ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.132 by root, Sun May 25 01:05:27 2008 UTC vs.
Revision 1.361 by root, Sun Aug 14 01:38:14 2011 UTC

1=head1 => NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt
6and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
15 # file handle or descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
17
18 # one-shot or repeating timers
19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
21
22 print AnyEvent->now; # prints current event loop time
23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
24
25 # POSIX signal
26 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
27
28 # child process exit
29 my $w = AnyEvent->child (pid => $pid, cb => sub {
30 my ($pid, $status) = @_;
12 ... 31 ...
13 }); 32 });
14 33
15 my $w = AnyEvent->timer (after => $seconds, cb => sub { 34 # called when event loop idle (if applicable)
16 ... 35 my $w = AnyEvent->idle (cb => sub { ... });
17 });
18 36
19 my $w = AnyEvent->condvar; # stores whether a condition was flagged 37 my $w = AnyEvent->condvar; # stores whether a condition was flagged
20 $w->send; # wake up current and all future recv's 38 $w->send; # wake up current and all future recv's
21 $w->recv; # enters "main loop" till $condvar gets ->send 39 $w->recv; # enters "main loop" till $condvar gets ->send
40 # use a condvar in callback mode:
41 $w->cb (sub { $_[0]->recv });
42
43=head1 INTRODUCTION/TUTORIAL
44
45This manpage is mainly a reference manual. If you are interested
46in a tutorial or some gentle introduction, have a look at the
47L<AnyEvent::Intro> manpage.
48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
22 58
23=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
24 60
25Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
26nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
27 63
28Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of 64Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of
29policy> and AnyEvent is I<small and efficient>. 65policy> and AnyEvent is I<small and efficient>.
30 66
31First and foremost, I<AnyEvent is not an event model> itself, it only 67First and foremost, I<AnyEvent is not an event model> itself, it only
32interfaces to whatever event model the main program happens to use in a 68interfaces to whatever event model the main program happens to use, in a
33pragmatic way. For event models and certain classes of immortals alike, 69pragmatic way. For event models and certain classes of immortals alike,
34the statement "there can only be one" is a bitter reality: In general, 70the statement "there can only be one" is a bitter reality: In general,
35only one event loop can be active at the same time in a process. AnyEvent 71only one event loop can be active at the same time in a process. AnyEvent
36helps hiding the differences between those event loops. 72cannot change this, but it can hide the differences between those event
73loops.
37 74
38The goal of AnyEvent is to offer module authors the ability to do event 75The goal of AnyEvent is to offer module authors the ability to do event
39programming (waiting for I/O or timer events) without subscribing to a 76programming (waiting for I/O or timer events) without subscribing to a
40religion, a way of living, and most importantly: without forcing your 77religion, a way of living, and most importantly: without forcing your
41module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
42model you use. 79model you use.
43 80
44For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
45actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
46like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
47cannot use anything else, as it is simply incompatible to everything that 84cannot use anything else, as they are simply incompatible to everything
48isn't itself. What's worse, all the potential users of your module are 85that isn't them. What's worse, all the potential users of your
49I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
50 87
51AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
52fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
53with the rest: POE + IO::Async? no go. Tk + Event? no go. Again: if 90with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module
54your module uses one of those, every user of your module has to use it, 91uses one of those, every user of your module has to use it, too. But if
55too. But if your module uses AnyEvent, it works transparently with all 92your module uses AnyEvent, it works transparently with all event models it
56event models it supports (including stuff like POE and IO::Async, as long 93supports (including stuff like IO::Async, as long as those use one of the
57as those use one of the supported event loops. It is trivial to add new 94supported event loops. It is easy to add new event loops to AnyEvent, too,
58event loops to AnyEvent, too, so it is future-proof). 95so it is future-proof).
59 96
60In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
61model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
62modules, you get an enormous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
63follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
64offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
65technically possible. 102technically possible.
66 103
104Of course, AnyEvent comes with a big (and fully optional!) toolbox
105of useful functionality, such as an asynchronous DNS resolver, 100%
106non-blocking connects (even with TLS/SSL, IPv6 and on broken platforms
107such as Windows) and lots of real-world knowledge and workarounds for
108platform bugs and differences.
109
67Of course, if you want lots of policy (this can arguably be somewhat 110Now, if you I<do want> lots of policy (this can arguably be somewhat
68useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
69model, you should I<not> use this module. 112model, you should I<not> use this module.
70 113
71=head1 DESCRIPTION 114=head1 DESCRIPTION
72 115
73L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
74allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
75users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
76peacefully at any one time). 119than one event loop cannot coexist peacefully).
77 120
78The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
79module. 122module.
80 123
81During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
82to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
83following modules is already loaded: L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Loop>,
84L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
85L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
86to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
87adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Loop> should always work, so
88be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
89found, AnyEvent will fall back to a pure-perl event loop, which is not
90very efficient, but should work everywhere.
91 132
92Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
93an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
94that model the default. For example: 135that model the default. For example:
95 136
97 use AnyEvent; 138 use AnyEvent;
98 139
99 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
100 141
101The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
102starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
103use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
104 146
105The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called C<AnyEvent::Loop>. Like
106C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148other event modules you can load it explicitly and enjoy the high
107explicitly. 149availability of that event loop :)
108 150
109=head1 WATCHERS 151=head1 WATCHERS
110 152
111AnyEvent has the central concept of a I<watcher>, which is an object that 153AnyEvent has the central concept of a I<watcher>, which is an object that
112stores relevant data for each kind of event you are waiting for, such as 154stores relevant data for each kind of event you are waiting for, such as
115These watchers are normal Perl objects with normal Perl lifetime. After 157These watchers are normal Perl objects with normal Perl lifetime. After
116creating a watcher it will immediately "watch" for events and invoke the 158creating a watcher it will immediately "watch" for events and invoke the
117callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
118is in control). 160is in control).
119 161
162Note that B<callbacks must not permanently change global variables>
163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
164callbacks must not C<die> >>. The former is good programming practice in
165Perl and the latter stems from the fact that exception handling differs
166widely between event loops.
167
120To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
121variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
122to it). 170to it).
123 171
124All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
125 173
126Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
127example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
128 176
129An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
130 178
131 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
132 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
133 undef $w; 181 undef $w;
134 }); 182 });
135 183
136Note that C<my $w; $w => combination. This is necessary because in Perl, 184Note that C<my $w; $w => combination. This is necessary because in Perl,
137my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
138declared. 186declared.
139 187
140=head2 I/O WATCHERS 188=head2 I/O WATCHERS
141 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
142You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
143with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
144 198
145C<fh> the Perl I<file handle> (I<not> file descriptor) to watch 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
200for events (AnyEvent might or might not keep a reference to this file
201handle). Note that only file handles pointing to things for which
202non-blocking operation makes sense are allowed. This includes sockets,
203most character devices, pipes, fifos and so on, but not for example files
204or block devices.
205
146for events. C<poll> must be a string that is either C<r> or C<w>, 206C<poll> must be a string that is either C<r> or C<w>, which creates a
147which creates a watcher waiting for "r"eadable or "w"ritable events, 207watcher waiting for "r"eadable or "w"ritable events, respectively.
208
148respectively. C<cb> is the callback to invoke each time the file handle 209C<cb> is the callback to invoke each time the file handle becomes ready.
149becomes ready.
150 210
151Although the callback might get passed parameters, their value and 211Although the callback might get passed parameters, their value and
152presence is undefined and you cannot rely on them. Portable AnyEvent 212presence is undefined and you cannot rely on them. Portable AnyEvent
153callbacks cannot use arguments passed to I/O watcher callbacks. 213callbacks cannot use arguments passed to I/O watcher callbacks.
154 214
155The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
156You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
157underlying file descriptor. 217underlying file descriptor.
158 218
159Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
160always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
161handles. 221handles.
162 222
163Example:
164
165 # wait for readability of STDIN, then read a line and disable the watcher 223Example: wait for readability of STDIN, then read a line and disable the
224watcher.
225
166 my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub { 226 my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
167 chomp (my $input = <STDIN>); 227 chomp (my $input = <STDIN>);
168 warn "read: $input\n"; 228 warn "read: $input\n";
169 undef $w; 229 undef $w;
170 }); 230 });
171 231
172=head2 TIME WATCHERS 232=head2 TIME WATCHERS
173 233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
241
174You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
175method with the following mandatory arguments: 243method with the following mandatory arguments:
176 244
177C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
178supported) the callback should be invoked. C<cb> is the callback to invoke 246supported) the callback should be invoked. C<cb> is the callback to invoke
180 248
181Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
182presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
183callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
184 252
185The timer callback will be invoked at most once: if you want a repeating 253The callback will normally be invoked only once. If you specify another
186timer you have to create a new watcher (this is a limitation by both Tk 254parameter, C<interval>, as a strictly positive number (> 0), then the
187and Glib). 255callback will be invoked regularly at that interval (in fractional
256seconds) after the first invocation. If C<interval> is specified with a
257false value, then it is treated as if it were not specified at all.
188 258
189Example: 259The callback will be rescheduled before invoking the callback, but no
260attempt is made to avoid timer drift in most backends, so the interval is
261only approximate.
190 262
191 # fire an event after 7.7 seconds 263Example: fire an event after 7.7 seconds.
264
192 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
193 warn "timeout\n"; 266 warn "timeout\n";
194 }); 267 });
195 268
196 # to cancel the timer: 269 # to cancel the timer:
197 undef $w; 270 undef $w;
198 271
199Example 2:
200
201 # fire an event after 0.5 seconds, then roughly every second 272Example 2: fire an event after 0.5 seconds, then roughly every second.
202 my $w;
203 273
204 my $cb = sub {
205 # cancel the old timer while creating a new one
206 $w = AnyEvent->timer (after => 1, cb => $cb); 274 my $w = AnyEvent->timer (after => 0.5, interval => 1, cb => sub {
275 warn "timeout\n";
207 }; 276 };
208
209 # start the "loop" by creating the first watcher
210 $w = AnyEvent->timer (after => 0.5, cb => $cb);
211 277
212=head3 TIMING ISSUES 278=head3 TIMING ISSUES
213 279
214There are two ways to handle timers: based on real time (relative, "fire 280There are two ways to handle timers: based on real time (relative, "fire
215in 10 seconds") and based on wallclock time (absolute, "fire at 12 281in 10 seconds") and based on wallclock time (absolute, "fire at 12
217 283
218While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
219use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
220"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
221the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
222fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
223 289
224AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
225about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
226on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
227timers. 293timers.
228 294
229AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
230AnyEvent API. 296AnyEvent API.
231 297
298AnyEvent has two additional methods that return the "current time":
299
300=over 4
301
302=item AnyEvent->time
303
304This returns the "current wallclock time" as a fractional number of
305seconds since the Epoch (the same thing as C<time> or C<Time::HiRes::time>
306return, and the result is guaranteed to be compatible with those).
307
308It progresses independently of any event loop processing, i.e. each call
309will check the system clock, which usually gets updated frequently.
310
311=item AnyEvent->now
312
313This also returns the "current wallclock time", but unlike C<time>, above,
314this value might change only once per event loop iteration, depending on
315the event loop (most return the same time as C<time>, above). This is the
316time that AnyEvent's timers get scheduled against.
317
318I<In almost all cases (in all cases if you don't care), this is the
319function to call when you want to know the current time.>
320
321This function is also often faster then C<< AnyEvent->time >>, and
322thus the preferred method if you want some timestamp (for example,
323L<AnyEvent::Handle> uses this to update its activity timeouts).
324
325The rest of this section is only of relevance if you try to be very exact
326with your timing; you can skip it without a bad conscience.
327
328For a practical example of when these times differ, consider L<Event::Lib>
329and L<EV> and the following set-up:
330
331The event loop is running and has just invoked one of your callbacks at
332time=500 (assume no other callbacks delay processing). In your callback,
333you wait a second by executing C<sleep 1> (blocking the process for a
334second) and then (at time=501) you create a relative timer that fires
335after three seconds.
336
337With L<Event::Lib>, C<< AnyEvent->time >> and C<< AnyEvent->now >> will
338both return C<501>, because that is the current time, and the timer will
339be scheduled to fire at time=504 (C<501> + C<3>).
340
341With L<EV>, C<< AnyEvent->time >> returns C<501> (as that is the current
342time), but C<< AnyEvent->now >> returns C<500>, as that is the time the
343last event processing phase started. With L<EV>, your timer gets scheduled
344to run at time=503 (C<500> + C<3>).
345
346In one sense, L<Event::Lib> is more exact, as it uses the current time
347regardless of any delays introduced by event processing. However, most
348callbacks do not expect large delays in processing, so this causes a
349higher drift (and a lot more system calls to get the current time).
350
351In another sense, L<EV> is more exact, as your timer will be scheduled at
352the same time, regardless of how long event processing actually took.
353
354In either case, if you care (and in most cases, you don't), then you
355can get whatever behaviour you want with any event loop, by taking the
356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
357account.
358
359=item AnyEvent->now_update
360
361Some event loops (such as L<EV> or L<AnyEvent::Loop>) cache the current
362time for each loop iteration (see the discussion of L<< AnyEvent->now >>,
363above).
364
365When a callback runs for a long time (or when the process sleeps), then
366this "current" time will differ substantially from the real time, which
367might affect timers and time-outs.
368
369When this is the case, you can call this method, which will update the
370event loop's idea of "current time".
371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
379Note that updating the time I<might> cause some events to be handled.
380
381=back
382
232=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
233 384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
386
234You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
235I<name> without any C<SIG> prefix, C<cb> is the Perl callback to 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
236be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
237 390
238Although the callback might get passed parameters, their value and 391Although the callback might get passed parameters, their value and
239presence is undefined and you cannot rely on them. Portable AnyEvent 392presence is undefined and you cannot rely on them. Portable AnyEvent
240callbacks cannot use arguments passed to signal watcher callbacks. 393callbacks cannot use arguments passed to signal watcher callbacks.
241 394
243invocation, and callback invocation will be synchronous. Synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
244that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
245but it is guaranteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
246 399
247The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
248between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
249 403
250This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
251directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
252 407
253Example: exit on SIGINT 408Example: exit on SIGINT
254 409
255 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
256 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling) or
421"unsafe" (asynchronous) - the former might get delayed indefinitely, the
422latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
432callbacks to signals in a generic way, which is a pity, as you cannot
433do race-free signal handling in perl, requiring C libraries for
434this. AnyEvent will try to do its best, which means in some cases,
435signals will be delayed. The maximum time a signal might be delayed is
436specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
437variable can be changed only before the first signal watcher is created,
438and should be left alone otherwise. This variable determines how often
439AnyEvent polls for signals (in case a wake-up was missed). Higher values
440will cause fewer spurious wake-ups, which is better for power and CPU
441saving.
442
443All these problems can be avoided by installing the optional
444L<Async::Interrupt> module, which works with most event loops. It will not
445work with inherently broken event loops such as L<Event> or L<Event::Lib>
446(and not with L<POE> currently, as POE does its own workaround with
447one-second latency). For those, you just have to suffer the delays.
448
257=head2 CHILD PROCESS WATCHERS 449=head2 CHILD PROCESS WATCHERS
258 450
451 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
452
259You can also watch on a child process exit and catch its exit status. 453You can also watch for a child process exit and catch its exit status.
260 454
261The child process is specified by the C<pid> argument (if set to C<0>, it 455The child process is specified by the C<pid> argument (on some backends,
262watches for any child process exit). The watcher will trigger as often 456using C<0> watches for any child process exit, on others this will
263as status change for the child are received. This works by installing a 457croak). The watcher will be triggered only when the child process has
264signal handler for C<SIGCHLD>. The callback will be called with the pid 458finished and an exit status is available, not on any trace events
265and exit status (as returned by waitpid), so unlike other watcher types, 459(stopped/continued).
266you I<can> rely on child watcher callback arguments. 460
461The callback will be called with the pid and exit status (as returned by
462waitpid), so unlike other watcher types, you I<can> rely on child watcher
463callback arguments.
464
465This watcher type works by installing a signal handler for C<SIGCHLD>,
466and since it cannot be shared, nothing else should use SIGCHLD or reap
467random child processes (waiting for specific child processes, e.g. inside
468C<system>, is just fine).
267 469
268There is a slight catch to child watchers, however: you usually start them 470There is a slight catch to child watchers, however: you usually start them
269I<after> the child process was created, and this means the process could 471I<after> the child process was created, and this means the process could
270have exited already (and no SIGCHLD will be sent anymore). 472have exited already (and no SIGCHLD will be sent anymore).
271 473
272Not all event models handle this correctly (POE doesn't), but even for 474Not all event models handle this correctly (neither POE nor IO::Async do,
475see their AnyEvent::Impl manpages for details), but even for event models
273event models that I<do> handle this correctly, they usually need to be 476that I<do> handle this correctly, they usually need to be loaded before
274loaded before the process exits (i.e. before you fork in the first place). 477the process exits (i.e. before you fork in the first place). AnyEvent's
478pure perl event loop handles all cases correctly regardless of when you
479start the watcher.
275 480
276This means you cannot create a child watcher as the very first thing in an 481This means you cannot create a child watcher as the very first
277AnyEvent program, you I<have> to create at least one watcher before you 482thing in an AnyEvent program, you I<have> to create at least one
278C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 483watcher before you C<fork> the child (alternatively, you can call
484C<AnyEvent::detect>).
485
486As most event loops do not support waiting for child events, they will be
487emulated by AnyEvent in most cases, in which case the latency and race
488problems mentioned in the description of signal watchers apply.
279 489
280Example: fork a process and wait for it 490Example: fork a process and wait for it
281 491
282 my $done = AnyEvent->condvar; 492 my $done = AnyEvent->condvar;
283 493
284 my $pid = fork or exit 5; 494 my $pid = fork or exit 5;
285 495
286 my $w = AnyEvent->child ( 496 my $w = AnyEvent->child (
287 pid => $pid, 497 pid => $pid,
288 cb => sub { 498 cb => sub {
289 my ($pid, $status) = @_; 499 my ($pid, $status) = @_;
290 warn "pid $pid exited with status $status"; 500 warn "pid $pid exited with status $status";
291 $done->send; 501 $done->send;
292 }, 502 },
293 ); 503 );
294 504
295 # do something else, then wait for process exit 505 # do something else, then wait for process exit
296 $done->recv; 506 $done->recv;
507
508=head2 IDLE WATCHERS
509
510 $w = AnyEvent->idle (cb => <callback>);
511
512This will repeatedly invoke the callback after the process becomes idle,
513until either the watcher is destroyed or new events have been detected.
514
515Idle watchers are useful when there is a need to do something, but it
516is not so important (or wise) to do it instantly. The callback will be
517invoked only when there is "nothing better to do", which is usually
518defined as "all outstanding events have been handled and no new events
519have been detected". That means that idle watchers ideally get invoked
520when the event loop has just polled for new events but none have been
521detected. Instead of blocking to wait for more events, the idle watchers
522will be invoked.
523
524Unfortunately, most event loops do not really support idle watchers (only
525EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
526will simply call the callback "from time to time".
527
528Example: read lines from STDIN, but only process them when the
529program is otherwise idle:
530
531 my @lines; # read data
532 my $idle_w;
533 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
534 push @lines, scalar <STDIN>;
535
536 # start an idle watcher, if not already done
537 $idle_w ||= AnyEvent->idle (cb => sub {
538 # handle only one line, when there are lines left
539 if (my $line = shift @lines) {
540 print "handled when idle: $line";
541 } else {
542 # otherwise disable the idle watcher again
543 undef $idle_w;
544 }
545 });
546 });
297 547
298=head2 CONDITION VARIABLES 548=head2 CONDITION VARIABLES
549
550 $cv = AnyEvent->condvar;
551
552 $cv->send (<list>);
553 my @res = $cv->recv;
299 554
300If you are familiar with some event loops you will know that all of them 555If you are familiar with some event loops you will know that all of them
301require you to run some blocking "loop", "run" or similar function that 556require you to run some blocking "loop", "run" or similar function that
302will actively watch for new events and call your callbacks. 557will actively watch for new events and call your callbacks.
303 558
304AnyEvent is different, it expects somebody else to run the event loop and 559AnyEvent is slightly different: it expects somebody else to run the event
305will only block when necessary (usually when told by the user). 560loop and will only block when necessary (usually when told by the user).
306 561
307The instrument to do that is called a "condition variable", so called 562The tool to do that is called a "condition variable", so called because
308because they represent a condition that must become true. 563they represent a condition that must become true.
564
565Now is probably a good time to look at the examples further below.
309 566
310Condition variables can be created by calling the C<< AnyEvent->condvar 567Condition variables can be created by calling the C<< AnyEvent->condvar
311>> method, usually without arguments. The only argument pair allowed is 568>> method, usually without arguments. The only argument pair allowed is
312C<cb>, which specifies a callback to be called when the condition variable 569C<cb>, which specifies a callback to be called when the condition variable
313becomes true. 570becomes true, with the condition variable as the first argument (but not
571the results).
314 572
315After creation, the condition variable is "false" until it becomes "true" 573After creation, the condition variable is "false" until it becomes "true"
316by calling the C<send> method (or calling the condition variable as if it 574by calling the C<send> method (or calling the condition variable as if it
317were a callback). 575were a callback, read about the caveats in the description for the C<<
576->send >> method).
318 577
319Condition variables are similar to callbacks, except that you can 578Since condition variables are the most complex part of the AnyEvent API, here are
320optionally wait for them. They can also be called merge points - points 579some different mental models of what they are - pick the ones you can connect to:
321in time where multiple outstanding events have been processed. And yet 580
322another way to call them is transactions - each condition variable can be 581=over 4
323used to represent a transaction, which finishes at some point and delivers 582
324a result. 583=item * Condition variables are like callbacks - you can call them (and pass them instead
584of callbacks). Unlike callbacks however, you can also wait for them to be called.
585
586=item * Condition variables are signals - one side can emit or send them,
587the other side can wait for them, or install a handler that is called when
588the signal fires.
589
590=item * Condition variables are like "Merge Points" - points in your program
591where you merge multiple independent results/control flows into one.
592
593=item * Condition variables represent a transaction - functions that start
594some kind of transaction can return them, leaving the caller the choice
595between waiting in a blocking fashion, or setting a callback.
596
597=item * Condition variables represent future values, or promises to deliver
598some result, long before the result is available.
599
600=back
325 601
326Condition variables are very useful to signal that something has finished, 602Condition variables are very useful to signal that something has finished,
327for example, if you write a module that does asynchronous http requests, 603for example, if you write a module that does asynchronous http requests,
328then a condition variable would be the ideal candidate to signal the 604then a condition variable would be the ideal candidate to signal the
329availability of results. The user can either act when the callback is 605availability of results. The user can either act when the callback is
342 618
343Condition variables are represented by hash refs in perl, and the keys 619Condition variables are represented by hash refs in perl, and the keys
344used by AnyEvent itself are all named C<_ae_XXX> to make subclassing 620used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
345easy (it is often useful to build your own transaction class on top of 621easy (it is often useful to build your own transaction class on top of
346AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call 622AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
347it's C<new> method in your own C<new> method. 623its C<new> method in your own C<new> method.
348 624
349There are two "sides" to a condition variable - the "producer side" which 625There are two "sides" to a condition variable - the "producer side" which
350eventually calls C<< -> send >>, and the "consumer side", which waits 626eventually calls C<< -> send >>, and the "consumer side", which waits
351for the send to occur. 627for the send to occur.
352 628
353Example: wait for a timer. 629Example: wait for a timer.
354 630
355 # wait till the result is ready 631 # condition: "wait till the timer is fired"
356 my $result_ready = AnyEvent->condvar; 632 my $timer_fired = AnyEvent->condvar;
357 633
358 # do something such as adding a timer 634 # create the timer - we could wait for, say
359 # or socket watcher the calls $result_ready->send 635 # a handle becomign ready, or even an
360 # when the "result" is ready. 636 # AnyEvent::HTTP request to finish, but
361 # in this case, we simply use a timer: 637 # in this case, we simply use a timer:
362 my $w = AnyEvent->timer ( 638 my $w = AnyEvent->timer (
363 after => 1, 639 after => 1,
364 cb => sub { $result_ready->send }, 640 cb => sub { $timer_fired->send },
365 ); 641 );
366 642
367 # this "blocks" (while handling events) till the callback 643 # this "blocks" (while handling events) till the callback
368 # calls send 644 # calls ->send
369 $result_ready->recv; 645 $timer_fired->recv;
370 646
371Example: wait for a timer, but take advantage of the fact that 647Example: wait for a timer, but take advantage of the fact that condition
372condition variables are also code references. 648variables are also callable directly.
373 649
374 my $done = AnyEvent->condvar; 650 my $done = AnyEvent->condvar;
375 my $delay = AnyEvent->timer (after => 5, cb => $done); 651 my $delay = AnyEvent->timer (after => 5, cb => $done);
376 $done->recv; 652 $done->recv;
653
654Example: Imagine an API that returns a condvar and doesn't support
655callbacks. This is how you make a synchronous call, for example from
656the main program:
657
658 use AnyEvent::CouchDB;
659
660 ...
661
662 my @info = $couchdb->info->recv;
663
664And this is how you would just set a callback to be called whenever the
665results are available:
666
667 $couchdb->info->cb (sub {
668 my @info = $_[0]->recv;
669 });
377 670
378=head3 METHODS FOR PRODUCERS 671=head3 METHODS FOR PRODUCERS
379 672
380These methods should only be used by the producing side, i.e. the 673These methods should only be used by the producing side, i.e. the
381code/module that eventually sends the signal. Note that it is also 674code/module that eventually sends the signal. Note that it is also
394immediately from within send. 687immediately from within send.
395 688
396Any arguments passed to the C<send> call will be returned by all 689Any arguments passed to the C<send> call will be returned by all
397future C<< ->recv >> calls. 690future C<< ->recv >> calls.
398 691
399Condition variables are overloaded so one can call them directly (as a 692Condition variables are overloaded so one can call them directly (as if
400code reference). Calling them directly is the same as calling C<send>. 693they were a code reference). Calling them directly is the same as calling
694C<send>.
401 695
402=item $cv->croak ($error) 696=item $cv->croak ($error)
403 697
404Similar to send, but causes all call's to C<< ->recv >> to invoke 698Similar to send, but causes all calls to C<< ->recv >> to invoke
405C<Carp::croak> with the given error message/object/scalar. 699C<Carp::croak> with the given error message/object/scalar.
406 700
407This can be used to signal any errors to the condition variable 701This can be used to signal any errors to the condition variable
408user/consumer. 702user/consumer. Doing it this way instead of calling C<croak> directly
703delays the error detection, but has the overwhelming advantage that it
704diagnoses the error at the place where the result is expected, and not
705deep in some event callback with no connection to the actual code causing
706the problem.
409 707
410=item $cv->begin ([group callback]) 708=item $cv->begin ([group callback])
411 709
412=item $cv->end 710=item $cv->end
413
414These two methods are EXPERIMENTAL and MIGHT CHANGE.
415 711
416These two methods can be used to combine many transactions/events into 712These two methods can be used to combine many transactions/events into
417one. For example, a function that pings many hosts in parallel might want 713one. For example, a function that pings many hosts in parallel might want
418to use a condition variable for the whole process. 714to use a condition variable for the whole process.
419 715
420Every call to C<< ->begin >> will increment a counter, and every call to 716Every call to C<< ->begin >> will increment a counter, and every call to
421C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 717C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
422>>, the (last) callback passed to C<begin> will be executed. That callback 718>>, the (last) callback passed to C<begin> will be executed, passing the
423is I<supposed> to call C<< ->send >>, but that is not required. If no 719condvar as first argument. That callback is I<supposed> to call C<< ->send
424callback was set, C<send> will be called without any arguments. 720>>, but that is not required. If no group callback was set, C<send> will
721be called without any arguments.
425 722
426Let's clarify this with the ping example: 723You can think of C<< $cv->send >> giving you an OR condition (one call
724sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
725condition (all C<begin> calls must be C<end>'ed before the condvar sends).
726
727Let's start with a simple example: you have two I/O watchers (for example,
728STDOUT and STDERR for a program), and you want to wait for both streams to
729close before activating a condvar:
427 730
428 my $cv = AnyEvent->condvar; 731 my $cv = AnyEvent->condvar;
429 732
733 $cv->begin; # first watcher
734 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
735 defined sysread $fh1, my $buf, 4096
736 or $cv->end;
737 });
738
739 $cv->begin; # second watcher
740 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
741 defined sysread $fh2, my $buf, 4096
742 or $cv->end;
743 });
744
745 $cv->recv;
746
747This works because for every event source (EOF on file handle), there is
748one call to C<begin>, so the condvar waits for all calls to C<end> before
749sending.
750
751The ping example mentioned above is slightly more complicated, as the
752there are results to be passwd back, and the number of tasks that are
753begun can potentially be zero:
754
755 my $cv = AnyEvent->condvar;
756
430 my %result; 757 my %result;
431 $cv->begin (sub { $cv->send (\%result) }); 758 $cv->begin (sub { shift->send (\%result) });
432 759
433 for my $host (@list_of_hosts) { 760 for my $host (@list_of_hosts) {
434 $cv->begin; 761 $cv->begin;
435 ping_host_then_call_callback $host, sub { 762 ping_host_then_call_callback $host, sub {
436 $result{$host} = ...; 763 $result{$host} = ...;
451loop, which serves two important purposes: first, it sets the callback 778loop, which serves two important purposes: first, it sets the callback
452to be called once the counter reaches C<0>, and second, it ensures that 779to be called once the counter reaches C<0>, and second, it ensures that
453C<send> is called even when C<no> hosts are being pinged (the loop 780C<send> is called even when C<no> hosts are being pinged (the loop
454doesn't execute once). 781doesn't execute once).
455 782
456This is the general pattern when you "fan out" into multiple subrequests: 783This is the general pattern when you "fan out" into multiple (but
457use an outer C<begin>/C<end> pair to set the callback and ensure C<end> 784potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
458is called at least once, and then, for each subrequest you start, call 785the callback and ensure C<end> is called at least once, and then, for each
459C<begin> and for each subrequest you finish, call C<end>. 786subrequest you start, call C<begin> and for each subrequest you finish,
787call C<end>.
460 788
461=back 789=back
462 790
463=head3 METHODS FOR CONSUMERS 791=head3 METHODS FOR CONSUMERS
464 792
468=over 4 796=over 4
469 797
470=item $cv->recv 798=item $cv->recv
471 799
472Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak 800Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
473>> methods have been called on c<$cv>, while servicing other watchers 801>> methods have been called on C<$cv>, while servicing other watchers
474normally. 802normally.
475 803
476You can only wait once on a condition - additional calls are valid but 804You can only wait once on a condition - additional calls are valid but
477will return immediately. 805will return immediately.
478 806
480function will call C<croak>. 808function will call C<croak>.
481 809
482In list context, all parameters passed to C<send> will be returned, 810In list context, all parameters passed to C<send> will be returned,
483in scalar context only the first one will be returned. 811in scalar context only the first one will be returned.
484 812
813Note that doing a blocking wait in a callback is not supported by any
814event loop, that is, recursive invocation of a blocking C<< ->recv
815>> is not allowed, and the C<recv> call will C<croak> if such a
816condition is detected. This condition can be slightly loosened by using
817L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
818any thread that doesn't run the event loop itself.
819
485Not all event models support a blocking wait - some die in that case 820Not all event models support a blocking wait - some die in that case
486(programs might want to do that to stay interactive), so I<if you are 821(programs might want to do that to stay interactive), so I<if you are
487using this from a module, never require a blocking wait>, but let the 822using this from a module, never require a blocking wait>. Instead, let the
488caller decide whether the call will block or not (for example, by coupling 823caller decide whether the call will block or not (for example, by coupling
489condition variables with some kind of request results and supporting 824condition variables with some kind of request results and supporting
490callbacks so the caller knows that getting the result will not block, 825callbacks so the caller knows that getting the result will not block,
491while still supporting blocking waits if the caller so desires). 826while still supporting blocking waits if the caller so desires).
492 827
493Another reason I<never> to C<< ->recv >> in a module is that you cannot
494sensibly have two C<< ->recv >>'s in parallel, as that would require
495multiple interpreters or coroutines/threads, none of which C<AnyEvent>
496can supply.
497
498The L<Coro> module, however, I<can> and I<does> supply coroutines and, in
499fact, L<Coro::AnyEvent> replaces AnyEvent's condvars by coroutine-safe
500versions and also integrates coroutines into AnyEvent, making blocking
501C<< ->recv >> calls perfectly safe as long as they are done from another
502coroutine (one that doesn't run the event loop).
503
504You can ensure that C<< -recv >> never blocks by setting a callback and 828You can ensure that C<< ->recv >> never blocks by setting a callback and
505only calling C<< ->recv >> from within that callback (or at a later 829only calling C<< ->recv >> from within that callback (or at a later
506time). This will work even when the event loop does not support blocking 830time). This will work even when the event loop does not support blocking
507waits otherwise. 831waits otherwise.
508 832
509=item $bool = $cv->ready 833=item $bool = $cv->ready
510 834
511Returns true when the condition is "true", i.e. whether C<send> or 835Returns true when the condition is "true", i.e. whether C<send> or
512C<croak> have been called. 836C<croak> have been called.
513 837
514=item $cb = $cv->cb ([new callback]) 838=item $cb = $cv->cb ($cb->($cv))
515 839
516This is a mutator function that returns the callback set and optionally 840This is a mutator function that returns the callback set and optionally
517replaces it before doing so. 841replaces it before doing so.
518 842
519The callback will be called when the condition becomes "true", i.e. when 843The callback will be called when the condition becomes "true", i.e. when
520C<send> or C<croak> are called. Calling C<recv> inside the callback 844C<send> or C<croak> are called, with the only argument being the
845condition variable itself. If the condition is already true, the
846callback is called immediately when it is set. Calling C<recv> inside
521or at any later time is guaranteed not to block. 847the callback or at any later time is guaranteed not to block.
522 848
523=back 849=back
524 850
851=head1 SUPPORTED EVENT LOOPS/BACKENDS
852
853The available backend classes are (every class has its own manpage):
854
855=over 4
856
857=item Backends that are autoprobed when no other event loop can be found.
858
859EV is the preferred backend when no other event loop seems to be in
860use. If EV is not installed, then AnyEvent will fall back to its own
861pure-perl implementation, which is available everywhere as it comes with
862AnyEvent itself.
863
864 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
865 AnyEvent::Impl::Perl pure-perl AnyEvent::Loop, fast and portable.
866
867=item Backends that are transparently being picked up when they are used.
868
869These will be used if they are already loaded when the first watcher
870is created, in which case it is assumed that the application is using
871them. This means that AnyEvent will automatically pick the right backend
872when the main program loads an event module before anything starts to
873create watchers. Nothing special needs to be done by the main program.
874
875 AnyEvent::Impl::Event based on Event, very stable, few glitches.
876 AnyEvent::Impl::Glib based on Glib, slow but very stable.
877 AnyEvent::Impl::Tk based on Tk, very broken.
878 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
879 AnyEvent::Impl::POE based on POE, very slow, some limitations.
880 AnyEvent::Impl::Irssi used when running within irssi.
881 AnyEvent::Impl::IOAsync based on IO::Async.
882 AnyEvent::Impl::Cocoa based on Cocoa::EventLoop.
883 AnyEvent::Impl::FLTK2 based on FLTK (fltk 2 binding).
884
885=item Backends with special needs.
886
887Qt requires the Qt::Application to be instantiated first, but will
888otherwise be picked up automatically. As long as the main program
889instantiates the application before any AnyEvent watchers are created,
890everything should just work.
891
892 AnyEvent::Impl::Qt based on Qt.
893
894=item Event loops that are indirectly supported via other backends.
895
896Some event loops can be supported via other modules:
897
898There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
899
900B<WxWidgets> has no support for watching file handles. However, you can
901use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
902polls 20 times per second, which was considered to be too horrible to even
903consider for AnyEvent.
904
905B<Prima> is not supported as nobody seems to be using it, but it has a POE
906backend, so it can be supported through POE.
907
908AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
909load L<POE> when detecting them, in the hope that POE will pick them up,
910in which case everything will be automatic.
911
912=back
913
525=head1 GLOBAL VARIABLES AND FUNCTIONS 914=head1 GLOBAL VARIABLES AND FUNCTIONS
526 915
916These are not normally required to use AnyEvent, but can be useful to
917write AnyEvent extension modules.
918
527=over 4 919=over 4
528 920
529=item $AnyEvent::MODEL 921=item $AnyEvent::MODEL
530 922
531Contains C<undef> until the first watcher is being created. Then it 923Contains C<undef> until the first watcher is being created, before the
924backend has been autodetected.
925
532contains the event model that is being used, which is the name of the 926Afterwards it contains the event model that is being used, which is the
533Perl class implementing the model. This class is usually one of the 927name of the Perl class implementing the model. This class is usually one
534C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 928of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
535AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 929case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
536 930will be C<urxvt::anyevent>).
537The known classes so far are:
538
539 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
540 AnyEvent::Impl::Event based on Event, second best choice.
541 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
542 AnyEvent::Impl::Glib based on Glib, third-best choice.
543 AnyEvent::Impl::Tk based on Tk, very bad choice.
544 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
545 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
546 AnyEvent::Impl::POE based on POE, not generic enough for full support.
547
548There is no support for WxWidgets, as WxWidgets has no support for
549watching file handles. However, you can use WxWidgets through the
550POE Adaptor, as POE has a Wx backend that simply polls 20 times per
551second, which was considered to be too horrible to even consider for
552AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
553it's adaptor.
554
555AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
556autodetecting them.
557 931
558=item AnyEvent::detect 932=item AnyEvent::detect
559 933
560Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 934Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
561if necessary. You should only call this function right before you would 935if necessary. You should only call this function right before you would
562have created an AnyEvent watcher anyway, that is, as late as possible at 936have created an AnyEvent watcher anyway, that is, as late as possible at
563runtime. 937runtime, and not e.g. during initialisation of your module.
938
939The effect of calling this function is as if a watcher had been created
940(specifically, actions that happen "when the first watcher is created"
941happen when calling detetc as well).
942
943If you need to do some initialisation before AnyEvent watchers are
944created, use C<post_detect>.
564 945
565=item $guard = AnyEvent::post_detect { BLOCK } 946=item $guard = AnyEvent::post_detect { BLOCK }
566 947
567Arranges for the code block to be executed as soon as the event model is 948Arranges for the code block to be executed as soon as the event model is
568autodetected (or immediately if this has already happened). 949autodetected (or immediately if that has already happened).
950
951The block will be executed I<after> the actual backend has been detected
952(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
953created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
954other initialisations - see the sources of L<AnyEvent::Strict> or
955L<AnyEvent::AIO> to see how this is used.
956
957The most common usage is to create some global watchers, without forcing
958event module detection too early, for example, L<AnyEvent::AIO> creates
959and installs the global L<IO::AIO> watcher in a C<post_detect> block to
960avoid autodetecting the event module at load time.
569 961
570If called in scalar or list context, then it creates and returns an object 962If called in scalar or list context, then it creates and returns an object
571that automatically removes the callback again when it is destroyed. See 963that automatically removes the callback again when it is destroyed (or
964C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
572L<Coro::BDB> for a case where this is useful. 965a case where this is useful.
966
967Example: Create a watcher for the IO::AIO module and store it in
968C<$WATCHER>, but do so only do so after the event loop is initialised.
969
970 our WATCHER;
971
972 my $guard = AnyEvent::post_detect {
973 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
974 };
975
976 # the ||= is important in case post_detect immediately runs the block,
977 # as to not clobber the newly-created watcher. assigning both watcher and
978 # post_detect guard to the same variable has the advantage of users being
979 # able to just C<undef $WATCHER> if the watcher causes them grief.
980
981 $WATCHER ||= $guard;
573 982
574=item @AnyEvent::post_detect 983=item @AnyEvent::post_detect
575 984
576If there are any code references in this array (you can C<push> to it 985If there are any code references in this array (you can C<push> to it
577before or after loading AnyEvent), then they will called directly after 986before or after loading AnyEvent), then they will be called directly
578the event loop has been chosen. 987after the event loop has been chosen.
579 988
580You should check C<$AnyEvent::MODEL> before adding to this array, though: 989You should check C<$AnyEvent::MODEL> before adding to this array, though:
581if it contains a true value then the event loop has already been detected, 990if it is defined then the event loop has already been detected, and the
582and the array will be ignored. 991array will be ignored.
583 992
584Best use C<AnyEvent::post_detect { BLOCK }> instead. 993Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
994it, as it takes care of these details.
995
996This variable is mainly useful for modules that can do something useful
997when AnyEvent is used and thus want to know when it is initialised, but do
998not need to even load it by default. This array provides the means to hook
999into AnyEvent passively, without loading it.
1000
1001Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
1002together, you could put this into Coro (this is the actual code used by
1003Coro to accomplish this):
1004
1005 if (defined $AnyEvent::MODEL) {
1006 # AnyEvent already initialised, so load Coro::AnyEvent
1007 require Coro::AnyEvent;
1008 } else {
1009 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1010 # as soon as it is
1011 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1012 }
1013
1014=item AnyEvent::postpone { BLOCK }
1015
1016Arranges for the block to be executed as soon as possible, but not before
1017the call itself returns. In practise, the block will be executed just
1018before the event loop polls for new events, or shortly afterwards.
1019
1020This function never returns anything (to make the C<return postpone { ...
1021}> idiom more useful.
1022
1023To understand the usefulness of this function, consider a function that
1024asynchronously does something for you and returns some transaction
1025object or guard to let you cancel the operation. For example,
1026C<AnyEvent::Socket::tcp_connect>:
1027
1028 # start a conenction attempt unless one is active
1029 $self->{connect_guard} ||= AnyEvent::Socket::tcp_connect "www.example.net", 80, sub {
1030 delete $self->{connect_guard};
1031 ...
1032 };
1033
1034Imagine that this function could instantly call the callback, for
1035example, because it detects an obvious error such as a negative port
1036number. Invoking the callback before the function returns causes problems
1037however: the callback will be called and will try to delete the guard
1038object. But since the function hasn't returned yet, there is nothing to
1039delete. When the function eventually returns it will assign the guard
1040object to C<< $self->{connect_guard} >>, where it will likely never be
1041deleted, so the program thinks it is still trying to connect.
1042
1043This is where C<AnyEvent::postpone> should be used. Instead of calling the
1044callback directly on error:
1045
1046 $cb->(undef), return # signal error to callback, BAD!
1047 if $some_error_condition;
1048
1049It should use C<postpone>:
1050
1051 AnyEvent::postpone { $cb->(undef) }, return # signal error to callback, later
1052 if $some_error_condition;
585 1053
586=back 1054=back
587 1055
588=head1 WHAT TO DO IN A MODULE 1056=head1 WHAT TO DO IN A MODULE
589 1057
600because it will stall the whole program, and the whole point of using 1068because it will stall the whole program, and the whole point of using
601events is to stay interactive. 1069events is to stay interactive.
602 1070
603It is fine, however, to call C<< ->recv >> when the user of your module 1071It is fine, however, to call C<< ->recv >> when the user of your module
604requests it (i.e. if you create a http request object ad have a method 1072requests it (i.e. if you create a http request object ad have a method
605called C<results> that returns the results, it should call C<< ->recv >> 1073called C<results> that returns the results, it may call C<< ->recv >>
606freely, as the user of your module knows what she is doing. always). 1074freely, as the user of your module knows what she is doing. Always).
607 1075
608=head1 WHAT TO DO IN THE MAIN PROGRAM 1076=head1 WHAT TO DO IN THE MAIN PROGRAM
609 1077
610There will always be a single main program - the only place that should 1078There will always be a single main program - the only place that should
611dictate which event model to use. 1079dictate which event model to use.
612 1080
613If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1081If the program is not event-based, it need not do anything special, even
614do anything special (it does not need to be event-based) and let AnyEvent 1082when it depends on a module that uses an AnyEvent. If the program itself
615decide which implementation to chose if some module relies on it. 1083uses AnyEvent, but does not care which event loop is used, all it needs
1084to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1085available loop implementation.
616 1086
617If the main program relies on a specific event model. For example, in 1087If the main program relies on a specific event model - for example, in
618Gtk2 programs you have to rely on the Glib module. You should load the 1088Gtk2 programs you have to rely on the Glib module - you should load the
619event module before loading AnyEvent or any module that uses it: generally 1089event module before loading AnyEvent or any module that uses it: generally
620speaking, you should load it as early as possible. The reason is that 1090speaking, you should load it as early as possible. The reason is that
621modules might create watchers when they are loaded, and AnyEvent will 1091modules might create watchers when they are loaded, and AnyEvent will
622decide on the event model to use as soon as it creates watchers, and it 1092decide on the event model to use as soon as it creates watchers, and it
623might chose the wrong one unless you load the correct one yourself. 1093might choose the wrong one unless you load the correct one yourself.
624 1094
625You can chose to use a rather inefficient pure-perl implementation by 1095You can chose to use a pure-perl implementation by loading the
626loading the C<AnyEvent::Impl::Perl> module, which gives you similar 1096C<AnyEvent::Loop> module, which gives you similar behaviour
627behaviour everywhere, but letting AnyEvent chose is generally better. 1097everywhere, but letting AnyEvent chose the model is generally better.
1098
1099=head2 MAINLOOP EMULATION
1100
1101Sometimes (often for short test scripts, or even standalone programs who
1102only want to use AnyEvent), you do not want to run a specific event loop.
1103
1104In that case, you can use a condition variable like this:
1105
1106 AnyEvent->condvar->recv;
1107
1108This has the effect of entering the event loop and looping forever.
1109
1110Note that usually your program has some exit condition, in which case
1111it is better to use the "traditional" approach of storing a condition
1112variable somewhere, waiting for it, and sending it when the program should
1113exit cleanly.
1114
628 1115
629=head1 OTHER MODULES 1116=head1 OTHER MODULES
630 1117
631The following is a non-exhaustive list of additional modules that use 1118The following is a non-exhaustive list of additional modules that use
632AnyEvent and can therefore be mixed easily with other AnyEvent modules 1119AnyEvent as a client and can therefore be mixed easily with other AnyEvent
633in the same program. Some of the modules come with AnyEvent, some are 1120modules and other event loops in the same program. Some of the modules
634available via CPAN. 1121come as part of AnyEvent, the others are available via CPAN.
635 1122
636=over 4 1123=over 4
637 1124
638=item L<AnyEvent::Util> 1125=item L<AnyEvent::Util>
639 1126
640Contains various utility functions that replace often-used but blocking 1127Contains various utility functions that replace often-used blocking
641functions such as C<inet_aton> by event-/callback-based versions. 1128functions such as C<inet_aton> with event/callback-based versions.
642
643=item L<AnyEvent::Handle>
644
645Provide read and write buffers and manages watchers for reads and writes.
646 1129
647=item L<AnyEvent::Socket> 1130=item L<AnyEvent::Socket>
648 1131
649Provides various utility functions for (internet protocol) sockets, 1132Provides various utility functions for (internet protocol) sockets,
650addresses and name resolution. Also functions to create non-blocking tcp 1133addresses and name resolution. Also functions to create non-blocking tcp
651connections or tcp servers, with IPv6 and SRV record support and more. 1134connections or tcp servers, with IPv6 and SRV record support and more.
652 1135
1136=item L<AnyEvent::Handle>
1137
1138Provide read and write buffers, manages watchers for reads and writes,
1139supports raw and formatted I/O, I/O queued and fully transparent and
1140non-blocking SSL/TLS (via L<AnyEvent::TLS>).
1141
1142=item L<AnyEvent::DNS>
1143
1144Provides rich asynchronous DNS resolver capabilities.
1145
1146=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1147
1148Implement event-based interfaces to the protocols of the same name (for
1149the curious, IGS is the International Go Server and FCP is the Freenet
1150Client Protocol).
1151
1152=item L<AnyEvent::Handle::UDP>
1153
1154Here be danger!
1155
1156As Pauli would put it, "Not only is it not right, it's not even wrong!" -
1157there are so many things wrong with AnyEvent::Handle::UDP, most notably
1158its use of a stream-based API with a protocol that isn't streamable, that
1159the only way to improve it is to delete it.
1160
1161It features data corruption (but typically only under load) and general
1162confusion. On top, the author is not only clueless about UDP but also
1163fact-resistant - some gems of his understanding: "connect doesn't work
1164with UDP", "UDP packets are not IP packets", "UDP only has datagrams, not
1165packets", "I don't need to implement proper error checking as UDP doesn't
1166support error checking" and so on - he doesn't even understand what's
1167wrong with his module when it is explained to him.
1168
1169=item L<AnyEvent::DBI>
1170
1171Executes L<DBI> requests asynchronously in a proxy process for you,
1172notifying you in an event-based way when the operation is finished.
1173
1174=item L<AnyEvent::AIO>
1175
1176Truly asynchronous (as opposed to non-blocking) I/O, should be in the
1177toolbox of every event programmer. AnyEvent::AIO transparently fuses
1178L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1179file I/O, and much more.
1180
653=item L<AnyEvent::HTTPD> 1181=item L<AnyEvent::HTTPD>
654 1182
655Provides a simple web application server framework. 1183A simple embedded webserver.
656
657=item L<AnyEvent::DNS>
658
659Provides rich asynchronous DNS resolver capabilities.
660 1184
661=item L<AnyEvent::FastPing> 1185=item L<AnyEvent::FastPing>
662 1186
663The fastest ping in the west. 1187The fastest ping in the west.
664 1188
665=item L<Net::IRC3>
666
667AnyEvent based IRC client module family.
668
669=item L<Net::XMPP2>
670
671AnyEvent based XMPP (Jabber protocol) module family.
672
673=item L<Net::FCP>
674
675AnyEvent-based implementation of the Freenet Client Protocol, birthplace
676of AnyEvent.
677
678=item L<Event::ExecFlow>
679
680High level API for event-based execution flow control.
681
682=item L<Coro> 1189=item L<Coro>
683 1190
684Has special support for AnyEvent via L<Coro::AnyEvent>. 1191Has special support for AnyEvent via L<Coro::AnyEvent>.
685 1192
686=item L<AnyEvent::AIO>, L<IO::AIO>
687
688Truly asynchronous I/O, should be in the toolbox of every event
689programmer. AnyEvent::AIO transparently fuses IO::AIO and AnyEvent
690together.
691
692=item L<AnyEvent::BDB>, L<BDB>
693
694Truly asynchronous Berkeley DB access. AnyEvent::AIO transparently fuses
695IO::AIO and AnyEvent together.
696
697=item L<IO::Lambda>
698
699The lambda approach to I/O - don't ask, look there. Can use AnyEvent.
700
701=back 1193=back
702 1194
703=cut 1195=cut
704 1196
705package AnyEvent; 1197package AnyEvent;
706 1198
707no warnings; 1199# basically a tuned-down version of common::sense
708use strict; 1200sub common_sense {
1201 # from common:.sense 3.4
1202 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf0\x0f\xc0\xf0\xfc\x33\x00";
1203 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1204 $^H |= 0x00000600;
1205}
709 1206
1207BEGIN { AnyEvent::common_sense }
1208
710use Carp; 1209use Carp ();
711 1210
712our $VERSION = '4.03'; 1211our $VERSION = '6.01';
713our $MODEL; 1212our $MODEL;
714 1213
715our $AUTOLOAD;
716our @ISA; 1214our @ISA;
717 1215
718our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1;
719
720our @REGISTRY; 1216our @REGISTRY;
721 1217
722our %PROTOCOL; # (ipv4|ipv6) => (1|2) 1218our $VERBOSE;
1219
1220BEGIN {
1221 require "AnyEvent/constants.pl";
1222
1223 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
1224
1225 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1226 if ${^TAINT};
1227
1228 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1;
1229
1230}
1231
1232our $MAX_SIGNAL_LATENCY = 10;
1233
1234our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
723 1235
724{ 1236{
725 my $idx; 1237 my $idx;
726 $PROTOCOL{$_} = ++$idx 1238 $PROTOCOL{$_} = ++$idx
1239 for reverse split /\s*,\s*/,
727 for split /\s*,\s*/, $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1240 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
728} 1241}
729 1242
1243our @post_detect;
1244
1245sub post_detect(&) {
1246 my ($cb) = @_;
1247
1248 push @post_detect, $cb;
1249
1250 defined wantarray
1251 ? bless \$cb, "AnyEvent::Util::postdetect"
1252 : ()
1253}
1254
1255sub AnyEvent::Util::postdetect::DESTROY {
1256 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1257}
1258
1259our $POSTPONE_W;
1260our @POSTPONE;
1261
1262sub _postpone_exec {
1263 undef $POSTPONE_W;
1264
1265 &{ shift @POSTPONE }
1266 while @POSTPONE;
1267}
1268
1269sub postpone(&) {
1270 push @POSTPONE, shift;
1271
1272 $POSTPONE_W ||= AE::timer (0, 0, \&_postpone_exec);
1273
1274 ()
1275}
1276
730my @models = ( 1277our @models = (
731 [EV:: => AnyEvent::Impl::EV::], 1278 [EV:: => AnyEvent::Impl::EV:: , 1],
1279 [AnyEvent::Loop:: => AnyEvent::Impl::Perl:: , 1],
1280 # everything below here will not (normally) be autoprobed
1281 # as the pure perl backend should work everywhere
1282 # and is usually faster
732 [Event:: => AnyEvent::Impl::Event::], 1283 [Event:: => AnyEvent::Impl::Event::, 1],
1284 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1285 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1286 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
733 [Tk:: => AnyEvent::Impl::Tk::], 1287 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
1288 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
1289 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
734 [Wx:: => AnyEvent::Impl::POE::], 1290 [Wx:: => AnyEvent::Impl::POE::],
735 [Prima:: => AnyEvent::Impl::POE::], 1291 [Prima:: => AnyEvent::Impl::POE::],
736 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::], 1292 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # a bitch to autodetect
737 # everything below here will not be autoprobed as the pureperl backend should work everywhere 1293 [Cocoa::EventLoop:: => AnyEvent::Impl::Cocoa::],
738 [Glib:: => AnyEvent::Impl::Glib::], 1294 [FLTK:: => AnyEvent::Impl::FLTK2::],
739 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
740 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
741 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
742); 1295);
743 1296
744our %method = map +($_ => 1), qw(io timer signal child condvar one_event DESTROY); 1297our @isa_hook;
745 1298
746our @post_detect; 1299sub _isa_set {
1300 my @pkg = ("AnyEvent", (grep defined, map $_->[0], @isa_hook), $MODEL);
747 1301
1302 @{"$pkg[$_-1]::ISA"} = $pkg[$_]
1303 for 1 .. $#pkg;
1304
1305 grep $_->[1], @isa_hook
1306 and AE::_reset ();
1307}
1308
1309# used for hooking AnyEvent::Strict and AnyEvent::Debug::Wrap into the class hierarchy
1310sub _isa_hook($$;$) {
1311 my ($i, $pkg, $reset_ae) = @_;
1312
1313 $isa_hook[$i] = [$pkg, $reset_ae];
1314
1315 _isa_set;
1316}
1317
1318# all autoloaded methods reserve the complete glob, not just the method slot.
1319# due to bugs in perls method cache implementation.
1320our @methods = qw(io timer time now now_update signal child idle condvar);
1321
748sub post_detect(&) { 1322sub detect() {
749 my ($cb) = @_; 1323 local $!; # for good measure
1324 local $SIG{__DIE__}; # we use eval
750 1325
751 if ($MODEL) { 1326 # free some memory
752 $cb->(); 1327 *detect = sub () { $MODEL };
1328 # undef &func doesn't correctly update the method cache. grmbl.
1329 # so we delete the whole glob. grmbl.
1330 # otoh, perl doesn't let me undef an active usb, but it lets me free
1331 # a glob with an active sub. hrm. i hope it works, but perl is
1332 # usually buggy in this department. sigh.
1333 delete @{"AnyEvent::"}{@methods};
1334 undef @methods;
753 1335
754 1 1336 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z0-9:]+)$/) {
1337 my $model = $1;
1338 $model = "AnyEvent::Impl::$model" unless $model =~ s/::$//;
1339 if (eval "require $model") {
1340 $MODEL = $model;
1341 warn "AnyEvent: loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.\n" if $VERBOSE >= 2;
755 } else { 1342 } else {
756 push @post_detect, $cb; 1343 warn "AnyEvent: unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@" if $VERBOSE;
757 1344 }
758 defined wantarray
759 ? bless \$cb, "AnyEvent::Util::PostDetect"
760 : ()
761 } 1345 }
762}
763 1346
764sub AnyEvent::Util::PostDetect::DESTROY { 1347 # check for already loaded models
765 @post_detect = grep $_ != ${$_[0]}, @post_detect;
766}
767
768sub detect() {
769 unless ($MODEL) { 1348 unless ($MODEL) {
770 no strict 'refs'; 1349 for (@REGISTRY, @models) {
771 1350 my ($package, $model) = @$_;
772 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) { 1351 if (${"$package\::VERSION"} > 0) {
773 my $model = "AnyEvent::Impl::$1";
774 if (eval "require $model") { 1352 if (eval "require $model") {
775 $MODEL = $model; 1353 $MODEL = $model;
776 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1354 warn "AnyEvent: autodetected model '$model', using it.\n" if $VERBOSE >= 2;
777 } else { 1355 last;
778 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose; 1356 }
779 } 1357 }
780 } 1358 }
781 1359
782 # check for already loaded models
783 unless ($MODEL) { 1360 unless ($MODEL) {
1361 # try to autoload a model
784 for (@REGISTRY, @models) { 1362 for (@REGISTRY, @models) {
785 my ($package, $model) = @$_; 1363 my ($package, $model, $autoload) = @$_;
1364 if (
1365 $autoload
1366 and eval "require $package"
786 if (${"$package\::VERSION"} > 0) { 1367 and ${"$package\::VERSION"} > 0
787 if (eval "require $model") { 1368 and eval "require $model"
1369 ) {
788 $MODEL = $model; 1370 $MODEL = $model;
789 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1; 1371 warn "AnyEvent: autoloaded model '$model', using it.\n" if $VERBOSE >= 2;
790 last; 1372 last;
791 }
792 } 1373 }
793 } 1374 }
794 1375
795 unless ($MODEL) { 1376 $MODEL
796 # try to load a model 1377 or die "AnyEvent: backend autodetection failed - did you properly install AnyEvent?\n";
1378 }
1379 }
797 1380
798 for (@REGISTRY, @models) { 1381 # free memory only needed for probing
799 my ($package, $model) = @$_; 1382 undef @models;
800 if (eval "require $package" 1383 undef @REGISTRY;
801 and ${"$package\::VERSION"} > 0 1384
802 and eval "require $model") { 1385 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
803 $MODEL = $model; 1386
804 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1; 1387 # now nuke some methods that are overridden by the backend.
1388 # SUPER usage is not allowed in these.
1389 for (qw(time signal child idle)) {
1390 undef &{"AnyEvent::Base::$_"}
1391 if defined &{"$MODEL\::$_"};
1392 }
1393
1394 _isa_set;
1395
1396 if ($ENV{PERL_ANYEVENT_STRICT}) {
1397 require AnyEvent::Strict;
1398 }
1399
1400 if ($ENV{PERL_ANYEVENT_DEBUG_WRAP}) {
1401 require AnyEvent::Debug;
1402 AnyEvent::Debug::wrap ($ENV{PERL_ANYEVENT_DEBUG_WRAP});
1403 }
1404
1405 if (exists $ENV{PERL_ANYEVENT_DEBUG_SHELL}) {
1406 require AnyEvent::Socket;
1407 require AnyEvent::Debug;
1408
1409 my $shell = $ENV{PERL_ANYEVENT_DEBUG_SHELL};
1410 $shell =~ s/\$\$/$$/g;
1411
1412 my ($host, $service) = AnyEvent::Socket::parse_hostport ($shell);
1413 $AnyEvent::Debug::SHELL = AnyEvent::Debug::shell ($host, $service);
1414 }
1415
1416 (shift @post_detect)->() while @post_detect;
1417 undef @post_detect;
1418
1419 *post_detect = sub(&) {
1420 shift->();
1421
1422 undef
1423 };
1424
1425 $MODEL
1426}
1427
1428for my $name (@methods) {
1429 *$name = sub {
1430 detect;
1431 # we use goto because
1432 # a) it makes the thunk more transparent
1433 # b) it allows us to delete the thunk later
1434 goto &{ UNIVERSAL::can AnyEvent => "SUPER::$name" }
1435 };
1436}
1437
1438# utility function to dup a filehandle. this is used by many backends
1439# to support binding more than one watcher per filehandle (they usually
1440# allow only one watcher per fd, so we dup it to get a different one).
1441sub _dupfh($$;$$) {
1442 my ($poll, $fh, $r, $w) = @_;
1443
1444 # cygwin requires the fh mode to be matching, unix doesn't
1445 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1446
1447 open my $fh2, $mode, $fh
1448 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1449
1450 # we assume CLOEXEC is already set by perl in all important cases
1451
1452 ($fh2, $rw)
1453}
1454
1455=head1 SIMPLIFIED AE API
1456
1457Starting with version 5.0, AnyEvent officially supports a second, much
1458simpler, API that is designed to reduce the calling, typing and memory
1459overhead by using function call syntax and a fixed number of parameters.
1460
1461See the L<AE> manpage for details.
1462
1463=cut
1464
1465package AE;
1466
1467our $VERSION = $AnyEvent::VERSION;
1468
1469sub _reset() {
1470 eval q{
1471 # fall back to the main API by default - backends and AnyEvent::Base
1472 # implementations can overwrite these.
1473
1474 sub io($$$) {
1475 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1476 }
1477
1478 sub timer($$$) {
1479 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1480 }
1481
1482 sub signal($$) {
1483 AnyEvent->signal (signal => $_[0], cb => $_[1])
1484 }
1485
1486 sub child($$) {
1487 AnyEvent->child (pid => $_[0], cb => $_[1])
1488 }
1489
1490 sub idle($) {
1491 AnyEvent->idle (cb => $_[0]);
1492 }
1493
1494 sub cv(;&) {
1495 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1496 }
1497
1498 sub now() {
1499 AnyEvent->now
1500 }
1501
1502 sub now_update() {
1503 AnyEvent->now_update
1504 }
1505
1506 sub time() {
1507 AnyEvent->time
1508 }
1509
1510 *postpone = \&AnyEvent::postpone;
1511 };
1512 die if $@;
1513}
1514
1515BEGIN { _reset }
1516
1517package AnyEvent::Base;
1518
1519# default implementations for many methods
1520
1521sub time {
1522 eval q{ # poor man's autoloading {}
1523 # probe for availability of Time::HiRes
1524 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1525 warn "AnyEvent: using Time::HiRes for sub-second timing accuracy.\n" if $VERBOSE >= 8;
1526 *time = sub { Time::HiRes::time () };
1527 *AE::time = \& Time::HiRes::time ;
1528 # if (eval "use POSIX (); (POSIX::times())...
1529 } else {
1530 warn "AnyEvent: using built-in time(), WARNING, no sub-second resolution!\n" if $VERBOSE;
1531 *time = sub { CORE::time };
1532 *AE::time = sub (){ CORE::time };
1533 }
1534
1535 *now = \&time;
1536 };
1537 die if $@;
1538
1539 &time
1540}
1541
1542*now = \&time;
1543sub now_update { }
1544
1545sub _poll {
1546 Carp::croak "$AnyEvent::MODEL does not support blocking waits. Caught";
1547}
1548
1549# default implementation for ->condvar
1550# in fact, the default should not be overwritten
1551
1552sub condvar {
1553 eval q{ # poor man's autoloading {}
1554 *condvar = sub {
1555 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1556 };
1557
1558 *AE::cv = sub (;&) {
1559 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
1560 };
1561 };
1562 die if $@;
1563
1564 &condvar
1565}
1566
1567# default implementation for ->signal
1568
1569our $HAVE_ASYNC_INTERRUPT;
1570
1571sub _have_async_interrupt() {
1572 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1573 && eval "use Async::Interrupt 1.02 (); 1")
1574 unless defined $HAVE_ASYNC_INTERRUPT;
1575
1576 $HAVE_ASYNC_INTERRUPT
1577}
1578
1579our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1580our (%SIG_ASY, %SIG_ASY_W);
1581our ($SIG_COUNT, $SIG_TW);
1582
1583# install a dummy wakeup watcher to reduce signal catching latency
1584# used by Impls
1585sub _sig_add() {
1586 unless ($SIG_COUNT++) {
1587 # try to align timer on a full-second boundary, if possible
1588 my $NOW = AE::now;
1589
1590 $SIG_TW = AE::timer
1591 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1592 $MAX_SIGNAL_LATENCY,
1593 sub { } # just for the PERL_ASYNC_CHECK
1594 ;
1595 }
1596}
1597
1598sub _sig_del {
1599 undef $SIG_TW
1600 unless --$SIG_COUNT;
1601}
1602
1603our $_sig_name_init; $_sig_name_init = sub {
1604 eval q{ # poor man's autoloading {}
1605 undef $_sig_name_init;
1606
1607 if (_have_async_interrupt) {
1608 *sig2num = \&Async::Interrupt::sig2num;
1609 *sig2name = \&Async::Interrupt::sig2name;
1610 } else {
1611 require Config;
1612
1613 my %signame2num;
1614 @signame2num{ split ' ', $Config::Config{sig_name} }
1615 = split ' ', $Config::Config{sig_num};
1616
1617 my @signum2name;
1618 @signum2name[values %signame2num] = keys %signame2num;
1619
1620 *sig2num = sub($) {
1621 $_[0] > 0 ? shift : $signame2num{+shift}
1622 };
1623 *sig2name = sub ($) {
1624 $_[0] > 0 ? $signum2name[+shift] : shift
1625 };
1626 }
1627 };
1628 die if $@;
1629};
1630
1631sub sig2num ($) { &$_sig_name_init; &sig2num }
1632sub sig2name($) { &$_sig_name_init; &sig2name }
1633
1634sub signal {
1635 eval q{ # poor man's autoloading {}
1636 # probe for availability of Async::Interrupt
1637 if (_have_async_interrupt) {
1638 warn "AnyEvent: using Async::Interrupt for race-free signal handling.\n" if $VERBOSE >= 8;
1639
1640 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1641 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1642
1643 } else {
1644 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8;
1645
1646 if (AnyEvent::WIN32) {
1647 require AnyEvent::Util;
1648
1649 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1650 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1651 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1652 } else {
1653 pipe $SIGPIPE_R, $SIGPIPE_W;
1654 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1655 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1656
1657 # not strictly required, as $^F is normally 2, but let's make sure...
1658 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1659 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1660 }
1661
1662 $SIGPIPE_R
1663 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1664
1665 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1666 }
1667
1668 *signal = $HAVE_ASYNC_INTERRUPT
1669 ? sub {
1670 my (undef, %arg) = @_;
1671
1672 # async::interrupt
1673 my $signal = sig2num $arg{signal};
1674 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1675
1676 $SIG_ASY{$signal} ||= new Async::Interrupt
1677 cb => sub { undef $SIG_EV{$signal} },
1678 signal => $signal,
1679 pipe => [$SIGPIPE_R->filenos],
1680 pipe_autodrain => 0,
1681 ;
1682
1683 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1684 }
1685 : sub {
1686 my (undef, %arg) = @_;
1687
1688 # pure perl
1689 my $signal = sig2name $arg{signal};
1690 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1691
1692 $SIG{$signal} ||= sub {
805 last; 1693 local $!;
1694 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1695 undef $SIG_EV{$signal};
806 } 1696 };
1697
1698 # can't do signal processing without introducing races in pure perl,
1699 # so limit the signal latency.
1700 _sig_add;
1701
1702 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1703 }
1704 ;
1705
1706 *AnyEvent::Base::signal::DESTROY = sub {
1707 my ($signal, $cb) = @{$_[0]};
1708
1709 _sig_del;
1710
1711 delete $SIG_CB{$signal}{$cb};
1712
1713 $HAVE_ASYNC_INTERRUPT
1714 ? delete $SIG_ASY{$signal}
1715 : # delete doesn't work with older perls - they then
1716 # print weird messages, or just unconditionally exit
1717 # instead of getting the default action.
1718 undef $SIG{$signal}
1719 unless keys %{ $SIG_CB{$signal} };
1720 };
1721
1722 *_signal_exec = sub {
1723 $HAVE_ASYNC_INTERRUPT
1724 ? $SIGPIPE_R->drain
1725 : sysread $SIGPIPE_R, (my $dummy), 9;
1726
1727 while (%SIG_EV) {
1728 for (keys %SIG_EV) {
1729 delete $SIG_EV{$_};
1730 &$_ for values %{ $SIG_CB{$_} || {} };
807 } 1731 }
808
809 $MODEL
810 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib.";
811 } 1732 }
812 } 1733 };
813
814 unshift @ISA, $MODEL;
815 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
816
817 (shift @post_detect)->() while @post_detect;
818 }
819
820 $MODEL
821}
822
823sub AUTOLOAD {
824 (my $func = $AUTOLOAD) =~ s/.*://;
825
826 $method{$func}
827 or croak "$func: not a valid method for AnyEvent objects";
828
829 detect unless $MODEL;
830
831 my $class = shift;
832 $class->$func (@_);
833}
834
835package AnyEvent::Base;
836
837# default implementation for ->condvar
838
839sub condvar {
840 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar::
841}
842
843# default implementation for ->signal
844
845our %SIG_CB;
846
847sub signal {
848 my (undef, %arg) = @_;
849
850 my $signal = uc $arg{signal}
851 or Carp::croak "required option 'signal' is missing";
852
853 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
854 $SIG{$signal} ||= sub {
855 $_->() for values %{ $SIG_CB{$signal} || {} };
856 }; 1734 };
1735 die if $@;
857 1736
858 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1737 &signal
859}
860
861sub AnyEvent::Base::Signal::DESTROY {
862 my ($signal, $cb) = @{$_[0]};
863
864 delete $SIG_CB{$signal}{$cb};
865
866 $SIG{$signal} = 'DEFAULT' unless keys %{ $SIG_CB{$signal} };
867} 1738}
868 1739
869# default implementation for ->child 1740# default implementation for ->child
870 1741
871our %PID_CB; 1742our %PID_CB;
872our $CHLD_W; 1743our $CHLD_W;
873our $CHLD_DELAY_W; 1744our $CHLD_DELAY_W;
874our $PID_IDLE;
875our $WNOHANG;
876 1745
877sub _child_wait { 1746# used by many Impl's
878 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1747sub _emit_childstatus($$) {
1748 my (undef, $rpid, $rstatus) = @_;
1749
1750 $_->($rpid, $rstatus)
879 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1751 for values %{ $PID_CB{$rpid} || {} },
880 (values %{ $PID_CB{0} || {} }); 1752 values %{ $PID_CB{0} || {} };
881 }
882
883 undef $PID_IDLE;
884}
885
886sub _sigchld {
887 # make sure we deliver these changes "synchronous" with the event loop.
888 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub {
889 undef $CHLD_DELAY_W;
890 &_child_wait;
891 });
892} 1753}
893 1754
894sub child { 1755sub child {
1756 eval q{ # poor man's autoloading {}
1757 *_sigchld = sub {
1758 my $pid;
1759
1760 AnyEvent->_emit_childstatus ($pid, $?)
1761 while ($pid = waitpid -1, WNOHANG) > 0;
1762 };
1763
1764 *child = sub {
895 my (undef, %arg) = @_; 1765 my (undef, %arg) = @_;
896 1766
897 defined (my $pid = $arg{pid} + 0) 1767 my $pid = $arg{pid};
898 or Carp::croak "required option 'pid' is missing"; 1768 my $cb = $arg{cb};
899 1769
900 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1770 $PID_CB{$pid}{$cb+0} = $cb;
901 1771
902 unless ($WNOHANG) {
903 $WNOHANG = eval { require POSIX; &POSIX::WNOHANG } || 1;
904 }
905
906 unless ($CHLD_W) { 1772 unless ($CHLD_W) {
907 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1773 $CHLD_W = AE::signal CHLD => \&_sigchld;
908 # child could be a zombie already, so make at least one round 1774 # child could be a zombie already, so make at least one round
909 &_sigchld; 1775 &_sigchld;
910 } 1776 }
911 1777
912 bless [$pid, $arg{cb}], "AnyEvent::Base::Child" 1778 bless [$pid, $cb+0], "AnyEvent::Base::child"
913} 1779 };
914 1780
915sub AnyEvent::Base::Child::DESTROY { 1781 *AnyEvent::Base::child::DESTROY = sub {
916 my ($pid, $cb) = @{$_[0]}; 1782 my ($pid, $icb) = @{$_[0]};
917 1783
918 delete $PID_CB{$pid}{$cb}; 1784 delete $PID_CB{$pid}{$icb};
919 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1785 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
920 1786
921 undef $CHLD_W unless keys %PID_CB; 1787 undef $CHLD_W unless keys %PID_CB;
1788 };
1789 };
1790 die if $@;
1791
1792 &child
1793}
1794
1795# idle emulation is done by simply using a timer, regardless
1796# of whether the process is idle or not, and not letting
1797# the callback use more than 50% of the time.
1798sub idle {
1799 eval q{ # poor man's autoloading {}
1800 *idle = sub {
1801 my (undef, %arg) = @_;
1802
1803 my ($cb, $w, $rcb) = $arg{cb};
1804
1805 $rcb = sub {
1806 if ($cb) {
1807 $w = AE::time;
1808 &$cb;
1809 $w = AE::time - $w;
1810
1811 # never use more then 50% of the time for the idle watcher,
1812 # within some limits
1813 $w = 0.0001 if $w < 0.0001;
1814 $w = 5 if $w > 5;
1815
1816 $w = AE::timer $w, 0, $rcb;
1817 } else {
1818 # clean up...
1819 undef $w;
1820 undef $rcb;
1821 }
1822 };
1823
1824 $w = AE::timer 0.05, 0, $rcb;
1825
1826 bless \\$cb, "AnyEvent::Base::idle"
1827 };
1828
1829 *AnyEvent::Base::idle::DESTROY = sub {
1830 undef $${$_[0]};
1831 };
1832 };
1833 die if $@;
1834
1835 &idle
922} 1836}
923 1837
924package AnyEvent::CondVar; 1838package AnyEvent::CondVar;
925 1839
926our @ISA = AnyEvent::CondVar::Base::; 1840our @ISA = AnyEvent::CondVar::Base::;
927 1841
1842# only to be used for subclassing
1843sub new {
1844 my $class = shift;
1845 bless AnyEvent->condvar (@_), $class
1846}
1847
928package AnyEvent::CondVar::Base; 1848package AnyEvent::CondVar::Base;
929 1849
930use overload 1850#use overload
931 '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, 1851# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
932 fallback => 1; 1852# fallback => 1;
1853
1854# save 300+ kilobytes by dirtily hardcoding overloading
1855${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1856*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1857*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1858${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1859
1860our $WAITING;
933 1861
934sub _send { 1862sub _send {
935 # nop 1863 # nop
1864}
1865
1866sub _wait {
1867 AnyEvent->_poll until $_[0]{_ae_sent};
936} 1868}
937 1869
938sub send { 1870sub send {
939 my $cv = shift; 1871 my $cv = shift;
940 $cv->{_ae_sent} = [@_]; 1872 $cv->{_ae_sent} = [@_];
949 1881
950sub ready { 1882sub ready {
951 $_[0]{_ae_sent} 1883 $_[0]{_ae_sent}
952} 1884}
953 1885
954sub _wait {
955 AnyEvent->one_event while !$_[0]{_ae_sent};
956}
957
958sub recv { 1886sub recv {
1887 unless ($_[0]{_ae_sent}) {
1888 $WAITING
1889 and Carp::croak "AnyEvent::CondVar: recursive blocking wait attempted";
1890
1891 local $WAITING = 1;
959 $_[0]->_wait; 1892 $_[0]->_wait;
1893 }
960 1894
961 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1895 $_[0]{_ae_croak}
962 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1896 and Carp::croak $_[0]{_ae_croak};
1897
1898 wantarray
1899 ? @{ $_[0]{_ae_sent} }
1900 : $_[0]{_ae_sent}[0]
963} 1901}
964 1902
965sub cb { 1903sub cb {
966 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1904 my $cv = shift;
1905
1906 @_
1907 and $cv->{_ae_cb} = shift
1908 and $cv->{_ae_sent}
1909 and (delete $cv->{_ae_cb})->($cv);
1910
967 $_[0]{_ae_cb} 1911 $cv->{_ae_cb}
968} 1912}
969 1913
970sub begin { 1914sub begin {
971 ++$_[0]{_ae_counter}; 1915 ++$_[0]{_ae_counter};
972 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 1916 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
977 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } }; 1921 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } };
978} 1922}
979 1923
980# undocumented/compatibility with pre-3.4 1924# undocumented/compatibility with pre-3.4
981*broadcast = \&send; 1925*broadcast = \&send;
982*wait = \&_wait; 1926*wait = \&recv;
1927
1928=head1 ERROR AND EXCEPTION HANDLING
1929
1930In general, AnyEvent does not do any error handling - it relies on the
1931caller to do that if required. The L<AnyEvent::Strict> module (see also
1932the C<PERL_ANYEVENT_STRICT> environment variable, below) provides strict
1933checking of all AnyEvent methods, however, which is highly useful during
1934development.
1935
1936As for exception handling (i.e. runtime errors and exceptions thrown while
1937executing a callback), this is not only highly event-loop specific, but
1938also not in any way wrapped by this module, as this is the job of the main
1939program.
1940
1941The pure perl event loop simply re-throws the exception (usually
1942within C<< condvar->recv >>), the L<Event> and L<EV> modules call C<<
1943$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
1944so on.
1945
1946=head1 ENVIRONMENT VARIABLES
1947
1948The following environment variables are used by this module or its
1949submodules.
1950
1951Note that AnyEvent will remove I<all> environment variables starting with
1952C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
1953enabled.
1954
1955=over 4
1956
1957=item C<PERL_ANYEVENT_VERBOSE>
1958
1959By default, AnyEvent will be completely silent except in fatal
1960conditions. You can set this environment variable to make AnyEvent more
1961talkative.
1962
1963When set to C<1> or higher, causes AnyEvent to warn about unexpected
1964conditions, such as not being able to load the event model specified by
1965C<PERL_ANYEVENT_MODEL>.
1966
1967When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1968model it chooses.
1969
1970When set to C<8> or higher, then AnyEvent will report extra information on
1971which optional modules it loads and how it implements certain features.
1972
1973=item C<PERL_ANYEVENT_STRICT>
1974
1975AnyEvent does not do much argument checking by default, as thorough
1976argument checking is very costly. Setting this variable to a true value
1977will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1978check the arguments passed to most method calls. If it finds any problems,
1979it will croak.
1980
1981In other words, enables "strict" mode.
1982
1983Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
1984>>, it is definitely recommended to keep it off in production. Keeping
1985C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
1986can be very useful, however.
1987
1988=item C<PERL_ANYEVENT_DEBUG_SHELL>
1989
1990If this env variable is set, then its contents will be interpreted by
1991C<AnyEvent::Socket::parse_hostport> (after replacing every occurance of
1992C<$$> by the process pid) and an C<AnyEvent::Debug::shell> is bound on
1993that port. The shell object is saved in C<$AnyEvent::Debug::SHELL>.
1994
1995This takes place when the first watcher is created.
1996
1997For example, to bind a debug shell on a unix domain socket in
1998F<< /tmp/debug<pid>.sock >>, you could use this:
1999
2000 PERL_ANYEVENT_DEBUG_SHELL=unix/:/tmp/debug\$\$.sock perlprog
2001
2002Note that creating sockets in F</tmp> is very unsafe on multiuser
2003systems.
2004
2005=item C<PERL_ANYEVENT_DEBUG_WRAP>
2006
2007Can be set to C<0>, C<1> or C<2> and enables wrapping of all watchers for
2008debugging purposes. See C<AnyEvent::Debug::wrap> for details.
2009
2010=item C<PERL_ANYEVENT_MODEL>
2011
2012This can be used to specify the event model to be used by AnyEvent, before
2013auto detection and -probing kicks in.
2014
2015It normally is a string consisting entirely of ASCII letters (e.g. C<EV>
2016or C<IOAsync>). The string C<AnyEvent::Impl::> gets prepended and the
2017resulting module name is loaded and - if the load was successful - used as
2018event model backend. If it fails to load then AnyEvent will proceed with
2019auto detection and -probing.
2020
2021If the string ends with C<::> instead (e.g. C<AnyEvent::Impl::EV::>) then
2022nothing gets prepended and the module name is used as-is (hint: C<::> at
2023the end of a string designates a module name and quotes it appropriately).
2024
2025For example, to force the pure perl model (L<AnyEvent::Loop::Perl>) you
2026could start your program like this:
2027
2028 PERL_ANYEVENT_MODEL=Perl perl ...
2029
2030=item C<PERL_ANYEVENT_PROTOCOLS>
2031
2032Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
2033for IPv4 or IPv6. The default is unspecified (and might change, or be the result
2034of auto probing).
2035
2036Must be set to a comma-separated list of protocols or address families,
2037current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
2038used, and preference will be given to protocols mentioned earlier in the
2039list.
2040
2041This variable can effectively be used for denial-of-service attacks
2042against local programs (e.g. when setuid), although the impact is likely
2043small, as the program has to handle conenction and other failures anyways.
2044
2045Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
2046but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
2047- only support IPv4, never try to resolve or contact IPv6
2048addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
2049IPv6, but prefer IPv6 over IPv4.
2050
2051=item C<PERL_ANYEVENT_EDNS0>
2052
2053Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
2054for DNS. This extension is generally useful to reduce DNS traffic, but
2055some (broken) firewalls drop such DNS packets, which is why it is off by
2056default.
2057
2058Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
2059EDNS0 in its DNS requests.
2060
2061=item C<PERL_ANYEVENT_MAX_FORKS>
2062
2063The maximum number of child processes that C<AnyEvent::Util::fork_call>
2064will create in parallel.
2065
2066=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
2067
2068The default value for the C<max_outstanding> parameter for the default DNS
2069resolver - this is the maximum number of parallel DNS requests that are
2070sent to the DNS server.
2071
2072=item C<PERL_ANYEVENT_RESOLV_CONF>
2073
2074The file to use instead of F</etc/resolv.conf> (or OS-specific
2075configuration) in the default resolver. When set to the empty string, no
2076default config will be used.
2077
2078=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
2079
2080When neither C<ca_file> nor C<ca_path> was specified during
2081L<AnyEvent::TLS> context creation, and either of these environment
2082variables exist, they will be used to specify CA certificate locations
2083instead of a system-dependent default.
2084
2085=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
2086
2087When these are set to C<1>, then the respective modules are not
2088loaded. Mostly good for testing AnyEvent itself.
2089
2090=back
983 2091
984=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 2092=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
985 2093
986This is an advanced topic that you do not normally need to use AnyEvent in 2094This is an advanced topic that you do not normally need to use AnyEvent in
987a module. This section is only of use to event loop authors who want to 2095a module. This section is only of use to event loop authors who want to
1021 2129
1022I<rxvt-unicode> also cheats a bit by not providing blocking access to 2130I<rxvt-unicode> also cheats a bit by not providing blocking access to
1023condition variables: code blocking while waiting for a condition will 2131condition variables: code blocking while waiting for a condition will
1024C<die>. This still works with most modules/usages, and blocking calls must 2132C<die>. This still works with most modules/usages, and blocking calls must
1025not be done in an interactive application, so it makes sense. 2133not be done in an interactive application, so it makes sense.
1026
1027=head1 ENVIRONMENT VARIABLES
1028
1029The following environment variables are used by this module:
1030
1031=over 4
1032
1033=item C<PERL_ANYEVENT_VERBOSE>
1034
1035By default, AnyEvent will be completely silent except in fatal
1036conditions. You can set this environment variable to make AnyEvent more
1037talkative.
1038
1039When set to C<1> or higher, causes AnyEvent to warn about unexpected
1040conditions, such as not being able to load the event model specified by
1041C<PERL_ANYEVENT_MODEL>.
1042
1043When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1044model it chooses.
1045
1046=item C<PERL_ANYEVENT_MODEL>
1047
1048This can be used to specify the event model to be used by AnyEvent, before
1049auto detection and -probing kicks in. It must be a string consisting
1050entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1051and the resulting module name is loaded and if the load was successful,
1052used as event model. If it fails to load AnyEvent will proceed with
1053auto detection and -probing.
1054
1055This functionality might change in future versions.
1056
1057For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
1058could start your program like this:
1059
1060 PERL_ANYEVENT_MODEL=Perl perl ...
1061
1062=item C<PERL_ANYEVENT_PROTOCOLS>
1063
1064Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1065for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1066of auto probing).
1067
1068Must be set to a comma-separated list of protocols or address families,
1069current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1070used, and preference will be given to protocols mentioned earlier in the
1071list.
1072
1073This variable can effectively be used for denial-of-service attacks
1074against local programs (e.g. when setuid), although the impact is likely
1075small, as the program has to handle connection errors already-
1076
1077Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1078but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1079- only support IPv4, never try to resolve or contact IPv6
1080addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1081IPv6, but prefer IPv6 over IPv4.
1082
1083=item C<PERL_ANYEVENT_EDNS0>
1084
1085Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1086for DNS. This extension is generally useful to reduce DNS traffic, but
1087some (broken) firewalls drop such DNS packets, which is why it is off by
1088default.
1089
1090Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1091EDNS0 in its DNS requests.
1092
1093=back
1094 2134
1095=head1 EXAMPLE PROGRAM 2135=head1 EXAMPLE PROGRAM
1096 2136
1097The following program uses an I/O watcher to read data from STDIN, a timer 2137The following program uses an I/O watcher to read data from STDIN, a timer
1098to display a message once per second, and a condition variable to quit the 2138to display a message once per second, and a condition variable to quit the
1111 warn "read: $input\n"; # output what has been read 2151 warn "read: $input\n"; # output what has been read
1112 $cv->send if $input =~ /^q/i; # quit program if /^q/i 2152 $cv->send if $input =~ /^q/i; # quit program if /^q/i
1113 }, 2153 },
1114 ); 2154 );
1115 2155
1116 my $time_watcher; # can only be used once
1117
1118 sub new_timer {
1119 $timer = AnyEvent->timer (after => 1, cb => sub { 2156 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
1120 warn "timeout\n"; # print 'timeout' about every second 2157 warn "timeout\n"; # print 'timeout' at most every second
1121 &new_timer; # and restart the time
1122 }); 2158 });
1123 }
1124
1125 new_timer; # create first timer
1126 2159
1127 $cv->recv; # wait until user enters /^q/i 2160 $cv->recv; # wait until user enters /^q/i
1128 2161
1129=head1 REAL-WORLD EXAMPLE 2162=head1 REAL-WORLD EXAMPLE
1130 2163
1203 2236
1204The actual code goes further and collects all errors (C<die>s, exceptions) 2237The actual code goes further and collects all errors (C<die>s, exceptions)
1205that occurred during request processing. The C<result> method detects 2238that occurred during request processing. The C<result> method detects
1206whether an exception as thrown (it is stored inside the $txn object) 2239whether an exception as thrown (it is stored inside the $txn object)
1207and just throws the exception, which means connection errors and other 2240and just throws the exception, which means connection errors and other
1208problems get reported tot he code that tries to use the result, not in a 2241problems get reported to the code that tries to use the result, not in a
1209random callback. 2242random callback.
1210 2243
1211All of this enables the following usage styles: 2244All of this enables the following usage styles:
1212 2245
12131. Blocking: 22461. Blocking:
1261through AnyEvent. The benchmark creates a lot of timers (with a zero 2294through AnyEvent. The benchmark creates a lot of timers (with a zero
1262timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2295timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1263which it is), lets them fire exactly once and destroys them again. 2296which it is), lets them fire exactly once and destroys them again.
1264 2297
1265Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2298Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1266distribution. 2299distribution. It uses the L<AE> interface, which makes a real difference
2300for the EV and Perl backends only.
1267 2301
1268=head3 Explanation of the columns 2302=head3 Explanation of the columns
1269 2303
1270I<watcher> is the number of event watchers created/destroyed. Since 2304I<watcher> is the number of event watchers created/destroyed. Since
1271different event models feature vastly different performances, each event 2305different event models feature vastly different performances, each event
1292watcher. 2326watcher.
1293 2327
1294=head3 Results 2328=head3 Results
1295 2329
1296 name watchers bytes create invoke destroy comment 2330 name watchers bytes create invoke destroy comment
1297 EV/EV 400000 244 0.56 0.46 0.31 EV native interface 2331 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1298 EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers 2332 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1299 CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal 2333 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1300 Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation 2334 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1301 Event/Event 16000 516 31.88 31.30 0.85 Event native interface 2335 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1302 Event/Any 16000 590 35.75 31.42 1.08 Event + AnyEvent watchers 2336 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2337 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2338 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1303 Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour 2339 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1304 Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers 2340 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1305 POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event 2341 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1306 POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select 2342 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1307 2343
1308=head3 Discussion 2344=head3 Discussion
1309 2345
1310The benchmark does I<not> measure scalability of the event loop very 2346The benchmark does I<not> measure scalability of the event loop very
1311well. For example, a select-based event loop (such as the pure perl one) 2347well. For example, a select-based event loop (such as the pure perl one)
1323benchmark machine, handling an event takes roughly 1600 CPU cycles with 2359benchmark machine, handling an event takes roughly 1600 CPU cycles with
1324EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2360EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1325cycles with POE. 2361cycles with POE.
1326 2362
1327C<EV> is the sole leader regarding speed and memory use, which are both 2363C<EV> is the sole leader regarding speed and memory use, which are both
1328maximal/minimal, respectively. Even when going through AnyEvent, it uses 2364maximal/minimal, respectively. When using the L<AE> API there is zero
2365overhead (when going through the AnyEvent API create is about 5-6 times
2366slower, with other times being equal, so still uses far less memory than
1329far less memory than any other event loop and is still faster than Event 2367any other event loop and is still faster than Event natively).
1330natively.
1331 2368
1332The pure perl implementation is hit in a few sweet spots (both the 2369The pure perl implementation is hit in a few sweet spots (both the
1333constant timeout and the use of a single fd hit optimisations in the perl 2370constant timeout and the use of a single fd hit optimisations in the perl
1334interpreter and the backend itself). Nevertheless this shows that it 2371interpreter and the backend itself). Nevertheless this shows that it
1335adds very little overhead in itself. Like any select-based backend its 2372adds very little overhead in itself. Like any select-based backend its
1336performance becomes really bad with lots of file descriptors (and few of 2373performance becomes really bad with lots of file descriptors (and few of
1337them active), of course, but this was not subject of this benchmark. 2374them active), of course, but this was not subject of this benchmark.
1338 2375
1339The C<Event> module has a relatively high setup and callback invocation 2376The C<Event> module has a relatively high setup and callback invocation
1340cost, but overall scores in on the third place. 2377cost, but overall scores in on the third place.
2378
2379C<IO::Async> performs admirably well, about on par with C<Event>, even
2380when using its pure perl backend.
1341 2381
1342C<Glib>'s memory usage is quite a bit higher, but it features a 2382C<Glib>'s memory usage is quite a bit higher, but it features a
1343faster callback invocation and overall ends up in the same class as 2383faster callback invocation and overall ends up in the same class as
1344C<Event>. However, Glib scales extremely badly, doubling the number of 2384C<Event>. However, Glib scales extremely badly, doubling the number of
1345watchers increases the processing time by more than a factor of four, 2385watchers increases the processing time by more than a factor of four,
1406In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2446In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1407(1%) are active. This mirrors the activity of large servers with many 2447(1%) are active. This mirrors the activity of large servers with many
1408connections, most of which are idle at any one point in time. 2448connections, most of which are idle at any one point in time.
1409 2449
1410Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2450Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1411distribution. 2451distribution. It uses the L<AE> interface, which makes a real difference
2452for the EV and Perl backends only.
1412 2453
1413=head3 Explanation of the columns 2454=head3 Explanation of the columns
1414 2455
1415I<sockets> is the number of sockets, and twice the number of "servers" (as 2456I<sockets> is the number of sockets, and twice the number of "servers" (as
1416each server has a read and write socket end). 2457each server has a read and write socket end).
1423it to another server. This includes deleting the old timeout and creating 2464it to another server. This includes deleting the old timeout and creating
1424a new one that moves the timeout into the future. 2465a new one that moves the timeout into the future.
1425 2466
1426=head3 Results 2467=head3 Results
1427 2468
1428 name sockets create request 2469 name sockets create request
1429 EV 20000 69.01 11.16 2470 EV 20000 62.66 7.99
1430 Perl 20000 73.32 35.87 2471 Perl 20000 68.32 32.64
1431 Event 20000 212.62 257.32 2472 IOAsync 20000 174.06 101.15 epoll
1432 Glib 20000 651.16 1896.30 2473 IOAsync 20000 174.67 610.84 poll
2474 Event 20000 202.69 242.91
2475 Glib 20000 557.01 1689.52
1433 POE 20000 349.67 12317.24 uses POE::Loop::Event 2476 POE 20000 341.54 12086.32 uses POE::Loop::Event
1434 2477
1435=head3 Discussion 2478=head3 Discussion
1436 2479
1437This benchmark I<does> measure scalability and overall performance of the 2480This benchmark I<does> measure scalability and overall performance of the
1438particular event loop. 2481particular event loop.
1440EV is again fastest. Since it is using epoll on my system, the setup time 2483EV is again fastest. Since it is using epoll on my system, the setup time
1441is relatively high, though. 2484is relatively high, though.
1442 2485
1443Perl surprisingly comes second. It is much faster than the C-based event 2486Perl surprisingly comes second. It is much faster than the C-based event
1444loops Event and Glib. 2487loops Event and Glib.
2488
2489IO::Async performs very well when using its epoll backend, and still quite
2490good compared to Glib when using its pure perl backend.
1445 2491
1446Event suffers from high setup time as well (look at its code and you will 2492Event suffers from high setup time as well (look at its code and you will
1447understand why). Callback invocation also has a high overhead compared to 2493understand why). Callback invocation also has a high overhead compared to
1448the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2494the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1449uses select or poll in basically all documented configurations. 2495uses select or poll in basically all documented configurations.
1512=item * C-based event loops perform very well with small number of 2558=item * C-based event loops perform very well with small number of
1513watchers, as the management overhead dominates. 2559watchers, as the management overhead dominates.
1514 2560
1515=back 2561=back
1516 2562
2563=head2 THE IO::Lambda BENCHMARK
2564
2565Recently I was told about the benchmark in the IO::Lambda manpage, which
2566could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2567simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2568shouldn't come as a surprise to anybody). As such, the benchmark is
2569fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2570very optimal. But how would AnyEvent compare when used without the extra
2571baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2572
2573The benchmark itself creates an echo-server, and then, for 500 times,
2574connects to the echo server, sends a line, waits for the reply, and then
2575creates the next connection. This is a rather bad benchmark, as it doesn't
2576test the efficiency of the framework or much non-blocking I/O, but it is a
2577benchmark nevertheless.
2578
2579 name runtime
2580 Lambda/select 0.330 sec
2581 + optimized 0.122 sec
2582 Lambda/AnyEvent 0.327 sec
2583 + optimized 0.138 sec
2584 Raw sockets/select 0.077 sec
2585 POE/select, components 0.662 sec
2586 POE/select, raw sockets 0.226 sec
2587 POE/select, optimized 0.404 sec
2588
2589 AnyEvent/select/nb 0.085 sec
2590 AnyEvent/EV/nb 0.068 sec
2591 +state machine 0.134 sec
2592
2593The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2594benchmarks actually make blocking connects and use 100% blocking I/O,
2595defeating the purpose of an event-based solution. All of the newly
2596written AnyEvent benchmarks use 100% non-blocking connects (using
2597AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2598resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2599generally require a lot more bookkeeping and event handling than blocking
2600connects (which involve a single syscall only).
2601
2602The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2603offers similar expressive power as POE and IO::Lambda, using conventional
2604Perl syntax. This means that both the echo server and the client are 100%
2605non-blocking, further placing it at a disadvantage.
2606
2607As you can see, the AnyEvent + EV combination even beats the
2608hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2609backend easily beats IO::Lambda and POE.
2610
2611And even the 100% non-blocking version written using the high-level (and
2612slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2613higher level ("unoptimised") abstractions by a large margin, even though
2614it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2615
2616The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2617F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2618part of the IO::Lambda distribution and were used without any changes.
2619
2620
2621=head1 SIGNALS
2622
2623AnyEvent currently installs handlers for these signals:
2624
2625=over 4
2626
2627=item SIGCHLD
2628
2629A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
2630emulation for event loops that do not support them natively. Also, some
2631event loops install a similar handler.
2632
2633Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2634AnyEvent will reset it to default, to avoid losing child exit statuses.
2635
2636=item SIGPIPE
2637
2638A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
2639when AnyEvent gets loaded.
2640
2641The rationale for this is that AnyEvent users usually do not really depend
2642on SIGPIPE delivery (which is purely an optimisation for shell use, or
2643badly-written programs), but C<SIGPIPE> can cause spurious and rare
2644program exits as a lot of people do not expect C<SIGPIPE> when writing to
2645some random socket.
2646
2647The rationale for installing a no-op handler as opposed to ignoring it is
2648that this way, the handler will be restored to defaults on exec.
2649
2650Feel free to install your own handler, or reset it to defaults.
2651
2652=back
2653
2654=cut
2655
2656undef $SIG{CHLD}
2657 if $SIG{CHLD} eq 'IGNORE';
2658
2659$SIG{PIPE} = sub { }
2660 unless defined $SIG{PIPE};
2661
2662=head1 RECOMMENDED/OPTIONAL MODULES
2663
2664One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2665its built-in modules) are required to use it.
2666
2667That does not mean that AnyEvent won't take advantage of some additional
2668modules if they are installed.
2669
2670This section explains which additional modules will be used, and how they
2671affect AnyEvent's operation.
2672
2673=over 4
2674
2675=item L<Async::Interrupt>
2676
2677This slightly arcane module is used to implement fast signal handling: To
2678my knowledge, there is no way to do completely race-free and quick
2679signal handling in pure perl. To ensure that signals still get
2680delivered, AnyEvent will start an interval timer to wake up perl (and
2681catch the signals) with some delay (default is 10 seconds, look for
2682C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2683
2684If this module is available, then it will be used to implement signal
2685catching, which means that signals will not be delayed, and the event loop
2686will not be interrupted regularly, which is more efficient (and good for
2687battery life on laptops).
2688
2689This affects not just the pure-perl event loop, but also other event loops
2690that have no signal handling on their own (e.g. Glib, Tk, Qt).
2691
2692Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2693and either employ their own workarounds (POE) or use AnyEvent's workaround
2694(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2695does nothing for those backends.
2696
2697=item L<EV>
2698
2699This module isn't really "optional", as it is simply one of the backend
2700event loops that AnyEvent can use. However, it is simply the best event
2701loop available in terms of features, speed and stability: It supports
2702the AnyEvent API optimally, implements all the watcher types in XS, does
2703automatic timer adjustments even when no monotonic clock is available,
2704can take avdantage of advanced kernel interfaces such as C<epoll> and
2705C<kqueue>, and is the fastest backend I<by far>. You can even embed
2706L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2707
2708If you only use backends that rely on another event loop (e.g. C<Tk>),
2709then this module will do nothing for you.
2710
2711=item L<Guard>
2712
2713The guard module, when used, will be used to implement
2714C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2715lot less memory), but otherwise doesn't affect guard operation much. It is
2716purely used for performance.
2717
2718=item L<JSON> and L<JSON::XS>
2719
2720One of these modules is required when you want to read or write JSON data
2721via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2722advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2723
2724=item L<Net::SSLeay>
2725
2726Implementing TLS/SSL in Perl is certainly interesting, but not very
2727worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2728the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2729
2730=item L<Time::HiRes>
2731
2732This module is part of perl since release 5.008. It will be used when the
2733chosen event library does not come with a timing source of its own. The
2734pure-perl event loop (L<AnyEvent::Loop>) will additionally load it to
2735try to use a monotonic clock for timing stability.
2736
2737=back
2738
1517 2739
1518=head1 FORK 2740=head1 FORK
1519 2741
1520Most event libraries are not fork-safe. The ones who are usually are 2742Most event libraries are not fork-safe. The ones who are usually are
1521because they rely on inefficient but fork-safe C<select> or C<poll> 2743because they rely on inefficient but fork-safe C<select> or C<poll> calls
1522calls. Only L<EV> is fully fork-aware. 2744- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2745are usually badly thought-out hacks that are incompatible with fork in
2746one way or another. Only L<EV> is fully fork-aware and ensures that you
2747continue event-processing in both parent and child (or both, if you know
2748what you are doing).
2749
2750This means that, in general, you cannot fork and do event processing in
2751the child if the event library was initialised before the fork (which
2752usually happens when the first AnyEvent watcher is created, or the library
2753is loaded).
1523 2754
1524If you have to fork, you must either do so I<before> creating your first 2755If you have to fork, you must either do so I<before> creating your first
1525watcher OR you must not use AnyEvent at all in the child. 2756watcher OR you must not use AnyEvent at all in the child OR you must do
2757something completely out of the scope of AnyEvent.
2758
2759The problem of doing event processing in the parent I<and> the child
2760is much more complicated: even for backends that I<are> fork-aware or
2761fork-safe, their behaviour is not usually what you want: fork clones all
2762watchers, that means all timers, I/O watchers etc. are active in both
2763parent and child, which is almost never what you want. USing C<exec>
2764to start worker children from some kind of manage rprocess is usually
2765preferred, because it is much easier and cleaner, at the expense of having
2766to have another binary.
1526 2767
1527 2768
1528=head1 SECURITY CONSIDERATIONS 2769=head1 SECURITY CONSIDERATIONS
1529 2770
1530AnyEvent can be forced to load any event model via 2771AnyEvent can be forced to load any event model via
1535specified in the variable. 2776specified in the variable.
1536 2777
1537You can make AnyEvent completely ignore this variable by deleting it 2778You can make AnyEvent completely ignore this variable by deleting it
1538before the first watcher gets created, e.g. with a C<BEGIN> block: 2779before the first watcher gets created, e.g. with a C<BEGIN> block:
1539 2780
1540 BEGIN { delete $ENV{PERL_ANYEVENT_MODEL} } 2781 BEGIN { delete $ENV{PERL_ANYEVENT_MODEL} }
1541 2782
1542 use AnyEvent; 2783 use AnyEvent;
1543 2784
1544Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2785Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1545be used to probe what backend is used and gain other information (which is 2786be used to probe what backend is used and gain other information (which is
1546probably even less useful to an attacker than PERL_ANYEVENT_MODEL). 2787probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
2788$ENV{PERL_ANYEVENT_STRICT}.
2789
2790Note that AnyEvent will remove I<all> environment variables starting with
2791C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2792enabled.
2793
2794
2795=head1 BUGS
2796
2797Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
2798to work around. If you suffer from memleaks, first upgrade to Perl 5.10
2799and check wether the leaks still show up. (Perl 5.10.0 has other annoying
2800memleaks, such as leaking on C<map> and C<grep> but it is usually not as
2801pronounced).
1547 2802
1548 2803
1549=head1 SEE ALSO 2804=head1 SEE ALSO
1550 2805
2806Tutorial/Introduction: L<AnyEvent::Intro>.
2807
2808FAQ: L<AnyEvent::FAQ>.
2809
1551Utility functions: L<AnyEvent::Util>. 2810Utility functions: L<AnyEvent::Util>.
1552 2811
1553Event modules: L<EV>, L<EV::Glib>, L<Glib::EV>, L<Event>, L<Glib::Event>, 2812Event modules: L<AnyEvent::Loop>, L<EV>, L<EV::Glib>, L<Glib::EV>,
1554L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2813L<Event>, L<Glib::Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>.
1555 2814
1556Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 2815Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
1557L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 2816L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
1558L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 2817L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
1559L<AnyEvent::Impl::POE>. 2818L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>.
1560 2819
1561Non-blocking file handles, sockets, TCP clients and 2820Non-blocking file handles, sockets, TCP clients and
1562servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>. 2821servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
1563 2822
1564Asynchronous DNS: L<AnyEvent::DNS>. 2823Asynchronous DNS: L<AnyEvent::DNS>.
1565 2824
1566Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>, 2825Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
1567 2826
1568Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 2827Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
2828L<AnyEvent::HTTP>.
1569 2829
1570 2830
1571=head1 AUTHOR 2831=head1 AUTHOR
1572 2832
1573 Marc Lehmann <schmorp@schmorp.de> 2833 Marc Lehmann <schmorp@schmorp.de>
1574 http://home.schmorp.de/ 2834 http://home.schmorp.de/
1575 2835
1576=cut 2836=cut
1577 2837
15781 28381
1579 2839

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines