ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.165 by root, Tue Jul 8 23:07:26 2008 UTC vs.
Revision 1.340 by root, Fri Dec 3 18:39:06 2010 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt
6and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
15 # file handle or descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
17
18 # one-shot or repeating timers
19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
21
22 print AnyEvent->now; # prints current event loop time
23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
24
25 # POSIX signal
26 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
27
28 # child process exit
29 my $w = AnyEvent->child (pid => $pid, cb => sub {
30 my ($pid, $status) = @_;
12 ... 31 ...
13 }); 32 });
14 33
15 my $w = AnyEvent->timer (after => $seconds, cb => sub { 34 # called when event loop idle (if applicable)
16 ... 35 my $w = AnyEvent->idle (cb => sub { ... });
17 });
18 36
19 my $w = AnyEvent->condvar; # stores whether a condition was flagged 37 my $w = AnyEvent->condvar; # stores whether a condition was flagged
20 $w->send; # wake up current and all future recv's 38 $w->send; # wake up current and all future recv's
21 $w->recv; # enters "main loop" till $condvar gets ->send 39 $w->recv; # enters "main loop" till $condvar gets ->send
40 # use a condvar in callback mode:
41 $w->cb (sub { $_[0]->recv });
22 42
23=head1 INTRODUCTION/TUTORIAL 43=head1 INTRODUCTION/TUTORIAL
24 44
25This manpage is mainly a reference manual. If you are interested 45This manpage is mainly a reference manual. If you are interested
26in a tutorial or some gentle introduction, have a look at the 46in a tutorial or some gentle introduction, have a look at the
27L<AnyEvent::Intro> manpage. 47L<AnyEvent::Intro> manpage.
28 48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
58
29=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
30 60
31Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
32nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
33 63
34Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of 64Executive Summary: AnyEvent is I<compatible>, AnyEvent is I<free of
35policy> and AnyEvent is I<small and efficient>. 65policy> and AnyEvent is I<small and efficient>.
36 66
37First and foremost, I<AnyEvent is not an event model> itself, it only 67First and foremost, I<AnyEvent is not an event model> itself, it only
38interfaces to whatever event model the main program happens to use in a 68interfaces to whatever event model the main program happens to use, in a
39pragmatic way. For event models and certain classes of immortals alike, 69pragmatic way. For event models and certain classes of immortals alike,
40the statement "there can only be one" is a bitter reality: In general, 70the statement "there can only be one" is a bitter reality: In general,
41only one event loop can be active at the same time in a process. AnyEvent 71only one event loop can be active at the same time in a process. AnyEvent
42helps hiding the differences between those event loops. 72cannot change this, but it can hide the differences between those event
73loops.
43 74
44The goal of AnyEvent is to offer module authors the ability to do event 75The goal of AnyEvent is to offer module authors the ability to do event
45programming (waiting for I/O or timer events) without subscribing to a 76programming (waiting for I/O or timer events) without subscribing to a
46religion, a way of living, and most importantly: without forcing your 77religion, a way of living, and most importantly: without forcing your
47module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
48model you use. 79model you use.
49 80
50For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
51actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
52like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
53cannot use anything else, as it is simply incompatible to everything that 84cannot use anything else, as they are simply incompatible to everything
54isn't itself. What's worse, all the potential users of your module are 85that isn't them. What's worse, all the potential users of your
55I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
56 87
57AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
58fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
59with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if 90with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if
60your module uses one of those, every user of your module has to use it, 91your module uses one of those, every user of your module has to use it,
61too. But if your module uses AnyEvent, it works transparently with all 92too. But if your module uses AnyEvent, it works transparently with all
62event models it supports (including stuff like POE and IO::Async, as long 93event models it supports (including stuff like IO::Async, as long as those
63as those use one of the supported event loops. It is trivial to add new 94use one of the supported event loops. It is easy to add new event loops
64event loops to AnyEvent, too, so it is future-proof). 95to AnyEvent, too, so it is future-proof).
65 96
66In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
67model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
68modules, you get an enormous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
69follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
70offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
71technically possible. 102technically possible.
72 103
73Of course, AnyEvent comes with a big (and fully optional!) toolbox 104Of course, AnyEvent comes with a big (and fully optional!) toolbox
74of useful functionality, such as an asynchronous DNS resolver, 100% 105of useful functionality, such as an asynchronous DNS resolver, 100%
80useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
81model, you should I<not> use this module. 112model, you should I<not> use this module.
82 113
83=head1 DESCRIPTION 114=head1 DESCRIPTION
84 115
85L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
86allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
87users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
88peacefully at any one time). 119than one event loop cannot coexist peacefully).
89 120
90The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
91module. 122module.
92 123
93During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
94to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
95following modules is already loaded: L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Impl::Perl>,
96L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
97L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
98to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
99adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Impl::Perl> should always work, so
100be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
101found, AnyEvent will fall back to a pure-perl event loop, which is not
102very efficient, but should work everywhere.
103 132
104Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
105an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
106that model the default. For example: 135that model the default. For example:
107 136
109 use AnyEvent; 138 use AnyEvent;
110 139
111 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
112 141
113The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
114starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
115use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
116 146
117The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called
118C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148C<AnyEvent::Impl::Perl>. Like other event modules you can load it
119explicitly and enjoy the high availability of that event loop :) 149explicitly and enjoy the high availability of that event loop :)
120 150
127These watchers are normal Perl objects with normal Perl lifetime. After 157These watchers are normal Perl objects with normal Perl lifetime. After
128creating a watcher it will immediately "watch" for events and invoke the 158creating a watcher it will immediately "watch" for events and invoke the
129callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
130is in control). 160is in control).
131 161
162Note that B<callbacks must not permanently change global variables>
163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
164callbacks must not C<die> >>. The former is good programming practice in
165Perl and the latter stems from the fact that exception handling differs
166widely between event loops.
167
132To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
133variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
134to it). 170to it).
135 171
136All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
137 173
138Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
139example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
140 176
141An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
142 178
143 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
144 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
145 undef $w; 181 undef $w;
146 }); 182 });
149my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
150declared. 186declared.
151 187
152=head2 I/O WATCHERS 188=head2 I/O WATCHERS
153 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
154You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
155with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
156 198
157C<fh> the Perl I<file handle> (I<not> file descriptor) to watch 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
200for events (AnyEvent might or might not keep a reference to this file
201handle). Note that only file handles pointing to things for which
202non-blocking operation makes sense are allowed. This includes sockets,
203most character devices, pipes, fifos and so on, but not for example files
204or block devices.
205
158for events. C<poll> must be a string that is either C<r> or C<w>, 206C<poll> must be a string that is either C<r> or C<w>, which creates a
159which creates a watcher waiting for "r"eadable or "w"ritable events, 207watcher waiting for "r"eadable or "w"ritable events, respectively.
208
160respectively. C<cb> is the callback to invoke each time the file handle 209C<cb> is the callback to invoke each time the file handle becomes ready.
161becomes ready.
162 210
163Although the callback might get passed parameters, their value and 211Although the callback might get passed parameters, their value and
164presence is undefined and you cannot rely on them. Portable AnyEvent 212presence is undefined and you cannot rely on them. Portable AnyEvent
165callbacks cannot use arguments passed to I/O watcher callbacks. 213callbacks cannot use arguments passed to I/O watcher callbacks.
166 214
167The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
168You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
169underlying file descriptor. 217underlying file descriptor.
170 218
171Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
172always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
173handles. 221handles.
174 222
175Example: wait for readability of STDIN, then read a line and disable the 223Example: wait for readability of STDIN, then read a line and disable the
176watcher. 224watcher.
181 undef $w; 229 undef $w;
182 }); 230 });
183 231
184=head2 TIME WATCHERS 232=head2 TIME WATCHERS
185 233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
241
186You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
187method with the following mandatory arguments: 243method with the following mandatory arguments:
188 244
189C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
190supported) the callback should be invoked. C<cb> is the callback to invoke 246supported) the callback should be invoked. C<cb> is the callback to invoke
192 248
193Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
194presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
195callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
196 252
197The callback will normally be invoked once only. If you specify another 253The callback will normally be invoked only once. If you specify another
198parameter, C<interval>, as a strictly positive number (> 0), then the 254parameter, C<interval>, as a strictly positive number (> 0), then the
199callback will be invoked regularly at that interval (in fractional 255callback will be invoked regularly at that interval (in fractional
200seconds) after the first invocation. If C<interval> is specified with a 256seconds) after the first invocation. If C<interval> is specified with a
201false value, then it is treated as if it were missing. 257false value, then it is treated as if it were not specified at all.
202 258
203The callback will be rescheduled before invoking the callback, but no 259The callback will be rescheduled before invoking the callback, but no
204attempt is done to avoid timer drift in most backends, so the interval is 260attempt is made to avoid timer drift in most backends, so the interval is
205only approximate. 261only approximate.
206 262
207Example: fire an event after 7.7 seconds. 263Example: fire an event after 7.7 seconds.
208 264
209 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
227 283
228While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
229use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
230"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
231the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
232fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
233 289
234AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
235about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
236on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
237timers. 293timers.
238 294
239AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
240AnyEvent API. 296AnyEvent API.
262I<In almost all cases (in all cases if you don't care), this is the 318I<In almost all cases (in all cases if you don't care), this is the
263function to call when you want to know the current time.> 319function to call when you want to know the current time.>
264 320
265This function is also often faster then C<< AnyEvent->time >>, and 321This function is also often faster then C<< AnyEvent->time >>, and
266thus the preferred method if you want some timestamp (for example, 322thus the preferred method if you want some timestamp (for example,
267L<AnyEvent::Handle> uses this to update it's activity timeouts). 323L<AnyEvent::Handle> uses this to update its activity timeouts).
268 324
269The rest of this section is only of relevance if you try to be very exact 325The rest of this section is only of relevance if you try to be very exact
270with your timing, you can skip it without bad conscience. 326with your timing; you can skip it without a bad conscience.
271 327
272For a practical example of when these times differ, consider L<Event::Lib> 328For a practical example of when these times differ, consider L<Event::Lib>
273and L<EV> and the following set-up: 329and L<EV> and the following set-up:
274 330
275The event loop is running and has just invoked one of your callback at 331The event loop is running and has just invoked one of your callbacks at
276time=500 (assume no other callbacks delay processing). In your callback, 332time=500 (assume no other callbacks delay processing). In your callback,
277you wait a second by executing C<sleep 1> (blocking the process for a 333you wait a second by executing C<sleep 1> (blocking the process for a
278second) and then (at time=501) you create a relative timer that fires 334second) and then (at time=501) you create a relative timer that fires
279after three seconds. 335after three seconds.
280 336
298In either case, if you care (and in most cases, you don't), then you 354In either case, if you care (and in most cases, you don't), then you
299can get whatever behaviour you want with any event loop, by taking the 355can get whatever behaviour you want with any event loop, by taking the
300difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into 356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
301account. 357account.
302 358
359=item AnyEvent->now_update
360
361Some event loops (such as L<EV> or L<AnyEvent::Impl::Perl>) cache
362the current time for each loop iteration (see the discussion of L<<
363AnyEvent->now >>, above).
364
365When a callback runs for a long time (or when the process sleeps), then
366this "current" time will differ substantially from the real time, which
367might affect timers and time-outs.
368
369When this is the case, you can call this method, which will update the
370event loop's idea of "current time".
371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
379Note that updating the time I<might> cause some events to be handled.
380
303=back 381=back
304 382
305=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
306 384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
386
307You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
308I<name> without any C<SIG> prefix, C<cb> is the Perl callback to 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
309be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
310 390
311Although the callback might get passed parameters, their value and 391Although the callback might get passed parameters, their value and
312presence is undefined and you cannot rely on them. Portable AnyEvent 392presence is undefined and you cannot rely on them. Portable AnyEvent
313callbacks cannot use arguments passed to signal watcher callbacks. 393callbacks cannot use arguments passed to signal watcher callbacks.
314 394
316invocation, and callback invocation will be synchronous. Synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
317that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
318but it is guaranteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
319 399
320The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
321between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
322 403
323This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
324directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
325 407
326Example: exit on SIGINT 408Example: exit on SIGINT
327 409
328 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
329 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling) or
421"unsafe" (asynchronous) - the former might get delayed indefinitely, the
422latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
432callbacks to signals in a generic way, which is a pity, as you cannot
433do race-free signal handling in perl, requiring C libraries for
434this. AnyEvent will try to do its best, which means in some cases,
435signals will be delayed. The maximum time a signal might be delayed is
436specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
437variable can be changed only before the first signal watcher is created,
438and should be left alone otherwise. This variable determines how often
439AnyEvent polls for signals (in case a wake-up was missed). Higher values
440will cause fewer spurious wake-ups, which is better for power and CPU
441saving.
442
443All these problems can be avoided by installing the optional
444L<Async::Interrupt> module, which works with most event loops. It will not
445work with inherently broken event loops such as L<Event> or L<Event::Lib>
446(and not with L<POE> currently, as POE does its own workaround with
447one-second latency). For those, you just have to suffer the delays.
448
330=head2 CHILD PROCESS WATCHERS 449=head2 CHILD PROCESS WATCHERS
331 450
451 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
452
332You can also watch on a child process exit and catch its exit status. 453You can also watch for a child process exit and catch its exit status.
333 454
334The child process is specified by the C<pid> argument (if set to C<0>, it 455The child process is specified by the C<pid> argument (on some backends,
335watches for any child process exit). The watcher will trigger as often 456using C<0> watches for any child process exit, on others this will
336as status change for the child are received. This works by installing a 457croak). The watcher will be triggered only when the child process has
337signal handler for C<SIGCHLD>. The callback will be called with the pid 458finished and an exit status is available, not on any trace events
338and exit status (as returned by waitpid), so unlike other watcher types, 459(stopped/continued).
339you I<can> rely on child watcher callback arguments. 460
461The callback will be called with the pid and exit status (as returned by
462waitpid), so unlike other watcher types, you I<can> rely on child watcher
463callback arguments.
464
465This watcher type works by installing a signal handler for C<SIGCHLD>,
466and since it cannot be shared, nothing else should use SIGCHLD or reap
467random child processes (waiting for specific child processes, e.g. inside
468C<system>, is just fine).
340 469
341There is a slight catch to child watchers, however: you usually start them 470There is a slight catch to child watchers, however: you usually start them
342I<after> the child process was created, and this means the process could 471I<after> the child process was created, and this means the process could
343have exited already (and no SIGCHLD will be sent anymore). 472have exited already (and no SIGCHLD will be sent anymore).
344 473
345Not all event models handle this correctly (POE doesn't), but even for 474Not all event models handle this correctly (neither POE nor IO::Async do,
475see their AnyEvent::Impl manpages for details), but even for event models
346event models that I<do> handle this correctly, they usually need to be 476that I<do> handle this correctly, they usually need to be loaded before
347loaded before the process exits (i.e. before you fork in the first place). 477the process exits (i.e. before you fork in the first place). AnyEvent's
478pure perl event loop handles all cases correctly regardless of when you
479start the watcher.
348 480
349This means you cannot create a child watcher as the very first thing in an 481This means you cannot create a child watcher as the very first
350AnyEvent program, you I<have> to create at least one watcher before you 482thing in an AnyEvent program, you I<have> to create at least one
351C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 483watcher before you C<fork> the child (alternatively, you can call
484C<AnyEvent::detect>).
485
486As most event loops do not support waiting for child events, they will be
487emulated by AnyEvent in most cases, in which the latency and race problems
488mentioned in the description of signal watchers apply.
352 489
353Example: fork a process and wait for it 490Example: fork a process and wait for it
354 491
355 my $done = AnyEvent->condvar; 492 my $done = AnyEvent->condvar;
356 493
366 ); 503 );
367 504
368 # do something else, then wait for process exit 505 # do something else, then wait for process exit
369 $done->recv; 506 $done->recv;
370 507
508=head2 IDLE WATCHERS
509
510 $w = AnyEvent->idle (cb => <callback>);
511
512This will repeatedly invoke the callback after the process becomes idle,
513until either the watcher is destroyed or new events have been detected.
514
515Idle watchers are useful when there is a need to do something, but it
516is not so important (or wise) to do it instantly. The callback will be
517invoked only when there is "nothing better to do", which is usually
518defined as "all outstanding events have been handled and no new events
519have been detected". That means that idle watchers ideally get invoked
520when the event loop has just polled for new events but none have been
521detected. Instead of blocking to wait for more events, the idle watchers
522will be invoked.
523
524Unfortunately, most event loops do not really support idle watchers (only
525EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
526will simply call the callback "from time to time".
527
528Example: read lines from STDIN, but only process them when the
529program is otherwise idle:
530
531 my @lines; # read data
532 my $idle_w;
533 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
534 push @lines, scalar <STDIN>;
535
536 # start an idle watcher, if not already done
537 $idle_w ||= AnyEvent->idle (cb => sub {
538 # handle only one line, when there are lines left
539 if (my $line = shift @lines) {
540 print "handled when idle: $line";
541 } else {
542 # otherwise disable the idle watcher again
543 undef $idle_w;
544 }
545 });
546 });
547
371=head2 CONDITION VARIABLES 548=head2 CONDITION VARIABLES
549
550 $cv = AnyEvent->condvar;
551
552 $cv->send (<list>);
553 my @res = $cv->recv;
372 554
373If you are familiar with some event loops you will know that all of them 555If you are familiar with some event loops you will know that all of them
374require you to run some blocking "loop", "run" or similar function that 556require you to run some blocking "loop", "run" or similar function that
375will actively watch for new events and call your callbacks. 557will actively watch for new events and call your callbacks.
376 558
377AnyEvent is different, it expects somebody else to run the event loop and 559AnyEvent is slightly different: it expects somebody else to run the event
378will only block when necessary (usually when told by the user). 560loop and will only block when necessary (usually when told by the user).
379 561
380The instrument to do that is called a "condition variable", so called 562The tool to do that is called a "condition variable", so called because
381because they represent a condition that must become true. 563they represent a condition that must become true.
564
565Now is probably a good time to look at the examples further below.
382 566
383Condition variables can be created by calling the C<< AnyEvent->condvar 567Condition variables can be created by calling the C<< AnyEvent->condvar
384>> method, usually without arguments. The only argument pair allowed is 568>> method, usually without arguments. The only argument pair allowed is
385C<cb>, which specifies a callback to be called when the condition variable 569C<cb>, which specifies a callback to be called when the condition variable
386becomes true. 570becomes true, with the condition variable as the first argument (but not
571the results).
387 572
388After creation, the condition variable is "false" until it becomes "true" 573After creation, the condition variable is "false" until it becomes "true"
389by calling the C<send> method (or calling the condition variable as if it 574by calling the C<send> method (or calling the condition variable as if it
390were a callback, read about the caveats in the description for the C<< 575were a callback, read about the caveats in the description for the C<<
391->send >> method). 576->send >> method).
392 577
393Condition variables are similar to callbacks, except that you can 578Since condition variables are the most complex part of the AnyEvent API, here are
394optionally wait for them. They can also be called merge points - points 579some different mental models of what they are - pick the ones you can connect to:
395in time where multiple outstanding events have been processed. And yet 580
396another way to call them is transactions - each condition variable can be 581=over 4
397used to represent a transaction, which finishes at some point and delivers 582
398a result. 583=item * Condition variables are like callbacks - you can call them (and pass them instead
584of callbacks). Unlike callbacks however, you can also wait for them to be called.
585
586=item * Condition variables are signals - one side can emit or send them,
587the other side can wait for them, or install a handler that is called when
588the signal fires.
589
590=item * Condition variables are like "Merge Points" - points in your program
591where you merge multiple independent results/control flows into one.
592
593=item * Condition variables represent a transaction - functions that start
594some kind of transaction can return them, leaving the caller the choice
595between waiting in a blocking fashion, or setting a callback.
596
597=item * Condition variables represent future values, or promises to deliver
598some result, long before the result is available.
599
600=back
399 601
400Condition variables are very useful to signal that something has finished, 602Condition variables are very useful to signal that something has finished,
401for example, if you write a module that does asynchronous http requests, 603for example, if you write a module that does asynchronous http requests,
402then a condition variable would be the ideal candidate to signal the 604then a condition variable would be the ideal candidate to signal the
403availability of results. The user can either act when the callback is 605availability of results. The user can either act when the callback is
416 618
417Condition variables are represented by hash refs in perl, and the keys 619Condition variables are represented by hash refs in perl, and the keys
418used by AnyEvent itself are all named C<_ae_XXX> to make subclassing 620used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
419easy (it is often useful to build your own transaction class on top of 621easy (it is often useful to build your own transaction class on top of
420AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call 622AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
421it's C<new> method in your own C<new> method. 623its C<new> method in your own C<new> method.
422 624
423There are two "sides" to a condition variable - the "producer side" which 625There are two "sides" to a condition variable - the "producer side" which
424eventually calls C<< -> send >>, and the "consumer side", which waits 626eventually calls C<< -> send >>, and the "consumer side", which waits
425for the send to occur. 627for the send to occur.
426 628
427Example: wait for a timer. 629Example: wait for a timer.
428 630
429 # wait till the result is ready 631 # condition: "wait till the timer is fired"
430 my $result_ready = AnyEvent->condvar; 632 my $timer_fired = AnyEvent->condvar;
431 633
432 # do something such as adding a timer 634 # create the timer - we could wait for, say
433 # or socket watcher the calls $result_ready->send 635 # a handle becomign ready, or even an
434 # when the "result" is ready. 636 # AnyEvent::HTTP request to finish, but
435 # in this case, we simply use a timer: 637 # in this case, we simply use a timer:
436 my $w = AnyEvent->timer ( 638 my $w = AnyEvent->timer (
437 after => 1, 639 after => 1,
438 cb => sub { $result_ready->send }, 640 cb => sub { $timer_fired->send },
439 ); 641 );
440 642
441 # this "blocks" (while handling events) till the callback 643 # this "blocks" (while handling events) till the callback
442 # calls send 644 # calls ->send
443 $result_ready->recv; 645 $timer_fired->recv;
444 646
445Example: wait for a timer, but take advantage of the fact that 647Example: wait for a timer, but take advantage of the fact that condition
446condition variables are also code references. 648variables are also callable directly.
447 649
448 my $done = AnyEvent->condvar; 650 my $done = AnyEvent->condvar;
449 my $delay = AnyEvent->timer (after => 5, cb => $done); 651 my $delay = AnyEvent->timer (after => 5, cb => $done);
450 $done->recv; 652 $done->recv;
653
654Example: Imagine an API that returns a condvar and doesn't support
655callbacks. This is how you make a synchronous call, for example from
656the main program:
657
658 use AnyEvent::CouchDB;
659
660 ...
661
662 my @info = $couchdb->info->recv;
663
664And this is how you would just set a callback to be called whenever the
665results are available:
666
667 $couchdb->info->cb (sub {
668 my @info = $_[0]->recv;
669 });
451 670
452=head3 METHODS FOR PRODUCERS 671=head3 METHODS FOR PRODUCERS
453 672
454These methods should only be used by the producing side, i.e. the 673These methods should only be used by the producing side, i.e. the
455code/module that eventually sends the signal. Note that it is also 674code/module that eventually sends the signal. Note that it is also
468immediately from within send. 687immediately from within send.
469 688
470Any arguments passed to the C<send> call will be returned by all 689Any arguments passed to the C<send> call will be returned by all
471future C<< ->recv >> calls. 690future C<< ->recv >> calls.
472 691
473Condition variables are overloaded so one can call them directly 692Condition variables are overloaded so one can call them directly (as if
474(as a code reference). Calling them directly is the same as calling 693they were a code reference). Calling them directly is the same as calling
475C<send>. Note, however, that many C-based event loops do not handle 694C<send>.
476overloading, so as tempting as it may be, passing a condition variable
477instead of a callback does not work. Both the pure perl and EV loops
478support overloading, however, as well as all functions that use perl to
479invoke a callback (as in L<AnyEvent::Socket> and L<AnyEvent::DNS> for
480example).
481 695
482=item $cv->croak ($error) 696=item $cv->croak ($error)
483 697
484Similar to send, but causes all call's to C<< ->recv >> to invoke 698Similar to send, but causes all calls to C<< ->recv >> to invoke
485C<Carp::croak> with the given error message/object/scalar. 699C<Carp::croak> with the given error message/object/scalar.
486 700
487This can be used to signal any errors to the condition variable 701This can be used to signal any errors to the condition variable
488user/consumer. 702user/consumer. Doing it this way instead of calling C<croak> directly
703delays the error detection, but has the overwhelming advantage that it
704diagnoses the error at the place where the result is expected, and not
705deep in some event callback with no connection to the actual code causing
706the problem.
489 707
490=item $cv->begin ([group callback]) 708=item $cv->begin ([group callback])
491 709
492=item $cv->end 710=item $cv->end
493
494These two methods are EXPERIMENTAL and MIGHT CHANGE.
495 711
496These two methods can be used to combine many transactions/events into 712These two methods can be used to combine many transactions/events into
497one. For example, a function that pings many hosts in parallel might want 713one. For example, a function that pings many hosts in parallel might want
498to use a condition variable for the whole process. 714to use a condition variable for the whole process.
499 715
500Every call to C<< ->begin >> will increment a counter, and every call to 716Every call to C<< ->begin >> will increment a counter, and every call to
501C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 717C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
502>>, the (last) callback passed to C<begin> will be executed. That callback 718>>, the (last) callback passed to C<begin> will be executed, passing the
503is I<supposed> to call C<< ->send >>, but that is not required. If no 719condvar as first argument. That callback is I<supposed> to call C<< ->send
504callback was set, C<send> will be called without any arguments. 720>>, but that is not required. If no group callback was set, C<send> will
721be called without any arguments.
505 722
506Let's clarify this with the ping example: 723You can think of C<< $cv->send >> giving you an OR condition (one call
724sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
725condition (all C<begin> calls must be C<end>'ed before the condvar sends).
726
727Let's start with a simple example: you have two I/O watchers (for example,
728STDOUT and STDERR for a program), and you want to wait for both streams to
729close before activating a condvar:
507 730
508 my $cv = AnyEvent->condvar; 731 my $cv = AnyEvent->condvar;
509 732
733 $cv->begin; # first watcher
734 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
735 defined sysread $fh1, my $buf, 4096
736 or $cv->end;
737 });
738
739 $cv->begin; # second watcher
740 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
741 defined sysread $fh2, my $buf, 4096
742 or $cv->end;
743 });
744
745 $cv->recv;
746
747This works because for every event source (EOF on file handle), there is
748one call to C<begin>, so the condvar waits for all calls to C<end> before
749sending.
750
751The ping example mentioned above is slightly more complicated, as the
752there are results to be passwd back, and the number of tasks that are
753begun can potentially be zero:
754
755 my $cv = AnyEvent->condvar;
756
510 my %result; 757 my %result;
511 $cv->begin (sub { $cv->send (\%result) }); 758 $cv->begin (sub { shift->send (\%result) });
512 759
513 for my $host (@list_of_hosts) { 760 for my $host (@list_of_hosts) {
514 $cv->begin; 761 $cv->begin;
515 ping_host_then_call_callback $host, sub { 762 ping_host_then_call_callback $host, sub {
516 $result{$host} = ...; 763 $result{$host} = ...;
531loop, which serves two important purposes: first, it sets the callback 778loop, which serves two important purposes: first, it sets the callback
532to be called once the counter reaches C<0>, and second, it ensures that 779to be called once the counter reaches C<0>, and second, it ensures that
533C<send> is called even when C<no> hosts are being pinged (the loop 780C<send> is called even when C<no> hosts are being pinged (the loop
534doesn't execute once). 781doesn't execute once).
535 782
536This is the general pattern when you "fan out" into multiple subrequests: 783This is the general pattern when you "fan out" into multiple (but
537use an outer C<begin>/C<end> pair to set the callback and ensure C<end> 784potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
538is called at least once, and then, for each subrequest you start, call 785the callback and ensure C<end> is called at least once, and then, for each
539C<begin> and for each subrequest you finish, call C<end>. 786subrequest you start, call C<begin> and for each subrequest you finish,
787call C<end>.
540 788
541=back 789=back
542 790
543=head3 METHODS FOR CONSUMERS 791=head3 METHODS FOR CONSUMERS
544 792
548=over 4 796=over 4
549 797
550=item $cv->recv 798=item $cv->recv
551 799
552Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak 800Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
553>> methods have been called on c<$cv>, while servicing other watchers 801>> methods have been called on C<$cv>, while servicing other watchers
554normally. 802normally.
555 803
556You can only wait once on a condition - additional calls are valid but 804You can only wait once on a condition - additional calls are valid but
557will return immediately. 805will return immediately.
558 806
560function will call C<croak>. 808function will call C<croak>.
561 809
562In list context, all parameters passed to C<send> will be returned, 810In list context, all parameters passed to C<send> will be returned,
563in scalar context only the first one will be returned. 811in scalar context only the first one will be returned.
564 812
813Note that doing a blocking wait in a callback is not supported by any
814event loop, that is, recursive invocation of a blocking C<< ->recv
815>> is not allowed, and the C<recv> call will C<croak> if such a
816condition is detected. This condition can be slightly loosened by using
817L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
818any thread that doesn't run the event loop itself.
819
565Not all event models support a blocking wait - some die in that case 820Not all event models support a blocking wait - some die in that case
566(programs might want to do that to stay interactive), so I<if you are 821(programs might want to do that to stay interactive), so I<if you are
567using this from a module, never require a blocking wait>, but let the 822using this from a module, never require a blocking wait>. Instead, let the
568caller decide whether the call will block or not (for example, by coupling 823caller decide whether the call will block or not (for example, by coupling
569condition variables with some kind of request results and supporting 824condition variables with some kind of request results and supporting
570callbacks so the caller knows that getting the result will not block, 825callbacks so the caller knows that getting the result will not block,
571while still supporting blocking waits if the caller so desires). 826while still supporting blocking waits if the caller so desires).
572 827
573Another reason I<never> to C<< ->recv >> in a module is that you cannot
574sensibly have two C<< ->recv >>'s in parallel, as that would require
575multiple interpreters or coroutines/threads, none of which C<AnyEvent>
576can supply.
577
578The L<Coro> module, however, I<can> and I<does> supply coroutines and, in
579fact, L<Coro::AnyEvent> replaces AnyEvent's condvars by coroutine-safe
580versions and also integrates coroutines into AnyEvent, making blocking
581C<< ->recv >> calls perfectly safe as long as they are done from another
582coroutine (one that doesn't run the event loop).
583
584You can ensure that C<< -recv >> never blocks by setting a callback and 828You can ensure that C<< ->recv >> never blocks by setting a callback and
585only calling C<< ->recv >> from within that callback (or at a later 829only calling C<< ->recv >> from within that callback (or at a later
586time). This will work even when the event loop does not support blocking 830time). This will work even when the event loop does not support blocking
587waits otherwise. 831waits otherwise.
588 832
589=item $bool = $cv->ready 833=item $bool = $cv->ready
590 834
591Returns true when the condition is "true", i.e. whether C<send> or 835Returns true when the condition is "true", i.e. whether C<send> or
592C<croak> have been called. 836C<croak> have been called.
593 837
594=item $cb = $cv->cb ([new callback]) 838=item $cb = $cv->cb ($cb->($cv))
595 839
596This is a mutator function that returns the callback set and optionally 840This is a mutator function that returns the callback set and optionally
597replaces it before doing so. 841replaces it before doing so.
598 842
599The callback will be called when the condition becomes "true", i.e. when 843The callback will be called when the condition becomes "true", i.e. when
600C<send> or C<croak> are called, with the only argument being the condition 844C<send> or C<croak> are called, with the only argument being the
601variable itself. Calling C<recv> inside the callback or at any later time 845condition variable itself. If the condition is already true, the
602is guaranteed not to block. 846callback is called immediately when it is set. Calling C<recv> inside
847the callback or at any later time is guaranteed not to block.
603 848
604=back 849=back
605 850
851=head1 SUPPORTED EVENT LOOPS/BACKENDS
852
853The available backend classes are (every class has its own manpage):
854
855=over 4
856
857=item Backends that are autoprobed when no other event loop can be found.
858
859EV is the preferred backend when no other event loop seems to be in
860use. If EV is not installed, then AnyEvent will fall back to its own
861pure-perl implementation, which is available everywhere as it comes with
862AnyEvent itself.
863
864 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
865 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
866
867=item Backends that are transparently being picked up when they are used.
868
869These will be used if they are already loaded when the first watcher
870is created, in which case it is assumed that the application is using
871them. This means that AnyEvent will automatically pick the right backend
872when the main program loads an event module before anything starts to
873create watchers. Nothing special needs to be done by the main program.
874
875 AnyEvent::Impl::Event based on Event, very stable, few glitches.
876 AnyEvent::Impl::Glib based on Glib, slow but very stable.
877 AnyEvent::Impl::Tk based on Tk, very broken.
878 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
879 AnyEvent::Impl::POE based on POE, very slow, some limitations.
880 AnyEvent::Impl::Irssi used when running within irssi.
881
882=item Backends with special needs.
883
884Qt requires the Qt::Application to be instantiated first, but will
885otherwise be picked up automatically. As long as the main program
886instantiates the application before any AnyEvent watchers are created,
887everything should just work.
888
889 AnyEvent::Impl::Qt based on Qt.
890
891Support for IO::Async can only be partial, as it is too broken and
892architecturally limited to even support the AnyEvent API. It also
893is the only event loop that needs the loop to be set explicitly, so
894it can only be used by a main program knowing about AnyEvent. See
895L<AnyEvent::Impl::IOAsync> for the gory details.
896
897 AnyEvent::Impl::IOAsync based on IO::Async, cannot be autoprobed.
898
899=item Event loops that are indirectly supported via other backends.
900
901Some event loops can be supported via other modules:
902
903There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
904
905B<WxWidgets> has no support for watching file handles. However, you can
906use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
907polls 20 times per second, which was considered to be too horrible to even
908consider for AnyEvent.
909
910B<Prima> is not supported as nobody seems to be using it, but it has a POE
911backend, so it can be supported through POE.
912
913AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
914load L<POE> when detecting them, in the hope that POE will pick them up,
915in which case everything will be automatic.
916
917=back
918
606=head1 GLOBAL VARIABLES AND FUNCTIONS 919=head1 GLOBAL VARIABLES AND FUNCTIONS
607 920
921These are not normally required to use AnyEvent, but can be useful to
922write AnyEvent extension modules.
923
608=over 4 924=over 4
609 925
610=item $AnyEvent::MODEL 926=item $AnyEvent::MODEL
611 927
612Contains C<undef> until the first watcher is being created. Then it 928Contains C<undef> until the first watcher is being created, before the
929backend has been autodetected.
930
613contains the event model that is being used, which is the name of the 931Afterwards it contains the event model that is being used, which is the
614Perl class implementing the model. This class is usually one of the 932name of the Perl class implementing the model. This class is usually one
615C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 933of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
616AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 934case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
617 935will be C<urxvt::anyevent>).
618The known classes so far are:
619
620 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
621 AnyEvent::Impl::Event based on Event, second best choice.
622 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
623 AnyEvent::Impl::Glib based on Glib, third-best choice.
624 AnyEvent::Impl::Tk based on Tk, very bad choice.
625 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
626 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
627 AnyEvent::Impl::POE based on POE, not generic enough for full support.
628
629There is no support for WxWidgets, as WxWidgets has no support for
630watching file handles. However, you can use WxWidgets through the
631POE Adaptor, as POE has a Wx backend that simply polls 20 times per
632second, which was considered to be too horrible to even consider for
633AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
634it's adaptor.
635
636AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
637autodetecting them.
638 936
639=item AnyEvent::detect 937=item AnyEvent::detect
640 938
641Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 939Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
642if necessary. You should only call this function right before you would 940if necessary. You should only call this function right before you would
643have created an AnyEvent watcher anyway, that is, as late as possible at 941have created an AnyEvent watcher anyway, that is, as late as possible at
644runtime. 942runtime, and not e.g. during initialisation of your module.
943
944If you need to do some initialisation before AnyEvent watchers are
945created, use C<post_detect>.
645 946
646=item $guard = AnyEvent::post_detect { BLOCK } 947=item $guard = AnyEvent::post_detect { BLOCK }
647 948
648Arranges for the code block to be executed as soon as the event model is 949Arranges for the code block to be executed as soon as the event model is
649autodetected (or immediately if this has already happened). 950autodetected (or immediately if that has already happened).
951
952The block will be executed I<after> the actual backend has been detected
953(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
954created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
955other initialisations - see the sources of L<AnyEvent::Strict> or
956L<AnyEvent::AIO> to see how this is used.
957
958The most common usage is to create some global watchers, without forcing
959event module detection too early, for example, L<AnyEvent::AIO> creates
960and installs the global L<IO::AIO> watcher in a C<post_detect> block to
961avoid autodetecting the event module at load time.
650 962
651If called in scalar or list context, then it creates and returns an object 963If called in scalar or list context, then it creates and returns an object
652that automatically removes the callback again when it is destroyed. See 964that automatically removes the callback again when it is destroyed (or
965C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
653L<Coro::BDB> for a case where this is useful. 966a case where this is useful.
967
968Example: Create a watcher for the IO::AIO module and store it in
969C<$WATCHER>, but do so only do so after the event loop is initialised.
970
971 our WATCHER;
972
973 my $guard = AnyEvent::post_detect {
974 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
975 };
976
977 # the ||= is important in case post_detect immediately runs the block,
978 # as to not clobber the newly-created watcher. assigning both watcher and
979 # post_detect guard to the same variable has the advantage of users being
980 # able to just C<undef $WATCHER> if the watcher causes them grief.
981
982 $WATCHER ||= $guard;
654 983
655=item @AnyEvent::post_detect 984=item @AnyEvent::post_detect
656 985
657If there are any code references in this array (you can C<push> to it 986If there are any code references in this array (you can C<push> to it
658before or after loading AnyEvent), then they will called directly after 987before or after loading AnyEvent), then they will be called directly
659the event loop has been chosen. 988after the event loop has been chosen.
660 989
661You should check C<$AnyEvent::MODEL> before adding to this array, though: 990You should check C<$AnyEvent::MODEL> before adding to this array, though:
662if it contains a true value then the event loop has already been detected, 991if it is defined then the event loop has already been detected, and the
663and the array will be ignored. 992array will be ignored.
664 993
665Best use C<AnyEvent::post_detect { BLOCK }> instead. 994Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
995it, as it takes care of these details.
996
997This variable is mainly useful for modules that can do something useful
998when AnyEvent is used and thus want to know when it is initialised, but do
999not need to even load it by default. This array provides the means to hook
1000into AnyEvent passively, without loading it.
1001
1002Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
1003together, you could put this into Coro (this is the actual code used by
1004Coro to accomplish this):
1005
1006 if (defined $AnyEvent::MODEL) {
1007 # AnyEvent already initialised, so load Coro::AnyEvent
1008 require Coro::AnyEvent;
1009 } else {
1010 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1011 # as soon as it is
1012 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1013 }
666 1014
667=back 1015=back
668 1016
669=head1 WHAT TO DO IN A MODULE 1017=head1 WHAT TO DO IN A MODULE
670 1018
681because it will stall the whole program, and the whole point of using 1029because it will stall the whole program, and the whole point of using
682events is to stay interactive. 1030events is to stay interactive.
683 1031
684It is fine, however, to call C<< ->recv >> when the user of your module 1032It is fine, however, to call C<< ->recv >> when the user of your module
685requests it (i.e. if you create a http request object ad have a method 1033requests it (i.e. if you create a http request object ad have a method
686called C<results> that returns the results, it should call C<< ->recv >> 1034called C<results> that returns the results, it may call C<< ->recv >>
687freely, as the user of your module knows what she is doing. always). 1035freely, as the user of your module knows what she is doing. Always).
688 1036
689=head1 WHAT TO DO IN THE MAIN PROGRAM 1037=head1 WHAT TO DO IN THE MAIN PROGRAM
690 1038
691There will always be a single main program - the only place that should 1039There will always be a single main program - the only place that should
692dictate which event model to use. 1040dictate which event model to use.
693 1041
694If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1042If the program is not event-based, it need not do anything special, even
695do anything special (it does not need to be event-based) and let AnyEvent 1043when it depends on a module that uses an AnyEvent. If the program itself
696decide which implementation to chose if some module relies on it. 1044uses AnyEvent, but does not care which event loop is used, all it needs
1045to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1046available loop implementation.
697 1047
698If the main program relies on a specific event model - for example, in 1048If the main program relies on a specific event model - for example, in
699Gtk2 programs you have to rely on the Glib module - you should load the 1049Gtk2 programs you have to rely on the Glib module - you should load the
700event module before loading AnyEvent or any module that uses it: generally 1050event module before loading AnyEvent or any module that uses it: generally
701speaking, you should load it as early as possible. The reason is that 1051speaking, you should load it as early as possible. The reason is that
702modules might create watchers when they are loaded, and AnyEvent will 1052modules might create watchers when they are loaded, and AnyEvent will
703decide on the event model to use as soon as it creates watchers, and it 1053decide on the event model to use as soon as it creates watchers, and it
704might chose the wrong one unless you load the correct one yourself. 1054might choose the wrong one unless you load the correct one yourself.
705 1055
706You can chose to use a pure-perl implementation by loading the 1056You can chose to use a pure-perl implementation by loading the
707C<AnyEvent::Impl::Perl> module, which gives you similar behaviour 1057C<AnyEvent::Impl::Perl> module, which gives you similar behaviour
708everywhere, but letting AnyEvent chose the model is generally better. 1058everywhere, but letting AnyEvent chose the model is generally better.
709 1059
725 1075
726 1076
727=head1 OTHER MODULES 1077=head1 OTHER MODULES
728 1078
729The following is a non-exhaustive list of additional modules that use 1079The following is a non-exhaustive list of additional modules that use
730AnyEvent and can therefore be mixed easily with other AnyEvent modules 1080AnyEvent as a client and can therefore be mixed easily with other AnyEvent
731in the same program. Some of the modules come with AnyEvent, some are 1081modules and other event loops in the same program. Some of the modules
732available via CPAN. 1082come as part of AnyEvent, the others are available via CPAN.
733 1083
734=over 4 1084=over 4
735 1085
736=item L<AnyEvent::Util> 1086=item L<AnyEvent::Util>
737 1087
738Contains various utility functions that replace often-used but blocking 1088Contains various utility functions that replace often-used blocking
739functions such as C<inet_aton> by event-/callback-based versions. 1089functions such as C<inet_aton> with event/callback-based versions.
740 1090
741=item L<AnyEvent::Socket> 1091=item L<AnyEvent::Socket>
742 1092
743Provides various utility functions for (internet protocol) sockets, 1093Provides various utility functions for (internet protocol) sockets,
744addresses and name resolution. Also functions to create non-blocking tcp 1094addresses and name resolution. Also functions to create non-blocking tcp
746 1096
747=item L<AnyEvent::Handle> 1097=item L<AnyEvent::Handle>
748 1098
749Provide read and write buffers, manages watchers for reads and writes, 1099Provide read and write buffers, manages watchers for reads and writes,
750supports raw and formatted I/O, I/O queued and fully transparent and 1100supports raw and formatted I/O, I/O queued and fully transparent and
751non-blocking SSL/TLS. 1101non-blocking SSL/TLS (via L<AnyEvent::TLS>).
752 1102
753=item L<AnyEvent::DNS> 1103=item L<AnyEvent::DNS>
754 1104
755Provides rich asynchronous DNS resolver capabilities. 1105Provides rich asynchronous DNS resolver capabilities.
756 1106
1107=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1108
1109Implement event-based interfaces to the protocols of the same name (for
1110the curious, IGS is the International Go Server and FCP is the Freenet
1111Client Protocol).
1112
1113=item L<AnyEvent::Handle::UDP>
1114
1115Here be danger!
1116
1117As Pauli would put it, "Not only is it not right, it's not even wrong!" -
1118there are so many things wrong with AnyEvent::Handle::UDP, most notably
1119its use of a stream-based API with a protocol that isn't streamable, that
1120the only way to improve it is to delete it.
1121
1122It features data corruption (but typically only under load) and general
1123confusion. On top, the author is not only clueless about UDP but also
1124fact-resistant - some gems of his understanding: "connect doesn't work
1125with UDP", "UDP packets are not IP packets", "UDP only has datagrams, not
1126packets", "I don't need to implement proper error checking as UDP doesn't
1127support error checking" and so on - he doesn't even understand what's
1128wrong with his module when it is explained to him.
1129
757=item L<AnyEvent::HTTP> 1130=item L<AnyEvent::DBI>
758 1131
759A simple-to-use HTTP library that is capable of making a lot of concurrent 1132Executes L<DBI> requests asynchronously in a proxy process for you,
760HTTP requests. 1133notifying you in an event-based way when the operation is finished.
1134
1135=item L<AnyEvent::AIO>
1136
1137Truly asynchronous (as opposed to non-blocking) I/O, should be in the
1138toolbox of every event programmer. AnyEvent::AIO transparently fuses
1139L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1140file I/O, and much more.
761 1141
762=item L<AnyEvent::HTTPD> 1142=item L<AnyEvent::HTTPD>
763 1143
764Provides a simple web application server framework. 1144A simple embedded webserver.
765 1145
766=item L<AnyEvent::FastPing> 1146=item L<AnyEvent::FastPing>
767 1147
768The fastest ping in the west. 1148The fastest ping in the west.
769 1149
770=item L<AnyEvent::DBI>
771
772Executes L<DBI> requests asynchronously in a proxy process.
773
774=item L<AnyEvent::AIO>
775
776Truly asynchronous I/O, should be in the toolbox of every event
777programmer. AnyEvent::AIO transparently fuses L<IO::AIO> and AnyEvent
778together.
779
780=item L<AnyEvent::BDB>
781
782Truly asynchronous Berkeley DB access. AnyEvent::BDB transparently fuses
783L<BDB> and AnyEvent together.
784
785=item L<AnyEvent::GPSD>
786
787A non-blocking interface to gpsd, a daemon delivering GPS information.
788
789=item L<AnyEvent::IGS>
790
791A non-blocking interface to the Internet Go Server protocol (used by
792L<App::IGS>).
793
794=item L<Net::IRC3>
795
796AnyEvent based IRC client module family.
797
798=item L<Net::XMPP2>
799
800AnyEvent based XMPP (Jabber protocol) module family.
801
802=item L<Net::FCP>
803
804AnyEvent-based implementation of the Freenet Client Protocol, birthplace
805of AnyEvent.
806
807=item L<Event::ExecFlow>
808
809High level API for event-based execution flow control.
810
811=item L<Coro> 1150=item L<Coro>
812 1151
813Has special support for AnyEvent via L<Coro::AnyEvent>. 1152Has special support for AnyEvent via L<Coro::AnyEvent>.
814 1153
815=item L<IO::Lambda>
816
817The lambda approach to I/O - don't ask, look there. Can use AnyEvent.
818
819=back 1154=back
820 1155
821=cut 1156=cut
822 1157
823package AnyEvent; 1158package AnyEvent;
824 1159
825no warnings; 1160# basically a tuned-down version of common::sense
826use strict; 1161sub common_sense {
1162 # from common:.sense 3.3
1163 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf3\x0f\xc0\xf0\xfc\x33\x00";
1164 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1165 $^H |= 0x00000600;
1166}
827 1167
1168BEGIN { AnyEvent::common_sense }
1169
828use Carp; 1170use Carp ();
829 1171
830our $VERSION = 4.2; 1172our $VERSION = '5.29';
831our $MODEL; 1173our $MODEL;
832 1174
833our $AUTOLOAD; 1175our $AUTOLOAD;
834our @ISA; 1176our @ISA;
835 1177
836our @REGISTRY; 1178our @REGISTRY;
837 1179
838our $WIN32; 1180our $VERBOSE;
839 1181
840BEGIN { 1182BEGIN {
841 my $win32 = ! ! ($^O =~ /mswin32/i); 1183 require "AnyEvent/constants.pl";
842 eval "sub WIN32(){ $win32 }";
843}
844 1184
1185 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
1186
1187 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1188 if ${^TAINT};
1189
845our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; 1190 $VERBOSE = $ENV{PERL_ANYEVENT_VERBOSE}*1;
1191
1192}
1193
1194our $MAX_SIGNAL_LATENCY = 10;
846 1195
847our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred 1196our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
848 1197
849{ 1198{
850 my $idx; 1199 my $idx;
852 for reverse split /\s*,\s*/, 1201 for reverse split /\s*,\s*/,
853 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1202 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
854} 1203}
855 1204
856my @models = ( 1205my @models = (
857 [EV:: => AnyEvent::Impl::EV::], 1206 [EV:: => AnyEvent::Impl::EV:: , 1],
858 [Event:: => AnyEvent::Impl::Event::],
859 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::], 1207 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl:: , 1],
860 # everything below here will not be autoprobed 1208 # everything below here will not (normally) be autoprobed
861 # as the pureperl backend should work everywhere 1209 # as the pureperl backend should work everywhere
862 # and is usually faster 1210 # and is usually faster
1211 [Event:: => AnyEvent::Impl::Event::, 1],
1212 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1213 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1214 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
863 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles 1215 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
864 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
865 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
866 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 1216 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
867 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 1217 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
868 [Wx:: => AnyEvent::Impl::POE::], 1218 [Wx:: => AnyEvent::Impl::POE::],
869 [Prima:: => AnyEvent::Impl::POE::], 1219 [Prima:: => AnyEvent::Impl::POE::],
1220 # IO::Async is just too broken - we would need workarounds for its
1221 # byzantine signal and broken child handling, among others.
1222 # IO::Async is rather hard to detect, as it doesn't have any
1223 # obvious default class.
1224 [IO::Async:: => AnyEvent::Impl::IOAsync::], # requires special main program
1225 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # requires special main program
1226 [IO::Async::Notifier:: => AnyEvent::Impl::IOAsync::], # requires special main program
1227 [AnyEvent::Impl::IOAsync:: => AnyEvent::Impl::IOAsync::], # requires special main program
870); 1228);
871 1229
872our %method = map +($_ => 1), qw(io timer time now signal child condvar one_event DESTROY); 1230our %method = map +($_ => 1),
1231 qw(io timer time now now_update signal child idle condvar one_event DESTROY);
873 1232
874our @post_detect; 1233our @post_detect;
875 1234
876sub post_detect(&) { 1235sub post_detect(&) {
877 my ($cb) = @_; 1236 my ($cb) = @_;
878 1237
879 if ($MODEL) {
880 $cb->();
881
882 1
883 } else {
884 push @post_detect, $cb; 1238 push @post_detect, $cb;
885 1239
886 defined wantarray 1240 defined wantarray
887 ? bless \$cb, "AnyEvent::Util::PostDetect" 1241 ? bless \$cb, "AnyEvent::Util::postdetect"
888 : () 1242 : ()
1243}
1244
1245sub AnyEvent::Util::postdetect::DESTROY {
1246 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1247}
1248
1249sub detect() {
1250 # free some memory
1251 *detect = sub () { $MODEL };
1252
1253 local $!; # for good measure
1254 local $SIG{__DIE__};
1255
1256 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
1257 my $model = "AnyEvent::Impl::$1";
1258 if (eval "require $model") {
1259 $MODEL = $model;
1260 warn "AnyEvent: loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.\n" if $VERBOSE >= 2;
1261 } else {
1262 warn "AnyEvent: unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@" if $VERBOSE;
1263 }
889 } 1264 }
890}
891 1265
892sub AnyEvent::Util::PostDetect::DESTROY { 1266 # check for already loaded models
893 @post_detect = grep $_ != ${$_[0]}, @post_detect;
894}
895
896sub detect() {
897 unless ($MODEL) { 1267 unless ($MODEL) {
898 no strict 'refs'; 1268 for (@REGISTRY, @models) {
899 local $SIG{__DIE__}; 1269 my ($package, $model) = @$_;
900 1270 if (${"$package\::VERSION"} > 0) {
901 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
902 my $model = "AnyEvent::Impl::$1";
903 if (eval "require $model") { 1271 if (eval "require $model") {
904 $MODEL = $model; 1272 $MODEL = $model;
905 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1273 warn "AnyEvent: autodetected model '$model', using it.\n" if $VERBOSE >= 2;
906 } else { 1274 last;
907 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose; 1275 }
908 } 1276 }
909 } 1277 }
910 1278
911 # check for already loaded models
912 unless ($MODEL) { 1279 unless ($MODEL) {
1280 # try to autoload a model
913 for (@REGISTRY, @models) { 1281 for (@REGISTRY, @models) {
914 my ($package, $model) = @$_; 1282 my ($package, $model, $autoload) = @$_;
1283 if (
1284 $autoload
1285 and eval "require $package"
915 if (${"$package\::VERSION"} > 0) { 1286 and ${"$package\::VERSION"} > 0
916 if (eval "require $model") { 1287 and eval "require $model"
1288 ) {
917 $MODEL = $model; 1289 $MODEL = $model;
918 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1; 1290 warn "AnyEvent: autoloaded model '$model', using it.\n" if $VERBOSE >= 2;
919 last; 1291 last;
920 }
921 } 1292 }
922 } 1293 }
923 1294
924 unless ($MODEL) {
925 # try to load a model
926
927 for (@REGISTRY, @models) {
928 my ($package, $model) = @$_;
929 if (eval "require $package"
930 and ${"$package\::VERSION"} > 0
931 and eval "require $model") {
932 $MODEL = $model;
933 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1;
934 last;
935 }
936 }
937
938 $MODEL 1295 $MODEL
939 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib."; 1296 or die "AnyEvent: backend autodetection failed - did you properly install AnyEvent?\n";
940 }
941 } 1297 }
942
943 unshift @ISA, $MODEL;
944 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
945
946 (shift @post_detect)->() while @post_detect;
947 } 1298 }
1299
1300 @models = (); # free probe data
1301
1302 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1303 unshift @ISA, $MODEL;
1304
1305 # now nuke some methods that are overridden by the backend.
1306 # SUPER is not allowed.
1307 for (qw(time signal child idle)) {
1308 undef &{"AnyEvent::Base::$_"}
1309 if defined &{"$MODEL\::$_"};
1310 }
1311
1312 if ($ENV{PERL_ANYEVENT_STRICT}) {
1313 eval { require AnyEvent::Strict };
1314 warn "AnyEvent: cannot load AnyEvent::Strict: $@"
1315 if $@ && $VERBOSE;
1316 }
1317
1318 (shift @post_detect)->() while @post_detect;
1319
1320 *post_detect = sub(&) {
1321 shift->();
1322
1323 undef
1324 };
948 1325
949 $MODEL 1326 $MODEL
950} 1327}
951 1328
952sub AUTOLOAD { 1329sub AUTOLOAD {
953 (my $func = $AUTOLOAD) =~ s/.*://; 1330 (my $func = $AUTOLOAD) =~ s/.*://;
954 1331
955 $method{$func} 1332 $method{$func}
956 or croak "$func: not a valid method for AnyEvent objects"; 1333 or Carp::croak "$func: not a valid AnyEvent class method";
957 1334
958 detect unless $MODEL; 1335 detect;
959 1336
960 my $class = shift; 1337 my $class = shift;
961 $class->$func (@_); 1338 $class->$func (@_);
962} 1339}
963 1340
1341# utility function to dup a filehandle. this is used by many backends
1342# to support binding more than one watcher per filehandle (they usually
1343# allow only one watcher per fd, so we dup it to get a different one).
1344sub _dupfh($$;$$) {
1345 my ($poll, $fh, $r, $w) = @_;
1346
1347 # cygwin requires the fh mode to be matching, unix doesn't
1348 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1349
1350 open my $fh2, $mode, $fh
1351 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1352
1353 # we assume CLOEXEC is already set by perl in all important cases
1354
1355 ($fh2, $rw)
1356}
1357
1358=head1 SIMPLIFIED AE API
1359
1360Starting with version 5.0, AnyEvent officially supports a second, much
1361simpler, API that is designed to reduce the calling, typing and memory
1362overhead by using function call syntax and a fixed number of parameters.
1363
1364See the L<AE> manpage for details.
1365
1366=cut
1367
1368package AE;
1369
1370our $VERSION = $AnyEvent::VERSION;
1371
1372# fall back to the main API by default - backends and AnyEvent::Base
1373# implementations can overwrite these.
1374
1375sub io($$$) {
1376 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1377}
1378
1379sub timer($$$) {
1380 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1381}
1382
1383sub signal($$) {
1384 AnyEvent->signal (signal => $_[0], cb => $_[1])
1385}
1386
1387sub child($$) {
1388 AnyEvent->child (pid => $_[0], cb => $_[1])
1389}
1390
1391sub idle($) {
1392 AnyEvent->idle (cb => $_[0])
1393}
1394
1395sub cv(;&) {
1396 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1397}
1398
1399sub now() {
1400 AnyEvent->now
1401}
1402
1403sub now_update() {
1404 AnyEvent->now_update
1405}
1406
1407sub time() {
1408 AnyEvent->time
1409}
1410
964package AnyEvent::Base; 1411package AnyEvent::Base;
965 1412
966# default implementation for now and time 1413# default implementations for many methods
967 1414
968use Time::HiRes (); 1415sub time {
1416 eval q{ # poor man's autoloading {}
1417 # probe for availability of Time::HiRes
1418 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1419 warn "AnyEvent: using Time::HiRes for sub-second timing accuracy.\n" if $VERBOSE >= 8;
1420 *AE::time = \&Time::HiRes::time;
1421 # if (eval "use POSIX (); (POSIX::times())...
1422 } else {
1423 warn "AnyEvent: using built-in time(), WARNING, no sub-second resolution!\n" if $VERBOSE;
1424 *AE::time = sub (){ time }; # epic fail
1425 }
969 1426
970sub time { Time::HiRes::time } 1427 *time = sub { AE::time }; # different prototypes
971sub now { Time::HiRes::time } 1428 };
1429 die if $@;
1430
1431 &time
1432}
1433
1434*now = \&time;
1435
1436sub now_update { }
972 1437
973# default implementation for ->condvar 1438# default implementation for ->condvar
974 1439
975sub condvar { 1440sub condvar {
1441 eval q{ # poor man's autoloading {}
1442 *condvar = sub {
976 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar:: 1443 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1444 };
1445
1446 *AE::cv = sub (;&) {
1447 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
1448 };
1449 };
1450 die if $@;
1451
1452 &condvar
977} 1453}
978 1454
979# default implementation for ->signal 1455# default implementation for ->signal
980 1456
981our %SIG_CB; 1457our $HAVE_ASYNC_INTERRUPT;
1458
1459sub _have_async_interrupt() {
1460 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1461 && eval "use Async::Interrupt 1.02 (); 1")
1462 unless defined $HAVE_ASYNC_INTERRUPT;
1463
1464 $HAVE_ASYNC_INTERRUPT
1465}
1466
1467our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1468our (%SIG_ASY, %SIG_ASY_W);
1469our ($SIG_COUNT, $SIG_TW);
1470
1471# install a dummy wakeup watcher to reduce signal catching latency
1472# used by Impls
1473sub _sig_add() {
1474 unless ($SIG_COUNT++) {
1475 # try to align timer on a full-second boundary, if possible
1476 my $NOW = AE::now;
1477
1478 $SIG_TW = AE::timer
1479 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1480 $MAX_SIGNAL_LATENCY,
1481 sub { } # just for the PERL_ASYNC_CHECK
1482 ;
1483 }
1484}
1485
1486sub _sig_del {
1487 undef $SIG_TW
1488 unless --$SIG_COUNT;
1489}
1490
1491our $_sig_name_init; $_sig_name_init = sub {
1492 eval q{ # poor man's autoloading {}
1493 undef $_sig_name_init;
1494
1495 if (_have_async_interrupt) {
1496 *sig2num = \&Async::Interrupt::sig2num;
1497 *sig2name = \&Async::Interrupt::sig2name;
1498 } else {
1499 require Config;
1500
1501 my %signame2num;
1502 @signame2num{ split ' ', $Config::Config{sig_name} }
1503 = split ' ', $Config::Config{sig_num};
1504
1505 my @signum2name;
1506 @signum2name[values %signame2num] = keys %signame2num;
1507
1508 *sig2num = sub($) {
1509 $_[0] > 0 ? shift : $signame2num{+shift}
1510 };
1511 *sig2name = sub ($) {
1512 $_[0] > 0 ? $signum2name[+shift] : shift
1513 };
1514 }
1515 };
1516 die if $@;
1517};
1518
1519sub sig2num ($) { &$_sig_name_init; &sig2num }
1520sub sig2name($) { &$_sig_name_init; &sig2name }
982 1521
983sub signal { 1522sub signal {
1523 eval q{ # poor man's autoloading {}
1524 # probe for availability of Async::Interrupt
1525 if (_have_async_interrupt) {
1526 warn "AnyEvent: using Async::Interrupt for race-free signal handling.\n" if $VERBOSE >= 8;
1527
1528 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1529 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1530
1531 } else {
1532 warn "AnyEvent: using emulated perl signal handling with latency timer.\n" if $VERBOSE >= 8;
1533
1534 if (AnyEvent::WIN32) {
1535 require AnyEvent::Util;
1536
1537 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1538 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1539 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1540 } else {
1541 pipe $SIGPIPE_R, $SIGPIPE_W;
1542 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1543 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1544
1545 # not strictly required, as $^F is normally 2, but let's make sure...
1546 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1547 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1548 }
1549
1550 $SIGPIPE_R
1551 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1552
1553 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1554 }
1555
1556 *signal = $HAVE_ASYNC_INTERRUPT
1557 ? sub {
984 my (undef, %arg) = @_; 1558 my (undef, %arg) = @_;
985 1559
1560 # async::interrupt
986 my $signal = uc $arg{signal} 1561 my $signal = sig2num $arg{signal};
987 or Carp::croak "required option 'signal' is missing";
988
989 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1562 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1563
1564 $SIG_ASY{$signal} ||= new Async::Interrupt
1565 cb => sub { undef $SIG_EV{$signal} },
1566 signal => $signal,
1567 pipe => [$SIGPIPE_R->filenos],
1568 pipe_autodrain => 0,
1569 ;
1570
1571 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1572 }
1573 : sub {
1574 my (undef, %arg) = @_;
1575
1576 # pure perl
1577 my $signal = sig2name $arg{signal};
1578 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1579
990 $SIG{$signal} ||= sub { 1580 $SIG{$signal} ||= sub {
1581 local $!;
1582 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1583 undef $SIG_EV{$signal};
1584 };
1585
1586 # can't do signal processing without introducing races in pure perl,
1587 # so limit the signal latency.
1588 _sig_add;
1589
1590 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1591 }
1592 ;
1593
1594 *AnyEvent::Base::signal::DESTROY = sub {
1595 my ($signal, $cb) = @{$_[0]};
1596
1597 _sig_del;
1598
1599 delete $SIG_CB{$signal}{$cb};
1600
1601 $HAVE_ASYNC_INTERRUPT
1602 ? delete $SIG_ASY{$signal}
1603 : # delete doesn't work with older perls - they then
1604 # print weird messages, or just unconditionally exit
1605 # instead of getting the default action.
1606 undef $SIG{$signal}
1607 unless keys %{ $SIG_CB{$signal} };
1608 };
1609
1610 *_signal_exec = sub {
1611 $HAVE_ASYNC_INTERRUPT
1612 ? $SIGPIPE_R->drain
1613 : sysread $SIGPIPE_R, (my $dummy), 9;
1614
1615 while (%SIG_EV) {
1616 for (keys %SIG_EV) {
1617 delete $SIG_EV{$_};
991 $_->() for values %{ $SIG_CB{$signal} || {} }; 1618 $_->() for values %{ $SIG_CB{$_} || {} };
1619 }
1620 }
1621 };
992 }; 1622 };
1623 die if $@;
993 1624
994 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1625 &signal
995}
996
997sub AnyEvent::Base::Signal::DESTROY {
998 my ($signal, $cb) = @{$_[0]};
999
1000 delete $SIG_CB{$signal}{$cb};
1001
1002 delete $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
1003} 1626}
1004 1627
1005# default implementation for ->child 1628# default implementation for ->child
1006 1629
1007our %PID_CB; 1630our %PID_CB;
1008our $CHLD_W; 1631our $CHLD_W;
1009our $CHLD_DELAY_W; 1632our $CHLD_DELAY_W;
1010our $PID_IDLE;
1011our $WNOHANG; 1633our $WNOHANG;
1012 1634
1013sub _child_wait { 1635# used by many Impl's
1014 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1636sub _emit_childstatus($$) {
1637 my (undef, $rpid, $rstatus) = @_;
1638
1639 $_->($rpid, $rstatus)
1015 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1640 for values %{ $PID_CB{$rpid} || {} },
1016 (values %{ $PID_CB{0} || {} }); 1641 values %{ $PID_CB{0} || {} };
1017 }
1018
1019 undef $PID_IDLE;
1020}
1021
1022sub _sigchld {
1023 # make sure we deliver these changes "synchronous" with the event loop.
1024 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub {
1025 undef $CHLD_DELAY_W;
1026 &_child_wait;
1027 });
1028} 1642}
1029 1643
1030sub child { 1644sub child {
1645 eval q{ # poor man's autoloading {}
1646 *_sigchld = sub {
1647 my $pid;
1648
1649 AnyEvent->_emit_childstatus ($pid, $?)
1650 while ($pid = waitpid -1, $WNOHANG) > 0;
1651 };
1652
1653 *child = sub {
1031 my (undef, %arg) = @_; 1654 my (undef, %arg) = @_;
1032 1655
1033 defined (my $pid = $arg{pid} + 0) 1656 defined (my $pid = $arg{pid} + 0)
1034 or Carp::croak "required option 'pid' is missing"; 1657 or Carp::croak "required option 'pid' is missing";
1035 1658
1036 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1659 $PID_CB{$pid}{$arg{cb}} = $arg{cb};
1037 1660
1038 unless ($WNOHANG) { 1661 # WNOHANG is almost cetrainly 1 everywhere
1662 $WNOHANG ||= $^O =~ /^(?:openbsd|netbsd|linux|freebsd|cygwin|MSWin32)$/
1663 ? 1
1039 $WNOHANG = eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1; 1664 : eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1040 }
1041 1665
1042 unless ($CHLD_W) { 1666 unless ($CHLD_W) {
1043 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1667 $CHLD_W = AE::signal CHLD => \&_sigchld;
1044 # child could be a zombie already, so make at least one round 1668 # child could be a zombie already, so make at least one round
1045 &_sigchld; 1669 &_sigchld;
1046 } 1670 }
1047 1671
1048 bless [$pid, $arg{cb}], "AnyEvent::Base::Child" 1672 bless [$pid, $arg{cb}], "AnyEvent::Base::child"
1049} 1673 };
1050 1674
1051sub AnyEvent::Base::Child::DESTROY { 1675 *AnyEvent::Base::child::DESTROY = sub {
1052 my ($pid, $cb) = @{$_[0]}; 1676 my ($pid, $cb) = @{$_[0]};
1053 1677
1054 delete $PID_CB{$pid}{$cb}; 1678 delete $PID_CB{$pid}{$cb};
1055 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1679 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1056 1680
1057 undef $CHLD_W unless keys %PID_CB; 1681 undef $CHLD_W unless keys %PID_CB;
1682 };
1683 };
1684 die if $@;
1685
1686 &child
1687}
1688
1689# idle emulation is done by simply using a timer, regardless
1690# of whether the process is idle or not, and not letting
1691# the callback use more than 50% of the time.
1692sub idle {
1693 eval q{ # poor man's autoloading {}
1694 *idle = sub {
1695 my (undef, %arg) = @_;
1696
1697 my ($cb, $w, $rcb) = $arg{cb};
1698
1699 $rcb = sub {
1700 if ($cb) {
1701 $w = _time;
1702 &$cb;
1703 $w = _time - $w;
1704
1705 # never use more then 50% of the time for the idle watcher,
1706 # within some limits
1707 $w = 0.0001 if $w < 0.0001;
1708 $w = 5 if $w > 5;
1709
1710 $w = AE::timer $w, 0, $rcb;
1711 } else {
1712 # clean up...
1713 undef $w;
1714 undef $rcb;
1715 }
1716 };
1717
1718 $w = AE::timer 0.05, 0, $rcb;
1719
1720 bless \\$cb, "AnyEvent::Base::idle"
1721 };
1722
1723 *AnyEvent::Base::idle::DESTROY = sub {
1724 undef $${$_[0]};
1725 };
1726 };
1727 die if $@;
1728
1729 &idle
1058} 1730}
1059 1731
1060package AnyEvent::CondVar; 1732package AnyEvent::CondVar;
1061 1733
1062our @ISA = AnyEvent::CondVar::Base::; 1734our @ISA = AnyEvent::CondVar::Base::;
1063 1735
1736# only to be used for subclassing
1737sub new {
1738 my $class = shift;
1739 bless AnyEvent->condvar (@_), $class
1740}
1741
1064package AnyEvent::CondVar::Base; 1742package AnyEvent::CondVar::Base;
1065 1743
1066use overload 1744#use overload
1067 '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, 1745# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1068 fallback => 1; 1746# fallback => 1;
1747
1748# save 300+ kilobytes by dirtily hardcoding overloading
1749${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1750*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1751*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1752${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1753
1754our $WAITING;
1069 1755
1070sub _send { 1756sub _send {
1071 # nop 1757 # nop
1072} 1758}
1073 1759
1086sub ready { 1772sub ready {
1087 $_[0]{_ae_sent} 1773 $_[0]{_ae_sent}
1088} 1774}
1089 1775
1090sub _wait { 1776sub _wait {
1777 $WAITING
1778 and !$_[0]{_ae_sent}
1779 and Carp::croak "AnyEvent::CondVar: recursive blocking wait detected";
1780
1781 local $WAITING = 1;
1091 AnyEvent->one_event while !$_[0]{_ae_sent}; 1782 AnyEvent->one_event while !$_[0]{_ae_sent};
1092} 1783}
1093 1784
1094sub recv { 1785sub recv {
1095 $_[0]->_wait; 1786 $_[0]->_wait;
1097 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1788 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak};
1098 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1789 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0]
1099} 1790}
1100 1791
1101sub cb { 1792sub cb {
1102 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1793 my $cv = shift;
1794
1795 @_
1796 and $cv->{_ae_cb} = shift
1797 and $cv->{_ae_sent}
1798 and (delete $cv->{_ae_cb})->($cv);
1799
1103 $_[0]{_ae_cb} 1800 $cv->{_ae_cb}
1104} 1801}
1105 1802
1106sub begin { 1803sub begin {
1107 ++$_[0]{_ae_counter}; 1804 ++$_[0]{_ae_counter};
1108 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 1805 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
1114} 1811}
1115 1812
1116# undocumented/compatibility with pre-3.4 1813# undocumented/compatibility with pre-3.4
1117*broadcast = \&send; 1814*broadcast = \&send;
1118*wait = \&_wait; 1815*wait = \&_wait;
1816
1817=head1 ERROR AND EXCEPTION HANDLING
1818
1819In general, AnyEvent does not do any error handling - it relies on the
1820caller to do that if required. The L<AnyEvent::Strict> module (see also
1821the C<PERL_ANYEVENT_STRICT> environment variable, below) provides strict
1822checking of all AnyEvent methods, however, which is highly useful during
1823development.
1824
1825As for exception handling (i.e. runtime errors and exceptions thrown while
1826executing a callback), this is not only highly event-loop specific, but
1827also not in any way wrapped by this module, as this is the job of the main
1828program.
1829
1830The pure perl event loop simply re-throws the exception (usually
1831within C<< condvar->recv >>), the L<Event> and L<EV> modules call C<<
1832$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
1833so on.
1834
1835=head1 ENVIRONMENT VARIABLES
1836
1837The following environment variables are used by this module or its
1838submodules.
1839
1840Note that AnyEvent will remove I<all> environment variables starting with
1841C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
1842enabled.
1843
1844=over 4
1845
1846=item C<PERL_ANYEVENT_VERBOSE>
1847
1848By default, AnyEvent will be completely silent except in fatal
1849conditions. You can set this environment variable to make AnyEvent more
1850talkative.
1851
1852When set to C<1> or higher, causes AnyEvent to warn about unexpected
1853conditions, such as not being able to load the event model specified by
1854C<PERL_ANYEVENT_MODEL>.
1855
1856When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1857model it chooses.
1858
1859When set to C<8> or higher, then AnyEvent will report extra information on
1860which optional modules it loads and how it implements certain features.
1861
1862=item C<PERL_ANYEVENT_STRICT>
1863
1864AnyEvent does not do much argument checking by default, as thorough
1865argument checking is very costly. Setting this variable to a true value
1866will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1867check the arguments passed to most method calls. If it finds any problems,
1868it will croak.
1869
1870In other words, enables "strict" mode.
1871
1872Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
1873>>, it is definitely recommended to keep it off in production. Keeping
1874C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
1875can be very useful, however.
1876
1877=item C<PERL_ANYEVENT_MODEL>
1878
1879This can be used to specify the event model to be used by AnyEvent, before
1880auto detection and -probing kicks in. It must be a string consisting
1881entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1882and the resulting module name is loaded and if the load was successful,
1883used as event model. If it fails to load AnyEvent will proceed with
1884auto detection and -probing.
1885
1886This functionality might change in future versions.
1887
1888For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
1889could start your program like this:
1890
1891 PERL_ANYEVENT_MODEL=Perl perl ...
1892
1893=item C<PERL_ANYEVENT_PROTOCOLS>
1894
1895Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1896for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1897of auto probing).
1898
1899Must be set to a comma-separated list of protocols or address families,
1900current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1901used, and preference will be given to protocols mentioned earlier in the
1902list.
1903
1904This variable can effectively be used for denial-of-service attacks
1905against local programs (e.g. when setuid), although the impact is likely
1906small, as the program has to handle conenction and other failures anyways.
1907
1908Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1909but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1910- only support IPv4, never try to resolve or contact IPv6
1911addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1912IPv6, but prefer IPv6 over IPv4.
1913
1914=item C<PERL_ANYEVENT_EDNS0>
1915
1916Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1917for DNS. This extension is generally useful to reduce DNS traffic, but
1918some (broken) firewalls drop such DNS packets, which is why it is off by
1919default.
1920
1921Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1922EDNS0 in its DNS requests.
1923
1924=item C<PERL_ANYEVENT_MAX_FORKS>
1925
1926The maximum number of child processes that C<AnyEvent::Util::fork_call>
1927will create in parallel.
1928
1929=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
1930
1931The default value for the C<max_outstanding> parameter for the default DNS
1932resolver - this is the maximum number of parallel DNS requests that are
1933sent to the DNS server.
1934
1935=item C<PERL_ANYEVENT_RESOLV_CONF>
1936
1937The file to use instead of F</etc/resolv.conf> (or OS-specific
1938configuration) in the default resolver. When set to the empty string, no
1939default config will be used.
1940
1941=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
1942
1943When neither C<ca_file> nor C<ca_path> was specified during
1944L<AnyEvent::TLS> context creation, and either of these environment
1945variables exist, they will be used to specify CA certificate locations
1946instead of a system-dependent default.
1947
1948=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
1949
1950When these are set to C<1>, then the respective modules are not
1951loaded. Mostly good for testing AnyEvent itself.
1952
1953=back
1119 1954
1120=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 1955=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1121 1956
1122This is an advanced topic that you do not normally need to use AnyEvent in 1957This is an advanced topic that you do not normally need to use AnyEvent in
1123a module. This section is only of use to event loop authors who want to 1958a module. This section is only of use to event loop authors who want to
1157 1992
1158I<rxvt-unicode> also cheats a bit by not providing blocking access to 1993I<rxvt-unicode> also cheats a bit by not providing blocking access to
1159condition variables: code blocking while waiting for a condition will 1994condition variables: code blocking while waiting for a condition will
1160C<die>. This still works with most modules/usages, and blocking calls must 1995C<die>. This still works with most modules/usages, and blocking calls must
1161not be done in an interactive application, so it makes sense. 1996not be done in an interactive application, so it makes sense.
1162
1163=head1 ENVIRONMENT VARIABLES
1164
1165The following environment variables are used by this module:
1166
1167=over 4
1168
1169=item C<PERL_ANYEVENT_VERBOSE>
1170
1171By default, AnyEvent will be completely silent except in fatal
1172conditions. You can set this environment variable to make AnyEvent more
1173talkative.
1174
1175When set to C<1> or higher, causes AnyEvent to warn about unexpected
1176conditions, such as not being able to load the event model specified by
1177C<PERL_ANYEVENT_MODEL>.
1178
1179When set to C<2> or higher, cause AnyEvent to report to STDERR which event
1180model it chooses.
1181
1182=item C<PERL_ANYEVENT_MODEL>
1183
1184This can be used to specify the event model to be used by AnyEvent, before
1185auto detection and -probing kicks in. It must be a string consisting
1186entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended
1187and the resulting module name is loaded and if the load was successful,
1188used as event model. If it fails to load AnyEvent will proceed with
1189auto detection and -probing.
1190
1191This functionality might change in future versions.
1192
1193For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you
1194could start your program like this:
1195
1196 PERL_ANYEVENT_MODEL=Perl perl ...
1197
1198=item C<PERL_ANYEVENT_PROTOCOLS>
1199
1200Used by both L<AnyEvent::DNS> and L<AnyEvent::Socket> to determine preferences
1201for IPv4 or IPv6. The default is unspecified (and might change, or be the result
1202of auto probing).
1203
1204Must be set to a comma-separated list of protocols or address families,
1205current supported: C<ipv4> and C<ipv6>. Only protocols mentioned will be
1206used, and preference will be given to protocols mentioned earlier in the
1207list.
1208
1209This variable can effectively be used for denial-of-service attacks
1210against local programs (e.g. when setuid), although the impact is likely
1211small, as the program has to handle connection errors already-
1212
1213Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1214but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1215- only support IPv4, never try to resolve or contact IPv6
1216addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1217IPv6, but prefer IPv6 over IPv4.
1218
1219=item C<PERL_ANYEVENT_EDNS0>
1220
1221Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension
1222for DNS. This extension is generally useful to reduce DNS traffic, but
1223some (broken) firewalls drop such DNS packets, which is why it is off by
1224default.
1225
1226Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1227EDNS0 in its DNS requests.
1228
1229=item C<PERL_ANYEVENT_MAX_FORKS>
1230
1231The maximum number of child processes that C<AnyEvent::Util::fork_call>
1232will create in parallel.
1233
1234=back
1235 1997
1236=head1 EXAMPLE PROGRAM 1998=head1 EXAMPLE PROGRAM
1237 1999
1238The following program uses an I/O watcher to read data from STDIN, a timer 2000The following program uses an I/O watcher to read data from STDIN, a timer
1239to display a message once per second, and a condition variable to quit the 2001to display a message once per second, and a condition variable to quit the
1252 warn "read: $input\n"; # output what has been read 2014 warn "read: $input\n"; # output what has been read
1253 $cv->send if $input =~ /^q/i; # quit program if /^q/i 2015 $cv->send if $input =~ /^q/i; # quit program if /^q/i
1254 }, 2016 },
1255 ); 2017 );
1256 2018
1257 my $time_watcher; # can only be used once
1258
1259 sub new_timer {
1260 $timer = AnyEvent->timer (after => 1, cb => sub { 2019 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
1261 warn "timeout\n"; # print 'timeout' about every second 2020 warn "timeout\n"; # print 'timeout' at most every second
1262 &new_timer; # and restart the time
1263 }); 2021 });
1264 }
1265
1266 new_timer; # create first timer
1267 2022
1268 $cv->recv; # wait until user enters /^q/i 2023 $cv->recv; # wait until user enters /^q/i
1269 2024
1270=head1 REAL-WORLD EXAMPLE 2025=head1 REAL-WORLD EXAMPLE
1271 2026
1344 2099
1345The actual code goes further and collects all errors (C<die>s, exceptions) 2100The actual code goes further and collects all errors (C<die>s, exceptions)
1346that occurred during request processing. The C<result> method detects 2101that occurred during request processing. The C<result> method detects
1347whether an exception as thrown (it is stored inside the $txn object) 2102whether an exception as thrown (it is stored inside the $txn object)
1348and just throws the exception, which means connection errors and other 2103and just throws the exception, which means connection errors and other
1349problems get reported tot he code that tries to use the result, not in a 2104problems get reported to the code that tries to use the result, not in a
1350random callback. 2105random callback.
1351 2106
1352All of this enables the following usage styles: 2107All of this enables the following usage styles:
1353 2108
13541. Blocking: 21091. Blocking:
1402through AnyEvent. The benchmark creates a lot of timers (with a zero 2157through AnyEvent. The benchmark creates a lot of timers (with a zero
1403timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2158timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1404which it is), lets them fire exactly once and destroys them again. 2159which it is), lets them fire exactly once and destroys them again.
1405 2160
1406Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2161Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1407distribution. 2162distribution. It uses the L<AE> interface, which makes a real difference
2163for the EV and Perl backends only.
1408 2164
1409=head3 Explanation of the columns 2165=head3 Explanation of the columns
1410 2166
1411I<watcher> is the number of event watchers created/destroyed. Since 2167I<watcher> is the number of event watchers created/destroyed. Since
1412different event models feature vastly different performances, each event 2168different event models feature vastly different performances, each event
1433watcher. 2189watcher.
1434 2190
1435=head3 Results 2191=head3 Results
1436 2192
1437 name watchers bytes create invoke destroy comment 2193 name watchers bytes create invoke destroy comment
1438 EV/EV 400000 244 0.56 0.46 0.31 EV native interface 2194 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1439 EV/Any 100000 244 2.50 0.46 0.29 EV + AnyEvent watchers 2195 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1440 CoroEV/Any 100000 244 2.49 0.44 0.29 coroutines + Coro::Signal 2196 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1441 Perl/Any 100000 513 4.92 0.87 1.12 pure perl implementation 2197 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1442 Event/Event 16000 516 31.88 31.30 0.85 Event native interface 2198 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1443 Event/Any 16000 590 35.75 31.42 1.08 Event + AnyEvent watchers 2199 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2200 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2201 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1444 Glib/Any 16000 1357 98.22 12.41 54.00 quadratic behaviour 2202 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1445 Tk/Any 2000 1860 26.97 67.98 14.00 SEGV with >> 2000 watchers 2203 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1446 POE/Event 2000 6644 108.64 736.02 14.73 via POE::Loop::Event 2204 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1447 POE/Select 2000 6343 94.13 809.12 565.96 via POE::Loop::Select 2205 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1448 2206
1449=head3 Discussion 2207=head3 Discussion
1450 2208
1451The benchmark does I<not> measure scalability of the event loop very 2209The benchmark does I<not> measure scalability of the event loop very
1452well. For example, a select-based event loop (such as the pure perl one) 2210well. For example, a select-based event loop (such as the pure perl one)
1464benchmark machine, handling an event takes roughly 1600 CPU cycles with 2222benchmark machine, handling an event takes roughly 1600 CPU cycles with
1465EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2223EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1466cycles with POE. 2224cycles with POE.
1467 2225
1468C<EV> is the sole leader regarding speed and memory use, which are both 2226C<EV> is the sole leader regarding speed and memory use, which are both
1469maximal/minimal, respectively. Even when going through AnyEvent, it uses 2227maximal/minimal, respectively. When using the L<AE> API there is zero
2228overhead (when going through the AnyEvent API create is about 5-6 times
2229slower, with other times being equal, so still uses far less memory than
1470far less memory than any other event loop and is still faster than Event 2230any other event loop and is still faster than Event natively).
1471natively.
1472 2231
1473The pure perl implementation is hit in a few sweet spots (both the 2232The pure perl implementation is hit in a few sweet spots (both the
1474constant timeout and the use of a single fd hit optimisations in the perl 2233constant timeout and the use of a single fd hit optimisations in the perl
1475interpreter and the backend itself). Nevertheless this shows that it 2234interpreter and the backend itself). Nevertheless this shows that it
1476adds very little overhead in itself. Like any select-based backend its 2235adds very little overhead in itself. Like any select-based backend its
1477performance becomes really bad with lots of file descriptors (and few of 2236performance becomes really bad with lots of file descriptors (and few of
1478them active), of course, but this was not subject of this benchmark. 2237them active), of course, but this was not subject of this benchmark.
1479 2238
1480The C<Event> module has a relatively high setup and callback invocation 2239The C<Event> module has a relatively high setup and callback invocation
1481cost, but overall scores in on the third place. 2240cost, but overall scores in on the third place.
2241
2242C<IO::Async> performs admirably well, about on par with C<Event>, even
2243when using its pure perl backend.
1482 2244
1483C<Glib>'s memory usage is quite a bit higher, but it features a 2245C<Glib>'s memory usage is quite a bit higher, but it features a
1484faster callback invocation and overall ends up in the same class as 2246faster callback invocation and overall ends up in the same class as
1485C<Event>. However, Glib scales extremely badly, doubling the number of 2247C<Event>. However, Glib scales extremely badly, doubling the number of
1486watchers increases the processing time by more than a factor of four, 2248watchers increases the processing time by more than a factor of four,
1547In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2309In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1548(1%) are active. This mirrors the activity of large servers with many 2310(1%) are active. This mirrors the activity of large servers with many
1549connections, most of which are idle at any one point in time. 2311connections, most of which are idle at any one point in time.
1550 2312
1551Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2313Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1552distribution. 2314distribution. It uses the L<AE> interface, which makes a real difference
2315for the EV and Perl backends only.
1553 2316
1554=head3 Explanation of the columns 2317=head3 Explanation of the columns
1555 2318
1556I<sockets> is the number of sockets, and twice the number of "servers" (as 2319I<sockets> is the number of sockets, and twice the number of "servers" (as
1557each server has a read and write socket end). 2320each server has a read and write socket end).
1564it to another server. This includes deleting the old timeout and creating 2327it to another server. This includes deleting the old timeout and creating
1565a new one that moves the timeout into the future. 2328a new one that moves the timeout into the future.
1566 2329
1567=head3 Results 2330=head3 Results
1568 2331
1569 name sockets create request 2332 name sockets create request
1570 EV 20000 69.01 11.16 2333 EV 20000 62.66 7.99
1571 Perl 20000 73.32 35.87 2334 Perl 20000 68.32 32.64
1572 Event 20000 212.62 257.32 2335 IOAsync 20000 174.06 101.15 epoll
1573 Glib 20000 651.16 1896.30 2336 IOAsync 20000 174.67 610.84 poll
2337 Event 20000 202.69 242.91
2338 Glib 20000 557.01 1689.52
1574 POE 20000 349.67 12317.24 uses POE::Loop::Event 2339 POE 20000 341.54 12086.32 uses POE::Loop::Event
1575 2340
1576=head3 Discussion 2341=head3 Discussion
1577 2342
1578This benchmark I<does> measure scalability and overall performance of the 2343This benchmark I<does> measure scalability and overall performance of the
1579particular event loop. 2344particular event loop.
1581EV is again fastest. Since it is using epoll on my system, the setup time 2346EV is again fastest. Since it is using epoll on my system, the setup time
1582is relatively high, though. 2347is relatively high, though.
1583 2348
1584Perl surprisingly comes second. It is much faster than the C-based event 2349Perl surprisingly comes second. It is much faster than the C-based event
1585loops Event and Glib. 2350loops Event and Glib.
2351
2352IO::Async performs very well when using its epoll backend, and still quite
2353good compared to Glib when using its pure perl backend.
1586 2354
1587Event suffers from high setup time as well (look at its code and you will 2355Event suffers from high setup time as well (look at its code and you will
1588understand why). Callback invocation also has a high overhead compared to 2356understand why). Callback invocation also has a high overhead compared to
1589the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2357the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1590uses select or poll in basically all documented configurations. 2358uses select or poll in basically all documented configurations.
1653=item * C-based event loops perform very well with small number of 2421=item * C-based event loops perform very well with small number of
1654watchers, as the management overhead dominates. 2422watchers, as the management overhead dominates.
1655 2423
1656=back 2424=back
1657 2425
2426=head2 THE IO::Lambda BENCHMARK
2427
2428Recently I was told about the benchmark in the IO::Lambda manpage, which
2429could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2430simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2431shouldn't come as a surprise to anybody). As such, the benchmark is
2432fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2433very optimal. But how would AnyEvent compare when used without the extra
2434baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2435
2436The benchmark itself creates an echo-server, and then, for 500 times,
2437connects to the echo server, sends a line, waits for the reply, and then
2438creates the next connection. This is a rather bad benchmark, as it doesn't
2439test the efficiency of the framework or much non-blocking I/O, but it is a
2440benchmark nevertheless.
2441
2442 name runtime
2443 Lambda/select 0.330 sec
2444 + optimized 0.122 sec
2445 Lambda/AnyEvent 0.327 sec
2446 + optimized 0.138 sec
2447 Raw sockets/select 0.077 sec
2448 POE/select, components 0.662 sec
2449 POE/select, raw sockets 0.226 sec
2450 POE/select, optimized 0.404 sec
2451
2452 AnyEvent/select/nb 0.085 sec
2453 AnyEvent/EV/nb 0.068 sec
2454 +state machine 0.134 sec
2455
2456The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2457benchmarks actually make blocking connects and use 100% blocking I/O,
2458defeating the purpose of an event-based solution. All of the newly
2459written AnyEvent benchmarks use 100% non-blocking connects (using
2460AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2461resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2462generally require a lot more bookkeeping and event handling than blocking
2463connects (which involve a single syscall only).
2464
2465The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2466offers similar expressive power as POE and IO::Lambda, using conventional
2467Perl syntax. This means that both the echo server and the client are 100%
2468non-blocking, further placing it at a disadvantage.
2469
2470As you can see, the AnyEvent + EV combination even beats the
2471hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2472backend easily beats IO::Lambda and POE.
2473
2474And even the 100% non-blocking version written using the high-level (and
2475slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2476higher level ("unoptimised") abstractions by a large margin, even though
2477it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2478
2479The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2480F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2481part of the IO::Lambda distribution and were used without any changes.
2482
2483
2484=head1 SIGNALS
2485
2486AnyEvent currently installs handlers for these signals:
2487
2488=over 4
2489
2490=item SIGCHLD
2491
2492A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
2493emulation for event loops that do not support them natively. Also, some
2494event loops install a similar handler.
2495
2496Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2497AnyEvent will reset it to default, to avoid losing child exit statuses.
2498
2499=item SIGPIPE
2500
2501A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
2502when AnyEvent gets loaded.
2503
2504The rationale for this is that AnyEvent users usually do not really depend
2505on SIGPIPE delivery (which is purely an optimisation for shell use, or
2506badly-written programs), but C<SIGPIPE> can cause spurious and rare
2507program exits as a lot of people do not expect C<SIGPIPE> when writing to
2508some random socket.
2509
2510The rationale for installing a no-op handler as opposed to ignoring it is
2511that this way, the handler will be restored to defaults on exec.
2512
2513Feel free to install your own handler, or reset it to defaults.
2514
2515=back
2516
2517=cut
2518
2519undef $SIG{CHLD}
2520 if $SIG{CHLD} eq 'IGNORE';
2521
2522$SIG{PIPE} = sub { }
2523 unless defined $SIG{PIPE};
2524
2525=head1 RECOMMENDED/OPTIONAL MODULES
2526
2527One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2528its built-in modules) are required to use it.
2529
2530That does not mean that AnyEvent won't take advantage of some additional
2531modules if they are installed.
2532
2533This section explains which additional modules will be used, and how they
2534affect AnyEvent's operation.
2535
2536=over 4
2537
2538=item L<Async::Interrupt>
2539
2540This slightly arcane module is used to implement fast signal handling: To
2541my knowledge, there is no way to do completely race-free and quick
2542signal handling in pure perl. To ensure that signals still get
2543delivered, AnyEvent will start an interval timer to wake up perl (and
2544catch the signals) with some delay (default is 10 seconds, look for
2545C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2546
2547If this module is available, then it will be used to implement signal
2548catching, which means that signals will not be delayed, and the event loop
2549will not be interrupted regularly, which is more efficient (and good for
2550battery life on laptops).
2551
2552This affects not just the pure-perl event loop, but also other event loops
2553that have no signal handling on their own (e.g. Glib, Tk, Qt).
2554
2555Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2556and either employ their own workarounds (POE) or use AnyEvent's workaround
2557(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2558does nothing for those backends.
2559
2560=item L<EV>
2561
2562This module isn't really "optional", as it is simply one of the backend
2563event loops that AnyEvent can use. However, it is simply the best event
2564loop available in terms of features, speed and stability: It supports
2565the AnyEvent API optimally, implements all the watcher types in XS, does
2566automatic timer adjustments even when no monotonic clock is available,
2567can take avdantage of advanced kernel interfaces such as C<epoll> and
2568C<kqueue>, and is the fastest backend I<by far>. You can even embed
2569L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2570
2571If you only use backends that rely on another event loop (e.g. C<Tk>),
2572then this module will do nothing for you.
2573
2574=item L<Guard>
2575
2576The guard module, when used, will be used to implement
2577C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2578lot less memory), but otherwise doesn't affect guard operation much. It is
2579purely used for performance.
2580
2581=item L<JSON> and L<JSON::XS>
2582
2583One of these modules is required when you want to read or write JSON data
2584via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2585advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2586
2587=item L<Net::SSLeay>
2588
2589Implementing TLS/SSL in Perl is certainly interesting, but not very
2590worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2591the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2592
2593=item L<Time::HiRes>
2594
2595This module is part of perl since release 5.008. It will be used when the
2596chosen event library does not come with a timing source of its own. The
2597pure-perl event loop (L<AnyEvent::Impl::Perl>) will additionally use it to
2598try to use a monotonic clock for timing stability.
2599
2600=back
2601
1658 2602
1659=head1 FORK 2603=head1 FORK
1660 2604
1661Most event libraries are not fork-safe. The ones who are usually are 2605Most event libraries are not fork-safe. The ones who are usually are
1662because they rely on inefficient but fork-safe C<select> or C<poll> 2606because they rely on inefficient but fork-safe C<select> or C<poll> calls
1663calls. Only L<EV> is fully fork-aware. 2607- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2608are usually badly thought-out hacks that are incompatible with fork in
2609one way or another. Only L<EV> is fully fork-aware and ensures that you
2610continue event-processing in both parent and child (or both, if you know
2611what you are doing).
2612
2613This means that, in general, you cannot fork and do event processing in
2614the child if the event library was initialised before the fork (which
2615usually happens when the first AnyEvent watcher is created, or the library
2616is loaded).
1664 2617
1665If you have to fork, you must either do so I<before> creating your first 2618If you have to fork, you must either do so I<before> creating your first
1666watcher OR you must not use AnyEvent at all in the child. 2619watcher OR you must not use AnyEvent at all in the child OR you must do
2620something completely out of the scope of AnyEvent.
2621
2622The problem of doing event processing in the parent I<and> the child
2623is much more complicated: even for backends that I<are> fork-aware or
2624fork-safe, their behaviour is not usually what you want: fork clones all
2625watchers, that means all timers, I/O watchers etc. are active in both
2626parent and child, which is almost never what you want. USing C<exec>
2627to start worker children from some kind of manage rprocess is usually
2628preferred, because it is much easier and cleaner, at the expense of having
2629to have another binary.
1667 2630
1668 2631
1669=head1 SECURITY CONSIDERATIONS 2632=head1 SECURITY CONSIDERATIONS
1670 2633
1671AnyEvent can be forced to load any event model via 2634AnyEvent can be forced to load any event model via
1682 2645
1683 use AnyEvent; 2646 use AnyEvent;
1684 2647
1685Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2648Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1686be used to probe what backend is used and gain other information (which is 2649be used to probe what backend is used and gain other information (which is
1687probably even less useful to an attacker than PERL_ANYEVENT_MODEL). 2650probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
2651$ENV{PERL_ANYEVENT_STRICT}.
2652
2653Note that AnyEvent will remove I<all> environment variables starting with
2654C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2655enabled.
1688 2656
1689 2657
1690=head1 BUGS 2658=head1 BUGS
1691 2659
1692Perl 5.8 has numerous memleaks that sometimes hit this module and are hard 2660Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
1693to work around. If you suffer from memleaks, first upgrade to Perl 5.10 2661to work around. If you suffer from memleaks, first upgrade to Perl 5.10
1694and check wether the leaks still show up. (Perl 5.10.0 has other annoying 2662and check wether the leaks still show up. (Perl 5.10.0 has other annoying
1695mamleaks, such as leaking on C<map> and C<grep> but it is usually not as 2663memleaks, such as leaking on C<map> and C<grep> but it is usually not as
1696pronounced). 2664pronounced).
1697 2665
1698 2666
1699=head1 SEE ALSO 2667=head1 SEE ALSO
2668
2669Tutorial/Introduction: L<AnyEvent::Intro>.
2670
2671FAQ: L<AnyEvent::FAQ>.
1700 2672
1701Utility functions: L<AnyEvent::Util>. 2673Utility functions: L<AnyEvent::Util>.
1702 2674
1703Event modules: L<EV>, L<EV::Glib>, L<Glib::EV>, L<Event>, L<Glib::Event>, 2675Event modules: L<EV>, L<EV::Glib>, L<Glib::EV>, L<Event>, L<Glib::Event>,
1704L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2676L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>.
1705 2677
1706Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 2678Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
1707L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 2679L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
1708L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 2680L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
1709L<AnyEvent::Impl::POE>. 2681L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>.
1710 2682
1711Non-blocking file handles, sockets, TCP clients and 2683Non-blocking file handles, sockets, TCP clients and
1712servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>. 2684servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
1713 2685
1714Asynchronous DNS: L<AnyEvent::DNS>. 2686Asynchronous DNS: L<AnyEvent::DNS>.
1715 2687
1716Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>, 2688Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
1717 2689
1718Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 2690Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
2691L<AnyEvent::HTTP>.
1719 2692
1720 2693
1721=head1 AUTHOR 2694=head1 AUTHOR
1722 2695
1723 Marc Lehmann <schmorp@schmorp.de> 2696 Marc Lehmann <schmorp@schmorp.de>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines