ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.170 by root, Wed Jul 9 11:53:40 2008 UTC vs.
Revision 1.269 by root, Fri Jul 31 20:16:29 2009 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt
6and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # file descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { 13 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
14
15 # one-shot or repeating timers
16 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
17 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...
18
19 print AnyEvent->now; # prints current event loop time
20 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
21
22 # POSIX signal
23 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
24
25 # child process exit
26 my $w = AnyEvent->child (pid => $pid, cb => sub {
27 my ($pid, $status) = @_;
12 ... 28 ...
13 }); 29 });
14 30
15 my $w = AnyEvent->timer (after => $seconds, cb => sub { 31 # called when event loop idle (if applicable)
16 ... 32 my $w = AnyEvent->idle (cb => sub { ... });
17 });
18 33
19 my $w = AnyEvent->condvar; # stores whether a condition was flagged 34 my $w = AnyEvent->condvar; # stores whether a condition was flagged
20 $w->send; # wake up current and all future recv's 35 $w->send; # wake up current and all future recv's
21 $w->recv; # enters "main loop" till $condvar gets ->send 36 $w->recv; # enters "main loop" till $condvar gets ->send
37 # use a condvar in callback mode:
38 $w->cb (sub { $_[0]->recv });
22 39
23=head1 INTRODUCTION/TUTORIAL 40=head1 INTRODUCTION/TUTORIAL
24 41
25This manpage is mainly a reference manual. If you are interested 42This manpage is mainly a reference manual. If you are interested
26in a tutorial or some gentle introduction, have a look at the 43in a tutorial or some gentle introduction, have a look at the
27L<AnyEvent::Intro> manpage. 44L<AnyEvent::Intro> manpage.
45
46=head1 SUPPORT
47
48There is a mailinglist for discussing all things AnyEvent, and an IRC
49channel, too.
50
51See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
52Repository>, at L<http://anyevent.schmorp.de>, for more info.
28 53
29=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 54=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
30 55
31Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 56Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
32nowadays. So what is different about AnyEvent? 57nowadays. So what is different about AnyEvent?
128These watchers are normal Perl objects with normal Perl lifetime. After 153These watchers are normal Perl objects with normal Perl lifetime. After
129creating a watcher it will immediately "watch" for events and invoke the 154creating a watcher it will immediately "watch" for events and invoke the
130callback when the event occurs (of course, only when the event model 155callback when the event occurs (of course, only when the event model
131is in control). 156is in control).
132 157
158Note that B<callbacks must not permanently change global variables>
159potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
160callbacks must not C<die> >>. The former is good programming practise in
161Perl and the latter stems from the fact that exception handling differs
162widely between event loops.
163
133To disable the watcher you have to destroy it (e.g. by setting the 164To disable the watcher you have to destroy it (e.g. by setting the
134variable you store it in to C<undef> or otherwise deleting all references 165variable you store it in to C<undef> or otherwise deleting all references
135to it). 166to it).
136 167
137All watchers are created by calling a method on the C<AnyEvent> class. 168All watchers are created by calling a method on the C<AnyEvent> class.
150my variables are only visible after the statement in which they are 181my variables are only visible after the statement in which they are
151declared. 182declared.
152 183
153=head2 I/O WATCHERS 184=head2 I/O WATCHERS
154 185
186 $w = AnyEvent->io (
187 fh => <filehandle_or_fileno>,
188 poll => <"r" or "w">,
189 cb => <callback>,
190 );
191
155You can create an I/O watcher by calling the C<< AnyEvent->io >> method 192You can create an I/O watcher by calling the C<< AnyEvent->io >> method
156with the following mandatory key-value pairs as arguments: 193with the following mandatory key-value pairs as arguments:
157 194
158C<fh> the Perl I<file handle> (I<not> file descriptor) to watch for events 195C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
159(AnyEvent might or might not keep a reference to this file handle). C<poll> 196for events (AnyEvent might or might not keep a reference to this file
197handle). Note that only file handles pointing to things for which
198non-blocking operation makes sense are allowed. This includes sockets,
199most character devices, pipes, fifos and so on, but not for example files
200or block devices.
201
160must be a string that is either C<r> or C<w>, which creates a watcher 202C<poll> must be a string that is either C<r> or C<w>, which creates a
161waiting for "r"eadable or "w"ritable events, respectively. C<cb> is the 203watcher waiting for "r"eadable or "w"ritable events, respectively.
204
162callback to invoke each time the file handle becomes ready. 205C<cb> is the callback to invoke each time the file handle becomes ready.
163 206
164Although the callback might get passed parameters, their value and 207Although the callback might get passed parameters, their value and
165presence is undefined and you cannot rely on them. Portable AnyEvent 208presence is undefined and you cannot rely on them. Portable AnyEvent
166callbacks cannot use arguments passed to I/O watcher callbacks. 209callbacks cannot use arguments passed to I/O watcher callbacks.
167 210
182 undef $w; 225 undef $w;
183 }); 226 });
184 227
185=head2 TIME WATCHERS 228=head2 TIME WATCHERS
186 229
230 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
231
232 $w = AnyEvent->timer (
233 after => <fractional_seconds>,
234 interval => <fractional_seconds>,
235 cb => <callback>,
236 );
237
187You can create a time watcher by calling the C<< AnyEvent->timer >> 238You can create a time watcher by calling the C<< AnyEvent->timer >>
188method with the following mandatory arguments: 239method with the following mandatory arguments:
189 240
190C<after> specifies after how many seconds (fractional values are 241C<after> specifies after how many seconds (fractional values are
191supported) the callback should be invoked. C<cb> is the callback to invoke 242supported) the callback should be invoked. C<cb> is the callback to invoke
299In either case, if you care (and in most cases, you don't), then you 350In either case, if you care (and in most cases, you don't), then you
300can get whatever behaviour you want with any event loop, by taking the 351can get whatever behaviour you want with any event loop, by taking the
301difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into 352difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
302account. 353account.
303 354
355=item AnyEvent->now_update
356
357Some event loops (such as L<EV> or L<AnyEvent::Impl::Perl>) cache
358the current time for each loop iteration (see the discussion of L<<
359AnyEvent->now >>, above).
360
361When a callback runs for a long time (or when the process sleeps), then
362this "current" time will differ substantially from the real time, which
363might affect timers and time-outs.
364
365When this is the case, you can call this method, which will update the
366event loop's idea of "current time".
367
368Note that updating the time I<might> cause some events to be handled.
369
304=back 370=back
305 371
306=head2 SIGNAL WATCHERS 372=head2 SIGNAL WATCHERS
373
374 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
307 375
308You can watch for signals using a signal watcher, C<signal> is the signal 376You can watch for signals using a signal watcher, C<signal> is the signal
309I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl 377I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
310callback to be invoked whenever a signal occurs. 378callback to be invoked whenever a signal occurs.
311 379
317invocation, and callback invocation will be synchronous. Synchronous means 385invocation, and callback invocation will be synchronous. Synchronous means
318that it might take a while until the signal gets handled by the process, 386that it might take a while until the signal gets handled by the process,
319but it is guaranteed not to interrupt any other callbacks. 387but it is guaranteed not to interrupt any other callbacks.
320 388
321The main advantage of using these watchers is that you can share a signal 389The main advantage of using these watchers is that you can share a signal
322between multiple watchers. 390between multiple watchers, and AnyEvent will ensure that signals will not
391interrupt your program at bad times.
323 392
324This watcher might use C<%SIG>, so programs overwriting those signals 393This watcher might use C<%SIG> (depending on the event loop used),
325directly will likely not work correctly. 394so programs overwriting those signals directly will likely not work
395correctly.
326 396
327Example: exit on SIGINT 397Example: exit on SIGINT
328 398
329 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 399 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
330 400
401=head3 Signal Races, Delays and Workarounds
402
403Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
404callbacks to signals in a generic way, which is a pity, as you cannot
405do race-free signal handling in perl, requiring C libraries for
406this. AnyEvent will try to do it's best, which means in some cases,
407signals will be delayed. The maximum time a signal might be delayed is
408specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
409variable can be changed only before the first signal watcher is created,
410and should be left alone otherwise. This variable determines how often
411AnyEvent polls for signals (in case a wake-up was missed). Higher values
412will cause fewer spurious wake-ups, which is better for power and CPU
413saving.
414
415All these problems can be avoided by installing the optional
416L<Async::Interrupt> module, which works with most event loops. It will not
417work with inherently broken event loops such as L<Event> or L<Event::Lib>
418(and not with L<POE> currently, as POE does it's own workaround with
419one-second latency). For those, you just have to suffer the delays.
420
331=head2 CHILD PROCESS WATCHERS 421=head2 CHILD PROCESS WATCHERS
332 422
423 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
424
333You can also watch on a child process exit and catch its exit status. 425You can also watch on a child process exit and catch its exit status.
334 426
335The child process is specified by the C<pid> argument (if set to C<0>, it 427The child process is specified by the C<pid> argument (one some backends,
336watches for any child process exit). The watcher will trigger as often 428using C<0> watches for any child process exit, on others this will
337as status change for the child are received. This works by installing a 429croak). The watcher will be triggered only when the child process has
338signal handler for C<SIGCHLD>. The callback will be called with the pid 430finished and an exit status is available, not on any trace events
339and exit status (as returned by waitpid), so unlike other watcher types, 431(stopped/continued).
340you I<can> rely on child watcher callback arguments. 432
433The callback will be called with the pid and exit status (as returned by
434waitpid), so unlike other watcher types, you I<can> rely on child watcher
435callback arguments.
436
437This watcher type works by installing a signal handler for C<SIGCHLD>,
438and since it cannot be shared, nothing else should use SIGCHLD or reap
439random child processes (waiting for specific child processes, e.g. inside
440C<system>, is just fine).
341 441
342There is a slight catch to child watchers, however: you usually start them 442There is a slight catch to child watchers, however: you usually start them
343I<after> the child process was created, and this means the process could 443I<after> the child process was created, and this means the process could
344have exited already (and no SIGCHLD will be sent anymore). 444have exited already (and no SIGCHLD will be sent anymore).
345 445
346Not all event models handle this correctly (POE doesn't), but even for 446Not all event models handle this correctly (neither POE nor IO::Async do,
447see their AnyEvent::Impl manpages for details), but even for event models
347event models that I<do> handle this correctly, they usually need to be 448that I<do> handle this correctly, they usually need to be loaded before
348loaded before the process exits (i.e. before you fork in the first place). 449the process exits (i.e. before you fork in the first place). AnyEvent's
450pure perl event loop handles all cases correctly regardless of when you
451start the watcher.
349 452
350This means you cannot create a child watcher as the very first thing in an 453This means you cannot create a child watcher as the very first
351AnyEvent program, you I<have> to create at least one watcher before you 454thing in an AnyEvent program, you I<have> to create at least one
352C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 455watcher before you C<fork> the child (alternatively, you can call
456C<AnyEvent::detect>).
457
458As most event loops do not support waiting for child events, they will be
459emulated by AnyEvent in most cases, in which the latency and race problems
460mentioned in the description of signal watchers apply.
353 461
354Example: fork a process and wait for it 462Example: fork a process and wait for it
355 463
356 my $done = AnyEvent->condvar; 464 my $done = AnyEvent->condvar;
357 465
367 ); 475 );
368 476
369 # do something else, then wait for process exit 477 # do something else, then wait for process exit
370 $done->recv; 478 $done->recv;
371 479
480=head2 IDLE WATCHERS
481
482 $w = AnyEvent->idle (cb => <callback>);
483
484Sometimes there is a need to do something, but it is not so important
485to do it instantly, but only when there is nothing better to do. This
486"nothing better to do" is usually defined to be "no other events need
487attention by the event loop".
488
489Idle watchers ideally get invoked when the event loop has nothing
490better to do, just before it would block the process to wait for new
491events. Instead of blocking, the idle watcher is invoked.
492
493Most event loops unfortunately do not really support idle watchers (only
494EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
495will simply call the callback "from time to time".
496
497Example: read lines from STDIN, but only process them when the
498program is otherwise idle:
499
500 my @lines; # read data
501 my $idle_w;
502 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
503 push @lines, scalar <STDIN>;
504
505 # start an idle watcher, if not already done
506 $idle_w ||= AnyEvent->idle (cb => sub {
507 # handle only one line, when there are lines left
508 if (my $line = shift @lines) {
509 print "handled when idle: $line";
510 } else {
511 # otherwise disable the idle watcher again
512 undef $idle_w;
513 }
514 });
515 });
516
372=head2 CONDITION VARIABLES 517=head2 CONDITION VARIABLES
518
519 $cv = AnyEvent->condvar;
520
521 $cv->send (<list>);
522 my @res = $cv->recv;
373 523
374If you are familiar with some event loops you will know that all of them 524If you are familiar with some event loops you will know that all of them
375require you to run some blocking "loop", "run" or similar function that 525require you to run some blocking "loop", "run" or similar function that
376will actively watch for new events and call your callbacks. 526will actively watch for new events and call your callbacks.
377 527
378AnyEvent is different, it expects somebody else to run the event loop and 528AnyEvent is slightly different: it expects somebody else to run the event
379will only block when necessary (usually when told by the user). 529loop and will only block when necessary (usually when told by the user).
380 530
381The instrument to do that is called a "condition variable", so called 531The instrument to do that is called a "condition variable", so called
382because they represent a condition that must become true. 532because they represent a condition that must become true.
533
534Now is probably a good time to look at the examples further below.
383 535
384Condition variables can be created by calling the C<< AnyEvent->condvar 536Condition variables can be created by calling the C<< AnyEvent->condvar
385>> method, usually without arguments. The only argument pair allowed is 537>> method, usually without arguments. The only argument pair allowed is
386C<cb>, which specifies a callback to be called when the condition variable 538C<cb>, which specifies a callback to be called when the condition variable
387becomes true. 539becomes true, with the condition variable as the first argument (but not
540the results).
388 541
389After creation, the condition variable is "false" until it becomes "true" 542After creation, the condition variable is "false" until it becomes "true"
390by calling the C<send> method (or calling the condition variable as if it 543by calling the C<send> method (or calling the condition variable as if it
391were a callback, read about the caveats in the description for the C<< 544were a callback, read about the caveats in the description for the C<<
392->send >> method). 545->send >> method).
394Condition variables are similar to callbacks, except that you can 547Condition variables are similar to callbacks, except that you can
395optionally wait for them. They can also be called merge points - points 548optionally wait for them. They can also be called merge points - points
396in time where multiple outstanding events have been processed. And yet 549in time where multiple outstanding events have been processed. And yet
397another way to call them is transactions - each condition variable can be 550another way to call them is transactions - each condition variable can be
398used to represent a transaction, which finishes at some point and delivers 551used to represent a transaction, which finishes at some point and delivers
399a result. 552a result. And yet some people know them as "futures" - a promise to
553compute/deliver something that you can wait for.
400 554
401Condition variables are very useful to signal that something has finished, 555Condition variables are very useful to signal that something has finished,
402for example, if you write a module that does asynchronous http requests, 556for example, if you write a module that does asynchronous http requests,
403then a condition variable would be the ideal candidate to signal the 557then a condition variable would be the ideal candidate to signal the
404availability of results. The user can either act when the callback is 558availability of results. The user can either act when the callback is
438 after => 1, 592 after => 1,
439 cb => sub { $result_ready->send }, 593 cb => sub { $result_ready->send },
440 ); 594 );
441 595
442 # this "blocks" (while handling events) till the callback 596 # this "blocks" (while handling events) till the callback
443 # calls send 597 # calls -<send
444 $result_ready->recv; 598 $result_ready->recv;
445 599
446Example: wait for a timer, but take advantage of the fact that 600Example: wait for a timer, but take advantage of the fact that condition
447condition variables are also code references. 601variables are also callable directly.
448 602
449 my $done = AnyEvent->condvar; 603 my $done = AnyEvent->condvar;
450 my $delay = AnyEvent->timer (after => 5, cb => $done); 604 my $delay = AnyEvent->timer (after => 5, cb => $done);
451 $done->recv; 605 $done->recv;
606
607Example: Imagine an API that returns a condvar and doesn't support
608callbacks. This is how you make a synchronous call, for example from
609the main program:
610
611 use AnyEvent::CouchDB;
612
613 ...
614
615 my @info = $couchdb->info->recv;
616
617And this is how you would just set a callback to be called whenever the
618results are available:
619
620 $couchdb->info->cb (sub {
621 my @info = $_[0]->recv;
622 });
452 623
453=head3 METHODS FOR PRODUCERS 624=head3 METHODS FOR PRODUCERS
454 625
455These methods should only be used by the producing side, i.e. the 626These methods should only be used by the producing side, i.e. the
456code/module that eventually sends the signal. Note that it is also 627code/module that eventually sends the signal. Note that it is also
469immediately from within send. 640immediately from within send.
470 641
471Any arguments passed to the C<send> call will be returned by all 642Any arguments passed to the C<send> call will be returned by all
472future C<< ->recv >> calls. 643future C<< ->recv >> calls.
473 644
474Condition variables are overloaded so one can call them directly 645Condition variables are overloaded so one can call them directly (as if
475(as a code reference). Calling them directly is the same as calling 646they were a code reference). Calling them directly is the same as calling
476C<send>. Note, however, that many C-based event loops do not handle 647C<send>.
477overloading, so as tempting as it may be, passing a condition variable
478instead of a callback does not work. Both the pure perl and EV loops
479support overloading, however, as well as all functions that use perl to
480invoke a callback (as in L<AnyEvent::Socket> and L<AnyEvent::DNS> for
481example).
482 648
483=item $cv->croak ($error) 649=item $cv->croak ($error)
484 650
485Similar to send, but causes all call's to C<< ->recv >> to invoke 651Similar to send, but causes all call's to C<< ->recv >> to invoke
486C<Carp::croak> with the given error message/object/scalar. 652C<Carp::croak> with the given error message/object/scalar.
487 653
488This can be used to signal any errors to the condition variable 654This can be used to signal any errors to the condition variable
489user/consumer. 655user/consumer. Doing it this way instead of calling C<croak> directly
656delays the error detetcion, but has the overwhelmign advantage that it
657diagnoses the error at the place where the result is expected, and not
658deep in some event clalback without connection to the actual code causing
659the problem.
490 660
491=item $cv->begin ([group callback]) 661=item $cv->begin ([group callback])
492 662
493=item $cv->end 663=item $cv->end
494
495These two methods are EXPERIMENTAL and MIGHT CHANGE.
496 664
497These two methods can be used to combine many transactions/events into 665These two methods can be used to combine many transactions/events into
498one. For example, a function that pings many hosts in parallel might want 666one. For example, a function that pings many hosts in parallel might want
499to use a condition variable for the whole process. 667to use a condition variable for the whole process.
500 668
502C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 670C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
503>>, the (last) callback passed to C<begin> will be executed. That callback 671>>, the (last) callback passed to C<begin> will be executed. That callback
504is I<supposed> to call C<< ->send >>, but that is not required. If no 672is I<supposed> to call C<< ->send >>, but that is not required. If no
505callback was set, C<send> will be called without any arguments. 673callback was set, C<send> will be called without any arguments.
506 674
507Let's clarify this with the ping example: 675You can think of C<< $cv->send >> giving you an OR condition (one call
676sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
677condition (all C<begin> calls must be C<end>'ed before the condvar sends).
678
679Let's start with a simple example: you have two I/O watchers (for example,
680STDOUT and STDERR for a program), and you want to wait for both streams to
681close before activating a condvar:
682
683 my $cv = AnyEvent->condvar;
684
685 $cv->begin; # first watcher
686 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
687 defined sysread $fh1, my $buf, 4096
688 or $cv->end;
689 });
690
691 $cv->begin; # second watcher
692 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
693 defined sysread $fh2, my $buf, 4096
694 or $cv->end;
695 });
696
697 $cv->recv;
698
699This works because for every event source (EOF on file handle), there is
700one call to C<begin>, so the condvar waits for all calls to C<end> before
701sending.
702
703The ping example mentioned above is slightly more complicated, as the
704there are results to be passwd back, and the number of tasks that are
705begung can potentially be zero:
508 706
509 my $cv = AnyEvent->condvar; 707 my $cv = AnyEvent->condvar;
510 708
511 my %result; 709 my %result;
512 $cv->begin (sub { $cv->send (\%result) }); 710 $cv->begin (sub { $cv->send (\%result) });
532loop, which serves two important purposes: first, it sets the callback 730loop, which serves two important purposes: first, it sets the callback
533to be called once the counter reaches C<0>, and second, it ensures that 731to be called once the counter reaches C<0>, and second, it ensures that
534C<send> is called even when C<no> hosts are being pinged (the loop 732C<send> is called even when C<no> hosts are being pinged (the loop
535doesn't execute once). 733doesn't execute once).
536 734
537This is the general pattern when you "fan out" into multiple subrequests: 735This is the general pattern when you "fan out" into multiple (but
538use an outer C<begin>/C<end> pair to set the callback and ensure C<end> 736potentially none) subrequests: use an outer C<begin>/C<end> pair to set
539is called at least once, and then, for each subrequest you start, call 737the callback and ensure C<end> is called at least once, and then, for each
540C<begin> and for each subrequest you finish, call C<end>. 738subrequest you start, call C<begin> and for each subrequest you finish,
739call C<end>.
541 740
542=back 741=back
543 742
544=head3 METHODS FOR CONSUMERS 743=head3 METHODS FOR CONSUMERS
545 744
561function will call C<croak>. 760function will call C<croak>.
562 761
563In list context, all parameters passed to C<send> will be returned, 762In list context, all parameters passed to C<send> will be returned,
564in scalar context only the first one will be returned. 763in scalar context only the first one will be returned.
565 764
765Note that doing a blocking wait in a callback is not supported by any
766event loop, that is, recursive invocation of a blocking C<< ->recv
767>> is not allowed, and the C<recv> call will C<croak> if such a
768condition is detected. This condition can be slightly loosened by using
769L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
770any thread that doesn't run the event loop itself.
771
566Not all event models support a blocking wait - some die in that case 772Not all event models support a blocking wait - some die in that case
567(programs might want to do that to stay interactive), so I<if you are 773(programs might want to do that to stay interactive), so I<if you are
568using this from a module, never require a blocking wait>, but let the 774using this from a module, never require a blocking wait>. Instead, let the
569caller decide whether the call will block or not (for example, by coupling 775caller decide whether the call will block or not (for example, by coupling
570condition variables with some kind of request results and supporting 776condition variables with some kind of request results and supporting
571callbacks so the caller knows that getting the result will not block, 777callbacks so the caller knows that getting the result will not block,
572while still supporting blocking waits if the caller so desires). 778while still supporting blocking waits if the caller so desires).
573 779
574Another reason I<never> to C<< ->recv >> in a module is that you cannot
575sensibly have two C<< ->recv >>'s in parallel, as that would require
576multiple interpreters or coroutines/threads, none of which C<AnyEvent>
577can supply.
578
579The L<Coro> module, however, I<can> and I<does> supply coroutines and, in
580fact, L<Coro::AnyEvent> replaces AnyEvent's condvars by coroutine-safe
581versions and also integrates coroutines into AnyEvent, making blocking
582C<< ->recv >> calls perfectly safe as long as they are done from another
583coroutine (one that doesn't run the event loop).
584
585You can ensure that C<< -recv >> never blocks by setting a callback and 780You can ensure that C<< -recv >> never blocks by setting a callback and
586only calling C<< ->recv >> from within that callback (or at a later 781only calling C<< ->recv >> from within that callback (or at a later
587time). This will work even when the event loop does not support blocking 782time). This will work even when the event loop does not support blocking
588waits otherwise. 783waits otherwise.
589 784
590=item $bool = $cv->ready 785=item $bool = $cv->ready
591 786
592Returns true when the condition is "true", i.e. whether C<send> or 787Returns true when the condition is "true", i.e. whether C<send> or
593C<croak> have been called. 788C<croak> have been called.
594 789
595=item $cb = $cv->cb ([new callback]) 790=item $cb = $cv->cb ($cb->($cv))
596 791
597This is a mutator function that returns the callback set and optionally 792This is a mutator function that returns the callback set and optionally
598replaces it before doing so. 793replaces it before doing so.
599 794
600The callback will be called when the condition becomes "true", i.e. when 795The callback will be called when the condition becomes (or already was)
601C<send> or C<croak> are called, with the only argument being the condition 796"true", i.e. when C<send> or C<croak> are called (or were called), with
602variable itself. Calling C<recv> inside the callback or at any later time 797the only argument being the condition variable itself. Calling C<recv>
603is guaranteed not to block. 798inside the callback or at any later time is guaranteed not to block.
604 799
605=back 800=back
606 801
802=head1 SUPPORTED EVENT LOOPS/BACKENDS
803
804The available backend classes are (every class has its own manpage):
805
806=over 4
807
808=item Backends that are autoprobed when no other event loop can be found.
809
810EV is the preferred backend when no other event loop seems to be in
811use. If EV is not installed, then AnyEvent will try Event, and, failing
812that, will fall back to its own pure-perl implementation, which is
813available everywhere as it comes with AnyEvent itself.
814
815 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
816 AnyEvent::Impl::Event based on Event, very stable, few glitches.
817 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
818
819=item Backends that are transparently being picked up when they are used.
820
821These will be used when they are currently loaded when the first watcher
822is created, in which case it is assumed that the application is using
823them. This means that AnyEvent will automatically pick the right backend
824when the main program loads an event module before anything starts to
825create watchers. Nothing special needs to be done by the main program.
826
827 AnyEvent::Impl::Glib based on Glib, slow but very stable.
828 AnyEvent::Impl::Tk based on Tk, very broken.
829 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
830 AnyEvent::Impl::POE based on POE, very slow, some limitations.
831 AnyEvent::Impl::Irssi used when running within irssi.
832
833=item Backends with special needs.
834
835Qt requires the Qt::Application to be instantiated first, but will
836otherwise be picked up automatically. As long as the main program
837instantiates the application before any AnyEvent watchers are created,
838everything should just work.
839
840 AnyEvent::Impl::Qt based on Qt.
841
842Support for IO::Async can only be partial, as it is too broken and
843architecturally limited to even support the AnyEvent API. It also
844is the only event loop that needs the loop to be set explicitly, so
845it can only be used by a main program knowing about AnyEvent. See
846L<AnyEvent::Impl::Async> for the gory details.
847
848 AnyEvent::Impl::IOAsync based on IO::Async, cannot be autoprobed.
849
850=item Event loops that are indirectly supported via other backends.
851
852Some event loops can be supported via other modules:
853
854There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
855
856B<WxWidgets> has no support for watching file handles. However, you can
857use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
858polls 20 times per second, which was considered to be too horrible to even
859consider for AnyEvent.
860
861B<Prima> is not supported as nobody seems to be using it, but it has a POE
862backend, so it can be supported through POE.
863
864AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
865load L<POE> when detecting them, in the hope that POE will pick them up,
866in which case everything will be automatic.
867
868=back
869
607=head1 GLOBAL VARIABLES AND FUNCTIONS 870=head1 GLOBAL VARIABLES AND FUNCTIONS
608 871
872These are not normally required to use AnyEvent, but can be useful to
873write AnyEvent extension modules.
874
609=over 4 875=over 4
610 876
611=item $AnyEvent::MODEL 877=item $AnyEvent::MODEL
612 878
613Contains C<undef> until the first watcher is being created. Then it 879Contains C<undef> until the first watcher is being created, before the
880backend has been autodetected.
881
614contains the event model that is being used, which is the name of the 882Afterwards it contains the event model that is being used, which is the
615Perl class implementing the model. This class is usually one of the 883name of the Perl class implementing the model. This class is usually one
616C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 884of the C<AnyEvent::Impl:xxx> modules, but can be any other class in the
617AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 885case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
618 886will be C<urxvt::anyevent>).
619The known classes so far are:
620
621 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
622 AnyEvent::Impl::Event based on Event, second best choice.
623 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
624 AnyEvent::Impl::Glib based on Glib, third-best choice.
625 AnyEvent::Impl::Tk based on Tk, very bad choice.
626 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
627 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
628 AnyEvent::Impl::POE based on POE, not generic enough for full support.
629
630There is no support for WxWidgets, as WxWidgets has no support for
631watching file handles. However, you can use WxWidgets through the
632POE Adaptor, as POE has a Wx backend that simply polls 20 times per
633second, which was considered to be too horrible to even consider for
634AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
635it's adaptor.
636
637AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
638autodetecting them.
639 887
640=item AnyEvent::detect 888=item AnyEvent::detect
641 889
642Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 890Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
643if necessary. You should only call this function right before you would 891if necessary. You should only call this function right before you would
644have created an AnyEvent watcher anyway, that is, as late as possible at 892have created an AnyEvent watcher anyway, that is, as late as possible at
645runtime. 893runtime, and not e.g. while initialising of your module.
894
895If you need to do some initialisation before AnyEvent watchers are
896created, use C<post_detect>.
646 897
647=item $guard = AnyEvent::post_detect { BLOCK } 898=item $guard = AnyEvent::post_detect { BLOCK }
648 899
649Arranges for the code block to be executed as soon as the event model is 900Arranges for the code block to be executed as soon as the event model is
650autodetected (or immediately if this has already happened). 901autodetected (or immediately if this has already happened).
651 902
903The block will be executed I<after> the actual backend has been detected
904(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
905created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
906other initialisations - see the sources of L<AnyEvent::Strict> or
907L<AnyEvent::AIO> to see how this is used.
908
909The most common usage is to create some global watchers, without forcing
910event module detection too early, for example, L<AnyEvent::AIO> creates
911and installs the global L<IO::AIO> watcher in a C<post_detect> block to
912avoid autodetecting the event module at load time.
913
652If called in scalar or list context, then it creates and returns an object 914If called in scalar or list context, then it creates and returns an object
653that automatically removes the callback again when it is destroyed. See 915that automatically removes the callback again when it is destroyed (or
916C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
654L<Coro::BDB> for a case where this is useful. 917a case where this is useful.
918
919Example: Create a watcher for the IO::AIO module and store it in
920C<$WATCHER>. Only do so after the event loop is initialised, though.
921
922 our WATCHER;
923
924 my $guard = AnyEvent::post_detect {
925 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
926 };
927
928 # the ||= is important in case post_detect immediately runs the block,
929 # as to not clobber the newly-created watcher. assigning both watcher and
930 # post_detect guard to the same variable has the advantage of users being
931 # able to just C<undef $WATCHER> if the watcher causes them grief.
932
933 $WATCHER ||= $guard;
655 934
656=item @AnyEvent::post_detect 935=item @AnyEvent::post_detect
657 936
658If there are any code references in this array (you can C<push> to it 937If there are any code references in this array (you can C<push> to it
659before or after loading AnyEvent), then they will called directly after 938before or after loading AnyEvent), then they will called directly after
660the event loop has been chosen. 939the event loop has been chosen.
661 940
662You should check C<$AnyEvent::MODEL> before adding to this array, though: 941You should check C<$AnyEvent::MODEL> before adding to this array, though:
663if it contains a true value then the event loop has already been detected, 942if it is defined then the event loop has already been detected, and the
664and the array will be ignored. 943array will be ignored.
665 944
666Best use C<AnyEvent::post_detect { BLOCK }> instead. 945Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
946it,as it takes care of these details.
947
948This variable is mainly useful for modules that can do something useful
949when AnyEvent is used and thus want to know when it is initialised, but do
950not need to even load it by default. This array provides the means to hook
951into AnyEvent passively, without loading it.
667 952
668=back 953=back
669 954
670=head1 WHAT TO DO IN A MODULE 955=head1 WHAT TO DO IN A MODULE
671 956
726 1011
727 1012
728=head1 OTHER MODULES 1013=head1 OTHER MODULES
729 1014
730The following is a non-exhaustive list of additional modules that use 1015The following is a non-exhaustive list of additional modules that use
731AnyEvent and can therefore be mixed easily with other AnyEvent modules 1016AnyEvent as a client and can therefore be mixed easily with other AnyEvent
732in the same program. Some of the modules come with AnyEvent, some are 1017modules and other event loops in the same program. Some of the modules
733available via CPAN. 1018come with AnyEvent, most are available via CPAN.
734 1019
735=over 4 1020=over 4
736 1021
737=item L<AnyEvent::Util> 1022=item L<AnyEvent::Util>
738 1023
747 1032
748=item L<AnyEvent::Handle> 1033=item L<AnyEvent::Handle>
749 1034
750Provide read and write buffers, manages watchers for reads and writes, 1035Provide read and write buffers, manages watchers for reads and writes,
751supports raw and formatted I/O, I/O queued and fully transparent and 1036supports raw and formatted I/O, I/O queued and fully transparent and
752non-blocking SSL/TLS. 1037non-blocking SSL/TLS (via L<AnyEvent::TLS>.
753 1038
754=item L<AnyEvent::DNS> 1039=item L<AnyEvent::DNS>
755 1040
756Provides rich asynchronous DNS resolver capabilities. 1041Provides rich asynchronous DNS resolver capabilities.
757 1042
785 1070
786=item L<AnyEvent::GPSD> 1071=item L<AnyEvent::GPSD>
787 1072
788A non-blocking interface to gpsd, a daemon delivering GPS information. 1073A non-blocking interface to gpsd, a daemon delivering GPS information.
789 1074
1075=item L<AnyEvent::IRC>
1076
1077AnyEvent based IRC client module family (replacing the older Net::IRC3).
1078
1079=item L<AnyEvent::XMPP>
1080
1081AnyEvent based XMPP (Jabber protocol) module family (replacing the older
1082Net::XMPP2>.
1083
790=item L<AnyEvent::IGS> 1084=item L<AnyEvent::IGS>
791 1085
792A non-blocking interface to the Internet Go Server protocol (used by 1086A non-blocking interface to the Internet Go Server protocol (used by
793L<App::IGS>). 1087L<App::IGS>).
794 1088
795=item L<Net::IRC3>
796
797AnyEvent based IRC client module family.
798
799=item L<Net::XMPP2>
800
801AnyEvent based XMPP (Jabber protocol) module family.
802
803=item L<Net::FCP> 1089=item L<Net::FCP>
804 1090
805AnyEvent-based implementation of the Freenet Client Protocol, birthplace 1091AnyEvent-based implementation of the Freenet Client Protocol, birthplace
806of AnyEvent. 1092of AnyEvent.
807 1093
811 1097
812=item L<Coro> 1098=item L<Coro>
813 1099
814Has special support for AnyEvent via L<Coro::AnyEvent>. 1100Has special support for AnyEvent via L<Coro::AnyEvent>.
815 1101
816=item L<IO::Lambda>
817
818The lambda approach to I/O - don't ask, look there. Can use AnyEvent.
819
820=back 1102=back
821 1103
822=cut 1104=cut
823 1105
824package AnyEvent; 1106package AnyEvent;
825 1107
1108# basically a tuned-down version of common::sense
1109sub common_sense {
826no warnings; 1110 # no warnings
827use strict; 1111 ${^WARNING_BITS} ^= ${^WARNING_BITS};
1112 # use strict vars subs
1113 $^H |= 0x00000600;
1114}
828 1115
1116BEGIN { AnyEvent::common_sense }
1117
829use Carp; 1118use Carp ();
830 1119
831our $VERSION = 4.2; 1120our $VERSION = 4.9;
832our $MODEL; 1121our $MODEL;
833 1122
834our $AUTOLOAD; 1123our $AUTOLOAD;
835our @ISA; 1124our @ISA;
836 1125
837our @REGISTRY; 1126our @REGISTRY;
838 1127
839our $WIN32; 1128our $WIN32;
840 1129
1130our $VERBOSE;
1131
841BEGIN { 1132BEGIN {
842 my $win32 = ! ! ($^O =~ /mswin32/i); 1133 eval "sub WIN32(){ " . (($^O =~ /mswin32/i)*1) ." }";
843 eval "sub WIN32(){ $win32 }"; 1134 eval "sub TAINT(){ " . (${^TAINT}*1) . " }";
844}
845 1135
1136 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1137 if ${^TAINT};
1138
846our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; 1139 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1;
1140
1141}
1142
1143our $MAX_SIGNAL_LATENCY = 10;
847 1144
848our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred 1145our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
849 1146
850{ 1147{
851 my $idx; 1148 my $idx;
853 for reverse split /\s*,\s*/, 1150 for reverse split /\s*,\s*/,
854 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1151 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
855} 1152}
856 1153
857my @models = ( 1154my @models = (
858 [EV:: => AnyEvent::Impl::EV::], 1155 [EV:: => AnyEvent::Impl::EV:: , 1],
859 [Event:: => AnyEvent::Impl::Event::], 1156 [Event:: => AnyEvent::Impl::Event::, 1],
860 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::], 1157 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl:: , 1],
861 # everything below here will not be autoprobed 1158 # everything below here will not (normally) be autoprobed
862 # as the pureperl backend should work everywhere 1159 # as the pureperl backend should work everywhere
863 # and is usually faster 1160 # and is usually faster
1161 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1162 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1163 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
864 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles 1164 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
865 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
866 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
867 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 1165 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
868 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 1166 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
869 [Wx:: => AnyEvent::Impl::POE::], 1167 [Wx:: => AnyEvent::Impl::POE::],
870 [Prima:: => AnyEvent::Impl::POE::], 1168 [Prima:: => AnyEvent::Impl::POE::],
1169 # IO::Async is just too broken - we would need workarounds for its
1170 # byzantine signal and broken child handling, among others.
1171 # IO::Async is rather hard to detect, as it doesn't have any
1172 # obvious default class.
1173# [0, IO::Async:: => AnyEvent::Impl::IOAsync::], # requires special main program
1174# [0, IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # requires special main program
1175# [0, IO::Async::Notifier:: => AnyEvent::Impl::IOAsync::], # requires special main program
871); 1176);
872 1177
873our %method = map +($_ => 1), qw(io timer time now signal child condvar one_event DESTROY); 1178our %method = map +($_ => 1),
1179 qw(io timer time now now_update signal child idle condvar one_event DESTROY);
874 1180
875our @post_detect; 1181our @post_detect;
876 1182
877sub post_detect(&) { 1183sub post_detect(&) {
878 my ($cb) = @_; 1184 my ($cb) = @_;
879 1185
880 if ($MODEL) { 1186 if ($MODEL) {
881 $cb->(); 1187 $cb->();
882 1188
883 1 1189 undef
884 } else { 1190 } else {
885 push @post_detect, $cb; 1191 push @post_detect, $cb;
886 1192
887 defined wantarray 1193 defined wantarray
888 ? bless \$cb, "AnyEvent::Util::PostDetect" 1194 ? bless \$cb, "AnyEvent::Util::postdetect"
889 : () 1195 : ()
890 } 1196 }
891} 1197}
892 1198
893sub AnyEvent::Util::PostDetect::DESTROY { 1199sub AnyEvent::Util::postdetect::DESTROY {
894 @post_detect = grep $_ != ${$_[0]}, @post_detect; 1200 @post_detect = grep $_ != ${$_[0]}, @post_detect;
895} 1201}
896 1202
897sub detect() { 1203sub detect() {
898 unless ($MODEL) { 1204 unless ($MODEL) {
899 no strict 'refs';
900 local $SIG{__DIE__}; 1205 local $SIG{__DIE__};
901 1206
902 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) { 1207 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
903 my $model = "AnyEvent::Impl::$1"; 1208 my $model = "AnyEvent::Impl::$1";
904 if (eval "require $model") { 1209 if (eval "require $model") {
905 $MODEL = $model; 1210 $MODEL = $model;
906 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1211 warn "AnyEvent: loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.\n" if $VERBOSE >= 2;
907 } else { 1212 } else {
908 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose; 1213 warn "AnyEvent: unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@" if $VERBOSE;
909 } 1214 }
910 } 1215 }
911 1216
912 # check for already loaded models 1217 # check for already loaded models
913 unless ($MODEL) { 1218 unless ($MODEL) {
914 for (@REGISTRY, @models) { 1219 for (@REGISTRY, @models) {
915 my ($package, $model) = @$_; 1220 my ($package, $model) = @$_;
916 if (${"$package\::VERSION"} > 0) { 1221 if (${"$package\::VERSION"} > 0) {
917 if (eval "require $model") { 1222 if (eval "require $model") {
918 $MODEL = $model; 1223 $MODEL = $model;
919 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1; 1224 warn "AnyEvent: autodetected model '$model', using it.\n" if $VERBOSE >= 2;
920 last; 1225 last;
921 } 1226 }
922 } 1227 }
923 } 1228 }
924 1229
925 unless ($MODEL) { 1230 unless ($MODEL) {
926 # try to load a model 1231 # try to autoload a model
927
928 for (@REGISTRY, @models) { 1232 for (@REGISTRY, @models) {
929 my ($package, $model) = @$_; 1233 my ($package, $model, $autoload) = @$_;
1234 if (
1235 $autoload
930 if (eval "require $package" 1236 and eval "require $package"
931 and ${"$package\::VERSION"} > 0 1237 and ${"$package\::VERSION"} > 0
932 and eval "require $model") { 1238 and eval "require $model"
1239 ) {
933 $MODEL = $model; 1240 $MODEL = $model;
934 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1; 1241 warn "AnyEvent: autoloaded model '$model', using it.\n" if $VERBOSE >= 2;
935 last; 1242 last;
936 } 1243 }
937 } 1244 }
938 1245
939 $MODEL 1246 $MODEL
940 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib."; 1247 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib.\n";
941 } 1248 }
942 } 1249 }
943 1250
944 push @{"$MODEL\::ISA"}, "AnyEvent::Base"; 1251 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
945 1252
955 1262
956sub AUTOLOAD { 1263sub AUTOLOAD {
957 (my $func = $AUTOLOAD) =~ s/.*://; 1264 (my $func = $AUTOLOAD) =~ s/.*://;
958 1265
959 $method{$func} 1266 $method{$func}
960 or croak "$func: not a valid method for AnyEvent objects"; 1267 or Carp::croak "$func: not a valid method for AnyEvent objects";
961 1268
962 detect unless $MODEL; 1269 detect unless $MODEL;
963 1270
964 my $class = shift; 1271 my $class = shift;
965 $class->$func (@_); 1272 $class->$func (@_);
966} 1273}
967 1274
968# utility function to dup a filehandle. this is used by many backends 1275# utility function to dup a filehandle. this is used by many backends
969# to support binding more than one watcher per filehandle (they usually 1276# to support binding more than one watcher per filehandle (they usually
970# allow only one watcher per fd, so we dup it to get a different one). 1277# allow only one watcher per fd, so we dup it to get a different one).
971sub _dupfh($$$$) { 1278sub _dupfh($$;$$) {
972 my ($poll, $fh, $r, $w) = @_; 1279 my ($poll, $fh, $r, $w) = @_;
973 1280
974 require Fcntl;
975
976 # cygwin requires the fh mode to be matching, unix doesn't 1281 # cygwin requires the fh mode to be matching, unix doesn't
977 my ($rw, $mode) = $poll eq "r" ? ($r, "<") 1282 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
978 : $poll eq "w" ? ($w, ">")
979 : Carp::croak "AnyEvent->io requires poll set to either 'r' or 'w'";
980 1283
981 open my $fh2, "$mode&" . fileno $fh 1284 open my $fh2, $mode, $fh
982 or die "cannot dup() filehandle: $!"; 1285 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
983 1286
984 # we assume CLOEXEC is already set by perl in all important cases 1287 # we assume CLOEXEC is already set by perl in all important cases
985 1288
986 ($fh2, $rw) 1289 ($fh2, $rw)
987} 1290}
988 1291
989package AnyEvent::Base; 1292package AnyEvent::Base;
990 1293
991# default implementation for now and time 1294# default implementations for many methods
992 1295
993use Time::HiRes (); 1296sub _time {
1297 # probe for availability of Time::HiRes
1298 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1299 warn "AnyEvent: using Time::HiRes for sub-second timing accuracy.\n" if $VERBOSE >= 8;
1300 *_time = \&Time::HiRes::time;
1301 # if (eval "use POSIX (); (POSIX::times())...
1302 } else {
1303 warn "AnyEvent: using built-in time(), WARNING, no sub-second resolution!\n" if $VERBOSE;
1304 *_time = sub { time }; # epic fail
1305 }
994 1306
995sub time { Time::HiRes::time } 1307 &_time
996sub now { Time::HiRes::time } 1308}
1309
1310sub time { _time }
1311sub now { _time }
1312sub now_update { }
997 1313
998# default implementation for ->condvar 1314# default implementation for ->condvar
999 1315
1000sub condvar { 1316sub condvar {
1001 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar:: 1317 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1002} 1318}
1003 1319
1004# default implementation for ->signal 1320# default implementation for ->signal
1005 1321
1006our %SIG_CB; 1322our $HAVE_ASYNC_INTERRUPT;
1323
1324sub _have_async_interrupt() {
1325 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1326 && eval "use Async::Interrupt 1.0 (); 1")
1327 unless defined $HAVE_ASYNC_INTERRUPT;
1328
1329 $HAVE_ASYNC_INTERRUPT
1330}
1331
1332our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1333our (%SIG_ASY, %SIG_ASY_W);
1334our ($SIG_COUNT, $SIG_TW);
1335
1336sub _signal_exec {
1337 $HAVE_ASYNC_INTERRUPT
1338 ? $SIGPIPE_R->drain
1339 : sysread $SIGPIPE_R, my $dummy, 9;
1340
1341 while (%SIG_EV) {
1342 for (keys %SIG_EV) {
1343 delete $SIG_EV{$_};
1344 $_->() for values %{ $SIG_CB{$_} || {} };
1345 }
1346 }
1347}
1348
1349# install a dummy wakeup watcher to reduce signal catching latency
1350sub _sig_add() {
1351 unless ($SIG_COUNT++) {
1352 # try to align timer on a full-second boundary, if possible
1353 my $NOW = AnyEvent->now;
1354
1355 $SIG_TW = AnyEvent->timer (
1356 after => $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1357 interval => $MAX_SIGNAL_LATENCY,
1358 cb => sub { }, # just for the PERL_ASYNC_CHECK
1359 );
1360 }
1361}
1362
1363sub _sig_del {
1364 undef $SIG_TW
1365 unless --$SIG_COUNT;
1366}
1367
1368our $_sig_name_init; $_sig_name_init = sub {
1369 eval q{ # poor man's autoloading
1370 undef $_sig_name_init;
1371
1372 if (_have_async_interrupt) {
1373 *sig2num = \&Async::Interrupt::sig2num;
1374 *sig2name = \&Async::Interrupt::sig2name;
1375 } else {
1376 require Config;
1377
1378 my %signame2num;
1379 @signame2num{ split ' ', $Config::Config{sig_name} }
1380 = split ' ', $Config::Config{sig_num};
1381
1382 my @signum2name;
1383 @signum2name[values %signame2num] = keys %signame2num;
1384
1385 *sig2num = sub($) {
1386 $_[0] > 0 ? shift : $signame2num{+shift}
1387 };
1388 *sig2name = sub ($) {
1389 $_[0] > 0 ? $signum2name[+shift] : shift
1390 };
1391 }
1392 };
1393 die if $@;
1394};
1395
1396sub sig2num ($) { &$_sig_name_init; &sig2num }
1397sub sig2name($) { &$_sig_name_init; &sig2name }
1007 1398
1008sub signal { 1399sub signal {
1400 eval q{ # poor man's autoloading {}
1401 # probe for availability of Async::Interrupt
1402 if (_have_async_interrupt) {
1403 warn "AnyEvent: using Async::Interrupt for race-free signal handling.\n" if $VERBOSE >= 8;
1404
1405 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1406 $SIG_IO = AnyEvent->io (fh => $SIGPIPE_R->fileno, poll => "r", cb => \&_signal_exec);
1407
1408 } else {
1409 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8;
1410
1411 require Fcntl;
1412
1413 if (AnyEvent::WIN32) {
1414 require AnyEvent::Util;
1415
1416 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1417 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1418 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1419 } else {
1420 pipe $SIGPIPE_R, $SIGPIPE_W;
1421 fcntl $SIGPIPE_R, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_R;
1422 fcntl $SIGPIPE_W, &Fcntl::F_SETFL, &Fcntl::O_NONBLOCK if $SIGPIPE_W; # just in case
1423
1424 # not strictly required, as $^F is normally 2, but let's make sure...
1425 fcntl $SIGPIPE_R, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1426 fcntl $SIGPIPE_W, &Fcntl::F_SETFD, &Fcntl::FD_CLOEXEC;
1427 }
1428
1429 $SIGPIPE_R
1430 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1431
1432 $SIG_IO = AnyEvent->io (fh => $SIGPIPE_R, poll => "r", cb => \&_signal_exec);
1433 }
1434
1435 *signal = sub {
1009 my (undef, %arg) = @_; 1436 my (undef, %arg) = @_;
1010 1437
1011 my $signal = uc $arg{signal} 1438 my $signal = uc $arg{signal}
1012 or Carp::croak "required option 'signal' is missing"; 1439 or Carp::croak "required option 'signal' is missing";
1013 1440
1441 if ($HAVE_ASYNC_INTERRUPT) {
1442 # async::interrupt
1443
1444 $signal = sig2num $signal;
1014 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1445 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1446
1447 $SIG_ASY{$signal} ||= new Async::Interrupt
1448 cb => sub { undef $SIG_EV{$signal} },
1449 signal => $signal,
1450 pipe => [$SIGPIPE_R->filenos],
1451 pipe_autodrain => 0,
1452 ;
1453
1454 } else {
1455 # pure perl
1456
1457 # AE::Util has been loaded in signal
1458 $signal = sig2name $signal;
1459 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1460
1015 $SIG{$signal} ||= sub { 1461 $SIG{$signal} ||= sub {
1016 $_->() for values %{ $SIG_CB{$signal} || {} }; 1462 local $!;
1463 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1464 undef $SIG_EV{$signal};
1465 };
1466
1467 # can't do signal processing without introducing races in pure perl,
1468 # so limit the signal latency.
1469 _sig_add;
1470 }
1471
1472 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1473 };
1474
1475 *AnyEvent::Base::signal::DESTROY = sub {
1476 my ($signal, $cb) = @{$_[0]};
1477
1478 _sig_del;
1479
1480 delete $SIG_CB{$signal}{$cb};
1481
1482 $HAVE_ASYNC_INTERRUPT
1483 ? delete $SIG_ASY{$signal}
1484 : # delete doesn't work with older perls - they then
1485 # print weird messages, or just unconditionally exit
1486 # instead of getting the default action.
1487 undef $SIG{$signal}
1488 unless keys %{ $SIG_CB{$signal} };
1489 };
1017 }; 1490 };
1018 1491 die if $@;
1019 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1492 &signal
1020}
1021
1022sub AnyEvent::Base::Signal::DESTROY {
1023 my ($signal, $cb) = @{$_[0]};
1024
1025 delete $SIG_CB{$signal}{$cb};
1026
1027 delete $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
1028} 1493}
1029 1494
1030# default implementation for ->child 1495# default implementation for ->child
1031 1496
1032our %PID_CB; 1497our %PID_CB;
1033our $CHLD_W; 1498our $CHLD_W;
1034our $CHLD_DELAY_W; 1499our $CHLD_DELAY_W;
1035our $PID_IDLE;
1036our $WNOHANG; 1500our $WNOHANG;
1037 1501
1038sub _child_wait { 1502sub _emit_childstatus($$) {
1039 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1503 my (undef, $rpid, $rstatus) = @_;
1504
1505 $_->($rpid, $rstatus)
1040 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1506 for values %{ $PID_CB{$rpid} || {} },
1041 (values %{ $PID_CB{0} || {} }); 1507 values %{ $PID_CB{0} || {} };
1042 }
1043
1044 undef $PID_IDLE;
1045} 1508}
1046 1509
1047sub _sigchld { 1510sub _sigchld {
1048 # make sure we deliver these changes "synchronous" with the event loop. 1511 my $pid;
1049 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub { 1512
1050 undef $CHLD_DELAY_W; 1513 AnyEvent->_emit_childstatus ($pid, $?)
1051 &_child_wait; 1514 while ($pid = waitpid -1, $WNOHANG) > 0;
1052 });
1053} 1515}
1054 1516
1055sub child { 1517sub child {
1056 my (undef, %arg) = @_; 1518 my (undef, %arg) = @_;
1057 1519
1058 defined (my $pid = $arg{pid} + 0) 1520 defined (my $pid = $arg{pid} + 0)
1059 or Carp::croak "required option 'pid' is missing"; 1521 or Carp::croak "required option 'pid' is missing";
1060 1522
1061 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1523 $PID_CB{$pid}{$arg{cb}} = $arg{cb};
1062 1524
1063 unless ($WNOHANG) { 1525 # WNOHANG is almost cetrainly 1 everywhere
1526 $WNOHANG ||= $^O =~ /^(?:openbsd|netbsd|linux|freebsd|cygwin|MSWin32)$/
1527 ? 1
1064 $WNOHANG = eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1; 1528 : eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1065 }
1066 1529
1067 unless ($CHLD_W) { 1530 unless ($CHLD_W) {
1068 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1531 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld);
1069 # child could be a zombie already, so make at least one round 1532 # child could be a zombie already, so make at least one round
1070 &_sigchld; 1533 &_sigchld;
1071 } 1534 }
1072 1535
1073 bless [$pid, $arg{cb}], "AnyEvent::Base::Child" 1536 bless [$pid, $arg{cb}], "AnyEvent::Base::child"
1074} 1537}
1075 1538
1076sub AnyEvent::Base::Child::DESTROY { 1539sub AnyEvent::Base::child::DESTROY {
1077 my ($pid, $cb) = @{$_[0]}; 1540 my ($pid, $cb) = @{$_[0]};
1078 1541
1079 delete $PID_CB{$pid}{$cb}; 1542 delete $PID_CB{$pid}{$cb};
1080 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1543 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1081 1544
1082 undef $CHLD_W unless keys %PID_CB; 1545 undef $CHLD_W unless keys %PID_CB;
1083} 1546}
1084 1547
1548# idle emulation is done by simply using a timer, regardless
1549# of whether the process is idle or not, and not letting
1550# the callback use more than 50% of the time.
1551sub idle {
1552 my (undef, %arg) = @_;
1553
1554 my ($cb, $w, $rcb) = $arg{cb};
1555
1556 $rcb = sub {
1557 if ($cb) {
1558 $w = _time;
1559 &$cb;
1560 $w = _time - $w;
1561
1562 # never use more then 50% of the time for the idle watcher,
1563 # within some limits
1564 $w = 0.0001 if $w < 0.0001;
1565 $w = 5 if $w > 5;
1566
1567 $w = AnyEvent->timer (after => $w, cb => $rcb);
1568 } else {
1569 # clean up...
1570 undef $w;
1571 undef $rcb;
1572 }
1573 };
1574
1575 $w = AnyEvent->timer (after => 0.05, cb => $rcb);
1576
1577 bless \\$cb, "AnyEvent::Base::idle"
1578}
1579
1580sub AnyEvent::Base::idle::DESTROY {
1581 undef $${$_[0]};
1582}
1583
1085package AnyEvent::CondVar; 1584package AnyEvent::CondVar;
1086 1585
1087our @ISA = AnyEvent::CondVar::Base::; 1586our @ISA = AnyEvent::CondVar::Base::;
1088 1587
1089package AnyEvent::CondVar::Base; 1588package AnyEvent::CondVar::Base;
1090 1589
1091use overload 1590#use overload
1092 '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, 1591# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1093 fallback => 1; 1592# fallback => 1;
1593
1594# save 300+ kilobytes by dirtily hardcoding overloading
1595${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1596*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1597*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1598${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1599
1600our $WAITING;
1094 1601
1095sub _send { 1602sub _send {
1096 # nop 1603 # nop
1097} 1604}
1098 1605
1111sub ready { 1618sub ready {
1112 $_[0]{_ae_sent} 1619 $_[0]{_ae_sent}
1113} 1620}
1114 1621
1115sub _wait { 1622sub _wait {
1623 $WAITING
1624 and !$_[0]{_ae_sent}
1625 and Carp::croak "AnyEvent::CondVar: recursive blocking wait detected";
1626
1627 local $WAITING = 1;
1116 AnyEvent->one_event while !$_[0]{_ae_sent}; 1628 AnyEvent->one_event while !$_[0]{_ae_sent};
1117} 1629}
1118 1630
1119sub recv { 1631sub recv {
1120 $_[0]->_wait; 1632 $_[0]->_wait;
1122 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1634 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak};
1123 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1635 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0]
1124} 1636}
1125 1637
1126sub cb { 1638sub cb {
1127 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1639 my $cv = shift;
1640
1641 @_
1642 and $cv->{_ae_cb} = shift
1643 and $cv->{_ae_sent}
1644 and (delete $cv->{_ae_cb})->($cv);
1128 $_[0]{_ae_cb} 1645 $cv->{_ae_cb}
1129} 1646}
1130 1647
1131sub begin { 1648sub begin {
1132 ++$_[0]{_ae_counter}; 1649 ++$_[0]{_ae_counter};
1133 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 1650 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
1139} 1656}
1140 1657
1141# undocumented/compatibility with pre-3.4 1658# undocumented/compatibility with pre-3.4
1142*broadcast = \&send; 1659*broadcast = \&send;
1143*wait = \&_wait; 1660*wait = \&_wait;
1661
1662#############################################################################
1663# "new" API, currently only emulation of it
1664#############################################################################
1665
1666package AE;
1667
1668sub io($$$) {
1669 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1670}
1671
1672sub timer($$$) {
1673 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2]);
1674}
1675
1676sub signal($$) {
1677 AnyEvent->signal (signal => $_[0], cb => $_[1]);
1678}
1679
1680sub child($$) {
1681 AnyEvent->child (pid => $_[0], cb => $_[1]);
1682}
1683
1684sub idle($) {
1685 AnyEvent->idle (cb => $_[0]);
1686}
1687
1688sub cv() {
1689 AnyEvent->condvar
1690}
1691
1692sub now() {
1693 AnyEvent->now
1694}
1695
1696sub now_update() {
1697 AnyEvent->now_update
1698}
1699
1700sub time() {
1701 AnyEvent->time
1702}
1703
1704=head1 ERROR AND EXCEPTION HANDLING
1705
1706In general, AnyEvent does not do any error handling - it relies on the
1707caller to do that if required. The L<AnyEvent::Strict> module (see also
1708the C<PERL_ANYEVENT_STRICT> environment variable, below) provides strict
1709checking of all AnyEvent methods, however, which is highly useful during
1710development.
1711
1712As for exception handling (i.e. runtime errors and exceptions thrown while
1713executing a callback), this is not only highly event-loop specific, but
1714also not in any way wrapped by this module, as this is the job of the main
1715program.
1716
1717The pure perl event loop simply re-throws the exception (usually
1718within C<< condvar->recv >>), the L<Event> and L<EV> modules call C<<
1719$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
1720so on.
1721
1722=head1 ENVIRONMENT VARIABLES
1723
1724The following environment variables are used by this module or its
1725submodules.
1726
1727Note that AnyEvent will remove I<all> environment variables starting with
1728C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
1729enabled.
1730
1731=over 4
1732
1733=item C<PERL_ANYEVENT_VERBOSE>
1734
1735By default, AnyEvent will be completely silent except in fatal
1736conditions. You can set this environment variable to make AnyEvent more
1737talkative.
1738
1739When set to C<1> or higher, causes AnyEvent to warn about unexpected
1740conditions, such as not being able to load the event model specified by
1741C<PERL_ANYEVENT_MODEL>.
1742
1743When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1744model it chooses.
1745
1746When set to C<8> or higher, then AnyEvent will report extra information on
1747which optional modules it loads and how it implements certain features.
1748
1749=item C<PERL_ANYEVENT_STRICT>
1750
1751AnyEvent does not do much argument checking by default, as thorough
1752argument checking is very costly. Setting this variable to a true value
1753will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1754check the arguments passed to most method calls. If it finds any problems,
1755it will croak.
1756
1757In other words, enables "strict" mode.
1758
1759Unlike C<use strict> (or it's modern cousin, C<< use L<common::sense>
1760>>, it is definitely recommended to keep it off in production. Keeping
1761C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
1762can be very useful, however.
1763
1764=item C<PERL_ANYEVENT_MODEL>
1765
1766This can be used to specify the event model to be used by AnyEvent, before
1767auto detection and -probing kicks in. It must be a string consisting
1768entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1769and the resulting module name is loaded and if the load was successful,
1770used as event model. If it fails to load AnyEvent will proceed with
1771auto detection and -probing.
1772
1773This functionality might change in future versions.
1774
1775For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
1776could start your program like this:
1777
1778 PERL_ANYEVENT_MODEL=Perl perl ...
1779
1780=item C<PERL_ANYEVENT_PROTOCOLS>
1781
1782Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1783for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1784of auto probing).
1785
1786Must be set to a comma-separated list of protocols or address families,
1787current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1788used, and preference will be given to protocols mentioned earlier in the
1789list.
1790
1791This variable can effectively be used for denial-of-service attacks
1792against local programs (e.g. when setuid), although the impact is likely
1793small, as the program has to handle conenction and other failures anyways.
1794
1795Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1796but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1797- only support IPv4, never try to resolve or contact IPv6
1798addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1799IPv6, but prefer IPv6 over IPv4.
1800
1801=item C<PERL_ANYEVENT_EDNS0>
1802
1803Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1804for DNS. This extension is generally useful to reduce DNS traffic, but
1805some (broken) firewalls drop such DNS packets, which is why it is off by
1806default.
1807
1808Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1809EDNS0 in its DNS requests.
1810
1811=item C<PERL_ANYEVENT_MAX_FORKS>
1812
1813The maximum number of child processes that C<AnyEvent::Util::fork_call>
1814will create in parallel.
1815
1816=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
1817
1818The default value for the C<max_outstanding> parameter for the default DNS
1819resolver - this is the maximum number of parallel DNS requests that are
1820sent to the DNS server.
1821
1822=item C<PERL_ANYEVENT_RESOLV_CONF>
1823
1824The file to use instead of F</etc/resolv.conf> (or OS-specific
1825configuration) in the default resolver. When set to the empty string, no
1826default config will be used.
1827
1828=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
1829
1830When neither C<ca_file> nor C<ca_path> was specified during
1831L<AnyEvent::TLS> context creation, and either of these environment
1832variables exist, they will be used to specify CA certificate locations
1833instead of a system-dependent default.
1834
1835=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
1836
1837When these are set to C<1>, then the respective modules are not
1838loaded. Mostly good for testing AnyEvent itself.
1839
1840=back
1144 1841
1145=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 1842=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1146 1843
1147This is an advanced topic that you do not normally need to use AnyEvent in 1844This is an advanced topic that you do not normally need to use AnyEvent in
1148a module. This section is only of use to event loop authors who want to 1845a module. This section is only of use to event loop authors who want to
1182 1879
1183I<rxvt-unicode> also cheats a bit by not providing blocking access to 1880I<rxvt-unicode> also cheats a bit by not providing blocking access to
1184condition variables: code blocking while waiting for a condition will 1881condition variables: code blocking while waiting for a condition will
1185C<die>. This still works with most modules/usages, and blocking calls must 1882C<die>. This still works with most modules/usages, and blocking calls must
1186not be done in an interactive application, so it makes sense. 1883not be done in an interactive application, so it makes sense.
1187
1188=head1 ENVIRONMENT VARIABLES
1189
1190The following environment variables are used by this module:
1191
1192=over 4
1193
1194=item C<PERL_ANYEVENT_VERBOSE>
1195
1196By default, AnyEvent will be completely silent except in fatal
1197conditions. You can set this environment variable to make AnyEvent more
1198talkative.
1199
1200When set to C<1> or higher, causes AnyEvent to warn about unexpected
1201conditions, such as not being able to load the event model specified by
1202C<PERL_ANYEVENT_MODEL>.
1203
1204When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1205model it chooses.
1206
1207=item C<PERL_ANYEVENT_STRICT>
1208
1209AnyEvent does not do much argument checking by default, as thorough
1210argument checking is very costly. Setting this variable to a true value
1211will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1212check the arguments passed to most method calls. If it finds any problems
1213it will croak.
1214
1215In other words, enables "strict" mode.
1216
1217Unlike C<use strict> it is definitely recommended ot keep it off in
1218production.
1219
1220=item C<PERL_ANYEVENT_MODEL>
1221
1222This can be used to specify the event model to be used by AnyEvent, before
1223auto detection and -probing kicks in. It must be a string consisting
1224entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1225and the resulting module name is loaded and if the load was successful,
1226used as event model. If it fails to load AnyEvent will proceed with
1227auto detection and -probing.
1228
1229This functionality might change in future versions.
1230
1231For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
1232could start your program like this:
1233
1234 PERL_ANYEVENT_MODEL=Perl perl ...
1235
1236=item C<PERL_ANYEVENT_PROTOCOLS>
1237
1238Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1239for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1240of auto probing).
1241
1242Must be set to a comma-separated list of protocols or address families,
1243current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1244used, and preference will be given to protocols mentioned earlier in the
1245list.
1246
1247This variable can effectively be used for denial-of-service attacks
1248against local programs (e.g. when setuid), although the impact is likely
1249small, as the program has to handle connection errors already-
1250
1251Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1252but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1253- only support IPv4, never try to resolve or contact IPv6
1254addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1255IPv6, but prefer IPv6 over IPv4.
1256
1257=item C<PERL_ANYEVENT_EDNS0>
1258
1259Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1260for DNS. This extension is generally useful to reduce DNS traffic, but
1261some (broken) firewalls drop such DNS packets, which is why it is off by
1262default.
1263
1264Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1265EDNS0 in its DNS requests.
1266
1267=item C<PERL_ANYEVENT_MAX_FORKS>
1268
1269The maximum number of child processes that C<AnyEvent::Util::fork_call>
1270will create in parallel.
1271
1272=back
1273 1884
1274=head1 EXAMPLE PROGRAM 1885=head1 EXAMPLE PROGRAM
1275 1886
1276The following program uses an I/O watcher to read data from STDIN, a timer 1887The following program uses an I/O watcher to read data from STDIN, a timer
1277to display a message once per second, and a condition variable to quit the 1888to display a message once per second, and a condition variable to quit the
1471watcher. 2082watcher.
1472 2083
1473=head3 Results 2084=head3 Results
1474 2085
1475 name watchers bytes create invoke destroy comment 2086 name watchers bytes create invoke destroy comment
1476 EV/EV 400000 244 0.56 0.46 0.31 EV native interface 2087 EV/EV 400000 224 0.47 0.35 0.27 EV native interface
1477 EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers 2088 EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers
1478 CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal 2089 CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal
1479 Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation 2090 Perl/Any 100000 452 4.13 0.73 0.95 pure perl implementation
1480 Event/Event 16000 516 31.88 31.30 0.85 Event native interface 2091 Event/Event 16000 517 32.20 31.80 0.81 Event native interface
1481 Event/Any 16000 590 35.75 31.42 1.08 Event + AnyEvent watchers 2092 Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers
2093 IOAsync/Any 16000 989 38.10 32.77 11.13 via IO::Async::Loop::IO_Poll
2094 IOAsync/Any 16000 990 37.59 29.50 10.61 via IO::Async::Loop::Epoll
1482 Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour 2095 Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour
1483 Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers 2096 Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers
1484 POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event 2097 POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event
1485 POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select 2098 POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select
1486 2099
1487=head3 Discussion 2100=head3 Discussion
1488 2101
1489The benchmark does I<not> measure scalability of the event loop very 2102The benchmark does I<not> measure scalability of the event loop very
1490well. For example, a select-based event loop (such as the pure perl one) 2103well. For example, a select-based event loop (such as the pure perl one)
1515performance becomes really bad with lots of file descriptors (and few of 2128performance becomes really bad with lots of file descriptors (and few of
1516them active), of course, but this was not subject of this benchmark. 2129them active), of course, but this was not subject of this benchmark.
1517 2130
1518The C<Event> module has a relatively high setup and callback invocation 2131The C<Event> module has a relatively high setup and callback invocation
1519cost, but overall scores in on the third place. 2132cost, but overall scores in on the third place.
2133
2134C<IO::Async> performs admirably well, about on par with C<Event>, even
2135when using its pure perl backend.
1520 2136
1521C<Glib>'s memory usage is quite a bit higher, but it features a 2137C<Glib>'s memory usage is quite a bit higher, but it features a
1522faster callback invocation and overall ends up in the same class as 2138faster callback invocation and overall ends up in the same class as
1523C<Event>. However, Glib scales extremely badly, doubling the number of 2139C<Event>. However, Glib scales extremely badly, doubling the number of
1524watchers increases the processing time by more than a factor of four, 2140watchers increases the processing time by more than a factor of four,
1602it to another server. This includes deleting the old timeout and creating 2218it to another server. This includes deleting the old timeout and creating
1603a new one that moves the timeout into the future. 2219a new one that moves the timeout into the future.
1604 2220
1605=head3 Results 2221=head3 Results
1606 2222
1607 name sockets create request 2223 name sockets create request
1608 EV 20000 69.01 11.16 2224 EV 20000 69.01 11.16
1609 Perl 20000 73.32 35.87 2225 Perl 20000 73.32 35.87
2226 IOAsync 20000 157.00 98.14 epoll
2227 IOAsync 20000 159.31 616.06 poll
1610 Event 20000 212.62 257.32 2228 Event 20000 212.62 257.32
1611 Glib 20000 651.16 1896.30 2229 Glib 20000 651.16 1896.30
1612 POE 20000 349.67 12317.24 uses POE::Loop::Event 2230 POE 20000 349.67 12317.24 uses POE::Loop::Event
1613 2231
1614=head3 Discussion 2232=head3 Discussion
1615 2233
1616This benchmark I<does> measure scalability and overall performance of the 2234This benchmark I<does> measure scalability and overall performance of the
1617particular event loop. 2235particular event loop.
1619EV is again fastest. Since it is using epoll on my system, the setup time 2237EV is again fastest. Since it is using epoll on my system, the setup time
1620is relatively high, though. 2238is relatively high, though.
1621 2239
1622Perl surprisingly comes second. It is much faster than the C-based event 2240Perl surprisingly comes second. It is much faster than the C-based event
1623loops Event and Glib. 2241loops Event and Glib.
2242
2243IO::Async performs very well when using its epoll backend, and still quite
2244good compared to Glib when using its pure perl backend.
1624 2245
1625Event suffers from high setup time as well (look at its code and you will 2246Event suffers from high setup time as well (look at its code and you will
1626understand why). Callback invocation also has a high overhead compared to 2247understand why). Callback invocation also has a high overhead compared to
1627the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2248the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1628uses select or poll in basically all documented configurations. 2249uses select or poll in basically all documented configurations.
1691=item * C-based event loops perform very well with small number of 2312=item * C-based event loops perform very well with small number of
1692watchers, as the management overhead dominates. 2313watchers, as the management overhead dominates.
1693 2314
1694=back 2315=back
1695 2316
2317=head2 THE IO::Lambda BENCHMARK
2318
2319Recently I was told about the benchmark in the IO::Lambda manpage, which
2320could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2321simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2322shouldn't come as a surprise to anybody). As such, the benchmark is
2323fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2324very optimal. But how would AnyEvent compare when used without the extra
2325baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2326
2327The benchmark itself creates an echo-server, and then, for 500 times,
2328connects to the echo server, sends a line, waits for the reply, and then
2329creates the next connection. This is a rather bad benchmark, as it doesn't
2330test the efficiency of the framework or much non-blocking I/O, but it is a
2331benchmark nevertheless.
2332
2333 name runtime
2334 Lambda/select 0.330 sec
2335 + optimized 0.122 sec
2336 Lambda/AnyEvent 0.327 sec
2337 + optimized 0.138 sec
2338 Raw sockets/select 0.077 sec
2339 POE/select, components 0.662 sec
2340 POE/select, raw sockets 0.226 sec
2341 POE/select, optimized 0.404 sec
2342
2343 AnyEvent/select/nb 0.085 sec
2344 AnyEvent/EV/nb 0.068 sec
2345 +state machine 0.134 sec
2346
2347The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2348benchmarks actually make blocking connects and use 100% blocking I/O,
2349defeating the purpose of an event-based solution. All of the newly
2350written AnyEvent benchmarks use 100% non-blocking connects (using
2351AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2352resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2353generally require a lot more bookkeeping and event handling than blocking
2354connects (which involve a single syscall only).
2355
2356The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2357offers similar expressive power as POE and IO::Lambda, using conventional
2358Perl syntax. This means that both the echo server and the client are 100%
2359non-blocking, further placing it at a disadvantage.
2360
2361As you can see, the AnyEvent + EV combination even beats the
2362hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2363backend easily beats IO::Lambda and POE.
2364
2365And even the 100% non-blocking version written using the high-level (and
2366slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda by a
2367large margin, even though it does all of DNS, tcp-connect and socket I/O
2368in a non-blocking way.
2369
2370The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2371F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2372part of the IO::lambda distribution and were used without any changes.
2373
2374
2375=head1 SIGNALS
2376
2377AnyEvent currently installs handlers for these signals:
2378
2379=over 4
2380
2381=item SIGCHLD
2382
2383A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
2384emulation for event loops that do not support them natively. Also, some
2385event loops install a similar handler.
2386
2387Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2388AnyEvent will reset it to default, to avoid losing child exit statuses.
2389
2390=item SIGPIPE
2391
2392A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
2393when AnyEvent gets loaded.
2394
2395The rationale for this is that AnyEvent users usually do not really depend
2396on SIGPIPE delivery (which is purely an optimisation for shell use, or
2397badly-written programs), but C<SIGPIPE> can cause spurious and rare
2398program exits as a lot of people do not expect C<SIGPIPE> when writing to
2399some random socket.
2400
2401The rationale for installing a no-op handler as opposed to ignoring it is
2402that this way, the handler will be restored to defaults on exec.
2403
2404Feel free to install your own handler, or reset it to defaults.
2405
2406=back
2407
2408=cut
2409
2410undef $SIG{CHLD}
2411 if $SIG{CHLD} eq 'IGNORE';
2412
2413$SIG{PIPE} = sub { }
2414 unless defined $SIG{PIPE};
2415
2416=head1 RECOMMENDED/OPTIONAL MODULES
2417
2418One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2419it's built-in modules) are required to use it.
2420
2421That does not mean that AnyEvent won't take advantage of some additional
2422modules if they are installed.
2423
2424This section epxlains which additional modules will be used, and how they
2425affect AnyEvent's operetion.
2426
2427=over 4
2428
2429=item L<Async::Interrupt>
2430
2431This slightly arcane module is used to implement fast signal handling: To
2432my knowledge, there is no way to do completely race-free and quick
2433signal handling in pure perl. To ensure that signals still get
2434delivered, AnyEvent will start an interval timer to wake up perl (and
2435catch the signals) with some delay (default is 10 seconds, look for
2436C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2437
2438If this module is available, then it will be used to implement signal
2439catching, which means that signals will not be delayed, and the event loop
2440will not be interrupted regularly, which is more efficient (And good for
2441battery life on laptops).
2442
2443This affects not just the pure-perl event loop, but also other event loops
2444that have no signal handling on their own (e.g. Glib, Tk, Qt).
2445
2446Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2447and either employ their own workarounds (POE) or use AnyEvent's workaround
2448(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2449does nothing for those backends.
2450
2451=item L<EV>
2452
2453This module isn't really "optional", as it is simply one of the backend
2454event loops that AnyEvent can use. However, it is simply the best event
2455loop available in terms of features, speed and stability: It supports
2456the AnyEvent API optimally, implements all the watcher types in XS, does
2457automatic timer adjustments even when no monotonic clock is available,
2458can take avdantage of advanced kernel interfaces such as C<epoll> and
2459C<kqueue>, and is the fastest backend I<by far>. You can even embed
2460L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2461
2462=item L<Guard>
2463
2464The guard module, when used, will be used to implement
2465C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2466lot less memory), but otherwise doesn't affect guard operation much. It is
2467purely used for performance.
2468
2469=item L<JSON> and L<JSON::XS>
2470
2471This module is required when you want to read or write JSON data via
2472L<AnyEvent::Handle>. It is also written in pure-perl, but can take
2473advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2474
2475In fact, L<AnyEvent::Handle> will use L<JSON::XS> by default if it is
2476installed.
2477
2478=item L<Net::SSLeay>
2479
2480Implementing TLS/SSL in Perl is certainly interesting, but not very
2481worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2482the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2483
2484=item L<Time::HiRes>
2485
2486This module is part of perl since release 5.008. It will be used when the
2487chosen event library does not come with a timing source on it's own. The
2488pure-perl event loop (L<AnyEvent::Impl::Perl>) will additionally use it to
2489try to use a monotonic clock for timing stability.
2490
2491=back
2492
1696 2493
1697=head1 FORK 2494=head1 FORK
1698 2495
1699Most event libraries are not fork-safe. The ones who are usually are 2496Most event libraries are not fork-safe. The ones who are usually are
1700because they rely on inefficient but fork-safe C<select> or C<poll> 2497because they rely on inefficient but fork-safe C<select> or C<poll>
1701calls. Only L<EV> is fully fork-aware. 2498calls. Only L<EV> is fully fork-aware.
1702 2499
1703If you have to fork, you must either do so I<before> creating your first 2500If you have to fork, you must either do so I<before> creating your first
1704watcher OR you must not use AnyEvent at all in the child. 2501watcher OR you must not use AnyEvent at all in the child OR you must do
2502something completely out of the scope of AnyEvent.
1705 2503
1706 2504
1707=head1 SECURITY CONSIDERATIONS 2505=head1 SECURITY CONSIDERATIONS
1708 2506
1709AnyEvent can be forced to load any event model via 2507AnyEvent can be forced to load any event model via
1721 use AnyEvent; 2519 use AnyEvent;
1722 2520
1723Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2521Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1724be used to probe what backend is used and gain other information (which is 2522be used to probe what backend is used and gain other information (which is
1725probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and 2523probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
1726$ENV{PERL_ANYEGENT_STRICT}. 2524$ENV{PERL_ANYEVENT_STRICT}.
2525
2526Note that AnyEvent will remove I<all> environment variables starting with
2527C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2528enabled.
1727 2529
1728 2530
1729=head1 BUGS 2531=head1 BUGS
1730 2532
1731Perl 5.8 has numerous memleaks that sometimes hit this module and are hard 2533Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
1732to work around. If you suffer from memleaks, first upgrade to Perl 5.10 2534to work around. If you suffer from memleaks, first upgrade to Perl 5.10
1733and check wether the leaks still show up. (Perl 5.10.0 has other annoying 2535and check wether the leaks still show up. (Perl 5.10.0 has other annoying
1734mamleaks, such as leaking on C<map> and C<grep> but it is usually not as 2536memleaks, such as leaking on C<map> and C<grep> but it is usually not as
1735pronounced). 2537pronounced).
1736 2538
1737 2539
1738=head1 SEE ALSO 2540=head1 SEE ALSO
1739 2541
1743L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2545L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>.
1744 2546
1745Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 2547Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
1746L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 2548L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
1747L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 2549L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
1748L<AnyEvent::Impl::POE>. 2550L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>.
1749 2551
1750Non-blocking file handles, sockets, TCP clients and 2552Non-blocking file handles, sockets, TCP clients and
1751servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>. 2553servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
1752 2554
1753Asynchronous DNS: L<AnyEvent::DNS>. 2555Asynchronous DNS: L<AnyEvent::DNS>.
1754 2556
1755Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>, 2557Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>,
2558L<Coro::Event>,
1756 2559
1757Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 2560Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::XMPP>,
2561L<AnyEvent::HTTP>.
1758 2562
1759 2563
1760=head1 AUTHOR 2564=head1 AUTHOR
1761 2565
1762 Marc Lehmann <schmorp@schmorp.de> 2566 Marc Lehmann <schmorp@schmorp.de>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines