 Marc Lehmann <schmorp@schmorp.de> 2690 Marc Lehmann <schmorp@schmorp.de>
1195 http://home.schmorp.de/ 2691 http://home.schmorp.de/
1196 2692
1197=cut 2693=cut
1198 2694
11991 26951
1200 2696

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines