ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.177 by root, Thu Aug 21 18:45:16 2008 UTC vs.
Revision 1.391 by root, Wed Nov 16 20:04:05 2011 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt,
6FLTK and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
15 # file handle or descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { ... }); 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
12 17
18 # one-shot or repeating timers
13 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... }); 19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
14 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ... 20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
15 21
16 print AnyEvent->now; # prints current event loop time 22 print AnyEvent->now; # prints current event loop time
17 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time. 23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
18 24
25 # POSIX signal
19 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... }); 26 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
20 27
28 # child process exit
21 my $w = AnyEvent->child (pid => $pid, cb => sub { 29 my $w = AnyEvent->child (pid => $pid, cb => sub {
22 my ($pid, $status) = @_; 30 my ($pid, $status) = @_;
23 ... 31 ...
24 }); 32 });
33
34 # called when event loop idle (if applicable)
35 my $w = AnyEvent->idle (cb => sub { ... });
25 36
26 my $w = AnyEvent->condvar; # stores whether a condition was flagged 37 my $w = AnyEvent->condvar; # stores whether a condition was flagged
27 $w->send; # wake up current and all future recv's 38 $w->send; # wake up current and all future recv's
28 $w->recv; # enters "main loop" till $condvar gets ->send 39 $w->recv; # enters "main loop" till $condvar gets ->send
29 # use a condvar in callback mode: 40 # use a condvar in callback mode:
32=head1 INTRODUCTION/TUTORIAL 43=head1 INTRODUCTION/TUTORIAL
33 44
34This manpage is mainly a reference manual. If you are interested 45This manpage is mainly a reference manual. If you are interested
35in a tutorial or some gentle introduction, have a look at the 46in a tutorial or some gentle introduction, have a look at the
36L<AnyEvent::Intro> manpage. 47L<AnyEvent::Intro> manpage.
48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
37 58
38=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
39 60
40Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
41nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
57module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
58model you use. 79model you use.
59 80
60For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
61actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
62like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
63cannot use anything else, as they are simply incompatible to everything 84cannot use anything else, as they are simply incompatible to everything
64that isn't them. What's worse, all the potential users of your 85that isn't them. What's worse, all the potential users of your
65module are I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
66 87
67AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
68fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
69with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if 90with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module
70your module uses one of those, every user of your module has to use it, 91uses one of those, every user of your module has to use it, too. But if
71too. But if your module uses AnyEvent, it works transparently with all 92your module uses AnyEvent, it works transparently with all event models it
72event models it supports (including stuff like IO::Async, as long as those 93supports (including stuff like IO::Async, as long as those use one of the
73use one of the supported event loops. It is trivial to add new event loops 94supported event loops. It is easy to add new event loops to AnyEvent, too,
74to AnyEvent, too, so it is future-proof). 95so it is future-proof).
75 96
76In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
77model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
78modules, you get an enormous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
79follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
80offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
81technically possible. 102technically possible.
82 103
83Of course, AnyEvent comes with a big (and fully optional!) toolbox 104Of course, AnyEvent comes with a big (and fully optional!) toolbox
84of useful functionality, such as an asynchronous DNS resolver, 100% 105of useful functionality, such as an asynchronous DNS resolver, 100%
90useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
91model, you should I<not> use this module. 112model, you should I<not> use this module.
92 113
93=head1 DESCRIPTION 114=head1 DESCRIPTION
94 115
95L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
96allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
97users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
98peacefully at any one time). 119than one event loop cannot coexist peacefully).
99 120
100The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
101module. 122module.
102 123
103During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
104to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
105following modules is already loaded: L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Loop>,
106L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
107L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
108to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
109adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Loop> should always work, so
110be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
111found, AnyEvent will fall back to a pure-perl event loop, which is not
112very efficient, but should work everywhere.
113 132
114Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
115an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
116that model the default. For example: 135that model the default. For example:
117 136
119 use AnyEvent; 138 use AnyEvent;
120 139
121 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
122 141
123The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
124starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
125use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
126 146
127The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called C<AnyEvent::Loop>. Like
128C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148other event modules you can load it explicitly and enjoy the high
129explicitly and enjoy the high availability of that event loop :) 149availability of that event loop :)
130 150
131=head1 WATCHERS 151=head1 WATCHERS
132 152
133AnyEvent has the central concept of a I<watcher>, which is an object that 153AnyEvent has the central concept of a I<watcher>, which is an object that
134stores relevant data for each kind of event you are waiting for, such as 154stores relevant data for each kind of event you are waiting for, such as
137These watchers are normal Perl objects with normal Perl lifetime. After 157These watchers are normal Perl objects with normal Perl lifetime. After
138creating a watcher it will immediately "watch" for events and invoke the 158creating a watcher it will immediately "watch" for events and invoke the
139callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
140is in control). 160is in control).
141 161
162Note that B<callbacks must not permanently change global variables>
163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
164callbacks must not C<die> >>. The former is good programming practice in
165Perl and the latter stems from the fact that exception handling differs
166widely between event loops.
167
142To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
143variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
144to it). 170to it).
145 171
146All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
147 173
148Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
149example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
150 176
151An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
152 178
153 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
154 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
155 undef $w; 181 undef $w;
156 }); 182 });
159my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
160declared. 186declared.
161 187
162=head2 I/O WATCHERS 188=head2 I/O WATCHERS
163 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
164You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
165with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
166 198
167C<fh> the Perl I<file handle> (I<not> file descriptor) to watch for events 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
168(AnyEvent might or might not keep a reference to this file handle). C<poll> 200for events (AnyEvent might or might not keep a reference to this file
201handle). Note that only file handles pointing to things for which
202non-blocking operation makes sense are allowed. This includes sockets,
203most character devices, pipes, fifos and so on, but not for example files
204or block devices.
205
169must be a string that is either C<r> or C<w>, which creates a watcher 206C<poll> must be a string that is either C<r> or C<w>, which creates a
170waiting for "r"eadable or "w"ritable events, respectively. C<cb> is the 207watcher waiting for "r"eadable or "w"ritable events, respectively.
208
171callback to invoke each time the file handle becomes ready. 209C<cb> is the callback to invoke each time the file handle becomes ready.
172 210
173Although the callback might get passed parameters, their value and 211Although the callback might get passed parameters, their value and
174presence is undefined and you cannot rely on them. Portable AnyEvent 212presence is undefined and you cannot rely on them. Portable AnyEvent
175callbacks cannot use arguments passed to I/O watcher callbacks. 213callbacks cannot use arguments passed to I/O watcher callbacks.
176 214
177The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
178You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
179underlying file descriptor. 217underlying file descriptor.
180 218
181Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
182always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
183handles. 221handles.
184 222
185Example: wait for readability of STDIN, then read a line and disable the 223Example: wait for readability of STDIN, then read a line and disable the
186watcher. 224watcher.
191 undef $w; 229 undef $w;
192 }); 230 });
193 231
194=head2 TIME WATCHERS 232=head2 TIME WATCHERS
195 233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
241
196You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
197method with the following mandatory arguments: 243method with the following mandatory arguments:
198 244
199C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
200supported) the callback should be invoked. C<cb> is the callback to invoke 246supported) the callback should be invoked. C<cb> is the callback to invoke
202 248
203Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
204presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
205callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
206 252
207The callback will normally be invoked once only. If you specify another 253The callback will normally be invoked only once. If you specify another
208parameter, C<interval>, as a strictly positive number (> 0), then the 254parameter, C<interval>, as a strictly positive number (> 0), then the
209callback will be invoked regularly at that interval (in fractional 255callback will be invoked regularly at that interval (in fractional
210seconds) after the first invocation. If C<interval> is specified with a 256seconds) after the first invocation. If C<interval> is specified with a
211false value, then it is treated as if it were missing. 257false value, then it is treated as if it were not specified at all.
212 258
213The callback will be rescheduled before invoking the callback, but no 259The callback will be rescheduled before invoking the callback, but no
214attempt is done to avoid timer drift in most backends, so the interval is 260attempt is made to avoid timer drift in most backends, so the interval is
215only approximate. 261only approximate.
216 262
217Example: fire an event after 7.7 seconds. 263Example: fire an event after 7.7 seconds.
218 264
219 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
237 283
238While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
239use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
240"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
241the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
242fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
243 289
244AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
245about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
246on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
247timers. 293timers.
248 294
249AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
250AnyEvent API. 296AnyEvent API.
272I<In almost all cases (in all cases if you don't care), this is the 318I<In almost all cases (in all cases if you don't care), this is the
273function to call when you want to know the current time.> 319function to call when you want to know the current time.>
274 320
275This function is also often faster then C<< AnyEvent->time >>, and 321This function is also often faster then C<< AnyEvent->time >>, and
276thus the preferred method if you want some timestamp (for example, 322thus the preferred method if you want some timestamp (for example,
277L<AnyEvent::Handle> uses this to update it's activity timeouts). 323L<AnyEvent::Handle> uses this to update its activity timeouts).
278 324
279The rest of this section is only of relevance if you try to be very exact 325The rest of this section is only of relevance if you try to be very exact
280with your timing, you can skip it without bad conscience. 326with your timing; you can skip it without a bad conscience.
281 327
282For a practical example of when these times differ, consider L<Event::Lib> 328For a practical example of when these times differ, consider L<Event::Lib>
283and L<EV> and the following set-up: 329and L<EV> and the following set-up:
284 330
285The event loop is running and has just invoked one of your callback at 331The event loop is running and has just invoked one of your callbacks at
286time=500 (assume no other callbacks delay processing). In your callback, 332time=500 (assume no other callbacks delay processing). In your callback,
287you wait a second by executing C<sleep 1> (blocking the process for a 333you wait a second by executing C<sleep 1> (blocking the process for a
288second) and then (at time=501) you create a relative timer that fires 334second) and then (at time=501) you create a relative timer that fires
289after three seconds. 335after three seconds.
290 336
308In either case, if you care (and in most cases, you don't), then you 354In either case, if you care (and in most cases, you don't), then you
309can get whatever behaviour you want with any event loop, by taking the 355can get whatever behaviour you want with any event loop, by taking the
310difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into 356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
311account. 357account.
312 358
359=item AnyEvent->now_update
360
361Some event loops (such as L<EV> or L<AnyEvent::Loop>) cache the current
362time for each loop iteration (see the discussion of L<< AnyEvent->now >>,
363above).
364
365When a callback runs for a long time (or when the process sleeps), then
366this "current" time will differ substantially from the real time, which
367might affect timers and time-outs.
368
369When this is the case, you can call this method, which will update the
370event loop's idea of "current time".
371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
379Note that updating the time I<might> cause some events to be handled.
380
313=back 381=back
314 382
315=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
316 386
317You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
318I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
319callback to be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
320 390
326invocation, and callback invocation will be synchronous. Synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
327that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
328but it is guaranteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
329 399
330The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
331between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
332 403
333This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
334directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
335 407
336Example: exit on SIGINT 408Example: exit on SIGINT
337 409
338 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
339 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling)
421or "unsafe" (asynchronous) - the former might delay signal delivery
422indefinitely, the latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support
432attaching callbacks to signals in a generic way, which is a pity,
433as you cannot do race-free signal handling in perl, requiring
434C libraries for this. AnyEvent will try to do its best, which
435means in some cases, signals will be delayed. The maximum time
436a signal might be delayed is 10 seconds by default, but can
437be overriden via C<$ENV{PERL_ANYEVENT_MAX_SIGNAL_LATENCY}> or
438C<$AnyEvent::MAX_SIGNAL_LATENCY> - see the Ö<ENVIRONMENT VARIABLES>
439section for details.
440
441All these problems can be avoided by installing the optional
442L<Async::Interrupt> module, which works with most event loops. It will not
443work with inherently broken event loops such as L<Event> or L<Event::Lib>
444(and not with L<POE> currently). For those, you just have to suffer the
445delays.
446
340=head2 CHILD PROCESS WATCHERS 447=head2 CHILD PROCESS WATCHERS
341 448
449 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
450
342You can also watch on a child process exit and catch its exit status. 451You can also watch for a child process exit and catch its exit status.
343 452
344The child process is specified by the C<pid> argument (if set to C<0>, it 453The child process is specified by the C<pid> argument (on some backends,
345watches for any child process exit). The watcher will trigger as often 454using C<0> watches for any child process exit, on others this will
346as status change for the child are received. This works by installing a 455croak). The watcher will be triggered only when the child process has
347signal handler for C<SIGCHLD>. The callback will be called with the pid 456finished and an exit status is available, not on any trace events
348and exit status (as returned by waitpid), so unlike other watcher types, 457(stopped/continued).
349you I<can> rely on child watcher callback arguments. 458
459The callback will be called with the pid and exit status (as returned by
460waitpid), so unlike other watcher types, you I<can> rely on child watcher
461callback arguments.
462
463This watcher type works by installing a signal handler for C<SIGCHLD>,
464and since it cannot be shared, nothing else should use SIGCHLD or reap
465random child processes (waiting for specific child processes, e.g. inside
466C<system>, is just fine).
350 467
351There is a slight catch to child watchers, however: you usually start them 468There is a slight catch to child watchers, however: you usually start them
352I<after> the child process was created, and this means the process could 469I<after> the child process was created, and this means the process could
353have exited already (and no SIGCHLD will be sent anymore). 470have exited already (and no SIGCHLD will be sent anymore).
354 471
355Not all event models handle this correctly (POE doesn't), but even for 472Not all event models handle this correctly (neither POE nor IO::Async do,
473see their AnyEvent::Impl manpages for details), but even for event models
356event models that I<do> handle this correctly, they usually need to be 474that I<do> handle this correctly, they usually need to be loaded before
357loaded before the process exits (i.e. before you fork in the first place). 475the process exits (i.e. before you fork in the first place). AnyEvent's
476pure perl event loop handles all cases correctly regardless of when you
477start the watcher.
358 478
359This means you cannot create a child watcher as the very first thing in an 479This means you cannot create a child watcher as the very first
360AnyEvent program, you I<have> to create at least one watcher before you 480thing in an AnyEvent program, you I<have> to create at least one
361C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 481watcher before you C<fork> the child (alternatively, you can call
482C<AnyEvent::detect>).
483
484As most event loops do not support waiting for child events, they will be
485emulated by AnyEvent in most cases, in which case the latency and race
486problems mentioned in the description of signal watchers apply.
362 487
363Example: fork a process and wait for it 488Example: fork a process and wait for it
364 489
365 my $done = AnyEvent->condvar; 490 my $done = AnyEvent->condvar;
366 491
376 ); 501 );
377 502
378 # do something else, then wait for process exit 503 # do something else, then wait for process exit
379 $done->recv; 504 $done->recv;
380 505
506=head2 IDLE WATCHERS
507
508 $w = AnyEvent->idle (cb => <callback>);
509
510This will repeatedly invoke the callback after the process becomes idle,
511until either the watcher is destroyed or new events have been detected.
512
513Idle watchers are useful when there is a need to do something, but it
514is not so important (or wise) to do it instantly. The callback will be
515invoked only when there is "nothing better to do", which is usually
516defined as "all outstanding events have been handled and no new events
517have been detected". That means that idle watchers ideally get invoked
518when the event loop has just polled for new events but none have been
519detected. Instead of blocking to wait for more events, the idle watchers
520will be invoked.
521
522Unfortunately, most event loops do not really support idle watchers (only
523EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
524will simply call the callback "from time to time".
525
526Example: read lines from STDIN, but only process them when the
527program is otherwise idle:
528
529 my @lines; # read data
530 my $idle_w;
531 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
532 push @lines, scalar <STDIN>;
533
534 # start an idle watcher, if not already done
535 $idle_w ||= AnyEvent->idle (cb => sub {
536 # handle only one line, when there are lines left
537 if (my $line = shift @lines) {
538 print "handled when idle: $line";
539 } else {
540 # otherwise disable the idle watcher again
541 undef $idle_w;
542 }
543 });
544 });
545
381=head2 CONDITION VARIABLES 546=head2 CONDITION VARIABLES
547
548 $cv = AnyEvent->condvar;
549
550 $cv->send (<list>);
551 my @res = $cv->recv;
382 552
383If you are familiar with some event loops you will know that all of them 553If you are familiar with some event loops you will know that all of them
384require you to run some blocking "loop", "run" or similar function that 554require you to run some blocking "loop", "run" or similar function that
385will actively watch for new events and call your callbacks. 555will actively watch for new events and call your callbacks.
386 556
387AnyEvent is different, it expects somebody else to run the event loop and 557AnyEvent is slightly different: it expects somebody else to run the event
388will only block when necessary (usually when told by the user). 558loop and will only block when necessary (usually when told by the user).
389 559
390The instrument to do that is called a "condition variable", so called 560The tool to do that is called a "condition variable", so called because
391because they represent a condition that must become true. 561they represent a condition that must become true.
562
563Now is probably a good time to look at the examples further below.
392 564
393Condition variables can be created by calling the C<< AnyEvent->condvar 565Condition variables can be created by calling the C<< AnyEvent->condvar
394>> method, usually without arguments. The only argument pair allowed is 566>> method, usually without arguments. The only argument pair allowed is
395
396C<cb>, which specifies a callback to be called when the condition variable 567C<cb>, which specifies a callback to be called when the condition variable
397becomes true, with the condition variable as the first argument (but not 568becomes true, with the condition variable as the first argument (but not
398the results). 569the results).
399 570
400After creation, the condition variable is "false" until it becomes "true" 571After creation, the condition variable is "false" until it becomes "true"
401by calling the C<send> method (or calling the condition variable as if it 572by calling the C<send> method (or calling the condition variable as if it
402were a callback, read about the caveats in the description for the C<< 573were a callback, read about the caveats in the description for the C<<
403->send >> method). 574->send >> method).
404 575
405Condition variables are similar to callbacks, except that you can 576Since condition variables are the most complex part of the AnyEvent API, here are
406optionally wait for them. They can also be called merge points - points 577some different mental models of what they are - pick the ones you can connect to:
407in time where multiple outstanding events have been processed. And yet 578
408another way to call them is transactions - each condition variable can be 579=over 4
409used to represent a transaction, which finishes at some point and delivers 580
410a result. 581=item * Condition variables are like callbacks - you can call them (and pass them instead
582of callbacks). Unlike callbacks however, you can also wait for them to be called.
583
584=item * Condition variables are signals - one side can emit or send them,
585the other side can wait for them, or install a handler that is called when
586the signal fires.
587
588=item * Condition variables are like "Merge Points" - points in your program
589where you merge multiple independent results/control flows into one.
590
591=item * Condition variables represent a transaction - functions that start
592some kind of transaction can return them, leaving the caller the choice
593between waiting in a blocking fashion, or setting a callback.
594
595=item * Condition variables represent future values, or promises to deliver
596some result, long before the result is available.
597
598=back
411 599
412Condition variables are very useful to signal that something has finished, 600Condition variables are very useful to signal that something has finished,
413for example, if you write a module that does asynchronous http requests, 601for example, if you write a module that does asynchronous http requests,
414then a condition variable would be the ideal candidate to signal the 602then a condition variable would be the ideal candidate to signal the
415availability of results. The user can either act when the callback is 603availability of results. The user can either act when the callback is
428 616
429Condition variables are represented by hash refs in perl, and the keys 617Condition variables are represented by hash refs in perl, and the keys
430used by AnyEvent itself are all named C<_ae_XXX> to make subclassing 618used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
431easy (it is often useful to build your own transaction class on top of 619easy (it is often useful to build your own transaction class on top of
432AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call 620AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
433it's C<new> method in your own C<new> method. 621its C<new> method in your own C<new> method.
434 622
435There are two "sides" to a condition variable - the "producer side" which 623There are two "sides" to a condition variable - the "producer side" which
436eventually calls C<< -> send >>, and the "consumer side", which waits 624eventually calls C<< -> send >>, and the "consumer side", which waits
437for the send to occur. 625for the send to occur.
438 626
439Example: wait for a timer. 627Example: wait for a timer.
440 628
441 # wait till the result is ready 629 # condition: "wait till the timer is fired"
442 my $result_ready = AnyEvent->condvar; 630 my $timer_fired = AnyEvent->condvar;
443 631
444 # do something such as adding a timer 632 # create the timer - we could wait for, say
445 # or socket watcher the calls $result_ready->send 633 # a handle becomign ready, or even an
446 # when the "result" is ready. 634 # AnyEvent::HTTP request to finish, but
447 # in this case, we simply use a timer: 635 # in this case, we simply use a timer:
448 my $w = AnyEvent->timer ( 636 my $w = AnyEvent->timer (
449 after => 1, 637 after => 1,
450 cb => sub { $result_ready->send }, 638 cb => sub { $timer_fired->send },
451 ); 639 );
452 640
453 # this "blocks" (while handling events) till the callback 641 # this "blocks" (while handling events) till the callback
454 # calls send 642 # calls ->send
455 $result_ready->recv; 643 $timer_fired->recv;
456 644
457Example: wait for a timer, but take advantage of the fact that 645Example: wait for a timer, but take advantage of the fact that condition
458condition variables are also code references. 646variables are also callable directly.
459 647
460 my $done = AnyEvent->condvar; 648 my $done = AnyEvent->condvar;
461 my $delay = AnyEvent->timer (after => 5, cb => $done); 649 my $delay = AnyEvent->timer (after => 5, cb => $done);
462 $done->recv; 650 $done->recv;
463 651
469 657
470 ... 658 ...
471 659
472 my @info = $couchdb->info->recv; 660 my @info = $couchdb->info->recv;
473 661
474And this is how you would just ste a callback to be called whenever the 662And this is how you would just set a callback to be called whenever the
475results are available: 663results are available:
476 664
477 $couchdb->info->cb (sub { 665 $couchdb->info->cb (sub {
478 my @info = $_[0]->recv; 666 my @info = $_[0]->recv;
479 }); 667 });
497immediately from within send. 685immediately from within send.
498 686
499Any arguments passed to the C<send> call will be returned by all 687Any arguments passed to the C<send> call will be returned by all
500future C<< ->recv >> calls. 688future C<< ->recv >> calls.
501 689
502Condition variables are overloaded so one can call them directly 690Condition variables are overloaded so one can call them directly (as if
503(as a code reference). Calling them directly is the same as calling 691they were a code reference). Calling them directly is the same as calling
504C<send>. Note, however, that many C-based event loops do not handle 692C<send>.
505overloading, so as tempting as it may be, passing a condition variable
506instead of a callback does not work. Both the pure perl and EV loops
507support overloading, however, as well as all functions that use perl to
508invoke a callback (as in L<AnyEvent::Socket> and L<AnyEvent::DNS> for
509example).
510 693
511=item $cv->croak ($error) 694=item $cv->croak ($error)
512 695
513Similar to send, but causes all call's to C<< ->recv >> to invoke 696Similar to send, but causes all calls to C<< ->recv >> to invoke
514C<Carp::croak> with the given error message/object/scalar. 697C<Carp::croak> with the given error message/object/scalar.
515 698
516This can be used to signal any errors to the condition variable 699This can be used to signal any errors to the condition variable
517user/consumer. 700user/consumer. Doing it this way instead of calling C<croak> directly
701delays the error detection, but has the overwhelming advantage that it
702diagnoses the error at the place where the result is expected, and not
703deep in some event callback with no connection to the actual code causing
704the problem.
518 705
519=item $cv->begin ([group callback]) 706=item $cv->begin ([group callback])
520 707
521=item $cv->end 708=item $cv->end
522
523These two methods are EXPERIMENTAL and MIGHT CHANGE.
524 709
525These two methods can be used to combine many transactions/events into 710These two methods can be used to combine many transactions/events into
526one. For example, a function that pings many hosts in parallel might want 711one. For example, a function that pings many hosts in parallel might want
527to use a condition variable for the whole process. 712to use a condition variable for the whole process.
528 713
529Every call to C<< ->begin >> will increment a counter, and every call to 714Every call to C<< ->begin >> will increment a counter, and every call to
530C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 715C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
531>>, the (last) callback passed to C<begin> will be executed. That callback 716>>, the (last) callback passed to C<begin> will be executed, passing the
532is I<supposed> to call C<< ->send >>, but that is not required. If no 717condvar as first argument. That callback is I<supposed> to call C<< ->send
533callback was set, C<send> will be called without any arguments. 718>>, but that is not required. If no group callback was set, C<send> will
719be called without any arguments.
534 720
535Let's clarify this with the ping example: 721You can think of C<< $cv->send >> giving you an OR condition (one call
722sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
723condition (all C<begin> calls must be C<end>'ed before the condvar sends).
724
725Let's start with a simple example: you have two I/O watchers (for example,
726STDOUT and STDERR for a program), and you want to wait for both streams to
727close before activating a condvar:
536 728
537 my $cv = AnyEvent->condvar; 729 my $cv = AnyEvent->condvar;
538 730
731 $cv->begin; # first watcher
732 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
733 defined sysread $fh1, my $buf, 4096
734 or $cv->end;
735 });
736
737 $cv->begin; # second watcher
738 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
739 defined sysread $fh2, my $buf, 4096
740 or $cv->end;
741 });
742
743 $cv->recv;
744
745This works because for every event source (EOF on file handle), there is
746one call to C<begin>, so the condvar waits for all calls to C<end> before
747sending.
748
749The ping example mentioned above is slightly more complicated, as the
750there are results to be passwd back, and the number of tasks that are
751begun can potentially be zero:
752
753 my $cv = AnyEvent->condvar;
754
539 my %result; 755 my %result;
540 $cv->begin (sub { $cv->send (\%result) }); 756 $cv->begin (sub { shift->send (\%result) });
541 757
542 for my $host (@list_of_hosts) { 758 for my $host (@list_of_hosts) {
543 $cv->begin; 759 $cv->begin;
544 ping_host_then_call_callback $host, sub { 760 ping_host_then_call_callback $host, sub {
545 $result{$host} = ...; 761 $result{$host} = ...;
560loop, which serves two important purposes: first, it sets the callback 776loop, which serves two important purposes: first, it sets the callback
561to be called once the counter reaches C<0>, and second, it ensures that 777to be called once the counter reaches C<0>, and second, it ensures that
562C<send> is called even when C<no> hosts are being pinged (the loop 778C<send> is called even when C<no> hosts are being pinged (the loop
563doesn't execute once). 779doesn't execute once).
564 780
565This is the general pattern when you "fan out" into multiple subrequests: 781This is the general pattern when you "fan out" into multiple (but
566use an outer C<begin>/C<end> pair to set the callback and ensure C<end> 782potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
567is called at least once, and then, for each subrequest you start, call 783the callback and ensure C<end> is called at least once, and then, for each
568C<begin> and for each subrequest you finish, call C<end>. 784subrequest you start, call C<begin> and for each subrequest you finish,
785call C<end>.
569 786
570=back 787=back
571 788
572=head3 METHODS FOR CONSUMERS 789=head3 METHODS FOR CONSUMERS
573 790
577=over 4 794=over 4
578 795
579=item $cv->recv 796=item $cv->recv
580 797
581Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak 798Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
582>> methods have been called on c<$cv>, while servicing other watchers 799>> methods have been called on C<$cv>, while servicing other watchers
583normally. 800normally.
584 801
585You can only wait once on a condition - additional calls are valid but 802You can only wait once on a condition - additional calls are valid but
586will return immediately. 803will return immediately.
587 804
589function will call C<croak>. 806function will call C<croak>.
590 807
591In list context, all parameters passed to C<send> will be returned, 808In list context, all parameters passed to C<send> will be returned,
592in scalar context only the first one will be returned. 809in scalar context only the first one will be returned.
593 810
811Note that doing a blocking wait in a callback is not supported by any
812event loop, that is, recursive invocation of a blocking C<< ->recv
813>> is not allowed, and the C<recv> call will C<croak> if such a
814condition is detected. This condition can be slightly loosened by using
815L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
816any thread that doesn't run the event loop itself.
817
594Not all event models support a blocking wait - some die in that case 818Not all event models support a blocking wait - some die in that case
595(programs might want to do that to stay interactive), so I<if you are 819(programs might want to do that to stay interactive), so I<if you are
596using this from a module, never require a blocking wait>, but let the 820using this from a module, never require a blocking wait>. Instead, let the
597caller decide whether the call will block or not (for example, by coupling 821caller decide whether the call will block or not (for example, by coupling
598condition variables with some kind of request results and supporting 822condition variables with some kind of request results and supporting
599callbacks so the caller knows that getting the result will not block, 823callbacks so the caller knows that getting the result will not block,
600while still supporting blocking waits if the caller so desires). 824while still supporting blocking waits if the caller so desires).
601 825
602Another reason I<never> to C<< ->recv >> in a module is that you cannot
603sensibly have two C<< ->recv >>'s in parallel, as that would require
604multiple interpreters or coroutines/threads, none of which C<AnyEvent>
605can supply.
606
607The L<Coro> module, however, I<can> and I<does> supply coroutines and, in
608fact, L<Coro::AnyEvent> replaces AnyEvent's condvars by coroutine-safe
609versions and also integrates coroutines into AnyEvent, making blocking
610C<< ->recv >> calls perfectly safe as long as they are done from another
611coroutine (one that doesn't run the event loop).
612
613You can ensure that C<< -recv >> never blocks by setting a callback and 826You can ensure that C<< ->recv >> never blocks by setting a callback and
614only calling C<< ->recv >> from within that callback (or at a later 827only calling C<< ->recv >> from within that callback (or at a later
615time). This will work even when the event loop does not support blocking 828time). This will work even when the event loop does not support blocking
616waits otherwise. 829waits otherwise.
617 830
618=item $bool = $cv->ready 831=item $bool = $cv->ready
624 837
625This is a mutator function that returns the callback set and optionally 838This is a mutator function that returns the callback set and optionally
626replaces it before doing so. 839replaces it before doing so.
627 840
628The callback will be called when the condition becomes "true", i.e. when 841The callback will be called when the condition becomes "true", i.e. when
629C<send> or C<croak> are called, with the only argument being the condition 842C<send> or C<croak> are called, with the only argument being the
630variable itself. Calling C<recv> inside the callback or at any later time 843condition variable itself. If the condition is already true, the
631is guaranteed not to block. 844callback is called immediately when it is set. Calling C<recv> inside
845the callback or at any later time is guaranteed not to block.
632 846
633=back 847=back
634 848
849=head1 SUPPORTED EVENT LOOPS/BACKENDS
850
851The available backend classes are (every class has its own manpage):
852
853=over 4
854
855=item Backends that are autoprobed when no other event loop can be found.
856
857EV is the preferred backend when no other event loop seems to be in
858use. If EV is not installed, then AnyEvent will fall back to its own
859pure-perl implementation, which is available everywhere as it comes with
860AnyEvent itself.
861
862 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
863 AnyEvent::Impl::Perl pure-perl AnyEvent::Loop, fast and portable.
864
865=item Backends that are transparently being picked up when they are used.
866
867These will be used if they are already loaded when the first watcher
868is created, in which case it is assumed that the application is using
869them. This means that AnyEvent will automatically pick the right backend
870when the main program loads an event module before anything starts to
871create watchers. Nothing special needs to be done by the main program.
872
873 AnyEvent::Impl::Event based on Event, very stable, few glitches.
874 AnyEvent::Impl::Glib based on Glib, slow but very stable.
875 AnyEvent::Impl::Tk based on Tk, very broken.
876 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
877 AnyEvent::Impl::POE based on POE, very slow, some limitations.
878 AnyEvent::Impl::Irssi used when running within irssi.
879 AnyEvent::Impl::IOAsync based on IO::Async.
880 AnyEvent::Impl::Cocoa based on Cocoa::EventLoop.
881 AnyEvent::Impl::FLTK based on FLTK (fltk 2 binding).
882
883=item Backends with special needs.
884
885Qt requires the Qt::Application to be instantiated first, but will
886otherwise be picked up automatically. As long as the main program
887instantiates the application before any AnyEvent watchers are created,
888everything should just work.
889
890 AnyEvent::Impl::Qt based on Qt.
891
892=item Event loops that are indirectly supported via other backends.
893
894Some event loops can be supported via other modules:
895
896There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
897
898B<WxWidgets> has no support for watching file handles. However, you can
899use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
900polls 20 times per second, which was considered to be too horrible to even
901consider for AnyEvent.
902
903B<Prima> is not supported as nobody seems to be using it, but it has a POE
904backend, so it can be supported through POE.
905
906AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
907load L<POE> when detecting them, in the hope that POE will pick them up,
908in which case everything will be automatic.
909
910=back
911
635=head1 GLOBAL VARIABLES AND FUNCTIONS 912=head1 GLOBAL VARIABLES AND FUNCTIONS
636 913
914These are not normally required to use AnyEvent, but can be useful to
915write AnyEvent extension modules.
916
637=over 4 917=over 4
638 918
639=item $AnyEvent::MODEL 919=item $AnyEvent::MODEL
640 920
641Contains C<undef> until the first watcher is being created. Then it 921Contains C<undef> until the first watcher is being created, before the
922backend has been autodetected.
923
642contains the event model that is being used, which is the name of the 924Afterwards it contains the event model that is being used, which is the
643Perl class implementing the model. This class is usually one of the 925name of the Perl class implementing the model. This class is usually one
644C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 926of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
645AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 927case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
646 928will be C<urxvt::anyevent>).
647The known classes so far are:
648
649 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
650 AnyEvent::Impl::Event based on Event, second best choice.
651 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
652 AnyEvent::Impl::Glib based on Glib, third-best choice.
653 AnyEvent::Impl::Tk based on Tk, very bad choice.
654 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
655 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
656 AnyEvent::Impl::POE based on POE, not generic enough for full support.
657
658There is no support for WxWidgets, as WxWidgets has no support for
659watching file handles. However, you can use WxWidgets through the
660POE Adaptor, as POE has a Wx backend that simply polls 20 times per
661second, which was considered to be too horrible to even consider for
662AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
663it's adaptor.
664
665AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
666autodetecting them.
667 929
668=item AnyEvent::detect 930=item AnyEvent::detect
669 931
670Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 932Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
671if necessary. You should only call this function right before you would 933if necessary. You should only call this function right before you would
672have created an AnyEvent watcher anyway, that is, as late as possible at 934have created an AnyEvent watcher anyway, that is, as late as possible at
673runtime. 935runtime, and not e.g. during initialisation of your module.
936
937The effect of calling this function is as if a watcher had been created
938(specifically, actions that happen "when the first watcher is created"
939happen when calling detetc as well).
940
941If you need to do some initialisation before AnyEvent watchers are
942created, use C<post_detect>.
674 943
675=item $guard = AnyEvent::post_detect { BLOCK } 944=item $guard = AnyEvent::post_detect { BLOCK }
676 945
677Arranges for the code block to be executed as soon as the event model is 946Arranges for the code block to be executed as soon as the event model is
678autodetected (or immediately if this has already happened). 947autodetected (or immediately if that has already happened).
948
949The block will be executed I<after> the actual backend has been detected
950(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
951created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
952other initialisations - see the sources of L<AnyEvent::Strict> or
953L<AnyEvent::AIO> to see how this is used.
954
955The most common usage is to create some global watchers, without forcing
956event module detection too early, for example, L<AnyEvent::AIO> creates
957and installs the global L<IO::AIO> watcher in a C<post_detect> block to
958avoid autodetecting the event module at load time.
679 959
680If called in scalar or list context, then it creates and returns an object 960If called in scalar or list context, then it creates and returns an object
681that automatically removes the callback again when it is destroyed. See 961that automatically removes the callback again when it is destroyed (or
962C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
682L<Coro::BDB> for a case where this is useful. 963a case where this is useful.
964
965Example: Create a watcher for the IO::AIO module and store it in
966C<$WATCHER>, but do so only do so after the event loop is initialised.
967
968 our WATCHER;
969
970 my $guard = AnyEvent::post_detect {
971 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
972 };
973
974 # the ||= is important in case post_detect immediately runs the block,
975 # as to not clobber the newly-created watcher. assigning both watcher and
976 # post_detect guard to the same variable has the advantage of users being
977 # able to just C<undef $WATCHER> if the watcher causes them grief.
978
979 $WATCHER ||= $guard;
683 980
684=item @AnyEvent::post_detect 981=item @AnyEvent::post_detect
685 982
686If there are any code references in this array (you can C<push> to it 983If there are any code references in this array (you can C<push> to it
687before or after loading AnyEvent), then they will called directly after 984before or after loading AnyEvent), then they will be called directly
688the event loop has been chosen. 985after the event loop has been chosen.
689 986
690You should check C<$AnyEvent::MODEL> before adding to this array, though: 987You should check C<$AnyEvent::MODEL> before adding to this array, though:
691if it contains a true value then the event loop has already been detected, 988if it is defined then the event loop has already been detected, and the
692and the array will be ignored. 989array will be ignored.
693 990
694Best use C<AnyEvent::post_detect { BLOCK }> instead. 991Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
992it, as it takes care of these details.
993
994This variable is mainly useful for modules that can do something useful
995when AnyEvent is used and thus want to know when it is initialised, but do
996not need to even load it by default. This array provides the means to hook
997into AnyEvent passively, without loading it.
998
999Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
1000together, you could put this into Coro (this is the actual code used by
1001Coro to accomplish this):
1002
1003 if (defined $AnyEvent::MODEL) {
1004 # AnyEvent already initialised, so load Coro::AnyEvent
1005 require Coro::AnyEvent;
1006 } else {
1007 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1008 # as soon as it is
1009 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1010 }
1011
1012=item AnyEvent::postpone { BLOCK }
1013
1014Arranges for the block to be executed as soon as possible, but not before
1015the call itself returns. In practise, the block will be executed just
1016before the event loop polls for new events, or shortly afterwards.
1017
1018This function never returns anything (to make the C<return postpone { ...
1019}> idiom more useful.
1020
1021To understand the usefulness of this function, consider a function that
1022asynchronously does something for you and returns some transaction
1023object or guard to let you cancel the operation. For example,
1024C<AnyEvent::Socket::tcp_connect>:
1025
1026 # start a conenction attempt unless one is active
1027 $self->{connect_guard} ||= AnyEvent::Socket::tcp_connect "www.example.net", 80, sub {
1028 delete $self->{connect_guard};
1029 ...
1030 };
1031
1032Imagine that this function could instantly call the callback, for
1033example, because it detects an obvious error such as a negative port
1034number. Invoking the callback before the function returns causes problems
1035however: the callback will be called and will try to delete the guard
1036object. But since the function hasn't returned yet, there is nothing to
1037delete. When the function eventually returns it will assign the guard
1038object to C<< $self->{connect_guard} >>, where it will likely never be
1039deleted, so the program thinks it is still trying to connect.
1040
1041This is where C<AnyEvent::postpone> should be used. Instead of calling the
1042callback directly on error:
1043
1044 $cb->(undef), return # signal error to callback, BAD!
1045 if $some_error_condition;
1046
1047It should use C<postpone>:
1048
1049 AnyEvent::postpone { $cb->(undef) }, return # signal error to callback, later
1050 if $some_error_condition;
1051
1052=item AnyEvent::log $level, $msg[, @args]
1053
1054Log the given C<$msg> at the given C<$level>.
1055
1056If L<AnyEvent::Log> is not loaded then this function makes a simple test
1057to see whether the message will be logged. If the test succeeds it will
1058load AnyEvent::Log and call C<AnyEvent::Log::log> - consequently, look at
1059the L<AnyEvent::Log> documentation for details.
1060
1061If the test fails it will simply return. Right now this happens when a
1062numerical loglevel is used and it is larger than the level specified via
1063C<$ENV{PERL_ANYEVENT_VERBOSE}>.
1064
1065If you want to sprinkle loads of logging calls around your code, consider
1066creating a logger callback with the C<AnyEvent::Log::logger> function,
1067which can reduce typing, codesize and can reduce the logging overhead
1068enourmously.
695 1069
696=back 1070=back
697 1071
698=head1 WHAT TO DO IN A MODULE 1072=head1 WHAT TO DO IN A MODULE
699 1073
710because it will stall the whole program, and the whole point of using 1084because it will stall the whole program, and the whole point of using
711events is to stay interactive. 1085events is to stay interactive.
712 1086
713It is fine, however, to call C<< ->recv >> when the user of your module 1087It is fine, however, to call C<< ->recv >> when the user of your module
714requests it (i.e. if you create a http request object ad have a method 1088requests it (i.e. if you create a http request object ad have a method
715called C<results> that returns the results, it should call C<< ->recv >> 1089called C<results> that returns the results, it may call C<< ->recv >>
716freely, as the user of your module knows what she is doing. always). 1090freely, as the user of your module knows what she is doing. Always).
717 1091
718=head1 WHAT TO DO IN THE MAIN PROGRAM 1092=head1 WHAT TO DO IN THE MAIN PROGRAM
719 1093
720There will always be a single main program - the only place that should 1094There will always be a single main program - the only place that should
721dictate which event model to use. 1095dictate which event model to use.
722 1096
723If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1097If the program is not event-based, it need not do anything special, even
724do anything special (it does not need to be event-based) and let AnyEvent 1098when it depends on a module that uses an AnyEvent. If the program itself
725decide which implementation to chose if some module relies on it. 1099uses AnyEvent, but does not care which event loop is used, all it needs
1100to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1101available loop implementation.
726 1102
727If the main program relies on a specific event model - for example, in 1103If the main program relies on a specific event model - for example, in
728Gtk2 programs you have to rely on the Glib module - you should load the 1104Gtk2 programs you have to rely on the Glib module - you should load the
729event module before loading AnyEvent or any module that uses it: generally 1105event module before loading AnyEvent or any module that uses it: generally
730speaking, you should load it as early as possible. The reason is that 1106speaking, you should load it as early as possible. The reason is that
731modules might create watchers when they are loaded, and AnyEvent will 1107modules might create watchers when they are loaded, and AnyEvent will
732decide on the event model to use as soon as it creates watchers, and it 1108decide on the event model to use as soon as it creates watchers, and it
733might chose the wrong one unless you load the correct one yourself. 1109might choose the wrong one unless you load the correct one yourself.
734 1110
735You can chose to use a pure-perl implementation by loading the 1111You can chose to use a pure-perl implementation by loading the
736C<AnyEvent::Impl::Perl> module, which gives you similar behaviour 1112C<AnyEvent::Loop> module, which gives you similar behaviour
737everywhere, but letting AnyEvent chose the model is generally better. 1113everywhere, but letting AnyEvent chose the model is generally better.
738 1114
739=head2 MAINLOOP EMULATION 1115=head2 MAINLOOP EMULATION
740 1116
741Sometimes (often for short test scripts, or even standalone programs who 1117Sometimes (often for short test scripts, or even standalone programs who
754 1130
755 1131
756=head1 OTHER MODULES 1132=head1 OTHER MODULES
757 1133
758The following is a non-exhaustive list of additional modules that use 1134The following is a non-exhaustive list of additional modules that use
759AnyEvent and can therefore be mixed easily with other AnyEvent modules 1135AnyEvent as a client and can therefore be mixed easily with other
760in the same program. Some of the modules come with AnyEvent, some are 1136AnyEvent modules and other event loops in the same program. Some of the
761available via CPAN. 1137modules come as part of AnyEvent, the others are available via CPAN (see
1138L<http://search.cpan.org/search?m=module&q=anyevent%3A%3A*> for
1139a longer non-exhaustive list), and the list is heavily biased towards
1140modules of the AnyEvent author himself :)
762 1141
763=over 4 1142=over 4
764 1143
765=item L<AnyEvent::Util> 1144=item L<AnyEvent::Util>
766 1145
767Contains various utility functions that replace often-used but blocking 1146Contains various utility functions that replace often-used blocking
768functions such as C<inet_aton> by event-/callback-based versions. 1147functions such as C<inet_aton> with event/callback-based versions.
769 1148
770=item L<AnyEvent::Socket> 1149=item L<AnyEvent::Socket>
771 1150
772Provides various utility functions for (internet protocol) sockets, 1151Provides various utility functions for (internet protocol) sockets,
773addresses and name resolution. Also functions to create non-blocking tcp 1152addresses and name resolution. Also functions to create non-blocking tcp
775 1154
776=item L<AnyEvent::Handle> 1155=item L<AnyEvent::Handle>
777 1156
778Provide read and write buffers, manages watchers for reads and writes, 1157Provide read and write buffers, manages watchers for reads and writes,
779supports raw and formatted I/O, I/O queued and fully transparent and 1158supports raw and formatted I/O, I/O queued and fully transparent and
780non-blocking SSL/TLS. 1159non-blocking SSL/TLS (via L<AnyEvent::TLS>).
781 1160
782=item L<AnyEvent::DNS> 1161=item L<AnyEvent::DNS>
783 1162
784Provides rich asynchronous DNS resolver capabilities. 1163Provides rich asynchronous DNS resolver capabilities.
785 1164
1165=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1166
1167Implement event-based interfaces to the protocols of the same name (for
1168the curious, IGS is the International Go Server and FCP is the Freenet
1169Client Protocol).
1170
786=item L<AnyEvent::HTTP> 1171=item L<AnyEvent::AIO>
787 1172
788A simple-to-use HTTP library that is capable of making a lot of concurrent 1173Truly asynchronous (as opposed to non-blocking) I/O, should be in the
789HTTP requests. 1174toolbox of every event programmer. AnyEvent::AIO transparently fuses
1175L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1176file I/O, and much more.
1177
1178=item L<AnyEvent::Filesys::Notify>
1179
1180AnyEvent is good for non-blocking stuff, but it can't detect file or
1181path changes (e.g. "watch this directory for new files", "watch this
1182file for changes"). The L<AnyEvent::Filesys::Notify> module promises to
1183do just that in a portbale fashion, supporting inotify on GNU/Linux and
1184some weird, without doubt broken, stuff on OS X to monitor files. It can
1185fall back to blocking scans at regular intervals transparently on other
1186platforms, so it's about as portable as it gets.
1187
1188(I haven't used it myself, but I haven't heard anybody complaining about
1189it yet).
1190
1191=item L<AnyEvent::DBI>
1192
1193Executes L<DBI> requests asynchronously in a proxy process for you,
1194notifying you in an event-based way when the operation is finished.
790 1195
791=item L<AnyEvent::HTTPD> 1196=item L<AnyEvent::HTTPD>
792 1197
793Provides a simple web application server framework. 1198A simple embedded webserver.
794 1199
795=item L<AnyEvent::FastPing> 1200=item L<AnyEvent::FastPing>
796 1201
797The fastest ping in the west. 1202The fastest ping in the west.
798 1203
799=item L<AnyEvent::DBI>
800
801Executes L<DBI> requests asynchronously in a proxy process.
802
803=item L<AnyEvent::AIO>
804
805Truly asynchronous I/O, should be in the toolbox of every event
806programmer. AnyEvent::AIO transparently fuses L<IO::AIO> and AnyEvent
807together.
808
809=item L<AnyEvent::BDB>
810
811Truly asynchronous Berkeley DB access. AnyEvent::BDB transparently fuses
812L<BDB> and AnyEvent together.
813
814=item L<AnyEvent::GPSD>
815
816A non-blocking interface to gpsd, a daemon delivering GPS information.
817
818=item L<AnyEvent::IGS>
819
820A non-blocking interface to the Internet Go Server protocol (used by
821L<App::IGS>).
822
823=item L<Net::IRC3>
824
825AnyEvent based IRC client module family.
826
827=item L<Net::XMPP2>
828
829AnyEvent based XMPP (Jabber protocol) module family.
830
831=item L<Net::FCP>
832
833AnyEvent-based implementation of the Freenet Client Protocol, birthplace
834of AnyEvent.
835
836=item L<Event::ExecFlow>
837
838High level API for event-based execution flow control.
839
840=item L<Coro> 1204=item L<Coro>
841 1205
842Has special support for AnyEvent via L<Coro::AnyEvent>. 1206Has special support for AnyEvent via L<Coro::AnyEvent>, which allows you
1207to simply invert the flow control - don't call us, we will call you:
843 1208
844=item L<IO::Lambda> 1209 async {
1210 Coro::AnyEvent::sleep 5; # creates a 5s timer and waits for it
1211 print "5 seconds later!\n";
845 1212
846The lambda approach to I/O - don't ask, look there. Can use AnyEvent. 1213 Coro::AnyEvent::readable *STDIN; # uses an I/O watcher
1214 my $line = <STDIN>; # works for ttys
1215
1216 AnyEvent::HTTP::http_get "url", Coro::rouse_cb;
1217 my ($body, $hdr) = Coro::rouse_wait;
1218 };
847 1219
848=back 1220=back
849 1221
850=cut 1222=cut
851 1223
852package AnyEvent; 1224package AnyEvent;
853 1225
854no warnings; 1226# basically a tuned-down version of common::sense
855use strict; 1227sub common_sense {
1228 # from common:.sense 3.4
1229 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf0\x0f\xc0\xf0\xfc\x33\x00";
1230 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1231 $^H |= 0x00000600;
1232}
856 1233
1234BEGIN { AnyEvent::common_sense }
1235
857use Carp; 1236use Carp ();
858 1237
859our $VERSION = 4.232; 1238our $VERSION = '6.1';
860our $MODEL; 1239our $MODEL;
861
862our $AUTOLOAD;
863our @ISA; 1240our @ISA;
864
865our @REGISTRY; 1241our @REGISTRY;
866 1242our $VERBOSE;
867our $WIN32; 1243our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
1244our $MAX_SIGNAL_LATENCY = $ENV{PERL_ANYEVENT_MAX_SIGNAL_LATENCY} || 10; # executes after the BEGIN block below (tainting!)
868 1245
869BEGIN { 1246BEGIN {
870 my $win32 = ! ! ($^O =~ /mswin32/i); 1247 require "AnyEvent/constants.pl";
871 eval "sub WIN32(){ $win32 }";
872}
873 1248
874our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; 1249 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
875 1250
876our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred 1251 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1252 if ${^TAINT};
877 1253
878{ 1254 $ENV{"PERL_ANYEVENT_$_"} = $ENV{"AE_$_"}
1255 for grep s/^AE_// && !exists $ENV{"PERL_ANYEVENT_$_"}, keys %ENV;
1256
1257 @ENV{grep /^PERL_ANYEVENT_/, keys %ENV} = ()
1258 if ${^TAINT};
1259
1260 # $ENV{PERL_ANYEVENT_xxx} now valid
1261
1262 $VERBOSE = length $ENV{PERL_ANYEVENT_VERBOSE} ? $ENV{PERL_ANYEVENT_VERBOSE}*1 : 4;
1263
879 my $idx; 1264 my $idx;
880 $PROTOCOL{$_} = ++$idx 1265 $PROTOCOL{$_} = ++$idx
881 for reverse split /\s*,\s*/, 1266 for reverse split /\s*,\s*/,
882 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1267 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
883} 1268}
884 1269
1270our @post_detect;
1271
1272sub post_detect(&) {
1273 my ($cb) = @_;
1274
1275 push @post_detect, $cb;
1276
1277 defined wantarray
1278 ? bless \$cb, "AnyEvent::Util::postdetect"
1279 : ()
1280}
1281
1282sub AnyEvent::Util::postdetect::DESTROY {
1283 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1284}
1285
1286our $POSTPONE_W;
1287our @POSTPONE;
1288
1289sub _postpone_exec {
1290 undef $POSTPONE_W;
1291
1292 &{ shift @POSTPONE }
1293 while @POSTPONE;
1294}
1295
1296sub postpone(&) {
1297 push @POSTPONE, shift;
1298
1299 $POSTPONE_W ||= AE::timer (0, 0, \&_postpone_exec);
1300
1301 ()
1302}
1303
1304sub log($$;@) {
1305 # only load the big bloated module when we actually are about to log something
1306 if ($_[0] <= ($VERBOSE || 1)) { # also catches non-numeric levels(!) and fatal
1307 local ($!, $@);
1308 require AnyEvent::Log; # among other things, sets $VERBOSE to 9
1309 # AnyEvent::Log overwrites this function
1310 goto &log;
1311 }
1312
1313 0 # not logged
1314}
1315
1316sub _logger($;$) {
1317 my ($level, $renabled) = @_;
1318
1319 $$renabled = $level <= $VERBOSE;
1320
1321 my $logger = [(caller)[0], $level, $renabled];
1322
1323 $AnyEvent::Log::LOGGER{$logger+0} = $logger;
1324
1325# return unless defined wantarray;
1326#
1327# require AnyEvent::Util;
1328# my $guard = AnyEvent::Util::guard (sub {
1329# # "clean up"
1330# delete $LOGGER{$logger+0};
1331# });
1332#
1333# sub {
1334# return 0 unless $$renabled;
1335#
1336# $guard if 0; # keep guard alive, but don't cause runtime overhead
1337# require AnyEvent::Log unless $AnyEvent::Log::VERSION;
1338# package AnyEvent::Log;
1339# _log ($logger->[0], $level, @_) # logger->[0] has been converted at load time
1340# }
1341}
1342
1343if (length $ENV{PERL_ANYEVENT_LOG}) {
1344 require AnyEvent::Log; # AnyEvent::Log does the thing for us
1345}
1346
885my @models = ( 1347our @models = (
886 [EV:: => AnyEvent::Impl::EV::], 1348 [EV:: => AnyEvent::Impl::EV::],
887 [Event:: => AnyEvent::Impl::Event::],
888 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::], 1349 [AnyEvent::Loop:: => AnyEvent::Impl::Perl::],
889 # everything below here will not be autoprobed 1350 # everything below here will not (normally) be autoprobed
890 # as the pureperl backend should work everywhere 1351 # as the pure perl backend should work everywhere
891 # and is usually faster 1352 # and is usually faster
1353 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package, so msut be near the top
1354 [Event:: => AnyEvent::Impl::Event::], # slow, stable
1355 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
1356 # everything below here should not be autoloaded
1357 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
892 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles 1358 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
893 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
894 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
895 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 1359 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
896 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 1360 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
897 [Wx:: => AnyEvent::Impl::POE::], 1361 [Wx:: => AnyEvent::Impl::POE::],
898 [Prima:: => AnyEvent::Impl::POE::], 1362 [Prima:: => AnyEvent::Impl::POE::],
1363 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # a bitch to autodetect
1364 [Cocoa::EventLoop:: => AnyEvent::Impl::Cocoa::],
1365 [FLTK:: => AnyEvent::Impl::FLTK::],
899); 1366);
900 1367
901our %method = map +($_ => 1), qw(io timer time now signal child condvar one_event DESTROY); 1368our @isa_hook;
902 1369
903our @post_detect; 1370sub _isa_set {
1371 my @pkg = ("AnyEvent", (map $_->[0], grep defined, @isa_hook), $MODEL);
904 1372
1373 @{"$pkg[$_-1]::ISA"} = $pkg[$_]
1374 for 1 .. $#pkg;
1375
1376 grep $_ && $_->[1], @isa_hook
1377 and AE::_reset ();
1378}
1379
1380# used for hooking AnyEvent::Strict and AnyEvent::Debug::Wrap into the class hierarchy
1381sub _isa_hook($$;$) {
1382 my ($i, $pkg, $reset_ae) = @_;
1383
1384 $isa_hook[$i] = $pkg ? [$pkg, $reset_ae] : undef;
1385
1386 _isa_set;
1387}
1388
1389# all autoloaded methods reserve the complete glob, not just the method slot.
1390# due to bugs in perls method cache implementation.
1391our @methods = qw(io timer time now now_update signal child idle condvar);
1392
905sub post_detect(&) { 1393sub detect() {
906 my ($cb) = @_; 1394 return $MODEL if $MODEL; # some programs keep references to detect
907 1395
908 if ($MODEL) { 1396 # IO::Async::Loop::AnyEvent is extremely evil, refuse to work with it
909 $cb->(); 1397 # the author knows about the problems and what it does to AnyEvent as a whole
1398 # (and the ability of others to use AnyEvent), but simply wants to abuse AnyEvent
1399 # anyway.
1400 AnyEvent::log fatal => "AnyEvent: IO::Async::Loop::AnyEvent detected - this module is broken by design,\n"
1401 . "abuses internals and breaks AnyEvent, will not continue."
1402 if exists $INC{"IO/Async/Loop/AnyEvent.pm"};
910 1403
911 1 1404 local $!; # for good measure
1405 local $SIG{__DIE__}; # we use eval
1406
1407 # free some memory
1408 *detect = sub () { $MODEL };
1409 # undef &func doesn't correctly update the method cache. grmbl.
1410 # so we delete the whole glob. grmbl.
1411 # otoh, perl doesn't let me undef an active usb, but it lets me free
1412 # a glob with an active sub. hrm. i hope it works, but perl is
1413 # usually buggy in this department. sigh.
1414 delete @{"AnyEvent::"}{@methods};
1415 undef @methods;
1416
1417 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z0-9:]+)$/) {
1418 my $model = $1;
1419 $model = "AnyEvent::Impl::$model" unless $model =~ s/::$//;
1420 if (eval "require $model") {
1421 AnyEvent::log 7 => "loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.";
1422 $MODEL = $model;
912 } else { 1423 } else {
913 push @post_detect, $cb; 1424 AnyEvent::log 4 => "unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@";
914 1425 }
915 defined wantarray
916 ? bless \$cb, "AnyEvent::Util::PostDetect"
917 : ()
918 } 1426 }
919}
920 1427
921sub AnyEvent::Util::PostDetect::DESTROY { 1428 # check for already loaded models
922 @post_detect = grep $_ != ${$_[0]}, @post_detect;
923}
924
925sub detect() {
926 unless ($MODEL) { 1429 unless ($MODEL) {
927 no strict 'refs'; 1430 for (@REGISTRY, @models) {
928 local $SIG{__DIE__}; 1431 my ($package, $model) = @$_;
929 1432 if (${"$package\::VERSION"} > 0) {
930 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
931 my $model = "AnyEvent::Impl::$1";
932 if (eval "require $model") { 1433 if (eval "require $model") {
1434 AnyEvent::log 7 => "autodetected model '$model', using it.";
933 $MODEL = $model; 1435 $MODEL = $model;
934 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1436 last;
935 } else { 1437 } else {
936 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose; 1438 AnyEvent::log 8 => "detected event loop $package, but cannot load '$model', skipping: $@";
1439 }
937 } 1440 }
938 } 1441 }
939 1442
940 # check for already loaded models
941 unless ($MODEL) { 1443 unless ($MODEL) {
1444 # try to autoload a model
942 for (@REGISTRY, @models) { 1445 for (@REGISTRY, @models) {
943 my ($package, $model) = @$_; 1446 my ($package, $model) = @$_;
1447 if (
1448 eval "require $package"
944 if (${"$package\::VERSION"} > 0) { 1449 and ${"$package\::VERSION"} > 0
945 if (eval "require $model") { 1450 and eval "require $model"
1451 ) {
1452 AnyEvent::log 7 => "autoloaded model '$model', using it.";
946 $MODEL = $model; 1453 $MODEL = $model;
947 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1;
948 last; 1454 last;
949 }
950 } 1455 }
951 } 1456 }
952 1457
953 unless ($MODEL) {
954 # try to load a model
955
956 for (@REGISTRY, @models) {
957 my ($package, $model) = @$_;
958 if (eval "require $package"
959 and ${"$package\::VERSION"} > 0
960 and eval "require $model") {
961 $MODEL = $model;
962 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1;
963 last;
964 }
965 }
966
967 $MODEL 1458 $MODEL
968 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib."; 1459 or AnyEvent::log fatal => "AnyEvent: backend autodetection failed - did you properly install AnyEvent?";
969 }
970 } 1460 }
971
972 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
973
974 unshift @ISA, $MODEL;
975
976 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
977
978 (shift @post_detect)->() while @post_detect;
979 } 1461 }
980 1462
1463 # free memory only needed for probing
1464 undef @models;
1465 undef @REGISTRY;
1466
1467 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1468
1469 # now nuke some methods that are overridden by the backend.
1470 # SUPER usage is not allowed in these.
1471 for (qw(time signal child idle)) {
1472 undef &{"AnyEvent::Base::$_"}
1473 if defined &{"$MODEL\::$_"};
1474 }
1475
1476 _isa_set;
1477
1478 # we're officially open!
1479
1480 if ($ENV{PERL_ANYEVENT_STRICT}) {
1481 require AnyEvent::Strict;
1482 }
1483
1484 if ($ENV{PERL_ANYEVENT_DEBUG_WRAP}) {
1485 require AnyEvent::Debug;
1486 AnyEvent::Debug::wrap ($ENV{PERL_ANYEVENT_DEBUG_WRAP});
1487 }
1488
1489 if (length $ENV{PERL_ANYEVENT_DEBUG_SHELL}) {
1490 require AnyEvent::Socket;
1491 require AnyEvent::Debug;
1492
1493 my $shell = $ENV{PERL_ANYEVENT_DEBUG_SHELL};
1494 $shell =~ s/\$\$/$$/g;
1495
1496 my ($host, $service) = AnyEvent::Socket::parse_hostport ($shell);
1497 $AnyEvent::Debug::SHELL = AnyEvent::Debug::shell ($host, $service);
1498 }
1499
1500 # now the anyevent environment is set up as the user told us to, so
1501 # call the actual user code - post detects
1502
1503 (shift @post_detect)->() while @post_detect;
1504 undef @post_detect;
1505
1506 *post_detect = sub(&) {
1507 shift->();
1508
1509 undef
1510 };
1511
981 $MODEL 1512 $MODEL
982} 1513}
983 1514
984sub AUTOLOAD { 1515for my $name (@methods) {
985 (my $func = $AUTOLOAD) =~ s/.*://; 1516 *$name = sub {
986 1517 detect;
987 $method{$func} 1518 # we use goto because
988 or croak "$func: not a valid method for AnyEvent objects"; 1519 # a) it makes the thunk more transparent
989 1520 # b) it allows us to delete the thunk later
990 detect unless $MODEL; 1521 goto &{ UNIVERSAL::can AnyEvent => "SUPER::$name" }
991 1522 };
992 my $class = shift;
993 $class->$func (@_);
994} 1523}
995 1524
996# utility function to dup a filehandle. this is used by many backends 1525# utility function to dup a filehandle. this is used by many backends
997# to support binding more than one watcher per filehandle (they usually 1526# to support binding more than one watcher per filehandle (they usually
998# allow only one watcher per fd, so we dup it to get a different one). 1527# allow only one watcher per fd, so we dup it to get a different one).
999sub _dupfh($$$$) { 1528sub _dupfh($$;$$) {
1000 my ($poll, $fh, $r, $w) = @_; 1529 my ($poll, $fh, $r, $w) = @_;
1001 1530
1002 require Fcntl;
1003
1004 # cygwin requires the fh mode to be matching, unix doesn't 1531 # cygwin requires the fh mode to be matching, unix doesn't
1005 my ($rw, $mode) = $poll eq "r" ? ($r, "<") 1532 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1006 : $poll eq "w" ? ($w, ">")
1007 : Carp::croak "AnyEvent->io requires poll set to either 'r' or 'w'";
1008 1533
1009 open my $fh2, "$mode&" . fileno $fh 1534 open my $fh2, $mode, $fh
1010 or die "cannot dup() filehandle: $!"; 1535 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1011 1536
1012 # we assume CLOEXEC is already set by perl in all important cases 1537 # we assume CLOEXEC is already set by perl in all important cases
1013 1538
1014 ($fh2, $rw) 1539 ($fh2, $rw)
1015} 1540}
1016 1541
1542=head1 SIMPLIFIED AE API
1543
1544Starting with version 5.0, AnyEvent officially supports a second, much
1545simpler, API that is designed to reduce the calling, typing and memory
1546overhead by using function call syntax and a fixed number of parameters.
1547
1548See the L<AE> manpage for details.
1549
1550=cut
1551
1552package AE;
1553
1554our $VERSION = $AnyEvent::VERSION;
1555
1556sub _reset() {
1557 eval q{
1558 # fall back to the main API by default - backends and AnyEvent::Base
1559 # implementations can overwrite these.
1560
1561 sub io($$$) {
1562 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1563 }
1564
1565 sub timer($$$) {
1566 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1567 }
1568
1569 sub signal($$) {
1570 AnyEvent->signal (signal => $_[0], cb => $_[1])
1571 }
1572
1573 sub child($$) {
1574 AnyEvent->child (pid => $_[0], cb => $_[1])
1575 }
1576
1577 sub idle($) {
1578 AnyEvent->idle (cb => $_[0]);
1579 }
1580
1581 sub cv(;&) {
1582 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1583 }
1584
1585 sub now() {
1586 AnyEvent->now
1587 }
1588
1589 sub now_update() {
1590 AnyEvent->now_update
1591 }
1592
1593 sub time() {
1594 AnyEvent->time
1595 }
1596
1597 *postpone = \&AnyEvent::postpone;
1598 *log = \&AnyEvent::log;
1599 };
1600 die if $@;
1601}
1602
1603BEGIN { _reset }
1604
1017package AnyEvent::Base; 1605package AnyEvent::Base;
1018 1606
1019# default implementation for now and time 1607# default implementations for many methods
1020 1608
1021use Time::HiRes (); 1609sub time {
1610 eval q{ # poor man's autoloading {}
1611 # probe for availability of Time::HiRes
1612 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1613 *time = sub { Time::HiRes::time () };
1614 *AE::time = \& Time::HiRes::time ;
1615 *now = \&time;
1616 AnyEvent::log 8 => "AnyEvent: using Time::HiRes for sub-second timing accuracy.";
1617 # if (eval "use POSIX (); (POSIX::times())...
1618 } else {
1619 *time = sub { CORE::time };
1620 *AE::time = sub (){ CORE::time };
1621 *now = \&time;
1622 AnyEvent::log 3 => "using built-in time(), WARNING, no sub-second resolution!";
1623 }
1624 };
1625 die if $@;
1022 1626
1023sub time { Time::HiRes::time } 1627 &time
1024sub now { Time::HiRes::time } 1628}
1629
1630*now = \&time;
1631sub now_update { }
1632
1633sub _poll {
1634 Carp::croak "$AnyEvent::MODEL does not support blocking waits. Caught";
1635}
1025 1636
1026# default implementation for ->condvar 1637# default implementation for ->condvar
1638# in fact, the default should not be overwritten
1027 1639
1028sub condvar { 1640sub condvar {
1641 eval q{ # poor man's autoloading {}
1642 *condvar = sub {
1029 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar:: 1643 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1644 };
1645
1646 *AE::cv = sub (;&) {
1647 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
1648 };
1649 };
1650 die if $@;
1651
1652 &condvar
1030} 1653}
1031 1654
1032# default implementation for ->signal 1655# default implementation for ->signal
1033 1656
1034our %SIG_CB; 1657our $HAVE_ASYNC_INTERRUPT;
1658
1659sub _have_async_interrupt() {
1660 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1661 && eval "use Async::Interrupt 1.02 (); 1")
1662 unless defined $HAVE_ASYNC_INTERRUPT;
1663
1664 $HAVE_ASYNC_INTERRUPT
1665}
1666
1667our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1668our (%SIG_ASY, %SIG_ASY_W);
1669our ($SIG_COUNT, $SIG_TW);
1670
1671# install a dummy wakeup watcher to reduce signal catching latency
1672# used by Impls
1673sub _sig_add() {
1674 unless ($SIG_COUNT++) {
1675 # try to align timer on a full-second boundary, if possible
1676 my $NOW = AE::now;
1677
1678 $SIG_TW = AE::timer
1679 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1680 $MAX_SIGNAL_LATENCY,
1681 sub { } # just for the PERL_ASYNC_CHECK
1682 ;
1683 }
1684}
1685
1686sub _sig_del {
1687 undef $SIG_TW
1688 unless --$SIG_COUNT;
1689}
1690
1691our $_sig_name_init; $_sig_name_init = sub {
1692 eval q{ # poor man's autoloading {}
1693 undef $_sig_name_init;
1694
1695 if (_have_async_interrupt) {
1696 *sig2num = \&Async::Interrupt::sig2num;
1697 *sig2name = \&Async::Interrupt::sig2name;
1698 } else {
1699 require Config;
1700
1701 my %signame2num;
1702 @signame2num{ split ' ', $Config::Config{sig_name} }
1703 = split ' ', $Config::Config{sig_num};
1704
1705 my @signum2name;
1706 @signum2name[values %signame2num] = keys %signame2num;
1707
1708 *sig2num = sub($) {
1709 $_[0] > 0 ? shift : $signame2num{+shift}
1710 };
1711 *sig2name = sub ($) {
1712 $_[0] > 0 ? $signum2name[+shift] : shift
1713 };
1714 }
1715 };
1716 die if $@;
1717};
1718
1719sub sig2num ($) { &$_sig_name_init; &sig2num }
1720sub sig2name($) { &$_sig_name_init; &sig2name }
1035 1721
1036sub signal { 1722sub signal {
1723 eval q{ # poor man's autoloading {}
1724 # probe for availability of Async::Interrupt
1725 if (_have_async_interrupt) {
1726 AnyEvent::log 8 => "using Async::Interrupt for race-free signal handling.";
1727
1728 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1729 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1730
1731 } else {
1732 AnyEvent::log 8 => "using emulated perl signal handling with latency timer.";
1733
1734 if (AnyEvent::WIN32) {
1735 require AnyEvent::Util;
1736
1737 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1738 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1739 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1740 } else {
1741 pipe $SIGPIPE_R, $SIGPIPE_W;
1742 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1743 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1744
1745 # not strictly required, as $^F is normally 2, but let's make sure...
1746 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1747 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1748 }
1749
1750 $SIGPIPE_R
1751 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1752
1753 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1754 }
1755
1756 *signal = $HAVE_ASYNC_INTERRUPT
1757 ? sub {
1037 my (undef, %arg) = @_; 1758 my (undef, %arg) = @_;
1038 1759
1760 # async::interrupt
1039 my $signal = uc $arg{signal} 1761 my $signal = sig2num $arg{signal};
1040 or Carp::croak "required option 'signal' is missing";
1041
1042 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1762 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1763
1764 $SIG_ASY{$signal} ||= new Async::Interrupt
1765 cb => sub { undef $SIG_EV{$signal} },
1766 signal => $signal,
1767 pipe => [$SIGPIPE_R->filenos],
1768 pipe_autodrain => 0,
1769 ;
1770
1771 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1772 }
1773 : sub {
1774 my (undef, %arg) = @_;
1775
1776 # pure perl
1777 my $signal = sig2name $arg{signal};
1778 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1779
1043 $SIG{$signal} ||= sub { 1780 $SIG{$signal} ||= sub {
1781 local $!;
1782 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1783 undef $SIG_EV{$signal};
1784 };
1785
1786 # can't do signal processing without introducing races in pure perl,
1787 # so limit the signal latency.
1788 _sig_add;
1789
1790 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1791 }
1792 ;
1793
1794 *AnyEvent::Base::signal::DESTROY = sub {
1795 my ($signal, $cb) = @{$_[0]};
1796
1797 _sig_del;
1798
1799 delete $SIG_CB{$signal}{$cb};
1800
1801 $HAVE_ASYNC_INTERRUPT
1802 ? delete $SIG_ASY{$signal}
1803 : # delete doesn't work with older perls - they then
1804 # print weird messages, or just unconditionally exit
1805 # instead of getting the default action.
1806 undef $SIG{$signal}
1807 unless keys %{ $SIG_CB{$signal} };
1808 };
1809
1810 *_signal_exec = sub {
1811 $HAVE_ASYNC_INTERRUPT
1812 ? $SIGPIPE_R->drain
1813 : sysread $SIGPIPE_R, (my $dummy), 9;
1814
1815 while (%SIG_EV) {
1816 for (keys %SIG_EV) {
1817 delete $SIG_EV{$_};
1044 $_->() for values %{ $SIG_CB{$signal} || {} }; 1818 &$_ for values %{ $SIG_CB{$_} || {} };
1819 }
1820 }
1821 };
1045 }; 1822 };
1823 die if $@;
1046 1824
1047 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1825 &signal
1048}
1049
1050sub AnyEvent::Base::Signal::DESTROY {
1051 my ($signal, $cb) = @{$_[0]};
1052
1053 delete $SIG_CB{$signal}{$cb};
1054
1055 delete $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
1056} 1826}
1057 1827
1058# default implementation for ->child 1828# default implementation for ->child
1059 1829
1060our %PID_CB; 1830our %PID_CB;
1061our $CHLD_W; 1831our $CHLD_W;
1062our $CHLD_DELAY_W; 1832our $CHLD_DELAY_W;
1063our $PID_IDLE;
1064our $WNOHANG;
1065 1833
1066sub _child_wait { 1834# used by many Impl's
1067 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1835sub _emit_childstatus($$) {
1836 my (undef, $rpid, $rstatus) = @_;
1837
1838 $_->($rpid, $rstatus)
1068 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1839 for values %{ $PID_CB{$rpid} || {} },
1069 (values %{ $PID_CB{0} || {} }); 1840 values %{ $PID_CB{0} || {} };
1070 }
1071
1072 undef $PID_IDLE;
1073}
1074
1075sub _sigchld {
1076 # make sure we deliver these changes "synchronous" with the event loop.
1077 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub {
1078 undef $CHLD_DELAY_W;
1079 &_child_wait;
1080 });
1081} 1841}
1082 1842
1083sub child { 1843sub child {
1844 eval q{ # poor man's autoloading {}
1845 *_sigchld = sub {
1846 my $pid;
1847
1848 AnyEvent->_emit_childstatus ($pid, $?)
1849 while ($pid = waitpid -1, WNOHANG) > 0;
1850 };
1851
1852 *child = sub {
1084 my (undef, %arg) = @_; 1853 my (undef, %arg) = @_;
1085 1854
1086 defined (my $pid = $arg{pid} + 0) 1855 my $pid = $arg{pid};
1087 or Carp::croak "required option 'pid' is missing"; 1856 my $cb = $arg{cb};
1088 1857
1089 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1858 $PID_CB{$pid}{$cb+0} = $cb;
1090 1859
1091 unless ($WNOHANG) {
1092 $WNOHANG = eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1093 }
1094
1095 unless ($CHLD_W) { 1860 unless ($CHLD_W) {
1096 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1861 $CHLD_W = AE::signal CHLD => \&_sigchld;
1097 # child could be a zombie already, so make at least one round 1862 # child could be a zombie already, so make at least one round
1098 &_sigchld; 1863 &_sigchld;
1099 } 1864 }
1100 1865
1101 bless [$pid, $arg{cb}], "AnyEvent::Base::Child" 1866 bless [$pid, $cb+0], "AnyEvent::Base::child"
1102} 1867 };
1103 1868
1104sub AnyEvent::Base::Child::DESTROY { 1869 *AnyEvent::Base::child::DESTROY = sub {
1105 my ($pid, $cb) = @{$_[0]}; 1870 my ($pid, $icb) = @{$_[0]};
1106 1871
1107 delete $PID_CB{$pid}{$cb}; 1872 delete $PID_CB{$pid}{$icb};
1108 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1873 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1109 1874
1110 undef $CHLD_W unless keys %PID_CB; 1875 undef $CHLD_W unless keys %PID_CB;
1876 };
1877 };
1878 die if $@;
1879
1880 &child
1881}
1882
1883# idle emulation is done by simply using a timer, regardless
1884# of whether the process is idle or not, and not letting
1885# the callback use more than 50% of the time.
1886sub idle {
1887 eval q{ # poor man's autoloading {}
1888 *idle = sub {
1889 my (undef, %arg) = @_;
1890
1891 my ($cb, $w, $rcb) = $arg{cb};
1892
1893 $rcb = sub {
1894 if ($cb) {
1895 $w = AE::time;
1896 &$cb;
1897 $w = AE::time - $w;
1898
1899 # never use more then 50% of the time for the idle watcher,
1900 # within some limits
1901 $w = 0.0001 if $w < 0.0001;
1902 $w = 5 if $w > 5;
1903
1904 $w = AE::timer $w, 0, $rcb;
1905 } else {
1906 # clean up...
1907 undef $w;
1908 undef $rcb;
1909 }
1910 };
1911
1912 $w = AE::timer 0.05, 0, $rcb;
1913
1914 bless \\$cb, "AnyEvent::Base::idle"
1915 };
1916
1917 *AnyEvent::Base::idle::DESTROY = sub {
1918 undef $${$_[0]};
1919 };
1920 };
1921 die if $@;
1922
1923 &idle
1111} 1924}
1112 1925
1113package AnyEvent::CondVar; 1926package AnyEvent::CondVar;
1114 1927
1115our @ISA = AnyEvent::CondVar::Base::; 1928our @ISA = AnyEvent::CondVar::Base::;
1116 1929
1930# only to be used for subclassing
1931sub new {
1932 my $class = shift;
1933 bless AnyEvent->condvar (@_), $class
1934}
1935
1117package AnyEvent::CondVar::Base; 1936package AnyEvent::CondVar::Base;
1118 1937
1119use overload 1938#use overload
1120 '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, 1939# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1121 fallback => 1; 1940# fallback => 1;
1941
1942# save 300+ kilobytes by dirtily hardcoding overloading
1943${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1944*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1945*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1946${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1947
1948our $WAITING;
1122 1949
1123sub _send { 1950sub _send {
1124 # nop 1951 # nop
1952}
1953
1954sub _wait {
1955 AnyEvent->_poll until $_[0]{_ae_sent};
1125} 1956}
1126 1957
1127sub send { 1958sub send {
1128 my $cv = shift; 1959 my $cv = shift;
1129 $cv->{_ae_sent} = [@_]; 1960 $cv->{_ae_sent} = [@_];
1138 1969
1139sub ready { 1970sub ready {
1140 $_[0]{_ae_sent} 1971 $_[0]{_ae_sent}
1141} 1972}
1142 1973
1143sub _wait {
1144 AnyEvent->one_event while !$_[0]{_ae_sent};
1145}
1146
1147sub recv { 1974sub recv {
1975 unless ($_[0]{_ae_sent}) {
1976 $WAITING
1977 and Carp::croak "AnyEvent::CondVar: recursive blocking wait attempted";
1978
1979 local $WAITING = 1;
1148 $_[0]->_wait; 1980 $_[0]->_wait;
1981 }
1149 1982
1150 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1983 $_[0]{_ae_croak}
1151 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1984 and Carp::croak $_[0]{_ae_croak};
1985
1986 wantarray
1987 ? @{ $_[0]{_ae_sent} }
1988 : $_[0]{_ae_sent}[0]
1152} 1989}
1153 1990
1154sub cb { 1991sub cb {
1155 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1992 my $cv = shift;
1993
1994 @_
1995 and $cv->{_ae_cb} = shift
1996 and $cv->{_ae_sent}
1997 and (delete $cv->{_ae_cb})->($cv);
1998
1156 $_[0]{_ae_cb} 1999 $cv->{_ae_cb}
1157} 2000}
1158 2001
1159sub begin { 2002sub begin {
1160 ++$_[0]{_ae_counter}; 2003 ++$_[0]{_ae_counter};
1161 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 2004 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
1166 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } }; 2009 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } };
1167} 2010}
1168 2011
1169# undocumented/compatibility with pre-3.4 2012# undocumented/compatibility with pre-3.4
1170*broadcast = \&send; 2013*broadcast = \&send;
1171*wait = \&_wait; 2014*wait = \&recv;
2015
2016=head1 ERROR AND EXCEPTION HANDLING
2017
2018In general, AnyEvent does not do any error handling - it relies on the
2019caller to do that if required. The L<AnyEvent::Strict> module (see also
2020the C<PERL_ANYEVENT_STRICT> environment variable, below) provides strict
2021checking of all AnyEvent methods, however, which is highly useful during
2022development.
2023
2024As for exception handling (i.e. runtime errors and exceptions thrown while
2025executing a callback), this is not only highly event-loop specific, but
2026also not in any way wrapped by this module, as this is the job of the main
2027program.
2028
2029The pure perl event loop simply re-throws the exception (usually
2030within C<< condvar->recv >>), the L<Event> and L<EV> modules call C<<
2031$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
2032so on.
2033
2034=head1 ENVIRONMENT VARIABLES
2035
2036AnyEvent supports a number of environment variables that tune the
2037runtime behaviour. They are usually evaluated when AnyEvent is
2038loaded, initialised, or a submodule that uses them is loaded. Many of
2039them also cause AnyEvent to load additional modules - for example,
2040C<PERL_ANYEVENT_DEBUG_WRAP> causes the L<AnyEvent::Debug> module to be
2041loaded.
2042
2043All the environment variables documented here start with
2044C<PERL_ANYEVENT_>, which is what AnyEvent considers its own
2045namespace. Other modules are encouraged (but by no means required) to use
2046C<PERL_ANYEVENT_SUBMODULE> if they have registered the AnyEvent::Submodule
2047namespace on CPAN, for any submodule. For example, L<AnyEvent::HTTP> could
2048be expected to use C<PERL_ANYEVENT_HTTP_PROXY> (it should not access env
2049variables starting with C<AE_>, see below).
2050
2051All variables can also be set via the C<AE_> prefix, that is, instead
2052of setting C<PERL_ANYEVENT_VERBOSE> you can also set C<AE_VERBOSE>. In
2053case there is a clash btween anyevent and another program that uses
2054C<AE_something> you can set the corresponding C<PERL_ANYEVENT_something>
2055variable to the empty string, as those variables take precedence.
2056
2057When AnyEvent is first loaded, it copies all C<AE_xxx> env variables
2058to their C<PERL_ANYEVENT_xxx> counterpart unless that variable already
2059exists. If taint mode is on, then AnyEvent will remove I<all> environment
2060variables starting with C<PERL_ANYEVENT_> from C<%ENV> (or replace them
2061with C<undef> or the empty string, if the corresaponding C<AE_> variable
2062is set).
2063
2064The exact algorithm is currently:
2065
2066 1. if taint mode enabled, delete all PERL_ANYEVENT_xyz variables from %ENV
2067 2. copy over AE_xyz to PERL_ANYEVENT_xyz unless the latter alraedy exists
2068 3. if taint mode enabled, set all PERL_ANYEVENT_xyz variables to undef.
2069
2070This ensures that child processes will not see the C<AE_> variables.
2071
2072The following environment variables are currently known to AnyEvent:
2073
2074=over 4
2075
2076=item C<PERL_ANYEVENT_VERBOSE>
2077
2078By default, AnyEvent will only log messages with loglevel C<3>
2079(C<critical>) or higher (see L<AnyEvent::Log>). You can set this
2080environment variable to a numerical loglevel to make AnyEvent more (or
2081less) talkative.
2082
2083If you want to do more than just set the global logging level
2084you should have a look at C<PERL_ANYEVENT_LOG>, which allows much more
2085complex specifications.
2086
2087When set to C<0> (C<off>), then no messages whatsoever will be logged with
2088the default logging settings.
2089
2090When set to C<5> or higher (C<warn>), causes AnyEvent to warn about
2091unexpected conditions, such as not being able to load the event model
2092specified by C<PERL_ANYEVENT_MODEL>, or a guard callback throwing an
2093exception - this is the minimum recommended level.
2094
2095When set to C<7> or higher (info), cause AnyEvent to report which event model it
2096chooses.
2097
2098When set to C<8> or higher (debug), then AnyEvent will report extra information on
2099which optional modules it loads and how it implements certain features.
2100
2101=item C<PERL_ANYEVENT_LOG>
2102
2103Accepts rather complex logging specifications. For example, you could log
2104all C<debug> messages of some module to stderr, warnings and above to
2105stderr, and errors and above to syslog, with:
2106
2107 PERL_ANYEVENT_LOG=Some::Module=debug,+log:filter=warn,+%syslog:%syslog=error,syslog
2108
2109For the rather extensive details, see L<AnyEvent::Log>.
2110
2111This variable is evaluated when AnyEvent (or L<AnyEvent::Log>) is loaded,
2112so will take effect even before AnyEvent has initialised itself.
2113
2114Note that specifying this environment variable causes the L<AnyEvent::Log>
2115module to be loaded, while C<PERL_ANYEVENT_VERBOSE> does not, so only
2116using the latter saves a few hundred kB of memory until the first message
2117is being logged.
2118
2119=item C<PERL_ANYEVENT_STRICT>
2120
2121AnyEvent does not do much argument checking by default, as thorough
2122argument checking is very costly. Setting this variable to a true value
2123will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
2124check the arguments passed to most method calls. If it finds any problems,
2125it will croak.
2126
2127In other words, enables "strict" mode.
2128
2129Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
2130>>, it is definitely recommended to keep it off in production. Keeping
2131C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
2132can be very useful, however.
2133
2134=item C<PERL_ANYEVENT_DEBUG_SHELL>
2135
2136If this env variable is nonempty, then its contents will be interpreted by
2137C<AnyEvent::Socket::parse_hostport> and C<AnyEvent::Debug::shell> (after
2138replacing every occurance of C<$$> by the process pid). The shell object
2139is saved in C<$AnyEvent::Debug::SHELL>.
2140
2141This happens when the first watcher is created.
2142
2143For example, to bind a debug shell on a unix domain socket in
2144F<< /tmp/debug<pid>.sock >>, you could use this:
2145
2146 PERL_ANYEVENT_DEBUG_SHELL=/tmp/debug\$\$.sock perlprog
2147 # connect with e.g.: socat readline /tmp/debug123.sock
2148
2149Or to bind to tcp port 4545 on localhost:
2150
2151 PERL_ANYEVENT_DEBUG_SHELL=127.0.0.1:4545 perlprog
2152 # connect with e.g.: telnet localhost 4545
2153
2154Note that creating sockets in F</tmp> or on localhost is very unsafe on
2155multiuser systems.
2156
2157=item C<PERL_ANYEVENT_DEBUG_WRAP>
2158
2159Can be set to C<0>, C<1> or C<2> and enables wrapping of all watchers for
2160debugging purposes. See C<AnyEvent::Debug::wrap> for details.
2161
2162=item C<PERL_ANYEVENT_MODEL>
2163
2164This can be used to specify the event model to be used by AnyEvent, before
2165auto detection and -probing kicks in.
2166
2167It normally is a string consisting entirely of ASCII letters (e.g. C<EV>
2168or C<IOAsync>). The string C<AnyEvent::Impl::> gets prepended and the
2169resulting module name is loaded and - if the load was successful - used as
2170event model backend. If it fails to load then AnyEvent will proceed with
2171auto detection and -probing.
2172
2173If the string ends with C<::> instead (e.g. C<AnyEvent::Impl::EV::>) then
2174nothing gets prepended and the module name is used as-is (hint: C<::> at
2175the end of a string designates a module name and quotes it appropriately).
2176
2177For example, to force the pure perl model (L<AnyEvent::Loop::Perl>) you
2178could start your program like this:
2179
2180 PERL_ANYEVENT_MODEL=Perl perl ...
2181
2182=item C<PERL_ANYEVENT_PROTOCOLS>
2183
2184Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
2185for IPv4 or IPv6. The default is unspecified (and might change, or be the result
2186of auto probing).
2187
2188Must be set to a comma-separated list of protocols or address families,
2189current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
2190used, and preference will be given to protocols mentioned earlier in the
2191list.
2192
2193This variable can effectively be used for denial-of-service attacks
2194against local programs (e.g. when setuid), although the impact is likely
2195small, as the program has to handle conenction and other failures anyways.
2196
2197Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
2198but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
2199- only support IPv4, never try to resolve or contact IPv6
2200addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
2201IPv6, but prefer IPv6 over IPv4.
2202
2203=item C<PERL_ANYEVENT_HOSTS>
2204
2205This variable, if specified, overrides the F</etc/hosts> file used by
2206L<AnyEvent::Socket>C<::resolve_sockaddr>, i.e. hosts aliases will be read
2207from that file instead.
2208
2209=item C<PERL_ANYEVENT_EDNS0>
2210
2211Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension for
2212DNS. This extension is generally useful to reduce DNS traffic, especially
2213when DNSSEC is involved, but some (broken) firewalls drop such DNS
2214packets, which is why it is off by default.
2215
2216Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
2217EDNS0 in its DNS requests.
2218
2219=item C<PERL_ANYEVENT_MAX_FORKS>
2220
2221The maximum number of child processes that C<AnyEvent::Util::fork_call>
2222will create in parallel.
2223
2224=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
2225
2226The default value for the C<max_outstanding> parameter for the default DNS
2227resolver - this is the maximum number of parallel DNS requests that are
2228sent to the DNS server.
2229
2230=item C<PERL_ANYEVENT_MAX_SIGNAL_LATENCY>
2231
2232Perl has inherently racy signal handling (you can basically choose between
2233losing signals and memory corruption) - pure perl event loops (including
2234C<AnyEvent::Loop>, when C<Async::Interrupt> isn't available) therefore
2235have to poll regularly to avoid losing signals.
2236
2237Some event loops are racy, but don't poll regularly, and some event loops
2238are written in C but are still racy. For those event loops, AnyEvent
2239installs a timer that regularly wakes up the event loop.
2240
2241By default, the interval for this timer is C<10> seconds, but you can
2242override this delay with this environment variable (or by setting
2243the C<$AnyEvent::MAX_SIGNAL_LATENCY> variable before creating signal
2244watchers).
2245
2246Lower values increase CPU (and energy) usage, higher values can introduce
2247long delays when reaping children or waiting for signals.
2248
2249The L<AnyEvent::Async> module, if available, will be used to avoid this
2250polling (with most event loops).
2251
2252=item C<PERL_ANYEVENT_RESOLV_CONF>
2253
2254The absolute path to a F<resolv.conf>-style file to use instead of
2255F</etc/resolv.conf> (or the OS-specific configuration) in the default
2256resolver, or the empty string to select the default configuration.
2257
2258=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
2259
2260When neither C<ca_file> nor C<ca_path> was specified during
2261L<AnyEvent::TLS> context creation, and either of these environment
2262variables are nonempty, they will be used to specify CA certificate
2263locations instead of a system-dependent default.
2264
2265=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
2266
2267When these are set to C<1>, then the respective modules are not
2268loaded. Mostly good for testing AnyEvent itself.
2269
2270=back
1172 2271
1173=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 2272=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1174 2273
1175This is an advanced topic that you do not normally need to use AnyEvent in 2274This is an advanced topic that you do not normally need to use AnyEvent in
1176a module. This section is only of use to event loop authors who want to 2275a module. This section is only of use to event loop authors who want to
1210 2309
1211I<rxvt-unicode> also cheats a bit by not providing blocking access to 2310I<rxvt-unicode> also cheats a bit by not providing blocking access to
1212condition variables: code blocking while waiting for a condition will 2311condition variables: code blocking while waiting for a condition will
1213C<die>. This still works with most modules/usages, and blocking calls must 2312C<die>. This still works with most modules/usages, and blocking calls must
1214not be done in an interactive application, so it makes sense. 2313not be done in an interactive application, so it makes sense.
1215
1216=head1 ENVIRONMENT VARIABLES
1217
1218The following environment variables are used by this module:
1219
1220=over 4
1221
1222=item C<PERL_ANYEVENT_VERBOSE>
1223
1224By default, AnyEvent will be completely silent except in fatal
1225conditions. You can set this environment variable to make AnyEvent more
1226talkative.
1227
1228When set to C<1> or higher, causes AnyEvent to warn about unexpected
1229conditions, such as not being able to load the event model specified by
1230C<PERL_ANYEVENT_MODEL>.
1231
1232When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1233model it chooses.
1234
1235=item C<PERL_ANYEVENT_STRICT>
1236
1237AnyEvent does not do much argument checking by default, as thorough
1238argument checking is very costly. Setting this variable to a true value
1239will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1240check the arguments passed to most method calls. If it finds any problems
1241it will croak.
1242
1243In other words, enables "strict" mode.
1244
1245Unlike C<use strict> it is definitely recommended ot keep it off in
1246production.
1247
1248=item C<PERL_ANYEVENT_MODEL>
1249
1250This can be used to specify the event model to be used by AnyEvent, before
1251auto detection and -probing kicks in. It must be a string consisting
1252entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1253and the resulting module name is loaded and if the load was successful,
1254used as event model. If it fails to load AnyEvent will proceed with
1255auto detection and -probing.
1256
1257This functionality might change in future versions.
1258
1259For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
1260could start your program like this:
1261
1262 PERL_ANYEVENT_MODEL=Perl perl ...
1263
1264=item C<PERL_ANYEVENT_PROTOCOLS>
1265
1266Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1267for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1268of auto probing).
1269
1270Must be set to a comma-separated list of protocols or address families,
1271current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1272used, and preference will be given to protocols mentioned earlier in the
1273list.
1274
1275This variable can effectively be used for denial-of-service attacks
1276against local programs (e.g. when setuid), although the impact is likely
1277small, as the program has to handle connection errors already-
1278
1279Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1280but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1281- only support IPv4, never try to resolve or contact IPv6
1282addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1283IPv6, but prefer IPv6 over IPv4.
1284
1285=item C<PERL_ANYEVENT_EDNS0>
1286
1287Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1288for DNS. This extension is generally useful to reduce DNS traffic, but
1289some (broken) firewalls drop such DNS packets, which is why it is off by
1290default.
1291
1292Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1293EDNS0 in its DNS requests.
1294
1295=item C<PERL_ANYEVENT_MAX_FORKS>
1296
1297The maximum number of child processes that C<AnyEvent::Util::fork_call>
1298will create in parallel.
1299
1300=back
1301 2314
1302=head1 EXAMPLE PROGRAM 2315=head1 EXAMPLE PROGRAM
1303 2316
1304The following program uses an I/O watcher to read data from STDIN, a timer 2317The following program uses an I/O watcher to read data from STDIN, a timer
1305to display a message once per second, and a condition variable to quit the 2318to display a message once per second, and a condition variable to quit the
1318 warn "read: $input\n"; # output what has been read 2331 warn "read: $input\n"; # output what has been read
1319 $cv->send if $input =~ /^q/i; # quit program if /^q/i 2332 $cv->send if $input =~ /^q/i; # quit program if /^q/i
1320 }, 2333 },
1321 ); 2334 );
1322 2335
1323 my $time_watcher; # can only be used once
1324
1325 sub new_timer {
1326 $timer = AnyEvent->timer (after => 1, cb => sub { 2336 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
1327 warn "timeout\n"; # print 'timeout' about every second 2337 warn "timeout\n"; # print 'timeout' at most every second
1328 &new_timer; # and restart the time
1329 }); 2338 });
1330 }
1331
1332 new_timer; # create first timer
1333 2339
1334 $cv->recv; # wait until user enters /^q/i 2340 $cv->recv; # wait until user enters /^q/i
1335 2341
1336=head1 REAL-WORLD EXAMPLE 2342=head1 REAL-WORLD EXAMPLE
1337 2343
1410 2416
1411The actual code goes further and collects all errors (C<die>s, exceptions) 2417The actual code goes further and collects all errors (C<die>s, exceptions)
1412that occurred during request processing. The C<result> method detects 2418that occurred during request processing. The C<result> method detects
1413whether an exception as thrown (it is stored inside the $txn object) 2419whether an exception as thrown (it is stored inside the $txn object)
1414and just throws the exception, which means connection errors and other 2420and just throws the exception, which means connection errors and other
1415problems get reported tot he code that tries to use the result, not in a 2421problems get reported to the code that tries to use the result, not in a
1416random callback. 2422random callback.
1417 2423
1418All of this enables the following usage styles: 2424All of this enables the following usage styles:
1419 2425
14201. Blocking: 24261. Blocking:
1468through AnyEvent. The benchmark creates a lot of timers (with a zero 2474through AnyEvent. The benchmark creates a lot of timers (with a zero
1469timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2475timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1470which it is), lets them fire exactly once and destroys them again. 2476which it is), lets them fire exactly once and destroys them again.
1471 2477
1472Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2478Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1473distribution. 2479distribution. It uses the L<AE> interface, which makes a real difference
2480for the EV and Perl backends only.
1474 2481
1475=head3 Explanation of the columns 2482=head3 Explanation of the columns
1476 2483
1477I<watcher> is the number of event watchers created/destroyed. Since 2484I<watcher> is the number of event watchers created/destroyed. Since
1478different event models feature vastly different performances, each event 2485different event models feature vastly different performances, each event
1499watcher. 2506watcher.
1500 2507
1501=head3 Results 2508=head3 Results
1502 2509
1503 name watchers bytes create invoke destroy comment 2510 name watchers bytes create invoke destroy comment
1504 EV/EV 400000 244 0.56 0.46 0.31 EV native interface 2511 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1505 EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers 2512 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1506 CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal 2513 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1507 Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation 2514 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1508 Event/Event 16000 516 31.88 31.30 0.85 Event native interface 2515 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1509 Event/Any 16000 590 35.75 31.42 1.08 Event + AnyEvent watchers 2516 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2517 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2518 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1510 Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour 2519 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1511 Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers 2520 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1512 POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event 2521 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1513 POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select 2522 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1514 2523
1515=head3 Discussion 2524=head3 Discussion
1516 2525
1517The benchmark does I<not> measure scalability of the event loop very 2526The benchmark does I<not> measure scalability of the event loop very
1518well. For example, a select-based event loop (such as the pure perl one) 2527well. For example, a select-based event loop (such as the pure perl one)
1530benchmark machine, handling an event takes roughly 1600 CPU cycles with 2539benchmark machine, handling an event takes roughly 1600 CPU cycles with
1531EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2540EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1532cycles with POE. 2541cycles with POE.
1533 2542
1534C<EV> is the sole leader regarding speed and memory use, which are both 2543C<EV> is the sole leader regarding speed and memory use, which are both
1535maximal/minimal, respectively. Even when going through AnyEvent, it uses 2544maximal/minimal, respectively. When using the L<AE> API there is zero
2545overhead (when going through the AnyEvent API create is about 5-6 times
2546slower, with other times being equal, so still uses far less memory than
1536far less memory than any other event loop and is still faster than Event 2547any other event loop and is still faster than Event natively).
1537natively.
1538 2548
1539The pure perl implementation is hit in a few sweet spots (both the 2549The pure perl implementation is hit in a few sweet spots (both the
1540constant timeout and the use of a single fd hit optimisations in the perl 2550constant timeout and the use of a single fd hit optimisations in the perl
1541interpreter and the backend itself). Nevertheless this shows that it 2551interpreter and the backend itself). Nevertheless this shows that it
1542adds very little overhead in itself. Like any select-based backend its 2552adds very little overhead in itself. Like any select-based backend its
1543performance becomes really bad with lots of file descriptors (and few of 2553performance becomes really bad with lots of file descriptors (and few of
1544them active), of course, but this was not subject of this benchmark. 2554them active), of course, but this was not subject of this benchmark.
1545 2555
1546The C<Event> module has a relatively high setup and callback invocation 2556The C<Event> module has a relatively high setup and callback invocation
1547cost, but overall scores in on the third place. 2557cost, but overall scores in on the third place.
2558
2559C<IO::Async> performs admirably well, about on par with C<Event>, even
2560when using its pure perl backend.
1548 2561
1549C<Glib>'s memory usage is quite a bit higher, but it features a 2562C<Glib>'s memory usage is quite a bit higher, but it features a
1550faster callback invocation and overall ends up in the same class as 2563faster callback invocation and overall ends up in the same class as
1551C<Event>. However, Glib scales extremely badly, doubling the number of 2564C<Event>. However, Glib scales extremely badly, doubling the number of
1552watchers increases the processing time by more than a factor of four, 2565watchers increases the processing time by more than a factor of four,
1587(even when used without AnyEvent), but most event loops have acceptable 2600(even when used without AnyEvent), but most event loops have acceptable
1588performance with or without AnyEvent. 2601performance with or without AnyEvent.
1589 2602
1590=item * The overhead AnyEvent adds is usually much smaller than the overhead of 2603=item * The overhead AnyEvent adds is usually much smaller than the overhead of
1591the actual event loop, only with extremely fast event loops such as EV 2604the actual event loop, only with extremely fast event loops such as EV
1592adds AnyEvent significant overhead. 2605does AnyEvent add significant overhead.
1593 2606
1594=item * You should avoid POE like the plague if you want performance or 2607=item * You should avoid POE like the plague if you want performance or
1595reasonable memory usage. 2608reasonable memory usage.
1596 2609
1597=back 2610=back
1613In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2626In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1614(1%) are active. This mirrors the activity of large servers with many 2627(1%) are active. This mirrors the activity of large servers with many
1615connections, most of which are idle at any one point in time. 2628connections, most of which are idle at any one point in time.
1616 2629
1617Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2630Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1618distribution. 2631distribution. It uses the L<AE> interface, which makes a real difference
2632for the EV and Perl backends only.
1619 2633
1620=head3 Explanation of the columns 2634=head3 Explanation of the columns
1621 2635
1622I<sockets> is the number of sockets, and twice the number of "servers" (as 2636I<sockets> is the number of sockets, and twice the number of "servers" (as
1623each server has a read and write socket end). 2637each server has a read and write socket end).
1630it to another server. This includes deleting the old timeout and creating 2644it to another server. This includes deleting the old timeout and creating
1631a new one that moves the timeout into the future. 2645a new one that moves the timeout into the future.
1632 2646
1633=head3 Results 2647=head3 Results
1634 2648
1635 name sockets create request 2649 name sockets create request
1636 EV 20000 69.01 11.16 2650 EV 20000 62.66 7.99
1637 Perl 20000 73.32 35.87 2651 Perl 20000 68.32 32.64
1638 Event 20000 212.62 257.32 2652 IOAsync 20000 174.06 101.15 epoll
1639 Glib 20000 651.16 1896.30 2653 IOAsync 20000 174.67 610.84 poll
2654 Event 20000 202.69 242.91
2655 Glib 20000 557.01 1689.52
1640 POE 20000 349.67 12317.24 uses POE::Loop::Event 2656 POE 20000 341.54 12086.32 uses POE::Loop::Event
1641 2657
1642=head3 Discussion 2658=head3 Discussion
1643 2659
1644This benchmark I<does> measure scalability and overall performance of the 2660This benchmark I<does> measure scalability and overall performance of the
1645particular event loop. 2661particular event loop.
1647EV is again fastest. Since it is using epoll on my system, the setup time 2663EV is again fastest. Since it is using epoll on my system, the setup time
1648is relatively high, though. 2664is relatively high, though.
1649 2665
1650Perl surprisingly comes second. It is much faster than the C-based event 2666Perl surprisingly comes second. It is much faster than the C-based event
1651loops Event and Glib. 2667loops Event and Glib.
2668
2669IO::Async performs very well when using its epoll backend, and still quite
2670good compared to Glib when using its pure perl backend.
1652 2671
1653Event suffers from high setup time as well (look at its code and you will 2672Event suffers from high setup time as well (look at its code and you will
1654understand why). Callback invocation also has a high overhead compared to 2673understand why). Callback invocation also has a high overhead compared to
1655the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2674the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1656uses select or poll in basically all documented configurations. 2675uses select or poll in basically all documented configurations.
1719=item * C-based event loops perform very well with small number of 2738=item * C-based event loops perform very well with small number of
1720watchers, as the management overhead dominates. 2739watchers, as the management overhead dominates.
1721 2740
1722=back 2741=back
1723 2742
2743=head2 THE IO::Lambda BENCHMARK
2744
2745Recently I was told about the benchmark in the IO::Lambda manpage, which
2746could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2747simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2748shouldn't come as a surprise to anybody). As such, the benchmark is
2749fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2750very optimal. But how would AnyEvent compare when used without the extra
2751baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2752
2753The benchmark itself creates an echo-server, and then, for 500 times,
2754connects to the echo server, sends a line, waits for the reply, and then
2755creates the next connection. This is a rather bad benchmark, as it doesn't
2756test the efficiency of the framework or much non-blocking I/O, but it is a
2757benchmark nevertheless.
2758
2759 name runtime
2760 Lambda/select 0.330 sec
2761 + optimized 0.122 sec
2762 Lambda/AnyEvent 0.327 sec
2763 + optimized 0.138 sec
2764 Raw sockets/select 0.077 sec
2765 POE/select, components 0.662 sec
2766 POE/select, raw sockets 0.226 sec
2767 POE/select, optimized 0.404 sec
2768
2769 AnyEvent/select/nb 0.085 sec
2770 AnyEvent/EV/nb 0.068 sec
2771 +state machine 0.134 sec
2772
2773The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2774benchmarks actually make blocking connects and use 100% blocking I/O,
2775defeating the purpose of an event-based solution. All of the newly
2776written AnyEvent benchmarks use 100% non-blocking connects (using
2777AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2778resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2779generally require a lot more bookkeeping and event handling than blocking
2780connects (which involve a single syscall only).
2781
2782The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2783offers similar expressive power as POE and IO::Lambda, using conventional
2784Perl syntax. This means that both the echo server and the client are 100%
2785non-blocking, further placing it at a disadvantage.
2786
2787As you can see, the AnyEvent + EV combination even beats the
2788hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2789backend easily beats IO::Lambda and POE.
2790
2791And even the 100% non-blocking version written using the high-level (and
2792slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2793higher level ("unoptimised") abstractions by a large margin, even though
2794it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2795
2796The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2797F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2798part of the IO::Lambda distribution and were used without any changes.
2799
2800
2801=head1 SIGNALS
2802
2803AnyEvent currently installs handlers for these signals:
2804
2805=over 4
2806
2807=item SIGCHLD
2808
2809A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
2810emulation for event loops that do not support them natively. Also, some
2811event loops install a similar handler.
2812
2813Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2814AnyEvent will reset it to default, to avoid losing child exit statuses.
2815
2816=item SIGPIPE
2817
2818A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
2819when AnyEvent gets loaded.
2820
2821The rationale for this is that AnyEvent users usually do not really depend
2822on SIGPIPE delivery (which is purely an optimisation for shell use, or
2823badly-written programs), but C<SIGPIPE> can cause spurious and rare
2824program exits as a lot of people do not expect C<SIGPIPE> when writing to
2825some random socket.
2826
2827The rationale for installing a no-op handler as opposed to ignoring it is
2828that this way, the handler will be restored to defaults on exec.
2829
2830Feel free to install your own handler, or reset it to defaults.
2831
2832=back
2833
2834=cut
2835
2836undef $SIG{CHLD}
2837 if $SIG{CHLD} eq 'IGNORE';
2838
2839$SIG{PIPE} = sub { }
2840 unless defined $SIG{PIPE};
2841
2842=head1 RECOMMENDED/OPTIONAL MODULES
2843
2844One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2845its built-in modules) are required to use it.
2846
2847That does not mean that AnyEvent won't take advantage of some additional
2848modules if they are installed.
2849
2850This section explains which additional modules will be used, and how they
2851affect AnyEvent's operation.
2852
2853=over 4
2854
2855=item L<Async::Interrupt>
2856
2857This slightly arcane module is used to implement fast signal handling: To
2858my knowledge, there is no way to do completely race-free and quick
2859signal handling in pure perl. To ensure that signals still get
2860delivered, AnyEvent will start an interval timer to wake up perl (and
2861catch the signals) with some delay (default is 10 seconds, look for
2862C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2863
2864If this module is available, then it will be used to implement signal
2865catching, which means that signals will not be delayed, and the event loop
2866will not be interrupted regularly, which is more efficient (and good for
2867battery life on laptops).
2868
2869This affects not just the pure-perl event loop, but also other event loops
2870that have no signal handling on their own (e.g. Glib, Tk, Qt).
2871
2872Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2873and either employ their own workarounds (POE) or use AnyEvent's workaround
2874(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2875does nothing for those backends.
2876
2877=item L<EV>
2878
2879This module isn't really "optional", as it is simply one of the backend
2880event loops that AnyEvent can use. However, it is simply the best event
2881loop available in terms of features, speed and stability: It supports
2882the AnyEvent API optimally, implements all the watcher types in XS, does
2883automatic timer adjustments even when no monotonic clock is available,
2884can take avdantage of advanced kernel interfaces such as C<epoll> and
2885C<kqueue>, and is the fastest backend I<by far>. You can even embed
2886L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2887
2888If you only use backends that rely on another event loop (e.g. C<Tk>),
2889then this module will do nothing for you.
2890
2891=item L<Guard>
2892
2893The guard module, when used, will be used to implement
2894C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2895lot less memory), but otherwise doesn't affect guard operation much. It is
2896purely used for performance.
2897
2898=item L<JSON> and L<JSON::XS>
2899
2900One of these modules is required when you want to read or write JSON data
2901via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2902advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2903
2904=item L<Net::SSLeay>
2905
2906Implementing TLS/SSL in Perl is certainly interesting, but not very
2907worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2908the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2909
2910=item L<Time::HiRes>
2911
2912This module is part of perl since release 5.008. It will be used when the
2913chosen event library does not come with a timing source of its own. The
2914pure-perl event loop (L<AnyEvent::Loop>) will additionally load it to
2915try to use a monotonic clock for timing stability.
2916
2917=back
2918
1724 2919
1725=head1 FORK 2920=head1 FORK
1726 2921
1727Most event libraries are not fork-safe. The ones who are usually are 2922Most event libraries are not fork-safe. The ones who are usually are
1728because they rely on inefficient but fork-safe C<select> or C<poll> 2923because they rely on inefficient but fork-safe C<select> or C<poll> calls
1729calls. Only L<EV> is fully fork-aware. 2924- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2925are usually badly thought-out hacks that are incompatible with fork in
2926one way or another. Only L<EV> is fully fork-aware and ensures that you
2927continue event-processing in both parent and child (or both, if you know
2928what you are doing).
2929
2930This means that, in general, you cannot fork and do event processing in
2931the child if the event library was initialised before the fork (which
2932usually happens when the first AnyEvent watcher is created, or the library
2933is loaded).
1730 2934
1731If you have to fork, you must either do so I<before> creating your first 2935If you have to fork, you must either do so I<before> creating your first
1732watcher OR you must not use AnyEvent at all in the child. 2936watcher OR you must not use AnyEvent at all in the child OR you must do
2937something completely out of the scope of AnyEvent.
2938
2939The problem of doing event processing in the parent I<and> the child
2940is much more complicated: even for backends that I<are> fork-aware or
2941fork-safe, their behaviour is not usually what you want: fork clones all
2942watchers, that means all timers, I/O watchers etc. are active in both
2943parent and child, which is almost never what you want. USing C<exec>
2944to start worker children from some kind of manage rprocess is usually
2945preferred, because it is much easier and cleaner, at the expense of having
2946to have another binary.
1733 2947
1734 2948
1735=head1 SECURITY CONSIDERATIONS 2949=head1 SECURITY CONSIDERATIONS
1736 2950
1737AnyEvent can be forced to load any event model via 2951AnyEvent can be forced to load any event model via
1749 use AnyEvent; 2963 use AnyEvent;
1750 2964
1751Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2965Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1752be used to probe what backend is used and gain other information (which is 2966be used to probe what backend is used and gain other information (which is
1753probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and 2967probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
1754$ENV{PERL_ANYEGENT_STRICT}. 2968$ENV{PERL_ANYEVENT_STRICT}.
2969
2970Note that AnyEvent will remove I<all> environment variables starting with
2971C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2972enabled.
1755 2973
1756 2974
1757=head1 BUGS 2975=head1 BUGS
1758 2976
1759Perl 5.8 has numerous memleaks that sometimes hit this module and are hard 2977Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
1760to work around. If you suffer from memleaks, first upgrade to Perl 5.10 2978to work around. If you suffer from memleaks, first upgrade to Perl 5.10
1761and check wether the leaks still show up. (Perl 5.10.0 has other annoying 2979and check wether the leaks still show up. (Perl 5.10.0 has other annoying
1762mamleaks, such as leaking on C<map> and C<grep> but it is usually not as 2980memleaks, such as leaking on C<map> and C<grep> but it is usually not as
1763pronounced). 2981pronounced).
1764 2982
1765 2983
1766=head1 SEE ALSO 2984=head1 SEE ALSO
1767 2985
1768Utility functions: L<AnyEvent::Util>. 2986Tutorial/Introduction: L<AnyEvent::Intro>.
1769 2987
1770Event modules: L<EV>, L<EV::Glib>, L<Glib::EV>, L<Event>, L<Glib::Event>, 2988FAQ: L<AnyEvent::FAQ>.
1771L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2989
2990Utility functions: L<AnyEvent::Util> (misc. grab-bag), L<AnyEvent::Log>
2991(simply logging).
2992
2993Development/Debugging: L<AnyEvent::Strict> (stricter checking),
2994L<AnyEvent::Debug> (interactive shell, watcher tracing).
2995
2996Supported event modules: L<AnyEvent::Loop>, L<EV>, L<EV::Glib>,
2997L<Glib::EV>, L<Event>, L<Glib::Event>, L<Glib>, L<Tk>, L<Event::Lib>,
2998L<Qt>, L<POE>, L<FLTK>.
1772 2999
1773Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 3000Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
1774L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 3001L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
1775L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 3002L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
3003L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>,
1776L<AnyEvent::Impl::POE>. 3004L<AnyEvent::Impl::FLTK>.
1777 3005
1778Non-blocking file handles, sockets, TCP clients and 3006Non-blocking handles, pipes, stream sockets, TCP clients and
1779servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>. 3007servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
1780 3008
1781Asynchronous DNS: L<AnyEvent::DNS>. 3009Asynchronous DNS: L<AnyEvent::DNS>.
1782 3010
1783Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>, 3011Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
1784 3012
1785Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 3013Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
3014L<AnyEvent::HTTP>.
1786 3015
1787 3016
1788=head1 AUTHOR 3017=head1 AUTHOR
1789 3018
1790 Marc Lehmann <schmorp@schmorp.de> 3019 Marc Lehmann <schmorp@schmorp.de>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines