ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.184 by root, Wed Oct 1 16:53:27 2008 UTC vs.
Revision 1.373 by root, Thu Aug 25 03:08:48 2011 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt,
6FLTK and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
15 # file handle or descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { ... }); 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
12 17
18 # one-shot or repeating timers
13 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... }); 19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
14 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ... 20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
15 21
16 print AnyEvent->now; # prints current event loop time 22 print AnyEvent->now; # prints current event loop time
17 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time. 23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
18 24
25 # POSIX signal
19 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... }); 26 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
20 27
28 # child process exit
21 my $w = AnyEvent->child (pid => $pid, cb => sub { 29 my $w = AnyEvent->child (pid => $pid, cb => sub {
22 my ($pid, $status) = @_; 30 my ($pid, $status) = @_;
23 ... 31 ...
24 }); 32 });
33
34 # called when event loop idle (if applicable)
35 my $w = AnyEvent->idle (cb => sub { ... });
25 36
26 my $w = AnyEvent->condvar; # stores whether a condition was flagged 37 my $w = AnyEvent->condvar; # stores whether a condition was flagged
27 $w->send; # wake up current and all future recv's 38 $w->send; # wake up current and all future recv's
28 $w->recv; # enters "main loop" till $condvar gets ->send 39 $w->recv; # enters "main loop" till $condvar gets ->send
29 # use a condvar in callback mode: 40 # use a condvar in callback mode:
32=head1 INTRODUCTION/TUTORIAL 43=head1 INTRODUCTION/TUTORIAL
33 44
34This manpage is mainly a reference manual. If you are interested 45This manpage is mainly a reference manual. If you are interested
35in a tutorial or some gentle introduction, have a look at the 46in a tutorial or some gentle introduction, have a look at the
36L<AnyEvent::Intro> manpage. 47L<AnyEvent::Intro> manpage.
48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
37 58
38=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
39 60
40Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
41nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
57module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
58model you use. 79model you use.
59 80
60For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
61actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
62like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
63cannot use anything else, as they are simply incompatible to everything 84cannot use anything else, as they are simply incompatible to everything
64that isn't them. What's worse, all the potential users of your 85that isn't them. What's worse, all the potential users of your
65module are I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
66 87
67AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
68fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
69with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if 90with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module
70your module uses one of those, every user of your module has to use it, 91uses one of those, every user of your module has to use it, too. But if
71too. But if your module uses AnyEvent, it works transparently with all 92your module uses AnyEvent, it works transparently with all event models it
72event models it supports (including stuff like IO::Async, as long as those 93supports (including stuff like IO::Async, as long as those use one of the
73use one of the supported event loops. It is trivial to add new event loops 94supported event loops. It is easy to add new event loops to AnyEvent, too,
74to AnyEvent, too, so it is future-proof). 95so it is future-proof).
75 96
76In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
77model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
78modules, you get an enormous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
79follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
80offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
81technically possible. 102technically possible.
82 103
83Of course, AnyEvent comes with a big (and fully optional!) toolbox 104Of course, AnyEvent comes with a big (and fully optional!) toolbox
84of useful functionality, such as an asynchronous DNS resolver, 100% 105of useful functionality, such as an asynchronous DNS resolver, 100%
90useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
91model, you should I<not> use this module. 112model, you should I<not> use this module.
92 113
93=head1 DESCRIPTION 114=head1 DESCRIPTION
94 115
95L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
96allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
97users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
98peacefully at any one time). 119than one event loop cannot coexist peacefully).
99 120
100The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
101module. 122module.
102 123
103During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
104to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
105following modules is already loaded: L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Loop>,
106L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
107L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
108to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
109adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Loop> should always work, so
110be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
111found, AnyEvent will fall back to a pure-perl event loop, which is not
112very efficient, but should work everywhere.
113 132
114Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
115an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
116that model the default. For example: 135that model the default. For example:
117 136
119 use AnyEvent; 138 use AnyEvent;
120 139
121 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
122 141
123The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
124starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
125use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
126 146
127The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called C<AnyEvent::Loop>. Like
128C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148other event modules you can load it explicitly and enjoy the high
129explicitly and enjoy the high availability of that event loop :) 149availability of that event loop :)
130 150
131=head1 WATCHERS 151=head1 WATCHERS
132 152
133AnyEvent has the central concept of a I<watcher>, which is an object that 153AnyEvent has the central concept of a I<watcher>, which is an object that
134stores relevant data for each kind of event you are waiting for, such as 154stores relevant data for each kind of event you are waiting for, such as
137These watchers are normal Perl objects with normal Perl lifetime. After 157These watchers are normal Perl objects with normal Perl lifetime. After
138creating a watcher it will immediately "watch" for events and invoke the 158creating a watcher it will immediately "watch" for events and invoke the
139callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
140is in control). 160is in control).
141 161
162Note that B<callbacks must not permanently change global variables>
163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
164callbacks must not C<die> >>. The former is good programming practice in
165Perl and the latter stems from the fact that exception handling differs
166widely between event loops.
167
142To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
143variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
144to it). 170to it).
145 171
146All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
147 173
148Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
149example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
150 176
151An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
152 178
153 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
154 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
155 undef $w; 181 undef $w;
156 }); 182 });
159my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
160declared. 186declared.
161 187
162=head2 I/O WATCHERS 188=head2 I/O WATCHERS
163 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
164You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
165with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
166 198
167C<fh> the Perl I<file handle> (I<not> file descriptor) to watch for events 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
168(AnyEvent might or might not keep a reference to this file handle). C<poll> 200for events (AnyEvent might or might not keep a reference to this file
201handle). Note that only file handles pointing to things for which
202non-blocking operation makes sense are allowed. This includes sockets,
203most character devices, pipes, fifos and so on, but not for example files
204or block devices.
205
169must be a string that is either C<r> or C<w>, which creates a watcher 206C<poll> must be a string that is either C<r> or C<w>, which creates a
170waiting for "r"eadable or "w"ritable events, respectively. C<cb> is the 207watcher waiting for "r"eadable or "w"ritable events, respectively.
208
171callback to invoke each time the file handle becomes ready. 209C<cb> is the callback to invoke each time the file handle becomes ready.
172 210
173Although the callback might get passed parameters, their value and 211Although the callback might get passed parameters, their value and
174presence is undefined and you cannot rely on them. Portable AnyEvent 212presence is undefined and you cannot rely on them. Portable AnyEvent
175callbacks cannot use arguments passed to I/O watcher callbacks. 213callbacks cannot use arguments passed to I/O watcher callbacks.
176 214
177The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
178You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
179underlying file descriptor. 217underlying file descriptor.
180 218
181Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
182always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
183handles. 221handles.
184 222
185Example: wait for readability of STDIN, then read a line and disable the 223Example: wait for readability of STDIN, then read a line and disable the
186watcher. 224watcher.
191 undef $w; 229 undef $w;
192 }); 230 });
193 231
194=head2 TIME WATCHERS 232=head2 TIME WATCHERS
195 233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
241
196You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
197method with the following mandatory arguments: 243method with the following mandatory arguments:
198 244
199C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
200supported) the callback should be invoked. C<cb> is the callback to invoke 246supported) the callback should be invoked. C<cb> is the callback to invoke
202 248
203Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
204presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
205callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
206 252
207The callback will normally be invoked once only. If you specify another 253The callback will normally be invoked only once. If you specify another
208parameter, C<interval>, as a strictly positive number (> 0), then the 254parameter, C<interval>, as a strictly positive number (> 0), then the
209callback will be invoked regularly at that interval (in fractional 255callback will be invoked regularly at that interval (in fractional
210seconds) after the first invocation. If C<interval> is specified with a 256seconds) after the first invocation. If C<interval> is specified with a
211false value, then it is treated as if it were missing. 257false value, then it is treated as if it were not specified at all.
212 258
213The callback will be rescheduled before invoking the callback, but no 259The callback will be rescheduled before invoking the callback, but no
214attempt is done to avoid timer drift in most backends, so the interval is 260attempt is made to avoid timer drift in most backends, so the interval is
215only approximate. 261only approximate.
216 262
217Example: fire an event after 7.7 seconds. 263Example: fire an event after 7.7 seconds.
218 264
219 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
237 283
238While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
239use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
240"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
241the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
242fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
243 289
244AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
245about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
246on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
247timers. 293timers.
248 294
249AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
250AnyEvent API. 296AnyEvent API.
272I<In almost all cases (in all cases if you don't care), this is the 318I<In almost all cases (in all cases if you don't care), this is the
273function to call when you want to know the current time.> 319function to call when you want to know the current time.>
274 320
275This function is also often faster then C<< AnyEvent->time >>, and 321This function is also often faster then C<< AnyEvent->time >>, and
276thus the preferred method if you want some timestamp (for example, 322thus the preferred method if you want some timestamp (for example,
277L<AnyEvent::Handle> uses this to update it's activity timeouts). 323L<AnyEvent::Handle> uses this to update its activity timeouts).
278 324
279The rest of this section is only of relevance if you try to be very exact 325The rest of this section is only of relevance if you try to be very exact
280with your timing, you can skip it without bad conscience. 326with your timing; you can skip it without a bad conscience.
281 327
282For a practical example of when these times differ, consider L<Event::Lib> 328For a practical example of when these times differ, consider L<Event::Lib>
283and L<EV> and the following set-up: 329and L<EV> and the following set-up:
284 330
285The event loop is running and has just invoked one of your callback at 331The event loop is running and has just invoked one of your callbacks at
286time=500 (assume no other callbacks delay processing). In your callback, 332time=500 (assume no other callbacks delay processing). In your callback,
287you wait a second by executing C<sleep 1> (blocking the process for a 333you wait a second by executing C<sleep 1> (blocking the process for a
288second) and then (at time=501) you create a relative timer that fires 334second) and then (at time=501) you create a relative timer that fires
289after three seconds. 335after three seconds.
290 336
308In either case, if you care (and in most cases, you don't), then you 354In either case, if you care (and in most cases, you don't), then you
309can get whatever behaviour you want with any event loop, by taking the 355can get whatever behaviour you want with any event loop, by taking the
310difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into 356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
311account. 357account.
312 358
359=item AnyEvent->now_update
360
361Some event loops (such as L<EV> or L<AnyEvent::Loop>) cache the current
362time for each loop iteration (see the discussion of L<< AnyEvent->now >>,
363above).
364
365When a callback runs for a long time (or when the process sleeps), then
366this "current" time will differ substantially from the real time, which
367might affect timers and time-outs.
368
369When this is the case, you can call this method, which will update the
370event loop's idea of "current time".
371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
379Note that updating the time I<might> cause some events to be handled.
380
313=back 381=back
314 382
315=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
316 386
317You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
318I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
319callback to be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
320 390
326invocation, and callback invocation will be synchronous. Synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
327that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
328but it is guaranteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
329 399
330The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
331between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
332 403
333This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
334directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
335 407
336Example: exit on SIGINT 408Example: exit on SIGINT
337 409
338 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
339 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling) or
421"unsafe" (asynchronous) - the former might get delayed indefinitely, the
422latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
432callbacks to signals in a generic way, which is a pity, as you cannot
433do race-free signal handling in perl, requiring C libraries for
434this. AnyEvent will try to do its best, which means in some cases,
435signals will be delayed. The maximum time a signal might be delayed is
436specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
437variable can be changed only before the first signal watcher is created,
438and should be left alone otherwise. This variable determines how often
439AnyEvent polls for signals (in case a wake-up was missed). Higher values
440will cause fewer spurious wake-ups, which is better for power and CPU
441saving.
442
443All these problems can be avoided by installing the optional
444L<Async::Interrupt> module, which works with most event loops. It will not
445work with inherently broken event loops such as L<Event> or L<Event::Lib>
446(and not with L<POE> currently, as POE does its own workaround with
447one-second latency). For those, you just have to suffer the delays.
448
340=head2 CHILD PROCESS WATCHERS 449=head2 CHILD PROCESS WATCHERS
341 450
451 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
452
342You can also watch on a child process exit and catch its exit status. 453You can also watch for a child process exit and catch its exit status.
343 454
344The child process is specified by the C<pid> argument (if set to C<0>, it 455The child process is specified by the C<pid> argument (on some backends,
345watches for any child process exit). The watcher will triggered only when 456using C<0> watches for any child process exit, on others this will
346the child process has finished and an exit status is available, not on 457croak). The watcher will be triggered only when the child process has
347any trace events (stopped/continued). 458finished and an exit status is available, not on any trace events
459(stopped/continued).
348 460
349The callback will be called with the pid and exit status (as returned by 461The callback will be called with the pid and exit status (as returned by
350waitpid), so unlike other watcher types, you I<can> rely on child watcher 462waitpid), so unlike other watcher types, you I<can> rely on child watcher
351callback arguments. 463callback arguments.
352 464
357 469
358There is a slight catch to child watchers, however: you usually start them 470There is a slight catch to child watchers, however: you usually start them
359I<after> the child process was created, and this means the process could 471I<after> the child process was created, and this means the process could
360have exited already (and no SIGCHLD will be sent anymore). 472have exited already (and no SIGCHLD will be sent anymore).
361 473
362Not all event models handle this correctly (POE doesn't), but even for 474Not all event models handle this correctly (neither POE nor IO::Async do,
475see their AnyEvent::Impl manpages for details), but even for event models
363event models that I<do> handle this correctly, they usually need to be 476that I<do> handle this correctly, they usually need to be loaded before
364loaded before the process exits (i.e. before you fork in the first place). 477the process exits (i.e. before you fork in the first place). AnyEvent's
478pure perl event loop handles all cases correctly regardless of when you
479start the watcher.
365 480
366This means you cannot create a child watcher as the very first thing in an 481This means you cannot create a child watcher as the very first
367AnyEvent program, you I<have> to create at least one watcher before you 482thing in an AnyEvent program, you I<have> to create at least one
368C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 483watcher before you C<fork> the child (alternatively, you can call
484C<AnyEvent::detect>).
485
486As most event loops do not support waiting for child events, they will be
487emulated by AnyEvent in most cases, in which case the latency and race
488problems mentioned in the description of signal watchers apply.
369 489
370Example: fork a process and wait for it 490Example: fork a process and wait for it
371 491
372 my $done = AnyEvent->condvar; 492 my $done = AnyEvent->condvar;
373 493
383 ); 503 );
384 504
385 # do something else, then wait for process exit 505 # do something else, then wait for process exit
386 $done->recv; 506 $done->recv;
387 507
508=head2 IDLE WATCHERS
509
510 $w = AnyEvent->idle (cb => <callback>);
511
512This will repeatedly invoke the callback after the process becomes idle,
513until either the watcher is destroyed or new events have been detected.
514
515Idle watchers are useful when there is a need to do something, but it
516is not so important (or wise) to do it instantly. The callback will be
517invoked only when there is "nothing better to do", which is usually
518defined as "all outstanding events have been handled and no new events
519have been detected". That means that idle watchers ideally get invoked
520when the event loop has just polled for new events but none have been
521detected. Instead of blocking to wait for more events, the idle watchers
522will be invoked.
523
524Unfortunately, most event loops do not really support idle watchers (only
525EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
526will simply call the callback "from time to time".
527
528Example: read lines from STDIN, but only process them when the
529program is otherwise idle:
530
531 my @lines; # read data
532 my $idle_w;
533 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
534 push @lines, scalar <STDIN>;
535
536 # start an idle watcher, if not already done
537 $idle_w ||= AnyEvent->idle (cb => sub {
538 # handle only one line, when there are lines left
539 if (my $line = shift @lines) {
540 print "handled when idle: $line";
541 } else {
542 # otherwise disable the idle watcher again
543 undef $idle_w;
544 }
545 });
546 });
547
388=head2 CONDITION VARIABLES 548=head2 CONDITION VARIABLES
549
550 $cv = AnyEvent->condvar;
551
552 $cv->send (<list>);
553 my @res = $cv->recv;
389 554
390If you are familiar with some event loops you will know that all of them 555If you are familiar with some event loops you will know that all of them
391require you to run some blocking "loop", "run" or similar function that 556require you to run some blocking "loop", "run" or similar function that
392will actively watch for new events and call your callbacks. 557will actively watch for new events and call your callbacks.
393 558
394AnyEvent is different, it expects somebody else to run the event loop and 559AnyEvent is slightly different: it expects somebody else to run the event
395will only block when necessary (usually when told by the user). 560loop and will only block when necessary (usually when told by the user).
396 561
397The instrument to do that is called a "condition variable", so called 562The tool to do that is called a "condition variable", so called because
398because they represent a condition that must become true. 563they represent a condition that must become true.
564
565Now is probably a good time to look at the examples further below.
399 566
400Condition variables can be created by calling the C<< AnyEvent->condvar 567Condition variables can be created by calling the C<< AnyEvent->condvar
401>> method, usually without arguments. The only argument pair allowed is 568>> method, usually without arguments. The only argument pair allowed is
402
403C<cb>, which specifies a callback to be called when the condition variable 569C<cb>, which specifies a callback to be called when the condition variable
404becomes true, with the condition variable as the first argument (but not 570becomes true, with the condition variable as the first argument (but not
405the results). 571the results).
406 572
407After creation, the condition variable is "false" until it becomes "true" 573After creation, the condition variable is "false" until it becomes "true"
408by calling the C<send> method (or calling the condition variable as if it 574by calling the C<send> method (or calling the condition variable as if it
409were a callback, read about the caveats in the description for the C<< 575were a callback, read about the caveats in the description for the C<<
410->send >> method). 576->send >> method).
411 577
412Condition variables are similar to callbacks, except that you can 578Since condition variables are the most complex part of the AnyEvent API, here are
413optionally wait for them. They can also be called merge points - points 579some different mental models of what they are - pick the ones you can connect to:
414in time where multiple outstanding events have been processed. And yet 580
415another way to call them is transactions - each condition variable can be 581=over 4
416used to represent a transaction, which finishes at some point and delivers 582
417a result. 583=item * Condition variables are like callbacks - you can call them (and pass them instead
584of callbacks). Unlike callbacks however, you can also wait for them to be called.
585
586=item * Condition variables are signals - one side can emit or send them,
587the other side can wait for them, or install a handler that is called when
588the signal fires.
589
590=item * Condition variables are like "Merge Points" - points in your program
591where you merge multiple independent results/control flows into one.
592
593=item * Condition variables represent a transaction - functions that start
594some kind of transaction can return them, leaving the caller the choice
595between waiting in a blocking fashion, or setting a callback.
596
597=item * Condition variables represent future values, or promises to deliver
598some result, long before the result is available.
599
600=back
418 601
419Condition variables are very useful to signal that something has finished, 602Condition variables are very useful to signal that something has finished,
420for example, if you write a module that does asynchronous http requests, 603for example, if you write a module that does asynchronous http requests,
421then a condition variable would be the ideal candidate to signal the 604then a condition variable would be the ideal candidate to signal the
422availability of results. The user can either act when the callback is 605availability of results. The user can either act when the callback is
435 618
436Condition variables are represented by hash refs in perl, and the keys 619Condition variables are represented by hash refs in perl, and the keys
437used by AnyEvent itself are all named C<_ae_XXX> to make subclassing 620used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
438easy (it is often useful to build your own transaction class on top of 621easy (it is often useful to build your own transaction class on top of
439AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call 622AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
440it's C<new> method in your own C<new> method. 623its C<new> method in your own C<new> method.
441 624
442There are two "sides" to a condition variable - the "producer side" which 625There are two "sides" to a condition variable - the "producer side" which
443eventually calls C<< -> send >>, and the "consumer side", which waits 626eventually calls C<< -> send >>, and the "consumer side", which waits
444for the send to occur. 627for the send to occur.
445 628
446Example: wait for a timer. 629Example: wait for a timer.
447 630
448 # wait till the result is ready 631 # condition: "wait till the timer is fired"
449 my $result_ready = AnyEvent->condvar; 632 my $timer_fired = AnyEvent->condvar;
450 633
451 # do something such as adding a timer 634 # create the timer - we could wait for, say
452 # or socket watcher the calls $result_ready->send 635 # a handle becomign ready, or even an
453 # when the "result" is ready. 636 # AnyEvent::HTTP request to finish, but
454 # in this case, we simply use a timer: 637 # in this case, we simply use a timer:
455 my $w = AnyEvent->timer ( 638 my $w = AnyEvent->timer (
456 after => 1, 639 after => 1,
457 cb => sub { $result_ready->send }, 640 cb => sub { $timer_fired->send },
458 ); 641 );
459 642
460 # this "blocks" (while handling events) till the callback 643 # this "blocks" (while handling events) till the callback
461 # calls send 644 # calls ->send
462 $result_ready->recv; 645 $timer_fired->recv;
463 646
464Example: wait for a timer, but take advantage of the fact that 647Example: wait for a timer, but take advantage of the fact that condition
465condition variables are also code references. 648variables are also callable directly.
466 649
467 my $done = AnyEvent->condvar; 650 my $done = AnyEvent->condvar;
468 my $delay = AnyEvent->timer (after => 5, cb => $done); 651 my $delay = AnyEvent->timer (after => 5, cb => $done);
469 $done->recv; 652 $done->recv;
470 653
476 659
477 ... 660 ...
478 661
479 my @info = $couchdb->info->recv; 662 my @info = $couchdb->info->recv;
480 663
481And this is how you would just ste a callback to be called whenever the 664And this is how you would just set a callback to be called whenever the
482results are available: 665results are available:
483 666
484 $couchdb->info->cb (sub { 667 $couchdb->info->cb (sub {
485 my @info = $_[0]->recv; 668 my @info = $_[0]->recv;
486 }); 669 });
504immediately from within send. 687immediately from within send.
505 688
506Any arguments passed to the C<send> call will be returned by all 689Any arguments passed to the C<send> call will be returned by all
507future C<< ->recv >> calls. 690future C<< ->recv >> calls.
508 691
509Condition variables are overloaded so one can call them directly 692Condition variables are overloaded so one can call them directly (as if
510(as a code reference). Calling them directly is the same as calling 693they were a code reference). Calling them directly is the same as calling
511C<send>. Note, however, that many C-based event loops do not handle 694C<send>.
512overloading, so as tempting as it may be, passing a condition variable
513instead of a callback does not work. Both the pure perl and EV loops
514support overloading, however, as well as all functions that use perl to
515invoke a callback (as in L<AnyEvent::Socket> and L<AnyEvent::DNS> for
516example).
517 695
518=item $cv->croak ($error) 696=item $cv->croak ($error)
519 697
520Similar to send, but causes all call's to C<< ->recv >> to invoke 698Similar to send, but causes all calls to C<< ->recv >> to invoke
521C<Carp::croak> with the given error message/object/scalar. 699C<Carp::croak> with the given error message/object/scalar.
522 700
523This can be used to signal any errors to the condition variable 701This can be used to signal any errors to the condition variable
524user/consumer. 702user/consumer. Doing it this way instead of calling C<croak> directly
703delays the error detection, but has the overwhelming advantage that it
704diagnoses the error at the place where the result is expected, and not
705deep in some event callback with no connection to the actual code causing
706the problem.
525 707
526=item $cv->begin ([group callback]) 708=item $cv->begin ([group callback])
527 709
528=item $cv->end 710=item $cv->end
529
530These two methods are EXPERIMENTAL and MIGHT CHANGE.
531 711
532These two methods can be used to combine many transactions/events into 712These two methods can be used to combine many transactions/events into
533one. For example, a function that pings many hosts in parallel might want 713one. For example, a function that pings many hosts in parallel might want
534to use a condition variable for the whole process. 714to use a condition variable for the whole process.
535 715
536Every call to C<< ->begin >> will increment a counter, and every call to 716Every call to C<< ->begin >> will increment a counter, and every call to
537C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 717C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
538>>, the (last) callback passed to C<begin> will be executed. That callback 718>>, the (last) callback passed to C<begin> will be executed, passing the
539is I<supposed> to call C<< ->send >>, but that is not required. If no 719condvar as first argument. That callback is I<supposed> to call C<< ->send
540callback was set, C<send> will be called without any arguments. 720>>, but that is not required. If no group callback was set, C<send> will
721be called without any arguments.
541 722
542Let's clarify this with the ping example: 723You can think of C<< $cv->send >> giving you an OR condition (one call
724sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
725condition (all C<begin> calls must be C<end>'ed before the condvar sends).
726
727Let's start with a simple example: you have two I/O watchers (for example,
728STDOUT and STDERR for a program), and you want to wait for both streams to
729close before activating a condvar:
543 730
544 my $cv = AnyEvent->condvar; 731 my $cv = AnyEvent->condvar;
545 732
733 $cv->begin; # first watcher
734 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
735 defined sysread $fh1, my $buf, 4096
736 or $cv->end;
737 });
738
739 $cv->begin; # second watcher
740 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
741 defined sysread $fh2, my $buf, 4096
742 or $cv->end;
743 });
744
745 $cv->recv;
746
747This works because for every event source (EOF on file handle), there is
748one call to C<begin>, so the condvar waits for all calls to C<end> before
749sending.
750
751The ping example mentioned above is slightly more complicated, as the
752there are results to be passwd back, and the number of tasks that are
753begun can potentially be zero:
754
755 my $cv = AnyEvent->condvar;
756
546 my %result; 757 my %result;
547 $cv->begin (sub { $cv->send (\%result) }); 758 $cv->begin (sub { shift->send (\%result) });
548 759
549 for my $host (@list_of_hosts) { 760 for my $host (@list_of_hosts) {
550 $cv->begin; 761 $cv->begin;
551 ping_host_then_call_callback $host, sub { 762 ping_host_then_call_callback $host, sub {
552 $result{$host} = ...; 763 $result{$host} = ...;
567loop, which serves two important purposes: first, it sets the callback 778loop, which serves two important purposes: first, it sets the callback
568to be called once the counter reaches C<0>, and second, it ensures that 779to be called once the counter reaches C<0>, and second, it ensures that
569C<send> is called even when C<no> hosts are being pinged (the loop 780C<send> is called even when C<no> hosts are being pinged (the loop
570doesn't execute once). 781doesn't execute once).
571 782
572This is the general pattern when you "fan out" into multiple subrequests: 783This is the general pattern when you "fan out" into multiple (but
573use an outer C<begin>/C<end> pair to set the callback and ensure C<end> 784potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
574is called at least once, and then, for each subrequest you start, call 785the callback and ensure C<end> is called at least once, and then, for each
575C<begin> and for each subrequest you finish, call C<end>. 786subrequest you start, call C<begin> and for each subrequest you finish,
787call C<end>.
576 788
577=back 789=back
578 790
579=head3 METHODS FOR CONSUMERS 791=head3 METHODS FOR CONSUMERS
580 792
584=over 4 796=over 4
585 797
586=item $cv->recv 798=item $cv->recv
587 799
588Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak 800Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
589>> methods have been called on c<$cv>, while servicing other watchers 801>> methods have been called on C<$cv>, while servicing other watchers
590normally. 802normally.
591 803
592You can only wait once on a condition - additional calls are valid but 804You can only wait once on a condition - additional calls are valid but
593will return immediately. 805will return immediately.
594 806
596function will call C<croak>. 808function will call C<croak>.
597 809
598In list context, all parameters passed to C<send> will be returned, 810In list context, all parameters passed to C<send> will be returned,
599in scalar context only the first one will be returned. 811in scalar context only the first one will be returned.
600 812
813Note that doing a blocking wait in a callback is not supported by any
814event loop, that is, recursive invocation of a blocking C<< ->recv
815>> is not allowed, and the C<recv> call will C<croak> if such a
816condition is detected. This condition can be slightly loosened by using
817L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
818any thread that doesn't run the event loop itself.
819
601Not all event models support a blocking wait - some die in that case 820Not all event models support a blocking wait - some die in that case
602(programs might want to do that to stay interactive), so I<if you are 821(programs might want to do that to stay interactive), so I<if you are
603using this from a module, never require a blocking wait>, but let the 822using this from a module, never require a blocking wait>. Instead, let the
604caller decide whether the call will block or not (for example, by coupling 823caller decide whether the call will block or not (for example, by coupling
605condition variables with some kind of request results and supporting 824condition variables with some kind of request results and supporting
606callbacks so the caller knows that getting the result will not block, 825callbacks so the caller knows that getting the result will not block,
607while still supporting blocking waits if the caller so desires). 826while still supporting blocking waits if the caller so desires).
608 827
609Another reason I<never> to C<< ->recv >> in a module is that you cannot
610sensibly have two C<< ->recv >>'s in parallel, as that would require
611multiple interpreters or coroutines/threads, none of which C<AnyEvent>
612can supply.
613
614The L<Coro> module, however, I<can> and I<does> supply coroutines and, in
615fact, L<Coro::AnyEvent> replaces AnyEvent's condvars by coroutine-safe
616versions and also integrates coroutines into AnyEvent, making blocking
617C<< ->recv >> calls perfectly safe as long as they are done from another
618coroutine (one that doesn't run the event loop).
619
620You can ensure that C<< -recv >> never blocks by setting a callback and 828You can ensure that C<< ->recv >> never blocks by setting a callback and
621only calling C<< ->recv >> from within that callback (or at a later 829only calling C<< ->recv >> from within that callback (or at a later
622time). This will work even when the event loop does not support blocking 830time). This will work even when the event loop does not support blocking
623waits otherwise. 831waits otherwise.
624 832
625=item $bool = $cv->ready 833=item $bool = $cv->ready
631 839
632This is a mutator function that returns the callback set and optionally 840This is a mutator function that returns the callback set and optionally
633replaces it before doing so. 841replaces it before doing so.
634 842
635The callback will be called when the condition becomes "true", i.e. when 843The callback will be called when the condition becomes "true", i.e. when
636C<send> or C<croak> are called, with the only argument being the condition 844C<send> or C<croak> are called, with the only argument being the
637variable itself. Calling C<recv> inside the callback or at any later time 845condition variable itself. If the condition is already true, the
638is guaranteed not to block. 846callback is called immediately when it is set. Calling C<recv> inside
847the callback or at any later time is guaranteed not to block.
639 848
640=back 849=back
641 850
851=head1 SUPPORTED EVENT LOOPS/BACKENDS
852
853The available backend classes are (every class has its own manpage):
854
855=over 4
856
857=item Backends that are autoprobed when no other event loop can be found.
858
859EV is the preferred backend when no other event loop seems to be in
860use. If EV is not installed, then AnyEvent will fall back to its own
861pure-perl implementation, which is available everywhere as it comes with
862AnyEvent itself.
863
864 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
865 AnyEvent::Impl::Perl pure-perl AnyEvent::Loop, fast and portable.
866
867=item Backends that are transparently being picked up when they are used.
868
869These will be used if they are already loaded when the first watcher
870is created, in which case it is assumed that the application is using
871them. This means that AnyEvent will automatically pick the right backend
872when the main program loads an event module before anything starts to
873create watchers. Nothing special needs to be done by the main program.
874
875 AnyEvent::Impl::Event based on Event, very stable, few glitches.
876 AnyEvent::Impl::Glib based on Glib, slow but very stable.
877 AnyEvent::Impl::Tk based on Tk, very broken.
878 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
879 AnyEvent::Impl::POE based on POE, very slow, some limitations.
880 AnyEvent::Impl::Irssi used when running within irssi.
881 AnyEvent::Impl::IOAsync based on IO::Async.
882 AnyEvent::Impl::Cocoa based on Cocoa::EventLoop.
883 AnyEvent::Impl::FLTK2 based on FLTK (fltk 2 binding).
884
885=item Backends with special needs.
886
887Qt requires the Qt::Application to be instantiated first, but will
888otherwise be picked up automatically. As long as the main program
889instantiates the application before any AnyEvent watchers are created,
890everything should just work.
891
892 AnyEvent::Impl::Qt based on Qt.
893
894=item Event loops that are indirectly supported via other backends.
895
896Some event loops can be supported via other modules:
897
898There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
899
900B<WxWidgets> has no support for watching file handles. However, you can
901use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
902polls 20 times per second, which was considered to be too horrible to even
903consider for AnyEvent.
904
905B<Prima> is not supported as nobody seems to be using it, but it has a POE
906backend, so it can be supported through POE.
907
908AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
909load L<POE> when detecting them, in the hope that POE will pick them up,
910in which case everything will be automatic.
911
912=back
913
642=head1 GLOBAL VARIABLES AND FUNCTIONS 914=head1 GLOBAL VARIABLES AND FUNCTIONS
643 915
916These are not normally required to use AnyEvent, but can be useful to
917write AnyEvent extension modules.
918
644=over 4 919=over 4
645 920
646=item $AnyEvent::MODEL 921=item $AnyEvent::MODEL
647 922
648Contains C<undef> until the first watcher is being created. Then it 923Contains C<undef> until the first watcher is being created, before the
924backend has been autodetected.
925
649contains the event model that is being used, which is the name of the 926Afterwards it contains the event model that is being used, which is the
650Perl class implementing the model. This class is usually one of the 927name of the Perl class implementing the model. This class is usually one
651C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 928of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
652AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 929case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
653 930will be C<urxvt::anyevent>).
654The known classes so far are:
655
656 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
657 AnyEvent::Impl::Event based on Event, second best choice.
658 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
659 AnyEvent::Impl::Glib based on Glib, third-best choice.
660 AnyEvent::Impl::Tk based on Tk, very bad choice.
661 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
662 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
663 AnyEvent::Impl::POE based on POE, not generic enough for full support.
664
665There is no support for WxWidgets, as WxWidgets has no support for
666watching file handles. However, you can use WxWidgets through the
667POE Adaptor, as POE has a Wx backend that simply polls 20 times per
668second, which was considered to be too horrible to even consider for
669AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
670it's adaptor.
671
672AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
673autodetecting them.
674 931
675=item AnyEvent::detect 932=item AnyEvent::detect
676 933
677Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 934Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
678if necessary. You should only call this function right before you would 935if necessary. You should only call this function right before you would
679have created an AnyEvent watcher anyway, that is, as late as possible at 936have created an AnyEvent watcher anyway, that is, as late as possible at
680runtime. 937runtime, and not e.g. during initialisation of your module.
938
939The effect of calling this function is as if a watcher had been created
940(specifically, actions that happen "when the first watcher is created"
941happen when calling detetc as well).
942
943If you need to do some initialisation before AnyEvent watchers are
944created, use C<post_detect>.
681 945
682=item $guard = AnyEvent::post_detect { BLOCK } 946=item $guard = AnyEvent::post_detect { BLOCK }
683 947
684Arranges for the code block to be executed as soon as the event model is 948Arranges for the code block to be executed as soon as the event model is
685autodetected (or immediately if this has already happened). 949autodetected (or immediately if that has already happened).
950
951The block will be executed I<after> the actual backend has been detected
952(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
953created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
954other initialisations - see the sources of L<AnyEvent::Strict> or
955L<AnyEvent::AIO> to see how this is used.
956
957The most common usage is to create some global watchers, without forcing
958event module detection too early, for example, L<AnyEvent::AIO> creates
959and installs the global L<IO::AIO> watcher in a C<post_detect> block to
960avoid autodetecting the event module at load time.
686 961
687If called in scalar or list context, then it creates and returns an object 962If called in scalar or list context, then it creates and returns an object
688that automatically removes the callback again when it is destroyed. See 963that automatically removes the callback again when it is destroyed (or
964C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
689L<Coro::BDB> for a case where this is useful. 965a case where this is useful.
966
967Example: Create a watcher for the IO::AIO module and store it in
968C<$WATCHER>, but do so only do so after the event loop is initialised.
969
970 our WATCHER;
971
972 my $guard = AnyEvent::post_detect {
973 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
974 };
975
976 # the ||= is important in case post_detect immediately runs the block,
977 # as to not clobber the newly-created watcher. assigning both watcher and
978 # post_detect guard to the same variable has the advantage of users being
979 # able to just C<undef $WATCHER> if the watcher causes them grief.
980
981 $WATCHER ||= $guard;
690 982
691=item @AnyEvent::post_detect 983=item @AnyEvent::post_detect
692 984
693If there are any code references in this array (you can C<push> to it 985If there are any code references in this array (you can C<push> to it
694before or after loading AnyEvent), then they will called directly after 986before or after loading AnyEvent), then they will be called directly
695the event loop has been chosen. 987after the event loop has been chosen.
696 988
697You should check C<$AnyEvent::MODEL> before adding to this array, though: 989You should check C<$AnyEvent::MODEL> before adding to this array, though:
698if it contains a true value then the event loop has already been detected, 990if it is defined then the event loop has already been detected, and the
699and the array will be ignored. 991array will be ignored.
700 992
701Best use C<AnyEvent::post_detect { BLOCK }> instead. 993Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
994it, as it takes care of these details.
995
996This variable is mainly useful for modules that can do something useful
997when AnyEvent is used and thus want to know when it is initialised, but do
998not need to even load it by default. This array provides the means to hook
999into AnyEvent passively, without loading it.
1000
1001Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
1002together, you could put this into Coro (this is the actual code used by
1003Coro to accomplish this):
1004
1005 if (defined $AnyEvent::MODEL) {
1006 # AnyEvent already initialised, so load Coro::AnyEvent
1007 require Coro::AnyEvent;
1008 } else {
1009 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1010 # as soon as it is
1011 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1012 }
1013
1014=item AnyEvent::postpone { BLOCK }
1015
1016Arranges for the block to be executed as soon as possible, but not before
1017the call itself returns. In practise, the block will be executed just
1018before the event loop polls for new events, or shortly afterwards.
1019
1020This function never returns anything (to make the C<return postpone { ...
1021}> idiom more useful.
1022
1023To understand the usefulness of this function, consider a function that
1024asynchronously does something for you and returns some transaction
1025object or guard to let you cancel the operation. For example,
1026C<AnyEvent::Socket::tcp_connect>:
1027
1028 # start a conenction attempt unless one is active
1029 $self->{connect_guard} ||= AnyEvent::Socket::tcp_connect "www.example.net", 80, sub {
1030 delete $self->{connect_guard};
1031 ...
1032 };
1033
1034Imagine that this function could instantly call the callback, for
1035example, because it detects an obvious error such as a negative port
1036number. Invoking the callback before the function returns causes problems
1037however: the callback will be called and will try to delete the guard
1038object. But since the function hasn't returned yet, there is nothing to
1039delete. When the function eventually returns it will assign the guard
1040object to C<< $self->{connect_guard} >>, where it will likely never be
1041deleted, so the program thinks it is still trying to connect.
1042
1043This is where C<AnyEvent::postpone> should be used. Instead of calling the
1044callback directly on error:
1045
1046 $cb->(undef), return # signal error to callback, BAD!
1047 if $some_error_condition;
1048
1049It should use C<postpone>:
1050
1051 AnyEvent::postpone { $cb->(undef) }, return # signal error to callback, later
1052 if $some_error_condition;
1053
1054=item AnyEvent::log $level, $msg[, @args]
1055
1056Log the given C<$msg> at the given C<$level>.
1057
1058Loads AnyEvent::Log on first use and calls C<AnyEvent::Log::log> -
1059consequently, look at the L<AnyEvent::Log> documentation for details.
1060
1061If you want to sprinkle loads of logging calls around your code, consider
1062creating a logger callback with the C<AnyEvent::Log::logger> function.
702 1063
703=back 1064=back
704 1065
705=head1 WHAT TO DO IN A MODULE 1066=head1 WHAT TO DO IN A MODULE
706 1067
717because it will stall the whole program, and the whole point of using 1078because it will stall the whole program, and the whole point of using
718events is to stay interactive. 1079events is to stay interactive.
719 1080
720It is fine, however, to call C<< ->recv >> when the user of your module 1081It is fine, however, to call C<< ->recv >> when the user of your module
721requests it (i.e. if you create a http request object ad have a method 1082requests it (i.e. if you create a http request object ad have a method
722called C<results> that returns the results, it should call C<< ->recv >> 1083called C<results> that returns the results, it may call C<< ->recv >>
723freely, as the user of your module knows what she is doing. always). 1084freely, as the user of your module knows what she is doing. Always).
724 1085
725=head1 WHAT TO DO IN THE MAIN PROGRAM 1086=head1 WHAT TO DO IN THE MAIN PROGRAM
726 1087
727There will always be a single main program - the only place that should 1088There will always be a single main program - the only place that should
728dictate which event model to use. 1089dictate which event model to use.
729 1090
730If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1091If the program is not event-based, it need not do anything special, even
731do anything special (it does not need to be event-based) and let AnyEvent 1092when it depends on a module that uses an AnyEvent. If the program itself
732decide which implementation to chose if some module relies on it. 1093uses AnyEvent, but does not care which event loop is used, all it needs
1094to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1095available loop implementation.
733 1096
734If the main program relies on a specific event model - for example, in 1097If the main program relies on a specific event model - for example, in
735Gtk2 programs you have to rely on the Glib module - you should load the 1098Gtk2 programs you have to rely on the Glib module - you should load the
736event module before loading AnyEvent or any module that uses it: generally 1099event module before loading AnyEvent or any module that uses it: generally
737speaking, you should load it as early as possible. The reason is that 1100speaking, you should load it as early as possible. The reason is that
738modules might create watchers when they are loaded, and AnyEvent will 1101modules might create watchers when they are loaded, and AnyEvent will
739decide on the event model to use as soon as it creates watchers, and it 1102decide on the event model to use as soon as it creates watchers, and it
740might chose the wrong one unless you load the correct one yourself. 1103might choose the wrong one unless you load the correct one yourself.
741 1104
742You can chose to use a pure-perl implementation by loading the 1105You can chose to use a pure-perl implementation by loading the
743C<AnyEvent::Impl::Perl> module, which gives you similar behaviour 1106C<AnyEvent::Loop> module, which gives you similar behaviour
744everywhere, but letting AnyEvent chose the model is generally better. 1107everywhere, but letting AnyEvent chose the model is generally better.
745 1108
746=head2 MAINLOOP EMULATION 1109=head2 MAINLOOP EMULATION
747 1110
748Sometimes (often for short test scripts, or even standalone programs who 1111Sometimes (often for short test scripts, or even standalone programs who
761 1124
762 1125
763=head1 OTHER MODULES 1126=head1 OTHER MODULES
764 1127
765The following is a non-exhaustive list of additional modules that use 1128The following is a non-exhaustive list of additional modules that use
766AnyEvent and can therefore be mixed easily with other AnyEvent modules 1129AnyEvent as a client and can therefore be mixed easily with other
767in the same program. Some of the modules come with AnyEvent, some are 1130AnyEvent modules and other event loops in the same program. Some of the
768available via CPAN. 1131modules come as part of AnyEvent, the others are available via CPAN (see
1132L<http://search.cpan.org/search?m=module&q=anyevent%3A%3A*> for
1133a longer non-exhaustive list), and the list is heavily biased towards
1134modules of the AnyEvent author himself :)
769 1135
770=over 4 1136=over 4
771 1137
772=item L<AnyEvent::Util> 1138=item L<AnyEvent::Util>
773 1139
774Contains various utility functions that replace often-used but blocking 1140Contains various utility functions that replace often-used blocking
775functions such as C<inet_aton> by event-/callback-based versions. 1141functions such as C<inet_aton> with event/callback-based versions.
776 1142
777=item L<AnyEvent::Socket> 1143=item L<AnyEvent::Socket>
778 1144
779Provides various utility functions for (internet protocol) sockets, 1145Provides various utility functions for (internet protocol) sockets,
780addresses and name resolution. Also functions to create non-blocking tcp 1146addresses and name resolution. Also functions to create non-blocking tcp
782 1148
783=item L<AnyEvent::Handle> 1149=item L<AnyEvent::Handle>
784 1150
785Provide read and write buffers, manages watchers for reads and writes, 1151Provide read and write buffers, manages watchers for reads and writes,
786supports raw and formatted I/O, I/O queued and fully transparent and 1152supports raw and formatted I/O, I/O queued and fully transparent and
787non-blocking SSL/TLS. 1153non-blocking SSL/TLS (via L<AnyEvent::TLS>).
788 1154
789=item L<AnyEvent::DNS> 1155=item L<AnyEvent::DNS>
790 1156
791Provides rich asynchronous DNS resolver capabilities. 1157Provides rich asynchronous DNS resolver capabilities.
792 1158
1159=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1160
1161Implement event-based interfaces to the protocols of the same name (for
1162the curious, IGS is the International Go Server and FCP is the Freenet
1163Client Protocol).
1164
1165=item L<AnyEvent::Handle::UDP>
1166
1167Here be danger!
1168
1169As Pauli would put it, "Not only is it not right, it's not even wrong!" -
1170there are so many things wrong with AnyEvent::Handle::UDP, most notably
1171its use of a stream-based API with a protocol that isn't streamable, that
1172the only way to improve it is to delete it.
1173
1174It features data corruption (but typically only under load) and general
1175confusion. On top, the author is not only clueless about UDP but also
1176fact-resistant - some gems of his understanding: "connect doesn't work
1177with UDP", "UDP packets are not IP packets", "UDP only has datagrams, not
1178packets", "I don't need to implement proper error checking as UDP doesn't
1179support error checking" and so on - he doesn't even understand what's
1180wrong with his module when it is explained to him.
1181
793=item L<AnyEvent::HTTP> 1182=item L<AnyEvent::DBI>
794 1183
795A simple-to-use HTTP library that is capable of making a lot of concurrent 1184Executes L<DBI> requests asynchronously in a proxy process for you,
796HTTP requests. 1185notifying you in an event-based way when the operation is finished.
1186
1187=item L<AnyEvent::AIO>
1188
1189Truly asynchronous (as opposed to non-blocking) I/O, should be in the
1190toolbox of every event programmer. AnyEvent::AIO transparently fuses
1191L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1192file I/O, and much more.
797 1193
798=item L<AnyEvent::HTTPD> 1194=item L<AnyEvent::HTTPD>
799 1195
800Provides a simple web application server framework. 1196A simple embedded webserver.
801 1197
802=item L<AnyEvent::FastPing> 1198=item L<AnyEvent::FastPing>
803 1199
804The fastest ping in the west. 1200The fastest ping in the west.
805 1201
806=item L<AnyEvent::DBI>
807
808Executes L<DBI> requests asynchronously in a proxy process.
809
810=item L<AnyEvent::AIO>
811
812Truly asynchronous I/O, should be in the toolbox of every event
813programmer. AnyEvent::AIO transparently fuses L<IO::AIO> and AnyEvent
814together.
815
816=item L<AnyEvent::BDB>
817
818Truly asynchronous Berkeley DB access. AnyEvent::BDB transparently fuses
819L<BDB> and AnyEvent together.
820
821=item L<AnyEvent::GPSD>
822
823A non-blocking interface to gpsd, a daemon delivering GPS information.
824
825=item L<AnyEvent::IGS>
826
827A non-blocking interface to the Internet Go Server protocol (used by
828L<App::IGS>).
829
830=item L<AnyEvent::IRC>
831
832AnyEvent based IRC client module family (replacing the older Net::IRC3).
833
834=item L<Net::XMPP2>
835
836AnyEvent based XMPP (Jabber protocol) module family.
837
838=item L<Net::FCP>
839
840AnyEvent-based implementation of the Freenet Client Protocol, birthplace
841of AnyEvent.
842
843=item L<Event::ExecFlow>
844
845High level API for event-based execution flow control.
846
847=item L<Coro> 1202=item L<Coro>
848 1203
849Has special support for AnyEvent via L<Coro::AnyEvent>. 1204Has special support for AnyEvent via L<Coro::AnyEvent>.
850 1205
851=item L<IO::Lambda>
852
853The lambda approach to I/O - don't ask, look there. Can use AnyEvent.
854
855=back 1206=back
856 1207
857=cut 1208=cut
858 1209
859package AnyEvent; 1210package AnyEvent;
860 1211
861no warnings; 1212# basically a tuned-down version of common::sense
862use strict qw(vars subs); 1213sub common_sense {
1214 # from common:.sense 3.4
1215 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf0\x0f\xc0\xf0\xfc\x33\x00";
1216 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1217 $^H |= 0x00000600;
1218}
863 1219
1220BEGIN { AnyEvent::common_sense }
1221
864use Carp; 1222use Carp ();
865 1223
866our $VERSION = 4.3; 1224our $VERSION = '6.01';
867our $MODEL; 1225our $MODEL;
868 1226
869our $AUTOLOAD;
870our @ISA; 1227our @ISA;
871 1228
872our @REGISTRY; 1229our @REGISTRY;
873 1230
874our $WIN32; 1231our $VERBOSE;
875 1232
876BEGIN { 1233BEGIN {
877 my $win32 = ! ! ($^O =~ /mswin32/i); 1234 require "AnyEvent/constants.pl";
878 eval "sub WIN32(){ $win32 }";
879}
880 1235
1236 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
1237
1238 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1239 if ${^TAINT};
1240
1241 $ENV{"PERL_ANYEVENT_$_"} = $ENV{"AE_$_"}
1242 for grep s/^AE_// && !exists $ENV{"PERL_ANYEVENT_$_"}, keys %ENV;
1243
1244 @ENV{grep /^PERL_ANYEVENT_/, keys %ENV} = ()
1245 if ${^TAINT};
1246
881our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; 1247 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1;
1248}
1249
1250our $MAX_SIGNAL_LATENCY = 10;
882 1251
883our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred 1252our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
884 1253
885{ 1254{
886 my $idx; 1255 my $idx;
887 $PROTOCOL{$_} = ++$idx 1256 $PROTOCOL{$_} = ++$idx
888 for reverse split /\s*,\s*/, 1257 for reverse split /\s*,\s*/,
889 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1258 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
890} 1259}
891 1260
1261our @post_detect;
1262
1263sub post_detect(&) {
1264 my ($cb) = @_;
1265
1266 push @post_detect, $cb;
1267
1268 defined wantarray
1269 ? bless \$cb, "AnyEvent::Util::postdetect"
1270 : ()
1271}
1272
1273sub AnyEvent::Util::postdetect::DESTROY {
1274 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1275}
1276
1277our $POSTPONE_W;
1278our @POSTPONE;
1279
1280sub _postpone_exec {
1281 undef $POSTPONE_W;
1282
1283 &{ shift @POSTPONE }
1284 while @POSTPONE;
1285}
1286
1287sub postpone(&) {
1288 push @POSTPONE, shift;
1289
1290 $POSTPONE_W ||= AE::timer (0, 0, \&_postpone_exec);
1291
1292 ()
1293}
1294
1295sub log($$;@) {
1296 # only load the bug bloated module when we actually are about to log something
1297 if ($_[0] <= $VERBOSE) {
1298 require AnyEvent::Log;
1299 # AnyEvent::Log overwrites this function
1300 goto &log;
1301 }
1302}
1303
1304if (length $ENV{PERL_ANYEVENT_LOG}) {
1305 require AnyEvent::Log; # AnyEvent::Log does the thing for us
1306}
1307
892my @models = ( 1308our @models = (
893 [EV:: => AnyEvent::Impl::EV::], 1309 [EV:: => AnyEvent::Impl::EV:: , 1],
894 [Event:: => AnyEvent::Impl::Event::], 1310 [AnyEvent::Loop:: => AnyEvent::Impl::Perl:: , 1],
895 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::],
896 # everything below here will not be autoprobed 1311 # everything below here will not (normally) be autoprobed
897 # as the pureperl backend should work everywhere 1312 # as the pure perl backend should work everywhere
898 # and is usually faster 1313 # and is usually faster
1314 [Event:: => AnyEvent::Impl::Event::, 1],
1315 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1316 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1317 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
899 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles 1318 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
900 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
901 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
902 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 1319 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
903 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 1320 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
904 [Wx:: => AnyEvent::Impl::POE::], 1321 [Wx:: => AnyEvent::Impl::POE::],
905 [Prima:: => AnyEvent::Impl::POE::], 1322 [Prima:: => AnyEvent::Impl::POE::],
1323 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # a bitch to autodetect
1324 [Cocoa::EventLoop:: => AnyEvent::Impl::Cocoa::],
1325 [FLTK:: => AnyEvent::Impl::FLTK2::],
906); 1326);
907 1327
908our %method = map +($_ => 1), qw(io timer time now signal child condvar one_event DESTROY); 1328our @isa_hook;
909 1329
910our @post_detect; 1330sub _isa_set {
1331 my @pkg = ("AnyEvent", (map $_->[0], grep defined, @isa_hook), $MODEL);
911 1332
1333 @{"$pkg[$_-1]::ISA"} = $pkg[$_]
1334 for 1 .. $#pkg;
1335
1336 grep $_ && $_->[1], @isa_hook
1337 and AE::_reset ();
1338}
1339
1340# used for hooking AnyEvent::Strict and AnyEvent::Debug::Wrap into the class hierarchy
1341sub _isa_hook($$;$) {
1342 my ($i, $pkg, $reset_ae) = @_;
1343
1344 $isa_hook[$i] = $pkg ? [$pkg, $reset_ae] : undef;
1345
1346 _isa_set;
1347}
1348
1349# all autoloaded methods reserve the complete glob, not just the method slot.
1350# due to bugs in perls method cache implementation.
1351our @methods = qw(io timer time now now_update signal child idle condvar);
1352
912sub post_detect(&) { 1353sub detect() {
913 my ($cb) = @_; 1354 return $MODEL if $MODEL; # some programs keep references to detect
914 1355
915 if ($MODEL) { 1356 local $!; # for good measure
916 $cb->(); 1357 local $SIG{__DIE__}; # we use eval
917 1358
918 1 1359 # free some memory
1360 *detect = sub () { $MODEL };
1361 # undef &func doesn't correctly update the method cache. grmbl.
1362 # so we delete the whole glob. grmbl.
1363 # otoh, perl doesn't let me undef an active usb, but it lets me free
1364 # a glob with an active sub. hrm. i hope it works, but perl is
1365 # usually buggy in this department. sigh.
1366 delete @{"AnyEvent::"}{@methods};
1367 undef @methods;
1368
1369 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z0-9:]+)$/) {
1370 my $model = $1;
1371 $model = "AnyEvent::Impl::$model" unless $model =~ s/::$//;
1372 if (eval "require $model") {
1373 AnyEvent::log 7 => "loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.";
1374 $MODEL = $model;
919 } else { 1375 } else {
920 push @post_detect, $cb; 1376 AnyEvent::log warn => "unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@";
921 1377 }
922 defined wantarray
923 ? bless \$cb, "AnyEvent::Util::PostDetect"
924 : ()
925 } 1378 }
926}
927 1379
928sub AnyEvent::Util::PostDetect::DESTROY { 1380 # check for already loaded models
929 @post_detect = grep $_ != ${$_[0]}, @post_detect;
930}
931
932sub detect() {
933 unless ($MODEL) { 1381 unless ($MODEL) {
934 no strict 'refs'; 1382 for (@REGISTRY, @models) {
935 local $SIG{__DIE__}; 1383 my ($package, $model) = @$_;
936 1384 if (${"$package\::VERSION"} > 0) {
937 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
938 my $model = "AnyEvent::Impl::$1";
939 if (eval "require $model") { 1385 if (eval "require $model") {
1386 AnyEvent::log 7 => "autodetected model '$model', using it.";
940 $MODEL = $model; 1387 $MODEL = $model;
941 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1388 last;
942 } else { 1389 }
943 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose;
944 } 1390 }
945 } 1391 }
946 1392
947 # check for already loaded models
948 unless ($MODEL) { 1393 unless ($MODEL) {
1394 # try to autoload a model
949 for (@REGISTRY, @models) { 1395 for (@REGISTRY, @models) {
950 my ($package, $model) = @$_; 1396 my ($package, $model, $autoload) = @$_;
1397 if (
1398 $autoload
1399 and eval "require $package"
951 if (${"$package\::VERSION"} > 0) { 1400 and ${"$package\::VERSION"} > 0
952 if (eval "require $model") { 1401 and eval "require $model"
1402 ) {
1403 AnyEvent::log 7 => "autoloaded model '$model', using it.";
953 $MODEL = $model; 1404 $MODEL = $model;
954 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1;
955 last; 1405 last;
956 }
957 } 1406 }
958 } 1407 }
959 1408
960 unless ($MODEL) {
961 # try to load a model
962
963 for (@REGISTRY, @models) {
964 my ($package, $model) = @$_;
965 if (eval "require $package"
966 and ${"$package\::VERSION"} > 0
967 and eval "require $model") {
968 $MODEL = $model;
969 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1;
970 last;
971 }
972 }
973
974 $MODEL 1409 $MODEL
975 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib."; 1410 or die "AnyEvent: backend autodetection failed - did you properly install AnyEvent?";
976 }
977 } 1411 }
978
979 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
980
981 unshift @ISA, $MODEL;
982
983 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
984
985 (shift @post_detect)->() while @post_detect;
986 } 1412 }
987 1413
1414 # free memory only needed for probing
1415 undef @models;
1416 undef @REGISTRY;
1417
1418 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1419
1420 # now nuke some methods that are overridden by the backend.
1421 # SUPER usage is not allowed in these.
1422 for (qw(time signal child idle)) {
1423 undef &{"AnyEvent::Base::$_"}
1424 if defined &{"$MODEL\::$_"};
1425 }
1426
1427 _isa_set;
1428
1429 # we're officially open!
1430
1431 if ($ENV{PERL_ANYEVENT_STRICT}) {
1432 require AnyEvent::Strict;
1433 }
1434
1435 if ($ENV{PERL_ANYEVENT_DEBUG_WRAP}) {
1436 require AnyEvent::Debug;
1437 AnyEvent::Debug::wrap ($ENV{PERL_ANYEVENT_DEBUG_WRAP});
1438 }
1439
1440 if (length $ENV{PERL_ANYEVENT_DEBUG_SHELL}) {
1441 require AnyEvent::Socket;
1442 require AnyEvent::Debug;
1443
1444 my $shell = $ENV{PERL_ANYEVENT_DEBUG_SHELL};
1445 $shell =~ s/\$\$/$$/g;
1446
1447 my ($host, $service) = AnyEvent::Socket::parse_hostport ($shell);
1448 $AnyEvent::Debug::SHELL = AnyEvent::Debug::shell ($host, $service);
1449 }
1450
1451 # now the anyevent environment is set up as the user told us to, so
1452 # call the actual user code - post detects
1453
1454 (shift @post_detect)->() while @post_detect;
1455 undef @post_detect;
1456
1457 *post_detect = sub(&) {
1458 shift->();
1459
1460 undef
1461 };
1462
988 $MODEL 1463 $MODEL
989} 1464}
990 1465
991sub AUTOLOAD { 1466for my $name (@methods) {
992 (my $func = $AUTOLOAD) =~ s/.*://; 1467 *$name = sub {
993 1468 detect;
994 $method{$func} 1469 # we use goto because
995 or croak "$func: not a valid method for AnyEvent objects"; 1470 # a) it makes the thunk more transparent
996 1471 # b) it allows us to delete the thunk later
997 detect unless $MODEL; 1472 goto &{ UNIVERSAL::can AnyEvent => "SUPER::$name" }
998 1473 };
999 my $class = shift;
1000 $class->$func (@_);
1001} 1474}
1002 1475
1003# utility function to dup a filehandle. this is used by many backends 1476# utility function to dup a filehandle. this is used by many backends
1004# to support binding more than one watcher per filehandle (they usually 1477# to support binding more than one watcher per filehandle (they usually
1005# allow only one watcher per fd, so we dup it to get a different one). 1478# allow only one watcher per fd, so we dup it to get a different one).
1006sub _dupfh($$$$) { 1479sub _dupfh($$;$$) {
1007 my ($poll, $fh, $r, $w) = @_; 1480 my ($poll, $fh, $r, $w) = @_;
1008 1481
1009 require Fcntl;
1010
1011 # cygwin requires the fh mode to be matching, unix doesn't 1482 # cygwin requires the fh mode to be matching, unix doesn't
1012 my ($rw, $mode) = $poll eq "r" ? ($r, "<") 1483 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1013 : $poll eq "w" ? ($w, ">")
1014 : Carp::croak "AnyEvent->io requires poll set to either 'r' or 'w'";
1015 1484
1016 open my $fh2, "$mode&" . fileno $fh 1485 open my $fh2, $mode, $fh
1017 or die "cannot dup() filehandle: $!"; 1486 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1018 1487
1019 # we assume CLOEXEC is already set by perl in all important cases 1488 # we assume CLOEXEC is already set by perl in all important cases
1020 1489
1021 ($fh2, $rw) 1490 ($fh2, $rw)
1022} 1491}
1023 1492
1493=head1 SIMPLIFIED AE API
1494
1495Starting with version 5.0, AnyEvent officially supports a second, much
1496simpler, API that is designed to reduce the calling, typing and memory
1497overhead by using function call syntax and a fixed number of parameters.
1498
1499See the L<AE> manpage for details.
1500
1501=cut
1502
1503package AE;
1504
1505our $VERSION = $AnyEvent::VERSION;
1506
1507sub _reset() {
1508 eval q{
1509 # fall back to the main API by default - backends and AnyEvent::Base
1510 # implementations can overwrite these.
1511
1512 sub io($$$) {
1513 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1514 }
1515
1516 sub timer($$$) {
1517 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1518 }
1519
1520 sub signal($$) {
1521 AnyEvent->signal (signal => $_[0], cb => $_[1])
1522 }
1523
1524 sub child($$) {
1525 AnyEvent->child (pid => $_[0], cb => $_[1])
1526 }
1527
1528 sub idle($) {
1529 AnyEvent->idle (cb => $_[0]);
1530 }
1531
1532 sub cv(;&) {
1533 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1534 }
1535
1536 sub now() {
1537 AnyEvent->now
1538 }
1539
1540 sub now_update() {
1541 AnyEvent->now_update
1542 }
1543
1544 sub time() {
1545 AnyEvent->time
1546 }
1547
1548 *postpone = \&AnyEvent::postpone;
1549 *log = \&AnyEvent::log;
1550 };
1551 die if $@;
1552}
1553
1554BEGIN { _reset }
1555
1024package AnyEvent::Base; 1556package AnyEvent::Base;
1025 1557
1026# default implementation for now and time 1558# default implementations for many methods
1027 1559
1028BEGIN { 1560sub time {
1561 eval q{ # poor man's autoloading {}
1562 # probe for availability of Time::HiRes
1029 if (eval "use Time::HiRes (); time (); 1") { 1563 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1564 AnyEvent::log 8 => "AnyEvent: using Time::HiRes for sub-second timing accuracy."
1565 if $AnyEvent::VERBOSE >= 8;
1566 *time = sub { Time::HiRes::time () };
1030 *_time = \&Time::HiRes::time; 1567 *AE::time = \& Time::HiRes::time ;
1031 # if (eval "use POSIX (); (POSIX::times())... 1568 # if (eval "use POSIX (); (POSIX::times())...
1032 } else { 1569 } else {
1033 *_time = sub { time }; # epic fail 1570 AnyEvent::log critical => "using built-in time(), WARNING, no sub-second resolution!";
1571 *time = sub { CORE::time };
1572 *AE::time = sub (){ CORE::time };
1573 }
1574
1575 *now = \&time;
1576 };
1577 die if $@;
1578
1579 &time
1580}
1581
1582*now = \&time;
1583sub now_update { }
1584
1585sub _poll {
1586 Carp::croak "$AnyEvent::MODEL does not support blocking waits. Caught";
1587}
1588
1589# default implementation for ->condvar
1590# in fact, the default should not be overwritten
1591
1592sub condvar {
1593 eval q{ # poor man's autoloading {}
1594 *condvar = sub {
1595 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1596 };
1597
1598 *AE::cv = sub (;&) {
1599 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
1600 };
1601 };
1602 die if $@;
1603
1604 &condvar
1605}
1606
1607# default implementation for ->signal
1608
1609our $HAVE_ASYNC_INTERRUPT;
1610
1611sub _have_async_interrupt() {
1612 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1613 && eval "use Async::Interrupt 1.02 (); 1")
1614 unless defined $HAVE_ASYNC_INTERRUPT;
1615
1616 $HAVE_ASYNC_INTERRUPT
1617}
1618
1619our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1620our (%SIG_ASY, %SIG_ASY_W);
1621our ($SIG_COUNT, $SIG_TW);
1622
1623# install a dummy wakeup watcher to reduce signal catching latency
1624# used by Impls
1625sub _sig_add() {
1626 unless ($SIG_COUNT++) {
1627 # try to align timer on a full-second boundary, if possible
1628 my $NOW = AE::now;
1629
1630 $SIG_TW = AE::timer
1631 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1632 $MAX_SIGNAL_LATENCY,
1633 sub { } # just for the PERL_ASYNC_CHECK
1634 ;
1034 } 1635 }
1035} 1636}
1036 1637
1037sub time { _time } 1638sub _sig_del {
1038sub now { _time } 1639 undef $SIG_TW
1039 1640 unless --$SIG_COUNT;
1040# default implementation for ->condvar
1041
1042sub condvar {
1043 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar::
1044} 1641}
1045 1642
1046# default implementation for ->signal 1643our $_sig_name_init; $_sig_name_init = sub {
1644 eval q{ # poor man's autoloading {}
1645 undef $_sig_name_init;
1047 1646
1048our %SIG_CB; 1647 if (_have_async_interrupt) {
1648 *sig2num = \&Async::Interrupt::sig2num;
1649 *sig2name = \&Async::Interrupt::sig2name;
1650 } else {
1651 require Config;
1652
1653 my %signame2num;
1654 @signame2num{ split ' ', $Config::Config{sig_name} }
1655 = split ' ', $Config::Config{sig_num};
1656
1657 my @signum2name;
1658 @signum2name[values %signame2num] = keys %signame2num;
1659
1660 *sig2num = sub($) {
1661 $_[0] > 0 ? shift : $signame2num{+shift}
1662 };
1663 *sig2name = sub ($) {
1664 $_[0] > 0 ? $signum2name[+shift] : shift
1665 };
1666 }
1667 };
1668 die if $@;
1669};
1670
1671sub sig2num ($) { &$_sig_name_init; &sig2num }
1672sub sig2name($) { &$_sig_name_init; &sig2name }
1049 1673
1050sub signal { 1674sub signal {
1675 eval q{ # poor man's autoloading {}
1676 # probe for availability of Async::Interrupt
1677 if (_have_async_interrupt) {
1678 AnyEvent::log 8 => "using Async::Interrupt for race-free signal handling."
1679 if $AnyEvent::VERBOSE >= 8;
1680
1681 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1682 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1683
1684 } else {
1685 AnyEvent::log 8 => "using emulated perl signal handling with latency timer."
1686 if $AnyEvent::VERBOSE >= 8;
1687
1688 if (AnyEvent::WIN32) {
1689 require AnyEvent::Util;
1690
1691 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1692 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1693 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1694 } else {
1695 pipe $SIGPIPE_R, $SIGPIPE_W;
1696 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1697 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1698
1699 # not strictly required, as $^F is normally 2, but let's make sure...
1700 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1701 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1702 }
1703
1704 $SIGPIPE_R
1705 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1706
1707 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1708 }
1709
1710 *signal = $HAVE_ASYNC_INTERRUPT
1711 ? sub {
1051 my (undef, %arg) = @_; 1712 my (undef, %arg) = @_;
1052 1713
1714 # async::interrupt
1053 my $signal = uc $arg{signal} 1715 my $signal = sig2num $arg{signal};
1054 or Carp::croak "required option 'signal' is missing";
1055
1056 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1716 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1717
1718 $SIG_ASY{$signal} ||= new Async::Interrupt
1719 cb => sub { undef $SIG_EV{$signal} },
1720 signal => $signal,
1721 pipe => [$SIGPIPE_R->filenos],
1722 pipe_autodrain => 0,
1723 ;
1724
1725 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1726 }
1727 : sub {
1728 my (undef, %arg) = @_;
1729
1730 # pure perl
1731 my $signal = sig2name $arg{signal};
1732 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1733
1057 $SIG{$signal} ||= sub { 1734 $SIG{$signal} ||= sub {
1735 local $!;
1736 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1737 undef $SIG_EV{$signal};
1738 };
1739
1740 # can't do signal processing without introducing races in pure perl,
1741 # so limit the signal latency.
1742 _sig_add;
1743
1744 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1745 }
1746 ;
1747
1748 *AnyEvent::Base::signal::DESTROY = sub {
1749 my ($signal, $cb) = @{$_[0]};
1750
1751 _sig_del;
1752
1753 delete $SIG_CB{$signal}{$cb};
1754
1755 $HAVE_ASYNC_INTERRUPT
1756 ? delete $SIG_ASY{$signal}
1757 : # delete doesn't work with older perls - they then
1758 # print weird messages, or just unconditionally exit
1759 # instead of getting the default action.
1760 undef $SIG{$signal}
1761 unless keys %{ $SIG_CB{$signal} };
1762 };
1763
1764 *_signal_exec = sub {
1765 $HAVE_ASYNC_INTERRUPT
1766 ? $SIGPIPE_R->drain
1767 : sysread $SIGPIPE_R, (my $dummy), 9;
1768
1769 while (%SIG_EV) {
1770 for (keys %SIG_EV) {
1771 delete $SIG_EV{$_};
1058 $_->() for values %{ $SIG_CB{$signal} || {} }; 1772 &$_ for values %{ $SIG_CB{$_} || {} };
1773 }
1774 }
1775 };
1059 }; 1776 };
1777 die if $@;
1060 1778
1061 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1779 &signal
1062}
1063
1064sub AnyEvent::Base::Signal::DESTROY {
1065 my ($signal, $cb) = @{$_[0]};
1066
1067 delete $SIG_CB{$signal}{$cb};
1068
1069 delete $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
1070} 1780}
1071 1781
1072# default implementation for ->child 1782# default implementation for ->child
1073 1783
1074our %PID_CB; 1784our %PID_CB;
1075our $CHLD_W; 1785our $CHLD_W;
1076our $CHLD_DELAY_W; 1786our $CHLD_DELAY_W;
1077our $PID_IDLE;
1078our $WNOHANG;
1079 1787
1080sub _child_wait { 1788# used by many Impl's
1081 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1789sub _emit_childstatus($$) {
1790 my (undef, $rpid, $rstatus) = @_;
1791
1792 $_->($rpid, $rstatus)
1082 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1793 for values %{ $PID_CB{$rpid} || {} },
1083 (values %{ $PID_CB{0} || {} }); 1794 values %{ $PID_CB{0} || {} };
1084 }
1085
1086 undef $PID_IDLE;
1087}
1088
1089sub _sigchld {
1090 # make sure we deliver these changes "synchronous" with the event loop.
1091 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub {
1092 undef $CHLD_DELAY_W;
1093 &_child_wait;
1094 });
1095} 1795}
1096 1796
1097sub child { 1797sub child {
1798 eval q{ # poor man's autoloading {}
1799 *_sigchld = sub {
1800 my $pid;
1801
1802 AnyEvent->_emit_childstatus ($pid, $?)
1803 while ($pid = waitpid -1, WNOHANG) > 0;
1804 };
1805
1806 *child = sub {
1098 my (undef, %arg) = @_; 1807 my (undef, %arg) = @_;
1099 1808
1100 defined (my $pid = $arg{pid} + 0) 1809 my $pid = $arg{pid};
1101 or Carp::croak "required option 'pid' is missing"; 1810 my $cb = $arg{cb};
1102 1811
1103 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1812 $PID_CB{$pid}{$cb+0} = $cb;
1104 1813
1105 unless ($WNOHANG) {
1106 $WNOHANG = eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1107 }
1108
1109 unless ($CHLD_W) { 1814 unless ($CHLD_W) {
1110 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1815 $CHLD_W = AE::signal CHLD => \&_sigchld;
1111 # child could be a zombie already, so make at least one round 1816 # child could be a zombie already, so make at least one round
1112 &_sigchld; 1817 &_sigchld;
1113 } 1818 }
1114 1819
1115 bless [$pid, $arg{cb}], "AnyEvent::Base::Child" 1820 bless [$pid, $cb+0], "AnyEvent::Base::child"
1116} 1821 };
1117 1822
1118sub AnyEvent::Base::Child::DESTROY { 1823 *AnyEvent::Base::child::DESTROY = sub {
1119 my ($pid, $cb) = @{$_[0]}; 1824 my ($pid, $icb) = @{$_[0]};
1120 1825
1121 delete $PID_CB{$pid}{$cb}; 1826 delete $PID_CB{$pid}{$icb};
1122 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1827 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1123 1828
1124 undef $CHLD_W unless keys %PID_CB; 1829 undef $CHLD_W unless keys %PID_CB;
1830 };
1831 };
1832 die if $@;
1833
1834 &child
1835}
1836
1837# idle emulation is done by simply using a timer, regardless
1838# of whether the process is idle or not, and not letting
1839# the callback use more than 50% of the time.
1840sub idle {
1841 eval q{ # poor man's autoloading {}
1842 *idle = sub {
1843 my (undef, %arg) = @_;
1844
1845 my ($cb, $w, $rcb) = $arg{cb};
1846
1847 $rcb = sub {
1848 if ($cb) {
1849 $w = AE::time;
1850 &$cb;
1851 $w = AE::time - $w;
1852
1853 # never use more then 50% of the time for the idle watcher,
1854 # within some limits
1855 $w = 0.0001 if $w < 0.0001;
1856 $w = 5 if $w > 5;
1857
1858 $w = AE::timer $w, 0, $rcb;
1859 } else {
1860 # clean up...
1861 undef $w;
1862 undef $rcb;
1863 }
1864 };
1865
1866 $w = AE::timer 0.05, 0, $rcb;
1867
1868 bless \\$cb, "AnyEvent::Base::idle"
1869 };
1870
1871 *AnyEvent::Base::idle::DESTROY = sub {
1872 undef $${$_[0]};
1873 };
1874 };
1875 die if $@;
1876
1877 &idle
1125} 1878}
1126 1879
1127package AnyEvent::CondVar; 1880package AnyEvent::CondVar;
1128 1881
1129our @ISA = AnyEvent::CondVar::Base::; 1882our @ISA = AnyEvent::CondVar::Base::;
1130 1883
1884# only to be used for subclassing
1885sub new {
1886 my $class = shift;
1887 bless AnyEvent->condvar (@_), $class
1888}
1889
1131package AnyEvent::CondVar::Base; 1890package AnyEvent::CondVar::Base;
1132 1891
1133use overload 1892#use overload
1134 '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, 1893# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1135 fallback => 1; 1894# fallback => 1;
1895
1896# save 300+ kilobytes by dirtily hardcoding overloading
1897${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1898*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1899*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1900${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1901
1902our $WAITING;
1136 1903
1137sub _send { 1904sub _send {
1138 # nop 1905 # nop
1906}
1907
1908sub _wait {
1909 AnyEvent->_poll until $_[0]{_ae_sent};
1139} 1910}
1140 1911
1141sub send { 1912sub send {
1142 my $cv = shift; 1913 my $cv = shift;
1143 $cv->{_ae_sent} = [@_]; 1914 $cv->{_ae_sent} = [@_];
1152 1923
1153sub ready { 1924sub ready {
1154 $_[0]{_ae_sent} 1925 $_[0]{_ae_sent}
1155} 1926}
1156 1927
1157sub _wait {
1158 AnyEvent->one_event while !$_[0]{_ae_sent};
1159}
1160
1161sub recv { 1928sub recv {
1929 unless ($_[0]{_ae_sent}) {
1930 $WAITING
1931 and Carp::croak "AnyEvent::CondVar: recursive blocking wait attempted";
1932
1933 local $WAITING = 1;
1162 $_[0]->_wait; 1934 $_[0]->_wait;
1935 }
1163 1936
1164 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1937 $_[0]{_ae_croak}
1165 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1938 and Carp::croak $_[0]{_ae_croak};
1939
1940 wantarray
1941 ? @{ $_[0]{_ae_sent} }
1942 : $_[0]{_ae_sent}[0]
1166} 1943}
1167 1944
1168sub cb { 1945sub cb {
1169 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1946 my $cv = shift;
1947
1948 @_
1949 and $cv->{_ae_cb} = shift
1950 and $cv->{_ae_sent}
1951 and (delete $cv->{_ae_cb})->($cv);
1952
1170 $_[0]{_ae_cb} 1953 $cv->{_ae_cb}
1171} 1954}
1172 1955
1173sub begin { 1956sub begin {
1174 ++$_[0]{_ae_counter}; 1957 ++$_[0]{_ae_counter};
1175 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 1958 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
1180 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } }; 1963 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } };
1181} 1964}
1182 1965
1183# undocumented/compatibility with pre-3.4 1966# undocumented/compatibility with pre-3.4
1184*broadcast = \&send; 1967*broadcast = \&send;
1185*wait = \&_wait; 1968*wait = \&recv;
1186 1969
1187=head1 ERROR AND EXCEPTION HANDLING 1970=head1 ERROR AND EXCEPTION HANDLING
1188 1971
1189In general, AnyEvent does not do any error handling - it relies on the 1972In general, AnyEvent does not do any error handling - it relies on the
1190caller to do that if required. The L<AnyEvent::Strict> module (see also 1973caller to do that if required. The L<AnyEvent::Strict> module (see also
1202$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and 1985$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
1203so on. 1986so on.
1204 1987
1205=head1 ENVIRONMENT VARIABLES 1988=head1 ENVIRONMENT VARIABLES
1206 1989
1207The following environment variables are used by this module or its 1990AnyEvent supports a number of environment variables that tune the
1208submodules: 1991runtime behaviour. They are usually evaluated when AnyEvent is
1992loaded, initialised, or a submodule that uses them is loaded. Many of
1993them also cause AnyEvent to load additional modules - for example,
1994C<PERL_ANYEVENT_DEBUG_WRAP> causes the L<AnyEvent::Debug> module to be
1995loaded.
1996
1997All the environment variables documented here start with
1998C<PERL_ANYEVENT_>, which is what AnyEvent considers its own
1999namespace. Other modules are encouraged (but by no means required) to use
2000C<PERL_ANYEVENT_SUBMODULE> if they have registered the AnyEvent::Submodule
2001namespace on CPAN, for any submodule. For example, L<AnyEvent::HTTP> could
2002be expected to use C<PERL_ANYEVENT_HTTP_PROXY> (it should not access env
2003variables starting with C<AE_>, see below).
2004
2005All variables can also be set via the C<AE_> prefix, that is, instead
2006of setting C<PERL_ANYEVENT_VERBOSE> you can also set C<AE_VERBOSE>. In
2007case there is a clash btween anyevent and another program that uses
2008C<AE_something> you can set the corresponding C<PERL_ANYEVENT_something>
2009variable to the empty string, as those variables take precedence.
2010
2011When AnyEvent is first loaded, it copies all C<AE_xxx> env variables
2012to their C<PERL_ANYEVENT_xxx> counterpart unless that variable already
2013exists. If taint mode is on, then AnyEvent will remove I<all> environment
2014variables starting with C<PERL_ANYEVENT_> from C<%ENV> (or replace them
2015with C<undef> or the empty string, if the corresaponding C<AE_> variable
2016is set).
2017
2018The exact algorithm is currently:
2019
2020 1. if taint mode enabled, delete all PERL_ANYEVENT_xyz variables from %ENV
2021 2. copy over AE_xyz to PERL_ANYEVENT_xyz unless the latter alraedy exists
2022 3. if taint mode enabled, set all PERL_ANYEVENT_xyz variables to undef.
2023
2024This ensures that child processes will not see the C<AE_> variables.
2025
2026The following environment variables are currently known to AnyEvent:
1209 2027
1210=over 4 2028=over 4
1211 2029
1212=item C<PERL_ANYEVENT_VERBOSE> 2030=item C<PERL_ANYEVENT_VERBOSE>
1213 2031
1214By default, AnyEvent will be completely silent except in fatal 2032By default, AnyEvent will be completely silent except in fatal
1215conditions. You can set this environment variable to make AnyEvent more 2033conditions. You can set this environment variable to make AnyEvent more
1216talkative. 2034talkative. If you want to do more than just set the global logging level
2035you should have a look at C<PERL_ANYEVENT_LOG>, which allows much more
2036complex specifications.
1217 2037
1218When set to C<1> or higher, causes AnyEvent to warn about unexpected 2038When set to C<5> or higher, causes AnyEvent to warn about unexpected
1219conditions, such as not being able to load the event model specified by 2039conditions, such as not being able to load the event model specified by
1220C<PERL_ANYEVENT_MODEL>. 2040C<PERL_ANYEVENT_MODEL>.
1221 2041
1222When set to C<2> or higher, cause AnyEvent to report to STDERR which event 2042When set to C<7> or higher, cause AnyEvent to report to STDERR which event
1223model it chooses. 2043model it chooses.
2044
2045When set to C<8> or higher, then AnyEvent will report extra information on
2046which optional modules it loads and how it implements certain features.
2047
2048=item C<PERL_ANYEVENT_LOG>
2049
2050Accepts rather complex logging specifications. For example, you could log
2051all C<debug> messages of some module to stderr, warnings and above to
2052stderr, and errors and above to syslog, with:
2053
2054 PERL_ANYEVENT_LOG=Some::Module=debug,+log:filter=warn,+%syslog:%syslog=error,syslog
2055
2056For the rather extensive details, see L<AnyEvent::Log>.
2057
2058Note that specifying this environment variable causes the L<AnyEvent::Log>
2059module to be loaded, while C<PERL_ANYEVENT_VERBOSE> does not, so only
2060using the latter saves a few hundred kB of memory until the first message
2061is being logged.
1224 2062
1225=item C<PERL_ANYEVENT_STRICT> 2063=item C<PERL_ANYEVENT_STRICT>
1226 2064
1227AnyEvent does not do much argument checking by default, as thorough 2065AnyEvent does not do much argument checking by default, as thorough
1228argument checking is very costly. Setting this variable to a true value 2066argument checking is very costly. Setting this variable to a true value
1229will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly 2067will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1230check the arguments passed to most method calls. If it finds any problems 2068check the arguments passed to most method calls. If it finds any problems,
1231it will croak. 2069it will croak.
1232 2070
1233In other words, enables "strict" mode. 2071In other words, enables "strict" mode.
1234 2072
1235Unlike C<use strict>, it is definitely recommended ot keep it off in 2073Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
1236production. Keeping C<PERL_ANYEVENT_STRICT=1> in your environment while 2074>>, it is definitely recommended to keep it off in production. Keeping
1237developing programs can be very useful, however. 2075C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
2076can be very useful, however.
2077
2078=item C<PERL_ANYEVENT_DEBUG_SHELL>
2079
2080If this env variable is set, then its contents will be interpreted by
2081C<AnyEvent::Socket::parse_hostport> (after replacing every occurance of
2082C<$$> by the process pid) and an C<AnyEvent::Debug::shell> is bound on
2083that port. The shell object is saved in C<$AnyEvent::Debug::SHELL>.
2084
2085This takes place when the first watcher is created.
2086
2087For example, to bind a debug shell on a unix domain socket in
2088F<< /tmp/debug<pid>.sock >>, you could use this:
2089
2090 PERL_ANYEVENT_DEBUG_SHELL=/tmp/debug\$\$.sock perlprog
2091
2092Note that creating sockets in F</tmp> is very unsafe on multiuser
2093systems.
2094
2095=item C<PERL_ANYEVENT_DEBUG_WRAP>
2096
2097Can be set to C<0>, C<1> or C<2> and enables wrapping of all watchers for
2098debugging purposes. See C<AnyEvent::Debug::wrap> for details.
1238 2099
1239=item C<PERL_ANYEVENT_MODEL> 2100=item C<PERL_ANYEVENT_MODEL>
1240 2101
1241This can be used to specify the event model to be used by AnyEvent, before 2102This can be used to specify the event model to be used by AnyEvent, before
1242auto detection and -probing kicks in. It must be a string consisting 2103auto detection and -probing kicks in.
1243entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended 2104
2105It normally is a string consisting entirely of ASCII letters (e.g. C<EV>
2106or C<IOAsync>). The string C<AnyEvent::Impl::> gets prepended and the
1244and the resulting module name is loaded and if the load was successful, 2107resulting module name is loaded and - if the load was successful - used as
1245used as event model. If it fails to load AnyEvent will proceed with 2108event model backend. If it fails to load then AnyEvent will proceed with
1246auto detection and -probing. 2109auto detection and -probing.
1247 2110
1248This functionality might change in future versions. 2111If the string ends with C<::> instead (e.g. C<AnyEvent::Impl::EV::>) then
2112nothing gets prepended and the module name is used as-is (hint: C<::> at
2113the end of a string designates a module name and quotes it appropriately).
1249 2114
1250For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you 2115For example, to force the pure perl model (L<AnyEvent::Loop::Perl>) you
1251could start your program like this: 2116could start your program like this:
1252 2117
1253 PERL_ANYEVENT_MODEL=Perl perl ... 2118 PERL_ANYEVENT_MODEL=Perl perl ...
1254 2119
1255=item C<PERL_ANYEVENT_PROTOCOLS> 2120=item C<PERL_ANYEVENT_PROTOCOLS>
1263used, and preference will be given to protocols mentioned earlier in the 2128used, and preference will be given to protocols mentioned earlier in the
1264list. 2129list.
1265 2130
1266This variable can effectively be used for denial-of-service attacks 2131This variable can effectively be used for denial-of-service attacks
1267against local programs (e.g. when setuid), although the impact is likely 2132against local programs (e.g. when setuid), although the impact is likely
1268small, as the program has to handle connection errors already- 2133small, as the program has to handle conenction and other failures anyways.
1269 2134
1270Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6, 2135Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1271but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4> 2136but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1272- only support IPv4, never try to resolve or contact IPv6 2137- only support IPv4, never try to resolve or contact IPv6
1273addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or 2138addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1274IPv6, but prefer IPv6 over IPv4. 2139IPv6, but prefer IPv6 over IPv4.
1275 2140
2141=item C<PERL_ANYEVENT_HOSTS>
2142
2143This variable, if specified, overrides the F</etc/hosts> file used by
2144L<AnyEvent::Socket>C<::resolve_sockaddr>, i.e. hosts aliases will be read
2145from that file instead.
2146
1276=item C<PERL_ANYEVENT_EDNS0> 2147=item C<PERL_ANYEVENT_EDNS0>
1277 2148
1278Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension 2149Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension for
1279for DNS. This extension is generally useful to reduce DNS traffic, but 2150DNS. This extension is generally useful to reduce DNS traffic, especially
1280some (broken) firewalls drop such DNS packets, which is why it is off by 2151when DNSSEC is involved, but some (broken) firewalls drop such DNS
1281default. 2152packets, which is why it is off by default.
1282 2153
1283Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce 2154Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1284EDNS0 in its DNS requests. 2155EDNS0 in its DNS requests.
1285 2156
1286=item C<PERL_ANYEVENT_MAX_FORKS> 2157=item C<PERL_ANYEVENT_MAX_FORKS>
1287 2158
1288The maximum number of child processes that C<AnyEvent::Util::fork_call> 2159The maximum number of child processes that C<AnyEvent::Util::fork_call>
1289will create in parallel. 2160will create in parallel.
2161
2162=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
2163
2164The default value for the C<max_outstanding> parameter for the default DNS
2165resolver - this is the maximum number of parallel DNS requests that are
2166sent to the DNS server.
2167
2168=item C<PERL_ANYEVENT_RESOLV_CONF>
2169
2170The absolute path to a F<resolv.conf>-style file to use instead of
2171F</etc/resolv.conf> (or the OS-specific configuration) in the default
2172resolver, or the empty string to select the default configuration.
2173
2174=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
2175
2176When neither C<ca_file> nor C<ca_path> was specified during
2177L<AnyEvent::TLS> context creation, and either of these environment
2178variables are nonempty, they will be used to specify CA certificate
2179locations instead of a system-dependent default.
2180
2181=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
2182
2183When these are set to C<1>, then the respective modules are not
2184loaded. Mostly good for testing AnyEvent itself.
1290 2185
1291=back 2186=back
1292 2187
1293=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 2188=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1294 2189
1352 warn "read: $input\n"; # output what has been read 2247 warn "read: $input\n"; # output what has been read
1353 $cv->send if $input =~ /^q/i; # quit program if /^q/i 2248 $cv->send if $input =~ /^q/i; # quit program if /^q/i
1354 }, 2249 },
1355 ); 2250 );
1356 2251
1357 my $time_watcher; # can only be used once
1358
1359 sub new_timer {
1360 $timer = AnyEvent->timer (after => 1, cb => sub { 2252 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
1361 warn "timeout\n"; # print 'timeout' about every second 2253 warn "timeout\n"; # print 'timeout' at most every second
1362 &new_timer; # and restart the time
1363 }); 2254 });
1364 }
1365
1366 new_timer; # create first timer
1367 2255
1368 $cv->recv; # wait until user enters /^q/i 2256 $cv->recv; # wait until user enters /^q/i
1369 2257
1370=head1 REAL-WORLD EXAMPLE 2258=head1 REAL-WORLD EXAMPLE
1371 2259
1444 2332
1445The actual code goes further and collects all errors (C<die>s, exceptions) 2333The actual code goes further and collects all errors (C<die>s, exceptions)
1446that occurred during request processing. The C<result> method detects 2334that occurred during request processing. The C<result> method detects
1447whether an exception as thrown (it is stored inside the $txn object) 2335whether an exception as thrown (it is stored inside the $txn object)
1448and just throws the exception, which means connection errors and other 2336and just throws the exception, which means connection errors and other
1449problems get reported tot he code that tries to use the result, not in a 2337problems get reported to the code that tries to use the result, not in a
1450random callback. 2338random callback.
1451 2339
1452All of this enables the following usage styles: 2340All of this enables the following usage styles:
1453 2341
14541. Blocking: 23421. Blocking:
1502through AnyEvent. The benchmark creates a lot of timers (with a zero 2390through AnyEvent. The benchmark creates a lot of timers (with a zero
1503timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2391timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1504which it is), lets them fire exactly once and destroys them again. 2392which it is), lets them fire exactly once and destroys them again.
1505 2393
1506Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2394Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1507distribution. 2395distribution. It uses the L<AE> interface, which makes a real difference
2396for the EV and Perl backends only.
1508 2397
1509=head3 Explanation of the columns 2398=head3 Explanation of the columns
1510 2399
1511I<watcher> is the number of event watchers created/destroyed. Since 2400I<watcher> is the number of event watchers created/destroyed. Since
1512different event models feature vastly different performances, each event 2401different event models feature vastly different performances, each event
1533watcher. 2422watcher.
1534 2423
1535=head3 Results 2424=head3 Results
1536 2425
1537 name watchers bytes create invoke destroy comment 2426 name watchers bytes create invoke destroy comment
1538 EV/EV 400000 244 0.56 0.46 0.31 EV native interface 2427 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1539 EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers 2428 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1540 CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal 2429 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1541 Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation 2430 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1542 Event/Event 16000 516 31.88 31.30 0.85 Event native interface 2431 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1543 Event/Any 16000 590 35.75 31.42 1.08 Event + AnyEvent watchers 2432 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2433 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2434 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1544 Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour 2435 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1545 Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers 2436 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1546 POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event 2437 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1547 POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select 2438 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1548 2439
1549=head3 Discussion 2440=head3 Discussion
1550 2441
1551The benchmark does I<not> measure scalability of the event loop very 2442The benchmark does I<not> measure scalability of the event loop very
1552well. For example, a select-based event loop (such as the pure perl one) 2443well. For example, a select-based event loop (such as the pure perl one)
1564benchmark machine, handling an event takes roughly 1600 CPU cycles with 2455benchmark machine, handling an event takes roughly 1600 CPU cycles with
1565EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2456EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1566cycles with POE. 2457cycles with POE.
1567 2458
1568C<EV> is the sole leader regarding speed and memory use, which are both 2459C<EV> is the sole leader regarding speed and memory use, which are both
1569maximal/minimal, respectively. Even when going through AnyEvent, it uses 2460maximal/minimal, respectively. When using the L<AE> API there is zero
2461overhead (when going through the AnyEvent API create is about 5-6 times
2462slower, with other times being equal, so still uses far less memory than
1570far less memory than any other event loop and is still faster than Event 2463any other event loop and is still faster than Event natively).
1571natively.
1572 2464
1573The pure perl implementation is hit in a few sweet spots (both the 2465The pure perl implementation is hit in a few sweet spots (both the
1574constant timeout and the use of a single fd hit optimisations in the perl 2466constant timeout and the use of a single fd hit optimisations in the perl
1575interpreter and the backend itself). Nevertheless this shows that it 2467interpreter and the backend itself). Nevertheless this shows that it
1576adds very little overhead in itself. Like any select-based backend its 2468adds very little overhead in itself. Like any select-based backend its
1577performance becomes really bad with lots of file descriptors (and few of 2469performance becomes really bad with lots of file descriptors (and few of
1578them active), of course, but this was not subject of this benchmark. 2470them active), of course, but this was not subject of this benchmark.
1579 2471
1580The C<Event> module has a relatively high setup and callback invocation 2472The C<Event> module has a relatively high setup and callback invocation
1581cost, but overall scores in on the third place. 2473cost, but overall scores in on the third place.
2474
2475C<IO::Async> performs admirably well, about on par with C<Event>, even
2476when using its pure perl backend.
1582 2477
1583C<Glib>'s memory usage is quite a bit higher, but it features a 2478C<Glib>'s memory usage is quite a bit higher, but it features a
1584faster callback invocation and overall ends up in the same class as 2479faster callback invocation and overall ends up in the same class as
1585C<Event>. However, Glib scales extremely badly, doubling the number of 2480C<Event>. However, Glib scales extremely badly, doubling the number of
1586watchers increases the processing time by more than a factor of four, 2481watchers increases the processing time by more than a factor of four,
1621(even when used without AnyEvent), but most event loops have acceptable 2516(even when used without AnyEvent), but most event loops have acceptable
1622performance with or without AnyEvent. 2517performance with or without AnyEvent.
1623 2518
1624=item * The overhead AnyEvent adds is usually much smaller than the overhead of 2519=item * The overhead AnyEvent adds is usually much smaller than the overhead of
1625the actual event loop, only with extremely fast event loops such as EV 2520the actual event loop, only with extremely fast event loops such as EV
1626adds AnyEvent significant overhead. 2521does AnyEvent add significant overhead.
1627 2522
1628=item * You should avoid POE like the plague if you want performance or 2523=item * You should avoid POE like the plague if you want performance or
1629reasonable memory usage. 2524reasonable memory usage.
1630 2525
1631=back 2526=back
1647In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2542In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1648(1%) are active. This mirrors the activity of large servers with many 2543(1%) are active. This mirrors the activity of large servers with many
1649connections, most of which are idle at any one point in time. 2544connections, most of which are idle at any one point in time.
1650 2545
1651Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2546Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1652distribution. 2547distribution. It uses the L<AE> interface, which makes a real difference
2548for the EV and Perl backends only.
1653 2549
1654=head3 Explanation of the columns 2550=head3 Explanation of the columns
1655 2551
1656I<sockets> is the number of sockets, and twice the number of "servers" (as 2552I<sockets> is the number of sockets, and twice the number of "servers" (as
1657each server has a read and write socket end). 2553each server has a read and write socket end).
1664it to another server. This includes deleting the old timeout and creating 2560it to another server. This includes deleting the old timeout and creating
1665a new one that moves the timeout into the future. 2561a new one that moves the timeout into the future.
1666 2562
1667=head3 Results 2563=head3 Results
1668 2564
1669 name sockets create request 2565 name sockets create request
1670 EV 20000 69.01 11.16 2566 EV 20000 62.66 7.99
1671 Perl 20000 73.32 35.87 2567 Perl 20000 68.32 32.64
1672 Event 20000 212.62 257.32 2568 IOAsync 20000 174.06 101.15 epoll
1673 Glib 20000 651.16 1896.30 2569 IOAsync 20000 174.67 610.84 poll
2570 Event 20000 202.69 242.91
2571 Glib 20000 557.01 1689.52
1674 POE 20000 349.67 12317.24 uses POE::Loop::Event 2572 POE 20000 341.54 12086.32 uses POE::Loop::Event
1675 2573
1676=head3 Discussion 2574=head3 Discussion
1677 2575
1678This benchmark I<does> measure scalability and overall performance of the 2576This benchmark I<does> measure scalability and overall performance of the
1679particular event loop. 2577particular event loop.
1681EV is again fastest. Since it is using epoll on my system, the setup time 2579EV is again fastest. Since it is using epoll on my system, the setup time
1682is relatively high, though. 2580is relatively high, though.
1683 2581
1684Perl surprisingly comes second. It is much faster than the C-based event 2582Perl surprisingly comes second. It is much faster than the C-based event
1685loops Event and Glib. 2583loops Event and Glib.
2584
2585IO::Async performs very well when using its epoll backend, and still quite
2586good compared to Glib when using its pure perl backend.
1686 2587
1687Event suffers from high setup time as well (look at its code and you will 2588Event suffers from high setup time as well (look at its code and you will
1688understand why). Callback invocation also has a high overhead compared to 2589understand why). Callback invocation also has a high overhead compared to
1689the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2590the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1690uses select or poll in basically all documented configurations. 2591uses select or poll in basically all documented configurations.
1753=item * C-based event loops perform very well with small number of 2654=item * C-based event loops perform very well with small number of
1754watchers, as the management overhead dominates. 2655watchers, as the management overhead dominates.
1755 2656
1756=back 2657=back
1757 2658
2659=head2 THE IO::Lambda BENCHMARK
2660
2661Recently I was told about the benchmark in the IO::Lambda manpage, which
2662could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2663simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2664shouldn't come as a surprise to anybody). As such, the benchmark is
2665fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2666very optimal. But how would AnyEvent compare when used without the extra
2667baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2668
2669The benchmark itself creates an echo-server, and then, for 500 times,
2670connects to the echo server, sends a line, waits for the reply, and then
2671creates the next connection. This is a rather bad benchmark, as it doesn't
2672test the efficiency of the framework or much non-blocking I/O, but it is a
2673benchmark nevertheless.
2674
2675 name runtime
2676 Lambda/select 0.330 sec
2677 + optimized 0.122 sec
2678 Lambda/AnyEvent 0.327 sec
2679 + optimized 0.138 sec
2680 Raw sockets/select 0.077 sec
2681 POE/select, components 0.662 sec
2682 POE/select, raw sockets 0.226 sec
2683 POE/select, optimized 0.404 sec
2684
2685 AnyEvent/select/nb 0.085 sec
2686 AnyEvent/EV/nb 0.068 sec
2687 +state machine 0.134 sec
2688
2689The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2690benchmarks actually make blocking connects and use 100% blocking I/O,
2691defeating the purpose of an event-based solution. All of the newly
2692written AnyEvent benchmarks use 100% non-blocking connects (using
2693AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2694resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2695generally require a lot more bookkeeping and event handling than blocking
2696connects (which involve a single syscall only).
2697
2698The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2699offers similar expressive power as POE and IO::Lambda, using conventional
2700Perl syntax. This means that both the echo server and the client are 100%
2701non-blocking, further placing it at a disadvantage.
2702
2703As you can see, the AnyEvent + EV combination even beats the
2704hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2705backend easily beats IO::Lambda and POE.
2706
2707And even the 100% non-blocking version written using the high-level (and
2708slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2709higher level ("unoptimised") abstractions by a large margin, even though
2710it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2711
2712The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2713F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2714part of the IO::Lambda distribution and were used without any changes.
2715
2716
2717=head1 SIGNALS
2718
2719AnyEvent currently installs handlers for these signals:
2720
2721=over 4
2722
2723=item SIGCHLD
2724
2725A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
2726emulation for event loops that do not support them natively. Also, some
2727event loops install a similar handler.
2728
2729Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2730AnyEvent will reset it to default, to avoid losing child exit statuses.
2731
2732=item SIGPIPE
2733
2734A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
2735when AnyEvent gets loaded.
2736
2737The rationale for this is that AnyEvent users usually do not really depend
2738on SIGPIPE delivery (which is purely an optimisation for shell use, or
2739badly-written programs), but C<SIGPIPE> can cause spurious and rare
2740program exits as a lot of people do not expect C<SIGPIPE> when writing to
2741some random socket.
2742
2743The rationale for installing a no-op handler as opposed to ignoring it is
2744that this way, the handler will be restored to defaults on exec.
2745
2746Feel free to install your own handler, or reset it to defaults.
2747
2748=back
2749
2750=cut
2751
2752undef $SIG{CHLD}
2753 if $SIG{CHLD} eq 'IGNORE';
2754
2755$SIG{PIPE} = sub { }
2756 unless defined $SIG{PIPE};
2757
2758=head1 RECOMMENDED/OPTIONAL MODULES
2759
2760One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2761its built-in modules) are required to use it.
2762
2763That does not mean that AnyEvent won't take advantage of some additional
2764modules if they are installed.
2765
2766This section explains which additional modules will be used, and how they
2767affect AnyEvent's operation.
2768
2769=over 4
2770
2771=item L<Async::Interrupt>
2772
2773This slightly arcane module is used to implement fast signal handling: To
2774my knowledge, there is no way to do completely race-free and quick
2775signal handling in pure perl. To ensure that signals still get
2776delivered, AnyEvent will start an interval timer to wake up perl (and
2777catch the signals) with some delay (default is 10 seconds, look for
2778C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2779
2780If this module is available, then it will be used to implement signal
2781catching, which means that signals will not be delayed, and the event loop
2782will not be interrupted regularly, which is more efficient (and good for
2783battery life on laptops).
2784
2785This affects not just the pure-perl event loop, but also other event loops
2786that have no signal handling on their own (e.g. Glib, Tk, Qt).
2787
2788Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2789and either employ their own workarounds (POE) or use AnyEvent's workaround
2790(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2791does nothing for those backends.
2792
2793=item L<EV>
2794
2795This module isn't really "optional", as it is simply one of the backend
2796event loops that AnyEvent can use. However, it is simply the best event
2797loop available in terms of features, speed and stability: It supports
2798the AnyEvent API optimally, implements all the watcher types in XS, does
2799automatic timer adjustments even when no monotonic clock is available,
2800can take avdantage of advanced kernel interfaces such as C<epoll> and
2801C<kqueue>, and is the fastest backend I<by far>. You can even embed
2802L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2803
2804If you only use backends that rely on another event loop (e.g. C<Tk>),
2805then this module will do nothing for you.
2806
2807=item L<Guard>
2808
2809The guard module, when used, will be used to implement
2810C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2811lot less memory), but otherwise doesn't affect guard operation much. It is
2812purely used for performance.
2813
2814=item L<JSON> and L<JSON::XS>
2815
2816One of these modules is required when you want to read or write JSON data
2817via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2818advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2819
2820=item L<Net::SSLeay>
2821
2822Implementing TLS/SSL in Perl is certainly interesting, but not very
2823worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2824the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2825
2826=item L<Time::HiRes>
2827
2828This module is part of perl since release 5.008. It will be used when the
2829chosen event library does not come with a timing source of its own. The
2830pure-perl event loop (L<AnyEvent::Loop>) will additionally load it to
2831try to use a monotonic clock for timing stability.
2832
2833=back
2834
1758 2835
1759=head1 FORK 2836=head1 FORK
1760 2837
1761Most event libraries are not fork-safe. The ones who are usually are 2838Most event libraries are not fork-safe. The ones who are usually are
1762because they rely on inefficient but fork-safe C<select> or C<poll> 2839because they rely on inefficient but fork-safe C<select> or C<poll> calls
1763calls. Only L<EV> is fully fork-aware. 2840- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2841are usually badly thought-out hacks that are incompatible with fork in
2842one way or another. Only L<EV> is fully fork-aware and ensures that you
2843continue event-processing in both parent and child (or both, if you know
2844what you are doing).
2845
2846This means that, in general, you cannot fork and do event processing in
2847the child if the event library was initialised before the fork (which
2848usually happens when the first AnyEvent watcher is created, or the library
2849is loaded).
1764 2850
1765If you have to fork, you must either do so I<before> creating your first 2851If you have to fork, you must either do so I<before> creating your first
1766watcher OR you must not use AnyEvent at all in the child. 2852watcher OR you must not use AnyEvent at all in the child OR you must do
2853something completely out of the scope of AnyEvent.
2854
2855The problem of doing event processing in the parent I<and> the child
2856is much more complicated: even for backends that I<are> fork-aware or
2857fork-safe, their behaviour is not usually what you want: fork clones all
2858watchers, that means all timers, I/O watchers etc. are active in both
2859parent and child, which is almost never what you want. USing C<exec>
2860to start worker children from some kind of manage rprocess is usually
2861preferred, because it is much easier and cleaner, at the expense of having
2862to have another binary.
1767 2863
1768 2864
1769=head1 SECURITY CONSIDERATIONS 2865=head1 SECURITY CONSIDERATIONS
1770 2866
1771AnyEvent can be forced to load any event model via 2867AnyEvent can be forced to load any event model via
1783 use AnyEvent; 2879 use AnyEvent;
1784 2880
1785Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2881Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1786be used to probe what backend is used and gain other information (which is 2882be used to probe what backend is used and gain other information (which is
1787probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and 2883probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
1788$ENV{PERL_ANYEGENT_STRICT}. 2884$ENV{PERL_ANYEVENT_STRICT}.
2885
2886Note that AnyEvent will remove I<all> environment variables starting with
2887C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2888enabled.
1789 2889
1790 2890
1791=head1 BUGS 2891=head1 BUGS
1792 2892
1793Perl 5.8 has numerous memleaks that sometimes hit this module and are hard 2893Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
1794to work around. If you suffer from memleaks, first upgrade to Perl 5.10 2894to work around. If you suffer from memleaks, first upgrade to Perl 5.10
1795and check wether the leaks still show up. (Perl 5.10.0 has other annoying 2895and check wether the leaks still show up. (Perl 5.10.0 has other annoying
1796mamleaks, such as leaking on C<map> and C<grep> but it is usually not as 2896memleaks, such as leaking on C<map> and C<grep> but it is usually not as
1797pronounced). 2897pronounced).
1798 2898
1799 2899
1800=head1 SEE ALSO 2900=head1 SEE ALSO
1801 2901
1802Utility functions: L<AnyEvent::Util>. 2902Tutorial/Introduction: L<AnyEvent::Intro>.
1803 2903
1804Event modules: L<EV>, L<EV::Glib>, L<Glib::EV>, L<Event>, L<Glib::Event>, 2904FAQ: L<AnyEvent::FAQ>.
1805L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2905
2906Utility functions: L<AnyEvent::Util> (misc. grab-bag), L<AnyEvent::Log>
2907(simply logging).
2908
2909Development/Debugging: L<AnyEvent::Strict> (stricter checking),
2910L<AnyEvent::Debug> (interactive shell, watcher tracing).
2911
2912Supported event modules: L<AnyEvent::Loop>, L<EV>, L<EV::Glib>,
2913L<Glib::EV>, L<Event>, L<Glib::Event>, L<Glib>, L<Tk>, L<Event::Lib>,
2914L<Qt>, L<POE>, L<FLTK>.
1806 2915
1807Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 2916Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
1808L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 2917L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
1809L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 2918L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
2919L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>,
1810L<AnyEvent::Impl::POE>. 2920L<AnyEvent::Impl::FLTK>.
1811 2921
1812Non-blocking file handles, sockets, TCP clients and 2922Non-blocking handles, pipes, stream sockets, TCP clients and
1813servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>. 2923servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
1814 2924
1815Asynchronous DNS: L<AnyEvent::DNS>. 2925Asynchronous DNS: L<AnyEvent::DNS>.
1816 2926
1817Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>, 2927Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
1818 2928
1819Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 2929Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
2930L<AnyEvent::HTTP>.
1820 2931
1821 2932
1822=head1 AUTHOR 2933=head1 AUTHOR
1823 2934
1824 Marc Lehmann <schmorp@schmorp.de> 2935 Marc Lehmann <schmorp@schmorp.de>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines