ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent.pm (file contents):
Revision 1.187 by root, Tue Oct 28 08:07:04 2008 UTC vs.
Revision 1.382 by root, Thu Sep 1 23:46:26 2011 UTC

1=head1 NAME 1=head1 NAME
2 2
3AnyEvent - provide framework for multiple event loops 3AnyEvent - the DBI of event loop programming
4 4
5EV, Event, Glib, Tk, Perl, Event::Lib, Qt, POE - various supported event loops 5EV, Event, Glib, Tk, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt,
6FLTK and POE are various supported event loops/environments.
6 7
7=head1 SYNOPSIS 8=head1 SYNOPSIS
8 9
9 use AnyEvent; 10 use AnyEvent;
10 11
12 # if you prefer function calls, look at the AE manpage for
13 # an alternative API.
14
15 # file handle or descriptor readable
11 my $w = AnyEvent->io (fh => $fh, poll => "r|w", cb => sub { ... }); 16 my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... });
12 17
18 # one-shot or repeating timers
13 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... }); 19 my $w = AnyEvent->timer (after => $seconds, cb => sub { ... });
14 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ... 20 my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...);
15 21
16 print AnyEvent->now; # prints current event loop time 22 print AnyEvent->now; # prints current event loop time
17 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time. 23 print AnyEvent->time; # think Time::HiRes::time or simply CORE::time.
18 24
25 # POSIX signal
19 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... }); 26 my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... });
20 27
28 # child process exit
21 my $w = AnyEvent->child (pid => $pid, cb => sub { 29 my $w = AnyEvent->child (pid => $pid, cb => sub {
22 my ($pid, $status) = @_; 30 my ($pid, $status) = @_;
23 ... 31 ...
24 }); 32 });
33
34 # called when event loop idle (if applicable)
35 my $w = AnyEvent->idle (cb => sub { ... });
25 36
26 my $w = AnyEvent->condvar; # stores whether a condition was flagged 37 my $w = AnyEvent->condvar; # stores whether a condition was flagged
27 $w->send; # wake up current and all future recv's 38 $w->send; # wake up current and all future recv's
28 $w->recv; # enters "main loop" till $condvar gets ->send 39 $w->recv; # enters "main loop" till $condvar gets ->send
29 # use a condvar in callback mode: 40 # use a condvar in callback mode:
32=head1 INTRODUCTION/TUTORIAL 43=head1 INTRODUCTION/TUTORIAL
33 44
34This manpage is mainly a reference manual. If you are interested 45This manpage is mainly a reference manual. If you are interested
35in a tutorial or some gentle introduction, have a look at the 46in a tutorial or some gentle introduction, have a look at the
36L<AnyEvent::Intro> manpage. 47L<AnyEvent::Intro> manpage.
48
49=head1 SUPPORT
50
51An FAQ document is available as L<AnyEvent::FAQ>.
52
53There also is a mailinglist for discussing all things AnyEvent, and an IRC
54channel, too.
55
56See the AnyEvent project page at the B<Schmorpforge Ta-Sa Software
57Repository>, at L<http://anyevent.schmorp.de>, for more info.
37 58
38=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT) 59=head1 WHY YOU SHOULD USE THIS MODULE (OR NOT)
39 60
40Glib, POE, IO::Async, Event... CPAN offers event models by the dozen 61Glib, POE, IO::Async, Event... CPAN offers event models by the dozen
41nowadays. So what is different about AnyEvent? 62nowadays. So what is different about AnyEvent?
57module users into the same thing by forcing them to use the same event 78module users into the same thing by forcing them to use the same event
58model you use. 79model you use.
59 80
60For modules like POE or IO::Async (which is a total misnomer as it is 81For modules like POE or IO::Async (which is a total misnomer as it is
61actually doing all I/O I<synchronously>...), using them in your module is 82actually doing all I/O I<synchronously>...), using them in your module is
62like joining a cult: After you joined, you are dependent on them and you 83like joining a cult: After you join, you are dependent on them and you
63cannot use anything else, as they are simply incompatible to everything 84cannot use anything else, as they are simply incompatible to everything
64that isn't them. What's worse, all the potential users of your 85that isn't them. What's worse, all the potential users of your
65module are I<also> forced to use the same event loop you use. 86module are I<also> forced to use the same event loop you use.
66 87
67AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works 88AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works
68fine. AnyEvent + Tk works fine etc. etc. but none of these work together 89fine. AnyEvent + Tk works fine etc. etc. but none of these work together
69with the rest: POE + IO::Async? No go. Tk + Event? No go. Again: if 90with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module
70your module uses one of those, every user of your module has to use it, 91uses one of those, every user of your module has to use it, too. But if
71too. But if your module uses AnyEvent, it works transparently with all 92your module uses AnyEvent, it works transparently with all event models it
72event models it supports (including stuff like IO::Async, as long as those 93supports (including stuff like IO::Async, as long as those use one of the
73use one of the supported event loops. It is trivial to add new event loops 94supported event loops. It is easy to add new event loops to AnyEvent, too,
74to AnyEvent, too, so it is future-proof). 95so it is future-proof).
75 96
76In addition to being free of having to use I<the one and only true event 97In addition to being free of having to use I<the one and only true event
77model>, AnyEvent also is free of bloat and policy: with POE or similar 98model>, AnyEvent also is free of bloat and policy: with POE or similar
78modules, you get an enormous amount of code and strict rules you have to 99modules, you get an enormous amount of code and strict rules you have to
79follow. AnyEvent, on the other hand, is lean and up to the point, by only 100follow. AnyEvent, on the other hand, is lean and to the point, by only
80offering the functionality that is necessary, in as thin as a wrapper as 101offering the functionality that is necessary, in as thin as a wrapper as
81technically possible. 102technically possible.
82 103
83Of course, AnyEvent comes with a big (and fully optional!) toolbox 104Of course, AnyEvent comes with a big (and fully optional!) toolbox
84of useful functionality, such as an asynchronous DNS resolver, 100% 105of useful functionality, such as an asynchronous DNS resolver, 100%
90useful) and you want to force your users to use the one and only event 111useful) and you want to force your users to use the one and only event
91model, you should I<not> use this module. 112model, you should I<not> use this module.
92 113
93=head1 DESCRIPTION 114=head1 DESCRIPTION
94 115
95L<AnyEvent> provides an identical interface to multiple event loops. This 116L<AnyEvent> provides a uniform interface to various event loops. This
96allows module authors to utilise an event loop without forcing module 117allows module authors to use event loop functionality without forcing
97users to use the same event loop (as only a single event loop can coexist 118module users to use a specific event loop implementation (since more
98peacefully at any one time). 119than one event loop cannot coexist peacefully).
99 120
100The interface itself is vaguely similar, but not identical to the L<Event> 121The interface itself is vaguely similar, but not identical to the L<Event>
101module. 122module.
102 123
103During the first call of any watcher-creation method, the module tries 124During the first call of any watcher-creation method, the module tries
104to detect the currently loaded event loop by probing whether one of the 125to detect the currently loaded event loop by probing whether one of the
105following modules is already loaded: L<EV>, 126following modules is already loaded: L<EV>, L<AnyEvent::Loop>,
106L<Event>, L<Glib>, L<AnyEvent::Impl::Perl>, L<Tk>, L<Event::Lib>, L<Qt>, 127L<Event>, L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. The first one
107L<POE>. The first one found is used. If none are found, the module tries 128found is used. If none are detected, the module tries to load the first
108to load these modules (excluding Tk, Event::Lib, Qt and POE as the pure perl 129four modules in the order given; but note that if L<EV> is not
109adaptor should always succeed) in the order given. The first one that can 130available, the pure-perl L<AnyEvent::Loop> should always work, so
110be successfully loaded will be used. If, after this, still none could be 131the other two are not normally tried.
111found, AnyEvent will fall back to a pure-perl event loop, which is not
112very efficient, but should work everywhere.
113 132
114Because AnyEvent first checks for modules that are already loaded, loading 133Because AnyEvent first checks for modules that are already loaded, loading
115an event model explicitly before first using AnyEvent will likely make 134an event model explicitly before first using AnyEvent will likely make
116that model the default. For example: 135that model the default. For example:
117 136
119 use AnyEvent; 138 use AnyEvent;
120 139
121 # .. AnyEvent will likely default to Tk 140 # .. AnyEvent will likely default to Tk
122 141
123The I<likely> means that, if any module loads another event model and 142The I<likely> means that, if any module loads another event model and
124starts using it, all bets are off. Maybe you should tell their authors to 143starts using it, all bets are off - this case should be very rare though,
125use AnyEvent so their modules work together with others seamlessly... 144as very few modules hardcode event loops without announcing this very
145loudly.
126 146
127The pure-perl implementation of AnyEvent is called 147The pure-perl implementation of AnyEvent is called C<AnyEvent::Loop>. Like
128C<AnyEvent::Impl::Perl>. Like other event modules you can load it 148other event modules you can load it explicitly and enjoy the high
129explicitly and enjoy the high availability of that event loop :) 149availability of that event loop :)
130 150
131=head1 WATCHERS 151=head1 WATCHERS
132 152
133AnyEvent has the central concept of a I<watcher>, which is an object that 153AnyEvent has the central concept of a I<watcher>, which is an object that
134stores relevant data for each kind of event you are waiting for, such as 154stores relevant data for each kind of event you are waiting for, such as
137These watchers are normal Perl objects with normal Perl lifetime. After 157These watchers are normal Perl objects with normal Perl lifetime. After
138creating a watcher it will immediately "watch" for events and invoke the 158creating a watcher it will immediately "watch" for events and invoke the
139callback when the event occurs (of course, only when the event model 159callback when the event occurs (of course, only when the event model
140is in control). 160is in control).
141 161
162Note that B<callbacks must not permanently change global variables>
163potentially in use by the event loop (such as C<$_> or C<$[>) and that B<<
164callbacks must not C<die> >>. The former is good programming practice in
165Perl and the latter stems from the fact that exception handling differs
166widely between event loops.
167
142To disable the watcher you have to destroy it (e.g. by setting the 168To disable a watcher you have to destroy it (e.g. by setting the
143variable you store it in to C<undef> or otherwise deleting all references 169variable you store it in to C<undef> or otherwise deleting all references
144to it). 170to it).
145 171
146All watchers are created by calling a method on the C<AnyEvent> class. 172All watchers are created by calling a method on the C<AnyEvent> class.
147 173
148Many watchers either are used with "recursion" (repeating timers for 174Many watchers either are used with "recursion" (repeating timers for
149example), or need to refer to their watcher object in other ways. 175example), or need to refer to their watcher object in other ways.
150 176
151An any way to achieve that is this pattern: 177One way to achieve that is this pattern:
152 178
153 my $w; $w = AnyEvent->type (arg => value ..., cb => sub { 179 my $w; $w = AnyEvent->type (arg => value ..., cb => sub {
154 # you can use $w here, for example to undef it 180 # you can use $w here, for example to undef it
155 undef $w; 181 undef $w;
156 }); 182 });
159my variables are only visible after the statement in which they are 185my variables are only visible after the statement in which they are
160declared. 186declared.
161 187
162=head2 I/O WATCHERS 188=head2 I/O WATCHERS
163 189
190 $w = AnyEvent->io (
191 fh => <filehandle_or_fileno>,
192 poll => <"r" or "w">,
193 cb => <callback>,
194 );
195
164You can create an I/O watcher by calling the C<< AnyEvent->io >> method 196You can create an I/O watcher by calling the C<< AnyEvent->io >> method
165with the following mandatory key-value pairs as arguments: 197with the following mandatory key-value pairs as arguments:
166 198
167C<fh> the Perl I<file handle> (I<not> file descriptor) to watch for events 199C<fh> is the Perl I<file handle> (or a naked file descriptor) to watch
168(AnyEvent might or might not keep a reference to this file handle). C<poll> 200for events (AnyEvent might or might not keep a reference to this file
201handle). Note that only file handles pointing to things for which
202non-blocking operation makes sense are allowed. This includes sockets,
203most character devices, pipes, fifos and so on, but not for example files
204or block devices.
205
169must be a string that is either C<r> or C<w>, which creates a watcher 206C<poll> must be a string that is either C<r> or C<w>, which creates a
170waiting for "r"eadable or "w"ritable events, respectively. C<cb> is the 207watcher waiting for "r"eadable or "w"ritable events, respectively.
208
171callback to invoke each time the file handle becomes ready. 209C<cb> is the callback to invoke each time the file handle becomes ready.
172 210
173Although the callback might get passed parameters, their value and 211Although the callback might get passed parameters, their value and
174presence is undefined and you cannot rely on them. Portable AnyEvent 212presence is undefined and you cannot rely on them. Portable AnyEvent
175callbacks cannot use arguments passed to I/O watcher callbacks. 213callbacks cannot use arguments passed to I/O watcher callbacks.
176 214
177The I/O watcher might use the underlying file descriptor or a copy of it. 215The I/O watcher might use the underlying file descriptor or a copy of it.
178You must not close a file handle as long as any watcher is active on the 216You must not close a file handle as long as any watcher is active on the
179underlying file descriptor. 217underlying file descriptor.
180 218
181Some event loops issue spurious readyness notifications, so you should 219Some event loops issue spurious readiness notifications, so you should
182always use non-blocking calls when reading/writing from/to your file 220always use non-blocking calls when reading/writing from/to your file
183handles. 221handles.
184 222
185Example: wait for readability of STDIN, then read a line and disable the 223Example: wait for readability of STDIN, then read a line and disable the
186watcher. 224watcher.
191 undef $w; 229 undef $w;
192 }); 230 });
193 231
194=head2 TIME WATCHERS 232=head2 TIME WATCHERS
195 233
234 $w = AnyEvent->timer (after => <seconds>, cb => <callback>);
235
236 $w = AnyEvent->timer (
237 after => <fractional_seconds>,
238 interval => <fractional_seconds>,
239 cb => <callback>,
240 );
241
196You can create a time watcher by calling the C<< AnyEvent->timer >> 242You can create a time watcher by calling the C<< AnyEvent->timer >>
197method with the following mandatory arguments: 243method with the following mandatory arguments:
198 244
199C<after> specifies after how many seconds (fractional values are 245C<after> specifies after how many seconds (fractional values are
200supported) the callback should be invoked. C<cb> is the callback to invoke 246supported) the callback should be invoked. C<cb> is the callback to invoke
202 248
203Although the callback might get passed parameters, their value and 249Although the callback might get passed parameters, their value and
204presence is undefined and you cannot rely on them. Portable AnyEvent 250presence is undefined and you cannot rely on them. Portable AnyEvent
205callbacks cannot use arguments passed to time watcher callbacks. 251callbacks cannot use arguments passed to time watcher callbacks.
206 252
207The callback will normally be invoked once only. If you specify another 253The callback will normally be invoked only once. If you specify another
208parameter, C<interval>, as a strictly positive number (> 0), then the 254parameter, C<interval>, as a strictly positive number (> 0), then the
209callback will be invoked regularly at that interval (in fractional 255callback will be invoked regularly at that interval (in fractional
210seconds) after the first invocation. If C<interval> is specified with a 256seconds) after the first invocation. If C<interval> is specified with a
211false value, then it is treated as if it were missing. 257false value, then it is treated as if it were not specified at all.
212 258
213The callback will be rescheduled before invoking the callback, but no 259The callback will be rescheduled before invoking the callback, but no
214attempt is done to avoid timer drift in most backends, so the interval is 260attempt is made to avoid timer drift in most backends, so the interval is
215only approximate. 261only approximate.
216 262
217Example: fire an event after 7.7 seconds. 263Example: fire an event after 7.7 seconds.
218 264
219 my $w = AnyEvent->timer (after => 7.7, cb => sub { 265 my $w = AnyEvent->timer (after => 7.7, cb => sub {
237 283
238While most event loops expect timers to specified in a relative way, they 284While most event loops expect timers to specified in a relative way, they
239use absolute time internally. This makes a difference when your clock 285use absolute time internally. This makes a difference when your clock
240"jumps", for example, when ntp decides to set your clock backwards from 286"jumps", for example, when ntp decides to set your clock backwards from
241the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to 287the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to
242fire "after" a second might actually take six years to finally fire. 288fire "after a second" might actually take six years to finally fire.
243 289
244AnyEvent cannot compensate for this. The only event loop that is conscious 290AnyEvent cannot compensate for this. The only event loop that is conscious
245about these issues is L<EV>, which offers both relative (ev_timer, based 291of these issues is L<EV>, which offers both relative (ev_timer, based
246on true relative time) and absolute (ev_periodic, based on wallclock time) 292on true relative time) and absolute (ev_periodic, based on wallclock time)
247timers. 293timers.
248 294
249AnyEvent always prefers relative timers, if available, matching the 295AnyEvent always prefers relative timers, if available, matching the
250AnyEvent API. 296AnyEvent API.
272I<In almost all cases (in all cases if you don't care), this is the 318I<In almost all cases (in all cases if you don't care), this is the
273function to call when you want to know the current time.> 319function to call when you want to know the current time.>
274 320
275This function is also often faster then C<< AnyEvent->time >>, and 321This function is also often faster then C<< AnyEvent->time >>, and
276thus the preferred method if you want some timestamp (for example, 322thus the preferred method if you want some timestamp (for example,
277L<AnyEvent::Handle> uses this to update it's activity timeouts). 323L<AnyEvent::Handle> uses this to update its activity timeouts).
278 324
279The rest of this section is only of relevance if you try to be very exact 325The rest of this section is only of relevance if you try to be very exact
280with your timing, you can skip it without bad conscience. 326with your timing; you can skip it without a bad conscience.
281 327
282For a practical example of when these times differ, consider L<Event::Lib> 328For a practical example of when these times differ, consider L<Event::Lib>
283and L<EV> and the following set-up: 329and L<EV> and the following set-up:
284 330
285The event loop is running and has just invoked one of your callback at 331The event loop is running and has just invoked one of your callbacks at
286time=500 (assume no other callbacks delay processing). In your callback, 332time=500 (assume no other callbacks delay processing). In your callback,
287you wait a second by executing C<sleep 1> (blocking the process for a 333you wait a second by executing C<sleep 1> (blocking the process for a
288second) and then (at time=501) you create a relative timer that fires 334second) and then (at time=501) you create a relative timer that fires
289after three seconds. 335after three seconds.
290 336
308In either case, if you care (and in most cases, you don't), then you 354In either case, if you care (and in most cases, you don't), then you
309can get whatever behaviour you want with any event loop, by taking the 355can get whatever behaviour you want with any event loop, by taking the
310difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into 356difference between C<< AnyEvent->time >> and C<< AnyEvent->now >> into
311account. 357account.
312 358
359=item AnyEvent->now_update
360
361Some event loops (such as L<EV> or L<AnyEvent::Loop>) cache the current
362time for each loop iteration (see the discussion of L<< AnyEvent->now >>,
363above).
364
365When a callback runs for a long time (or when the process sleeps), then
366this "current" time will differ substantially from the real time, which
367might affect timers and time-outs.
368
369When this is the case, you can call this method, which will update the
370event loop's idea of "current time".
371
372A typical example would be a script in a web server (e.g. C<mod_perl>) -
373when mod_perl executes the script, then the event loop will have the wrong
374idea about the "current time" (being potentially far in the past, when the
375script ran the last time). In that case you should arrange a call to C<<
376AnyEvent->now_update >> each time the web server process wakes up again
377(e.g. at the start of your script, or in a handler).
378
379Note that updating the time I<might> cause some events to be handled.
380
313=back 381=back
314 382
315=head2 SIGNAL WATCHERS 383=head2 SIGNAL WATCHERS
384
385 $w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>);
316 386
317You can watch for signals using a signal watcher, C<signal> is the signal 387You can watch for signals using a signal watcher, C<signal> is the signal
318I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl 388I<name> in uppercase and without any C<SIG> prefix, C<cb> is the Perl
319callback to be invoked whenever a signal occurs. 389callback to be invoked whenever a signal occurs.
320 390
326invocation, and callback invocation will be synchronous. Synchronous means 396invocation, and callback invocation will be synchronous. Synchronous means
327that it might take a while until the signal gets handled by the process, 397that it might take a while until the signal gets handled by the process,
328but it is guaranteed not to interrupt any other callbacks. 398but it is guaranteed not to interrupt any other callbacks.
329 399
330The main advantage of using these watchers is that you can share a signal 400The main advantage of using these watchers is that you can share a signal
331between multiple watchers. 401between multiple watchers, and AnyEvent will ensure that signals will not
402interrupt your program at bad times.
332 403
333This watcher might use C<%SIG>, so programs overwriting those signals 404This watcher might use C<%SIG> (depending on the event loop used),
334directly will likely not work correctly. 405so programs overwriting those signals directly will likely not work
406correctly.
335 407
336Example: exit on SIGINT 408Example: exit on SIGINT
337 409
338 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); 410 my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 });
339 411
412=head3 Restart Behaviour
413
414While restart behaviour is up to the event loop implementation, most will
415not restart syscalls (that includes L<Async::Interrupt> and AnyEvent's
416pure perl implementation).
417
418=head3 Safe/Unsafe Signals
419
420Perl signals can be either "safe" (synchronous to opcode handling) or
421"unsafe" (asynchronous) - the former might get delayed indefinitely, the
422latter might corrupt your memory.
423
424AnyEvent signal handlers are, in addition, synchronous to the event loop,
425i.e. they will not interrupt your running perl program but will only be
426called as part of the normal event handling (just like timer, I/O etc.
427callbacks, too).
428
429=head3 Signal Races, Delays and Workarounds
430
431Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching
432callbacks to signals in a generic way, which is a pity, as you cannot
433do race-free signal handling in perl, requiring C libraries for
434this. AnyEvent will try to do its best, which means in some cases,
435signals will be delayed. The maximum time a signal might be delayed is
436specified in C<$AnyEvent::MAX_SIGNAL_LATENCY> (default: 10 seconds). This
437variable can be changed only before the first signal watcher is created,
438and should be left alone otherwise. This variable determines how often
439AnyEvent polls for signals (in case a wake-up was missed). Higher values
440will cause fewer spurious wake-ups, which is better for power and CPU
441saving.
442
443All these problems can be avoided by installing the optional
444L<Async::Interrupt> module, which works with most event loops. It will not
445work with inherently broken event loops such as L<Event> or L<Event::Lib>
446(and not with L<POE> currently, as POE does its own workaround with
447one-second latency). For those, you just have to suffer the delays.
448
340=head2 CHILD PROCESS WATCHERS 449=head2 CHILD PROCESS WATCHERS
341 450
451 $w = AnyEvent->child (pid => <process id>, cb => <callback>);
452
342You can also watch on a child process exit and catch its exit status. 453You can also watch for a child process exit and catch its exit status.
343 454
344The child process is specified by the C<pid> argument (if set to C<0>, it 455The child process is specified by the C<pid> argument (on some backends,
345watches for any child process exit). The watcher will triggered only when 456using C<0> watches for any child process exit, on others this will
346the child process has finished and an exit status is available, not on 457croak). The watcher will be triggered only when the child process has
347any trace events (stopped/continued). 458finished and an exit status is available, not on any trace events
459(stopped/continued).
348 460
349The callback will be called with the pid and exit status (as returned by 461The callback will be called with the pid and exit status (as returned by
350waitpid), so unlike other watcher types, you I<can> rely on child watcher 462waitpid), so unlike other watcher types, you I<can> rely on child watcher
351callback arguments. 463callback arguments.
352 464
357 469
358There is a slight catch to child watchers, however: you usually start them 470There is a slight catch to child watchers, however: you usually start them
359I<after> the child process was created, and this means the process could 471I<after> the child process was created, and this means the process could
360have exited already (and no SIGCHLD will be sent anymore). 472have exited already (and no SIGCHLD will be sent anymore).
361 473
362Not all event models handle this correctly (POE doesn't), but even for 474Not all event models handle this correctly (neither POE nor IO::Async do,
475see their AnyEvent::Impl manpages for details), but even for event models
363event models that I<do> handle this correctly, they usually need to be 476that I<do> handle this correctly, they usually need to be loaded before
364loaded before the process exits (i.e. before you fork in the first place). 477the process exits (i.e. before you fork in the first place). AnyEvent's
478pure perl event loop handles all cases correctly regardless of when you
479start the watcher.
365 480
366This means you cannot create a child watcher as the very first thing in an 481This means you cannot create a child watcher as the very first
367AnyEvent program, you I<have> to create at least one watcher before you 482thing in an AnyEvent program, you I<have> to create at least one
368C<fork> the child (alternatively, you can call C<AnyEvent::detect>). 483watcher before you C<fork> the child (alternatively, you can call
484C<AnyEvent::detect>).
485
486As most event loops do not support waiting for child events, they will be
487emulated by AnyEvent in most cases, in which case the latency and race
488problems mentioned in the description of signal watchers apply.
369 489
370Example: fork a process and wait for it 490Example: fork a process and wait for it
371 491
372 my $done = AnyEvent->condvar; 492 my $done = AnyEvent->condvar;
373 493
383 ); 503 );
384 504
385 # do something else, then wait for process exit 505 # do something else, then wait for process exit
386 $done->recv; 506 $done->recv;
387 507
508=head2 IDLE WATCHERS
509
510 $w = AnyEvent->idle (cb => <callback>);
511
512This will repeatedly invoke the callback after the process becomes idle,
513until either the watcher is destroyed or new events have been detected.
514
515Idle watchers are useful when there is a need to do something, but it
516is not so important (or wise) to do it instantly. The callback will be
517invoked only when there is "nothing better to do", which is usually
518defined as "all outstanding events have been handled and no new events
519have been detected". That means that idle watchers ideally get invoked
520when the event loop has just polled for new events but none have been
521detected. Instead of blocking to wait for more events, the idle watchers
522will be invoked.
523
524Unfortunately, most event loops do not really support idle watchers (only
525EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent
526will simply call the callback "from time to time".
527
528Example: read lines from STDIN, but only process them when the
529program is otherwise idle:
530
531 my @lines; # read data
532 my $idle_w;
533 my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub {
534 push @lines, scalar <STDIN>;
535
536 # start an idle watcher, if not already done
537 $idle_w ||= AnyEvent->idle (cb => sub {
538 # handle only one line, when there are lines left
539 if (my $line = shift @lines) {
540 print "handled when idle: $line";
541 } else {
542 # otherwise disable the idle watcher again
543 undef $idle_w;
544 }
545 });
546 });
547
388=head2 CONDITION VARIABLES 548=head2 CONDITION VARIABLES
549
550 $cv = AnyEvent->condvar;
551
552 $cv->send (<list>);
553 my @res = $cv->recv;
389 554
390If you are familiar with some event loops you will know that all of them 555If you are familiar with some event loops you will know that all of them
391require you to run some blocking "loop", "run" or similar function that 556require you to run some blocking "loop", "run" or similar function that
392will actively watch for new events and call your callbacks. 557will actively watch for new events and call your callbacks.
393 558
394AnyEvent is different, it expects somebody else to run the event loop and 559AnyEvent is slightly different: it expects somebody else to run the event
395will only block when necessary (usually when told by the user). 560loop and will only block when necessary (usually when told by the user).
396 561
397The instrument to do that is called a "condition variable", so called 562The tool to do that is called a "condition variable", so called because
398because they represent a condition that must become true. 563they represent a condition that must become true.
564
565Now is probably a good time to look at the examples further below.
399 566
400Condition variables can be created by calling the C<< AnyEvent->condvar 567Condition variables can be created by calling the C<< AnyEvent->condvar
401>> method, usually without arguments. The only argument pair allowed is 568>> method, usually without arguments. The only argument pair allowed is
402
403C<cb>, which specifies a callback to be called when the condition variable 569C<cb>, which specifies a callback to be called when the condition variable
404becomes true, with the condition variable as the first argument (but not 570becomes true, with the condition variable as the first argument (but not
405the results). 571the results).
406 572
407After creation, the condition variable is "false" until it becomes "true" 573After creation, the condition variable is "false" until it becomes "true"
408by calling the C<send> method (or calling the condition variable as if it 574by calling the C<send> method (or calling the condition variable as if it
409were a callback, read about the caveats in the description for the C<< 575were a callback, read about the caveats in the description for the C<<
410->send >> method). 576->send >> method).
411 577
412Condition variables are similar to callbacks, except that you can 578Since condition variables are the most complex part of the AnyEvent API, here are
413optionally wait for them. They can also be called merge points - points 579some different mental models of what they are - pick the ones you can connect to:
414in time where multiple outstanding events have been processed. And yet 580
415another way to call them is transactions - each condition variable can be 581=over 4
416used to represent a transaction, which finishes at some point and delivers 582
417a result. 583=item * Condition variables are like callbacks - you can call them (and pass them instead
584of callbacks). Unlike callbacks however, you can also wait for them to be called.
585
586=item * Condition variables are signals - one side can emit or send them,
587the other side can wait for them, or install a handler that is called when
588the signal fires.
589
590=item * Condition variables are like "Merge Points" - points in your program
591where you merge multiple independent results/control flows into one.
592
593=item * Condition variables represent a transaction - functions that start
594some kind of transaction can return them, leaving the caller the choice
595between waiting in a blocking fashion, or setting a callback.
596
597=item * Condition variables represent future values, or promises to deliver
598some result, long before the result is available.
599
600=back
418 601
419Condition variables are very useful to signal that something has finished, 602Condition variables are very useful to signal that something has finished,
420for example, if you write a module that does asynchronous http requests, 603for example, if you write a module that does asynchronous http requests,
421then a condition variable would be the ideal candidate to signal the 604then a condition variable would be the ideal candidate to signal the
422availability of results. The user can either act when the callback is 605availability of results. The user can either act when the callback is
435 618
436Condition variables are represented by hash refs in perl, and the keys 619Condition variables are represented by hash refs in perl, and the keys
437used by AnyEvent itself are all named C<_ae_XXX> to make subclassing 620used by AnyEvent itself are all named C<_ae_XXX> to make subclassing
438easy (it is often useful to build your own transaction class on top of 621easy (it is often useful to build your own transaction class on top of
439AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call 622AnyEvent). To subclass, use C<AnyEvent::CondVar> as base class and call
440it's C<new> method in your own C<new> method. 623its C<new> method in your own C<new> method.
441 624
442There are two "sides" to a condition variable - the "producer side" which 625There are two "sides" to a condition variable - the "producer side" which
443eventually calls C<< -> send >>, and the "consumer side", which waits 626eventually calls C<< -> send >>, and the "consumer side", which waits
444for the send to occur. 627for the send to occur.
445 628
446Example: wait for a timer. 629Example: wait for a timer.
447 630
448 # wait till the result is ready 631 # condition: "wait till the timer is fired"
449 my $result_ready = AnyEvent->condvar; 632 my $timer_fired = AnyEvent->condvar;
450 633
451 # do something such as adding a timer 634 # create the timer - we could wait for, say
452 # or socket watcher the calls $result_ready->send 635 # a handle becomign ready, or even an
453 # when the "result" is ready. 636 # AnyEvent::HTTP request to finish, but
454 # in this case, we simply use a timer: 637 # in this case, we simply use a timer:
455 my $w = AnyEvent->timer ( 638 my $w = AnyEvent->timer (
456 after => 1, 639 after => 1,
457 cb => sub { $result_ready->send }, 640 cb => sub { $timer_fired->send },
458 ); 641 );
459 642
460 # this "blocks" (while handling events) till the callback 643 # this "blocks" (while handling events) till the callback
461 # calls send 644 # calls ->send
462 $result_ready->recv; 645 $timer_fired->recv;
463 646
464Example: wait for a timer, but take advantage of the fact that 647Example: wait for a timer, but take advantage of the fact that condition
465condition variables are also code references. 648variables are also callable directly.
466 649
467 my $done = AnyEvent->condvar; 650 my $done = AnyEvent->condvar;
468 my $delay = AnyEvent->timer (after => 5, cb => $done); 651 my $delay = AnyEvent->timer (after => 5, cb => $done);
469 $done->recv; 652 $done->recv;
470 653
476 659
477 ... 660 ...
478 661
479 my @info = $couchdb->info->recv; 662 my @info = $couchdb->info->recv;
480 663
481And this is how you would just ste a callback to be called whenever the 664And this is how you would just set a callback to be called whenever the
482results are available: 665results are available:
483 666
484 $couchdb->info->cb (sub { 667 $couchdb->info->cb (sub {
485 my @info = $_[0]->recv; 668 my @info = $_[0]->recv;
486 }); 669 });
504immediately from within send. 687immediately from within send.
505 688
506Any arguments passed to the C<send> call will be returned by all 689Any arguments passed to the C<send> call will be returned by all
507future C<< ->recv >> calls. 690future C<< ->recv >> calls.
508 691
509Condition variables are overloaded so one can call them directly 692Condition variables are overloaded so one can call them directly (as if
510(as a code reference). Calling them directly is the same as calling 693they were a code reference). Calling them directly is the same as calling
511C<send>. Note, however, that many C-based event loops do not handle 694C<send>.
512overloading, so as tempting as it may be, passing a condition variable
513instead of a callback does not work. Both the pure perl and EV loops
514support overloading, however, as well as all functions that use perl to
515invoke a callback (as in L<AnyEvent::Socket> and L<AnyEvent::DNS> for
516example).
517 695
518=item $cv->croak ($error) 696=item $cv->croak ($error)
519 697
520Similar to send, but causes all call's to C<< ->recv >> to invoke 698Similar to send, but causes all calls to C<< ->recv >> to invoke
521C<Carp::croak> with the given error message/object/scalar. 699C<Carp::croak> with the given error message/object/scalar.
522 700
523This can be used to signal any errors to the condition variable 701This can be used to signal any errors to the condition variable
524user/consumer. 702user/consumer. Doing it this way instead of calling C<croak> directly
703delays the error detection, but has the overwhelming advantage that it
704diagnoses the error at the place where the result is expected, and not
705deep in some event callback with no connection to the actual code causing
706the problem.
525 707
526=item $cv->begin ([group callback]) 708=item $cv->begin ([group callback])
527 709
528=item $cv->end 710=item $cv->end
529
530These two methods are EXPERIMENTAL and MIGHT CHANGE.
531 711
532These two methods can be used to combine many transactions/events into 712These two methods can be used to combine many transactions/events into
533one. For example, a function that pings many hosts in parallel might want 713one. For example, a function that pings many hosts in parallel might want
534to use a condition variable for the whole process. 714to use a condition variable for the whole process.
535 715
536Every call to C<< ->begin >> will increment a counter, and every call to 716Every call to C<< ->begin >> will increment a counter, and every call to
537C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end 717C<< ->end >> will decrement it. If the counter reaches C<0> in C<< ->end
538>>, the (last) callback passed to C<begin> will be executed. That callback 718>>, the (last) callback passed to C<begin> will be executed, passing the
539is I<supposed> to call C<< ->send >>, but that is not required. If no 719condvar as first argument. That callback is I<supposed> to call C<< ->send
540callback was set, C<send> will be called without any arguments. 720>>, but that is not required. If no group callback was set, C<send> will
721be called without any arguments.
541 722
542Let's clarify this with the ping example: 723You can think of C<< $cv->send >> giving you an OR condition (one call
724sends), while C<< $cv->begin >> and C<< $cv->end >> giving you an AND
725condition (all C<begin> calls must be C<end>'ed before the condvar sends).
726
727Let's start with a simple example: you have two I/O watchers (for example,
728STDOUT and STDERR for a program), and you want to wait for both streams to
729close before activating a condvar:
543 730
544 my $cv = AnyEvent->condvar; 731 my $cv = AnyEvent->condvar;
545 732
733 $cv->begin; # first watcher
734 my $w1 = AnyEvent->io (fh => $fh1, cb => sub {
735 defined sysread $fh1, my $buf, 4096
736 or $cv->end;
737 });
738
739 $cv->begin; # second watcher
740 my $w2 = AnyEvent->io (fh => $fh2, cb => sub {
741 defined sysread $fh2, my $buf, 4096
742 or $cv->end;
743 });
744
745 $cv->recv;
746
747This works because for every event source (EOF on file handle), there is
748one call to C<begin>, so the condvar waits for all calls to C<end> before
749sending.
750
751The ping example mentioned above is slightly more complicated, as the
752there are results to be passwd back, and the number of tasks that are
753begun can potentially be zero:
754
755 my $cv = AnyEvent->condvar;
756
546 my %result; 757 my %result;
547 $cv->begin (sub { $cv->send (\%result) }); 758 $cv->begin (sub { shift->send (\%result) });
548 759
549 for my $host (@list_of_hosts) { 760 for my $host (@list_of_hosts) {
550 $cv->begin; 761 $cv->begin;
551 ping_host_then_call_callback $host, sub { 762 ping_host_then_call_callback $host, sub {
552 $result{$host} = ...; 763 $result{$host} = ...;
567loop, which serves two important purposes: first, it sets the callback 778loop, which serves two important purposes: first, it sets the callback
568to be called once the counter reaches C<0>, and second, it ensures that 779to be called once the counter reaches C<0>, and second, it ensures that
569C<send> is called even when C<no> hosts are being pinged (the loop 780C<send> is called even when C<no> hosts are being pinged (the loop
570doesn't execute once). 781doesn't execute once).
571 782
572This is the general pattern when you "fan out" into multiple subrequests: 783This is the general pattern when you "fan out" into multiple (but
573use an outer C<begin>/C<end> pair to set the callback and ensure C<end> 784potentially zero) subrequests: use an outer C<begin>/C<end> pair to set
574is called at least once, and then, for each subrequest you start, call 785the callback and ensure C<end> is called at least once, and then, for each
575C<begin> and for each subrequest you finish, call C<end>. 786subrequest you start, call C<begin> and for each subrequest you finish,
787call C<end>.
576 788
577=back 789=back
578 790
579=head3 METHODS FOR CONSUMERS 791=head3 METHODS FOR CONSUMERS
580 792
584=over 4 796=over 4
585 797
586=item $cv->recv 798=item $cv->recv
587 799
588Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak 800Wait (blocking if necessary) until the C<< ->send >> or C<< ->croak
589>> methods have been called on c<$cv>, while servicing other watchers 801>> methods have been called on C<$cv>, while servicing other watchers
590normally. 802normally.
591 803
592You can only wait once on a condition - additional calls are valid but 804You can only wait once on a condition - additional calls are valid but
593will return immediately. 805will return immediately.
594 806
596function will call C<croak>. 808function will call C<croak>.
597 809
598In list context, all parameters passed to C<send> will be returned, 810In list context, all parameters passed to C<send> will be returned,
599in scalar context only the first one will be returned. 811in scalar context only the first one will be returned.
600 812
813Note that doing a blocking wait in a callback is not supported by any
814event loop, that is, recursive invocation of a blocking C<< ->recv
815>> is not allowed, and the C<recv> call will C<croak> if such a
816condition is detected. This condition can be slightly loosened by using
817L<Coro::AnyEvent>, which allows you to do a blocking C<< ->recv >> from
818any thread that doesn't run the event loop itself.
819
601Not all event models support a blocking wait - some die in that case 820Not all event models support a blocking wait - some die in that case
602(programs might want to do that to stay interactive), so I<if you are 821(programs might want to do that to stay interactive), so I<if you are
603using this from a module, never require a blocking wait>, but let the 822using this from a module, never require a blocking wait>. Instead, let the
604caller decide whether the call will block or not (for example, by coupling 823caller decide whether the call will block or not (for example, by coupling
605condition variables with some kind of request results and supporting 824condition variables with some kind of request results and supporting
606callbacks so the caller knows that getting the result will not block, 825callbacks so the caller knows that getting the result will not block,
607while still supporting blocking waits if the caller so desires). 826while still supporting blocking waits if the caller so desires).
608 827
609Another reason I<never> to C<< ->recv >> in a module is that you cannot
610sensibly have two C<< ->recv >>'s in parallel, as that would require
611multiple interpreters or coroutines/threads, none of which C<AnyEvent>
612can supply.
613
614The L<Coro> module, however, I<can> and I<does> supply coroutines and, in
615fact, L<Coro::AnyEvent> replaces AnyEvent's condvars by coroutine-safe
616versions and also integrates coroutines into AnyEvent, making blocking
617C<< ->recv >> calls perfectly safe as long as they are done from another
618coroutine (one that doesn't run the event loop).
619
620You can ensure that C<< -recv >> never blocks by setting a callback and 828You can ensure that C<< ->recv >> never blocks by setting a callback and
621only calling C<< ->recv >> from within that callback (or at a later 829only calling C<< ->recv >> from within that callback (or at a later
622time). This will work even when the event loop does not support blocking 830time). This will work even when the event loop does not support blocking
623waits otherwise. 831waits otherwise.
624 832
625=item $bool = $cv->ready 833=item $bool = $cv->ready
631 839
632This is a mutator function that returns the callback set and optionally 840This is a mutator function that returns the callback set and optionally
633replaces it before doing so. 841replaces it before doing so.
634 842
635The callback will be called when the condition becomes "true", i.e. when 843The callback will be called when the condition becomes "true", i.e. when
636C<send> or C<croak> are called, with the only argument being the condition 844C<send> or C<croak> are called, with the only argument being the
637variable itself. Calling C<recv> inside the callback or at any later time 845condition variable itself. If the condition is already true, the
638is guaranteed not to block. 846callback is called immediately when it is set. Calling C<recv> inside
847the callback or at any later time is guaranteed not to block.
639 848
640=back 849=back
641 850
851=head1 SUPPORTED EVENT LOOPS/BACKENDS
852
853The available backend classes are (every class has its own manpage):
854
855=over 4
856
857=item Backends that are autoprobed when no other event loop can be found.
858
859EV is the preferred backend when no other event loop seems to be in
860use. If EV is not installed, then AnyEvent will fall back to its own
861pure-perl implementation, which is available everywhere as it comes with
862AnyEvent itself.
863
864 AnyEvent::Impl::EV based on EV (interface to libev, best choice).
865 AnyEvent::Impl::Perl pure-perl AnyEvent::Loop, fast and portable.
866
867=item Backends that are transparently being picked up when they are used.
868
869These will be used if they are already loaded when the first watcher
870is created, in which case it is assumed that the application is using
871them. This means that AnyEvent will automatically pick the right backend
872when the main program loads an event module before anything starts to
873create watchers. Nothing special needs to be done by the main program.
874
875 AnyEvent::Impl::Event based on Event, very stable, few glitches.
876 AnyEvent::Impl::Glib based on Glib, slow but very stable.
877 AnyEvent::Impl::Tk based on Tk, very broken.
878 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
879 AnyEvent::Impl::POE based on POE, very slow, some limitations.
880 AnyEvent::Impl::Irssi used when running within irssi.
881 AnyEvent::Impl::IOAsync based on IO::Async.
882 AnyEvent::Impl::Cocoa based on Cocoa::EventLoop.
883 AnyEvent::Impl::FLTK based on FLTK (fltk 2 binding).
884
885=item Backends with special needs.
886
887Qt requires the Qt::Application to be instantiated first, but will
888otherwise be picked up automatically. As long as the main program
889instantiates the application before any AnyEvent watchers are created,
890everything should just work.
891
892 AnyEvent::Impl::Qt based on Qt.
893
894=item Event loops that are indirectly supported via other backends.
895
896Some event loops can be supported via other modules:
897
898There is no direct support for WxWidgets (L<Wx>) or L<Prima>.
899
900B<WxWidgets> has no support for watching file handles. However, you can
901use WxWidgets through the POE adaptor, as POE has a Wx backend that simply
902polls 20 times per second, which was considered to be too horrible to even
903consider for AnyEvent.
904
905B<Prima> is not supported as nobody seems to be using it, but it has a POE
906backend, so it can be supported through POE.
907
908AnyEvent knows about both L<Prima> and L<Wx>, however, and will try to
909load L<POE> when detecting them, in the hope that POE will pick them up,
910in which case everything will be automatic.
911
912=back
913
642=head1 GLOBAL VARIABLES AND FUNCTIONS 914=head1 GLOBAL VARIABLES AND FUNCTIONS
643 915
916These are not normally required to use AnyEvent, but can be useful to
917write AnyEvent extension modules.
918
644=over 4 919=over 4
645 920
646=item $AnyEvent::MODEL 921=item $AnyEvent::MODEL
647 922
648Contains C<undef> until the first watcher is being created. Then it 923Contains C<undef> until the first watcher is being created, before the
924backend has been autodetected.
925
649contains the event model that is being used, which is the name of the 926Afterwards it contains the event model that is being used, which is the
650Perl class implementing the model. This class is usually one of the 927name of the Perl class implementing the model. This class is usually one
651C<AnyEvent::Impl:xxx> modules, but can be any other class in the case 928of the C<AnyEvent::Impl::xxx> modules, but can be any other class in the
652AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode>). 929case AnyEvent has been extended at runtime (e.g. in I<rxvt-unicode> it
653 930will be C<urxvt::anyevent>).
654The known classes so far are:
655
656 AnyEvent::Impl::EV based on EV (an interface to libev, best choice).
657 AnyEvent::Impl::Event based on Event, second best choice.
658 AnyEvent::Impl::Perl pure-perl implementation, fast and portable.
659 AnyEvent::Impl::Glib based on Glib, third-best choice.
660 AnyEvent::Impl::Tk based on Tk, very bad choice.
661 AnyEvent::Impl::Qt based on Qt, cannot be autoprobed (see its docs).
662 AnyEvent::Impl::EventLib based on Event::Lib, leaks memory and worse.
663 AnyEvent::Impl::POE based on POE, not generic enough for full support.
664
665There is no support for WxWidgets, as WxWidgets has no support for
666watching file handles. However, you can use WxWidgets through the
667POE Adaptor, as POE has a Wx backend that simply polls 20 times per
668second, which was considered to be too horrible to even consider for
669AnyEvent. Likewise, other POE backends can be used by AnyEvent by using
670it's adaptor.
671
672AnyEvent knows about L<Prima> and L<Wx> and will try to use L<POE> when
673autodetecting them.
674 931
675=item AnyEvent::detect 932=item AnyEvent::detect
676 933
677Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model 934Returns C<$AnyEvent::MODEL>, forcing autodetection of the event model
678if necessary. You should only call this function right before you would 935if necessary. You should only call this function right before you would
679have created an AnyEvent watcher anyway, that is, as late as possible at 936have created an AnyEvent watcher anyway, that is, as late as possible at
680runtime. 937runtime, and not e.g. during initialisation of your module.
938
939The effect of calling this function is as if a watcher had been created
940(specifically, actions that happen "when the first watcher is created"
941happen when calling detetc as well).
942
943If you need to do some initialisation before AnyEvent watchers are
944created, use C<post_detect>.
681 945
682=item $guard = AnyEvent::post_detect { BLOCK } 946=item $guard = AnyEvent::post_detect { BLOCK }
683 947
684Arranges for the code block to be executed as soon as the event model is 948Arranges for the code block to be executed as soon as the event model is
685autodetected (or immediately if this has already happened). 949autodetected (or immediately if that has already happened).
950
951The block will be executed I<after> the actual backend has been detected
952(C<$AnyEvent::MODEL> is set), but I<before> any watchers have been
953created, so it is possible to e.g. patch C<@AnyEvent::ISA> or do
954other initialisations - see the sources of L<AnyEvent::Strict> or
955L<AnyEvent::AIO> to see how this is used.
956
957The most common usage is to create some global watchers, without forcing
958event module detection too early, for example, L<AnyEvent::AIO> creates
959and installs the global L<IO::AIO> watcher in a C<post_detect> block to
960avoid autodetecting the event module at load time.
686 961
687If called in scalar or list context, then it creates and returns an object 962If called in scalar or list context, then it creates and returns an object
688that automatically removes the callback again when it is destroyed. See 963that automatically removes the callback again when it is destroyed (or
964C<undef> when the hook was immediately executed). See L<AnyEvent::AIO> for
689L<Coro::BDB> for a case where this is useful. 965a case where this is useful.
966
967Example: Create a watcher for the IO::AIO module and store it in
968C<$WATCHER>, but do so only do so after the event loop is initialised.
969
970 our WATCHER;
971
972 my $guard = AnyEvent::post_detect {
973 $WATCHER = AnyEvent->io (fh => IO::AIO::poll_fileno, poll => 'r', cb => \&IO::AIO::poll_cb);
974 };
975
976 # the ||= is important in case post_detect immediately runs the block,
977 # as to not clobber the newly-created watcher. assigning both watcher and
978 # post_detect guard to the same variable has the advantage of users being
979 # able to just C<undef $WATCHER> if the watcher causes them grief.
980
981 $WATCHER ||= $guard;
690 982
691=item @AnyEvent::post_detect 983=item @AnyEvent::post_detect
692 984
693If there are any code references in this array (you can C<push> to it 985If there are any code references in this array (you can C<push> to it
694before or after loading AnyEvent), then they will called directly after 986before or after loading AnyEvent), then they will be called directly
695the event loop has been chosen. 987after the event loop has been chosen.
696 988
697You should check C<$AnyEvent::MODEL> before adding to this array, though: 989You should check C<$AnyEvent::MODEL> before adding to this array, though:
698if it contains a true value then the event loop has already been detected, 990if it is defined then the event loop has already been detected, and the
699and the array will be ignored. 991array will be ignored.
700 992
701Best use C<AnyEvent::post_detect { BLOCK }> instead. 993Best use C<AnyEvent::post_detect { BLOCK }> when your application allows
994it, as it takes care of these details.
995
996This variable is mainly useful for modules that can do something useful
997when AnyEvent is used and thus want to know when it is initialised, but do
998not need to even load it by default. This array provides the means to hook
999into AnyEvent passively, without loading it.
1000
1001Example: To load Coro::AnyEvent whenever Coro and AnyEvent are used
1002together, you could put this into Coro (this is the actual code used by
1003Coro to accomplish this):
1004
1005 if (defined $AnyEvent::MODEL) {
1006 # AnyEvent already initialised, so load Coro::AnyEvent
1007 require Coro::AnyEvent;
1008 } else {
1009 # AnyEvent not yet initialised, so make sure to load Coro::AnyEvent
1010 # as soon as it is
1011 push @AnyEvent::post_detect, sub { require Coro::AnyEvent };
1012 }
1013
1014=item AnyEvent::postpone { BLOCK }
1015
1016Arranges for the block to be executed as soon as possible, but not before
1017the call itself returns. In practise, the block will be executed just
1018before the event loop polls for new events, or shortly afterwards.
1019
1020This function never returns anything (to make the C<return postpone { ...
1021}> idiom more useful.
1022
1023To understand the usefulness of this function, consider a function that
1024asynchronously does something for you and returns some transaction
1025object or guard to let you cancel the operation. For example,
1026C<AnyEvent::Socket::tcp_connect>:
1027
1028 # start a conenction attempt unless one is active
1029 $self->{connect_guard} ||= AnyEvent::Socket::tcp_connect "www.example.net", 80, sub {
1030 delete $self->{connect_guard};
1031 ...
1032 };
1033
1034Imagine that this function could instantly call the callback, for
1035example, because it detects an obvious error such as a negative port
1036number. Invoking the callback before the function returns causes problems
1037however: the callback will be called and will try to delete the guard
1038object. But since the function hasn't returned yet, there is nothing to
1039delete. When the function eventually returns it will assign the guard
1040object to C<< $self->{connect_guard} >>, where it will likely never be
1041deleted, so the program thinks it is still trying to connect.
1042
1043This is where C<AnyEvent::postpone> should be used. Instead of calling the
1044callback directly on error:
1045
1046 $cb->(undef), return # signal error to callback, BAD!
1047 if $some_error_condition;
1048
1049It should use C<postpone>:
1050
1051 AnyEvent::postpone { $cb->(undef) }, return # signal error to callback, later
1052 if $some_error_condition;
1053
1054=item AnyEvent::log $level, $msg[, @args]
1055
1056Log the given C<$msg> at the given C<$level>.
1057
1058If L<AnyEvent::Log> is not loaded then this function makes a simple test
1059to see whether the message will be logged. If the test succeeds it will
1060load AnyEvent::Log and call C<AnyEvent::Log::log> - consequently, look at
1061the L<AnyEvent::Log> documentation for details.
1062
1063If the test fails it will simply return. Right now this happens when a
1064numerical loglevel is used and it is larger than the level specified via
1065C<$ENV{PERL_ANYEVENT_VERBOSE}>.
1066
1067If you want to sprinkle loads of logging calls around your code, consider
1068creating a logger callback with the C<AnyEvent::Log::logger> function,
1069which can reduce typing, codesize and can reduce the logging overhead
1070enourmously.
702 1071
703=back 1072=back
704 1073
705=head1 WHAT TO DO IN A MODULE 1074=head1 WHAT TO DO IN A MODULE
706 1075
717because it will stall the whole program, and the whole point of using 1086because it will stall the whole program, and the whole point of using
718events is to stay interactive. 1087events is to stay interactive.
719 1088
720It is fine, however, to call C<< ->recv >> when the user of your module 1089It is fine, however, to call C<< ->recv >> when the user of your module
721requests it (i.e. if you create a http request object ad have a method 1090requests it (i.e. if you create a http request object ad have a method
722called C<results> that returns the results, it should call C<< ->recv >> 1091called C<results> that returns the results, it may call C<< ->recv >>
723freely, as the user of your module knows what she is doing. always). 1092freely, as the user of your module knows what she is doing. Always).
724 1093
725=head1 WHAT TO DO IN THE MAIN PROGRAM 1094=head1 WHAT TO DO IN THE MAIN PROGRAM
726 1095
727There will always be a single main program - the only place that should 1096There will always be a single main program - the only place that should
728dictate which event model to use. 1097dictate which event model to use.
729 1098
730If it doesn't care, it can just "use AnyEvent" and use it itself, or not 1099If the program is not event-based, it need not do anything special, even
731do anything special (it does not need to be event-based) and let AnyEvent 1100when it depends on a module that uses an AnyEvent. If the program itself
732decide which implementation to chose if some module relies on it. 1101uses AnyEvent, but does not care which event loop is used, all it needs
1102to do is C<use AnyEvent>. In either case, AnyEvent will choose the best
1103available loop implementation.
733 1104
734If the main program relies on a specific event model - for example, in 1105If the main program relies on a specific event model - for example, in
735Gtk2 programs you have to rely on the Glib module - you should load the 1106Gtk2 programs you have to rely on the Glib module - you should load the
736event module before loading AnyEvent or any module that uses it: generally 1107event module before loading AnyEvent or any module that uses it: generally
737speaking, you should load it as early as possible. The reason is that 1108speaking, you should load it as early as possible. The reason is that
738modules might create watchers when they are loaded, and AnyEvent will 1109modules might create watchers when they are loaded, and AnyEvent will
739decide on the event model to use as soon as it creates watchers, and it 1110decide on the event model to use as soon as it creates watchers, and it
740might chose the wrong one unless you load the correct one yourself. 1111might choose the wrong one unless you load the correct one yourself.
741 1112
742You can chose to use a pure-perl implementation by loading the 1113You can chose to use a pure-perl implementation by loading the
743C<AnyEvent::Impl::Perl> module, which gives you similar behaviour 1114C<AnyEvent::Loop> module, which gives you similar behaviour
744everywhere, but letting AnyEvent chose the model is generally better. 1115everywhere, but letting AnyEvent chose the model is generally better.
745 1116
746=head2 MAINLOOP EMULATION 1117=head2 MAINLOOP EMULATION
747 1118
748Sometimes (often for short test scripts, or even standalone programs who 1119Sometimes (often for short test scripts, or even standalone programs who
761 1132
762 1133
763=head1 OTHER MODULES 1134=head1 OTHER MODULES
764 1135
765The following is a non-exhaustive list of additional modules that use 1136The following is a non-exhaustive list of additional modules that use
766AnyEvent and can therefore be mixed easily with other AnyEvent modules 1137AnyEvent as a client and can therefore be mixed easily with other
767in the same program. Some of the modules come with AnyEvent, some are 1138AnyEvent modules and other event loops in the same program. Some of the
768available via CPAN. 1139modules come as part of AnyEvent, the others are available via CPAN (see
1140L<http://search.cpan.org/search?m=module&q=anyevent%3A%3A*> for
1141a longer non-exhaustive list), and the list is heavily biased towards
1142modules of the AnyEvent author himself :)
769 1143
770=over 4 1144=over 4
771 1145
772=item L<AnyEvent::Util> 1146=item L<AnyEvent::Util>
773 1147
774Contains various utility functions that replace often-used but blocking 1148Contains various utility functions that replace often-used blocking
775functions such as C<inet_aton> by event-/callback-based versions. 1149functions such as C<inet_aton> with event/callback-based versions.
776 1150
777=item L<AnyEvent::Socket> 1151=item L<AnyEvent::Socket>
778 1152
779Provides various utility functions for (internet protocol) sockets, 1153Provides various utility functions for (internet protocol) sockets,
780addresses and name resolution. Also functions to create non-blocking tcp 1154addresses and name resolution. Also functions to create non-blocking tcp
782 1156
783=item L<AnyEvent::Handle> 1157=item L<AnyEvent::Handle>
784 1158
785Provide read and write buffers, manages watchers for reads and writes, 1159Provide read and write buffers, manages watchers for reads and writes,
786supports raw and formatted I/O, I/O queued and fully transparent and 1160supports raw and formatted I/O, I/O queued and fully transparent and
787non-blocking SSL/TLS. 1161non-blocking SSL/TLS (via L<AnyEvent::TLS>).
788 1162
789=item L<AnyEvent::DNS> 1163=item L<AnyEvent::DNS>
790 1164
791Provides rich asynchronous DNS resolver capabilities. 1165Provides rich asynchronous DNS resolver capabilities.
792 1166
1167=item L<AnyEvent::HTTP>, L<AnyEvent::IRC>, L<AnyEvent::XMPP>, L<AnyEvent::GPSD>, L<AnyEvent::IGS>, L<AnyEvent::FCP>
1168
1169Implement event-based interfaces to the protocols of the same name (for
1170the curious, IGS is the International Go Server and FCP is the Freenet
1171Client Protocol).
1172
793=item L<AnyEvent::HTTP> 1173=item L<AnyEvent::AIO>
794 1174
795A simple-to-use HTTP library that is capable of making a lot of concurrent 1175Truly asynchronous (as opposed to non-blocking) I/O, should be in the
796HTTP requests. 1176toolbox of every event programmer. AnyEvent::AIO transparently fuses
1177L<IO::AIO> and AnyEvent together, giving AnyEvent access to event-based
1178file I/O, and much more.
1179
1180=item L<AnyEvent::Filesys::Notify>
1181
1182AnyEvent is good for non-blocking stuff, but it can't detect file or
1183path changes (e.g. "watch this directory for new files", "watch this
1184file for changes"). The L<AnyEvent::Filesys::Notify> module promises to
1185do just that in a portbale fashion, supporting inotify on GNU/Linux and
1186some weird, without doubt broken, stuff on OS X to monitor files. It can
1187fall back to blocking scans at regular intervals transparently on other
1188platforms, so it's about as portable as it gets.
1189
1190(I haven't used it myself, but I haven't heard anybody complaining about
1191it yet).
1192
1193=item L<AnyEvent::DBI>
1194
1195Executes L<DBI> requests asynchronously in a proxy process for you,
1196notifying you in an event-based way when the operation is finished.
797 1197
798=item L<AnyEvent::HTTPD> 1198=item L<AnyEvent::HTTPD>
799 1199
800Provides a simple web application server framework. 1200A simple embedded webserver.
801 1201
802=item L<AnyEvent::FastPing> 1202=item L<AnyEvent::FastPing>
803 1203
804The fastest ping in the west. 1204The fastest ping in the west.
805 1205
806=item L<AnyEvent::DBI>
807
808Executes L<DBI> requests asynchronously in a proxy process.
809
810=item L<AnyEvent::AIO>
811
812Truly asynchronous I/O, should be in the toolbox of every event
813programmer. AnyEvent::AIO transparently fuses L<IO::AIO> and AnyEvent
814together.
815
816=item L<AnyEvent::BDB>
817
818Truly asynchronous Berkeley DB access. AnyEvent::BDB transparently fuses
819L<BDB> and AnyEvent together.
820
821=item L<AnyEvent::GPSD>
822
823A non-blocking interface to gpsd, a daemon delivering GPS information.
824
825=item L<AnyEvent::IGS>
826
827A non-blocking interface to the Internet Go Server protocol (used by
828L<App::IGS>).
829
830=item L<AnyEvent::IRC>
831
832AnyEvent based IRC client module family (replacing the older Net::IRC3).
833
834=item L<Net::XMPP2>
835
836AnyEvent based XMPP (Jabber protocol) module family.
837
838=item L<Net::FCP>
839
840AnyEvent-based implementation of the Freenet Client Protocol, birthplace
841of AnyEvent.
842
843=item L<Event::ExecFlow>
844
845High level API for event-based execution flow control.
846
847=item L<Coro> 1206=item L<Coro>
848 1207
849Has special support for AnyEvent via L<Coro::AnyEvent>. 1208Has special support for AnyEvent via L<Coro::AnyEvent>, which allows you
1209to simply invert the flow control - don't call us, we will call you:
850 1210
851=item L<IO::Lambda> 1211 async {
1212 Coro::AnyEvent::sleep 5; # creates a 5s timer and waits for it
1213 print "5 seconds later!\n";
852 1214
853The lambda approach to I/O - don't ask, look there. Can use AnyEvent. 1215 Coro::AnyEvent::readable *STDIN; # uses an I/O watcher
1216 my $line = <STDIN>; # works for ttys
1217
1218 AnyEvent::HTTP::http_get "url", Coro::rouse_cb;
1219 my ($body, $hdr) = Coro::rouse_wait;
1220 };
854 1221
855=back 1222=back
856 1223
857=cut 1224=cut
858 1225
859package AnyEvent; 1226package AnyEvent;
860 1227
861no warnings; 1228# basically a tuned-down version of common::sense
862use strict qw(vars subs); 1229sub common_sense {
1230 # from common:.sense 3.4
1231 ${^WARNING_BITS} ^= ${^WARNING_BITS} ^ "\x3c\x3f\x33\x00\x0f\xf0\x0f\xc0\xf0\xfc\x33\x00";
1232 # use strict vars subs - NO UTF-8, as Util.pm doesn't like this atm. (uts46data.pl)
1233 $^H |= 0x00000600;
1234}
863 1235
1236BEGIN { AnyEvent::common_sense }
1237
864use Carp; 1238use Carp ();
865 1239
866our $VERSION = 4.3; 1240our $VERSION = '6.02';
867our $MODEL; 1241our $MODEL;
868
869our $AUTOLOAD;
870our @ISA; 1242our @ISA;
871
872our @REGISTRY; 1243our @REGISTRY;
873 1244our $VERBOSE;
874our $WIN32; 1245our $MAX_SIGNAL_LATENCY = 10;
1246our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred
875 1247
876BEGIN { 1248BEGIN {
877 my $win32 = ! ! ($^O =~ /mswin32/i); 1249 require "AnyEvent/constants.pl";
878 eval "sub WIN32(){ $win32 }";
879}
880 1250
881our $verbose = $ENV{PERL_ANYEVENT_VERBOSE}*1; 1251 eval "sub TAINT (){" . (${^TAINT}*1) . "}";
882 1252
883our %PROTOCOL; # (ipv4|ipv6) => (1|2), higher numbers are preferred 1253 delete @ENV{grep /^PERL_ANYEVENT_/, keys %ENV}
1254 if ${^TAINT};
884 1255
885{ 1256 $ENV{"PERL_ANYEVENT_$_"} = $ENV{"AE_$_"}
1257 for grep s/^AE_// && !exists $ENV{"PERL_ANYEVENT_$_"}, keys %ENV;
1258
1259 @ENV{grep /^PERL_ANYEVENT_/, keys %ENV} = ()
1260 if ${^TAINT};
1261
1262 # $ENV{PERL_ANYEVENT_xxx} now valid
1263
1264 $VERBOSE = length $ENV{PERL_ANYEVENT_VERBOSE} ? $ENV{PERL_ANYEVENT_VERBOSE}*1 : 3;
1265
886 my $idx; 1266 my $idx;
887 $PROTOCOL{$_} = ++$idx 1267 $PROTOCOL{$_} = ++$idx
888 for reverse split /\s*,\s*/, 1268 for reverse split /\s*,\s*/,
889 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6"; 1269 $ENV{PERL_ANYEVENT_PROTOCOLS} || "ipv4,ipv6";
890} 1270}
891 1271
1272our @post_detect;
1273
1274sub post_detect(&) {
1275 my ($cb) = @_;
1276
1277 push @post_detect, $cb;
1278
1279 defined wantarray
1280 ? bless \$cb, "AnyEvent::Util::postdetect"
1281 : ()
1282}
1283
1284sub AnyEvent::Util::postdetect::DESTROY {
1285 @post_detect = grep $_ != ${$_[0]}, @post_detect;
1286}
1287
1288our $POSTPONE_W;
1289our @POSTPONE;
1290
1291sub _postpone_exec {
1292 undef $POSTPONE_W;
1293
1294 &{ shift @POSTPONE }
1295 while @POSTPONE;
1296}
1297
1298sub postpone(&) {
1299 push @POSTPONE, shift;
1300
1301 $POSTPONE_W ||= AE::timer (0, 0, \&_postpone_exec);
1302
1303 ()
1304}
1305
1306sub log($$;@) {
1307 # only load the big bloated module when we actually are about to log something
1308 if ($_[0] <= $VERBOSE) { # also catches non-numeric levels(!)
1309 require AnyEvent::Log;
1310 # AnyEvent::Log overwrites this function
1311 goto &log;
1312 }
1313
1314 0 # not logged
1315}
1316
1317if (length $ENV{PERL_ANYEVENT_LOG}) {
1318 require AnyEvent::Log; # AnyEvent::Log does the thing for us
1319}
1320
892my @models = ( 1321our @models = (
893 [EV:: => AnyEvent::Impl::EV::], 1322 [EV:: => AnyEvent::Impl::EV:: , 1],
894 [Event:: => AnyEvent::Impl::Event::], 1323 [AnyEvent::Loop:: => AnyEvent::Impl::Perl:: , 1],
895 [AnyEvent::Impl::Perl:: => AnyEvent::Impl::Perl::],
896 # everything below here will not be autoprobed 1324 # everything below here will not (normally) be autoprobed
897 # as the pureperl backend should work everywhere 1325 # as the pure perl backend should work everywhere
898 # and is usually faster 1326 # and is usually faster
1327 [Event:: => AnyEvent::Impl::Event::, 1],
1328 [Glib:: => AnyEvent::Impl::Glib:: , 1], # becomes extremely slow with many watchers
1329 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
1330 [Irssi:: => AnyEvent::Impl::Irssi::], # Irssi has a bogus "Event" package
899 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles 1331 [Tk:: => AnyEvent::Impl::Tk::], # crashes with many handles
900 [Glib:: => AnyEvent::Impl::Glib::], # becomes extremely slow with many watchers
901 [Event::Lib:: => AnyEvent::Impl::EventLib::], # too buggy
902 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program 1332 [Qt:: => AnyEvent::Impl::Qt::], # requires special main program
903 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza 1333 [POE::Kernel:: => AnyEvent::Impl::POE::], # lasciate ogni speranza
904 [Wx:: => AnyEvent::Impl::POE::], 1334 [Wx:: => AnyEvent::Impl::POE::],
905 [Prima:: => AnyEvent::Impl::POE::], 1335 [Prima:: => AnyEvent::Impl::POE::],
1336 [IO::Async::Loop:: => AnyEvent::Impl::IOAsync::], # a bitch to autodetect
1337 [Cocoa::EventLoop:: => AnyEvent::Impl::Cocoa::],
1338 [FLTK:: => AnyEvent::Impl::FLTK::],
906); 1339);
907 1340
908our %method = map +($_ => 1), qw(io timer time now signal child condvar one_event DESTROY); 1341our @isa_hook;
909 1342
910our @post_detect; 1343sub _isa_set {
1344 my @pkg = ("AnyEvent", (map $_->[0], grep defined, @isa_hook), $MODEL);
911 1345
1346 @{"$pkg[$_-1]::ISA"} = $pkg[$_]
1347 for 1 .. $#pkg;
1348
1349 grep $_ && $_->[1], @isa_hook
1350 and AE::_reset ();
1351}
1352
1353# used for hooking AnyEvent::Strict and AnyEvent::Debug::Wrap into the class hierarchy
1354sub _isa_hook($$;$) {
1355 my ($i, $pkg, $reset_ae) = @_;
1356
1357 $isa_hook[$i] = $pkg ? [$pkg, $reset_ae] : undef;
1358
1359 _isa_set;
1360}
1361
1362# all autoloaded methods reserve the complete glob, not just the method slot.
1363# due to bugs in perls method cache implementation.
1364our @methods = qw(io timer time now now_update signal child idle condvar);
1365
912sub post_detect(&) { 1366sub detect() {
913 my ($cb) = @_; 1367 return $MODEL if $MODEL; # some programs keep references to detect
914 1368
915 if ($MODEL) { 1369 local $!; # for good measure
916 $cb->(); 1370 local $SIG{__DIE__}; # we use eval
917 1371
918 1 1372 # free some memory
1373 *detect = sub () { $MODEL };
1374 # undef &func doesn't correctly update the method cache. grmbl.
1375 # so we delete the whole glob. grmbl.
1376 # otoh, perl doesn't let me undef an active usb, but it lets me free
1377 # a glob with an active sub. hrm. i hope it works, but perl is
1378 # usually buggy in this department. sigh.
1379 delete @{"AnyEvent::"}{@methods};
1380 undef @methods;
1381
1382 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z0-9:]+)$/) {
1383 my $model = $1;
1384 $model = "AnyEvent::Impl::$model" unless $model =~ s/::$//;
1385 if (eval "require $model") {
1386 AnyEvent::log 7 => "loaded model '$model' (forced by \$ENV{PERL_ANYEVENT_MODEL}), using it.";
1387 $MODEL = $model;
919 } else { 1388 } else {
920 push @post_detect, $cb; 1389 AnyEvent::log 5 => "unable to load model '$model' (from \$ENV{PERL_ANYEVENT_MODEL}):\n$@";
921 1390 }
922 defined wantarray
923 ? bless \$cb, "AnyEvent::Util::PostDetect"
924 : ()
925 } 1391 }
926}
927 1392
928sub AnyEvent::Util::PostDetect::DESTROY { 1393 # check for already loaded models
929 @post_detect = grep $_ != ${$_[0]}, @post_detect;
930}
931
932sub detect() {
933 unless ($MODEL) { 1394 unless ($MODEL) {
934 no strict 'refs'; 1395 for (@REGISTRY, @models) {
935 local $SIG{__DIE__}; 1396 my ($package, $model) = @$_;
936 1397 if (${"$package\::VERSION"} > 0) {
937 if ($ENV{PERL_ANYEVENT_MODEL} =~ /^([a-zA-Z]+)$/) {
938 my $model = "AnyEvent::Impl::$1";
939 if (eval "require $model") { 1398 if (eval "require $model") {
1399 AnyEvent::log 7 => "autodetected model '$model', using it.";
940 $MODEL = $model; 1400 $MODEL = $model;
941 warn "AnyEvent: loaded model '$model' (forced by \$PERL_ANYEVENT_MODEL), using it.\n" if $verbose > 1; 1401 last;
942 } else { 1402 }
943 warn "AnyEvent: unable to load model '$model' (from \$PERL_ANYEVENT_MODEL):\n$@" if $verbose;
944 } 1403 }
945 } 1404 }
946 1405
947 # check for already loaded models
948 unless ($MODEL) { 1406 unless ($MODEL) {
1407 # try to autoload a model
949 for (@REGISTRY, @models) { 1408 for (@REGISTRY, @models) {
950 my ($package, $model) = @$_; 1409 my ($package, $model, $autoload) = @$_;
1410 if (
1411 $autoload
1412 and eval "require $package"
951 if (${"$package\::VERSION"} > 0) { 1413 and ${"$package\::VERSION"} > 0
952 if (eval "require $model") { 1414 and eval "require $model"
1415 ) {
1416 AnyEvent::log 7 => "autoloaded model '$model', using it.";
953 $MODEL = $model; 1417 $MODEL = $model;
954 warn "AnyEvent: autodetected model '$model', using it.\n" if $verbose > 1;
955 last; 1418 last;
956 }
957 } 1419 }
958 } 1420 }
959 1421
960 unless ($MODEL) {
961 # try to load a model
962
963 for (@REGISTRY, @models) {
964 my ($package, $model) = @$_;
965 if (eval "require $package"
966 and ${"$package\::VERSION"} > 0
967 and eval "require $model") {
968 $MODEL = $model;
969 warn "AnyEvent: autoprobed model '$model', using it.\n" if $verbose > 1;
970 last;
971 }
972 }
973
974 $MODEL 1422 $MODEL
975 or die "No event module selected for AnyEvent and autodetect failed. Install any one of these modules: EV, Event or Glib."; 1423 or die "AnyEvent: backend autodetection failed - did you properly install AnyEvent?";
976 }
977 } 1424 }
978
979 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
980
981 unshift @ISA, $MODEL;
982
983 require AnyEvent::Strict if $ENV{PERL_ANYEVENT_STRICT};
984
985 (shift @post_detect)->() while @post_detect;
986 } 1425 }
987 1426
1427 # free memory only needed for probing
1428 undef @models;
1429 undef @REGISTRY;
1430
1431 push @{"$MODEL\::ISA"}, "AnyEvent::Base";
1432
1433 # now nuke some methods that are overridden by the backend.
1434 # SUPER usage is not allowed in these.
1435 for (qw(time signal child idle)) {
1436 undef &{"AnyEvent::Base::$_"}
1437 if defined &{"$MODEL\::$_"};
1438 }
1439
1440 _isa_set;
1441
1442 # we're officially open!
1443
1444 if ($ENV{PERL_ANYEVENT_STRICT}) {
1445 require AnyEvent::Strict;
1446 }
1447
1448 if ($ENV{PERL_ANYEVENT_DEBUG_WRAP}) {
1449 require AnyEvent::Debug;
1450 AnyEvent::Debug::wrap ($ENV{PERL_ANYEVENT_DEBUG_WRAP});
1451 }
1452
1453 if (length $ENV{PERL_ANYEVENT_DEBUG_SHELL}) {
1454 require AnyEvent::Socket;
1455 require AnyEvent::Debug;
1456
1457 my $shell = $ENV{PERL_ANYEVENT_DEBUG_SHELL};
1458 $shell =~ s/\$\$/$$/g;
1459
1460 my ($host, $service) = AnyEvent::Socket::parse_hostport ($shell);
1461 $AnyEvent::Debug::SHELL = AnyEvent::Debug::shell ($host, $service);
1462 }
1463
1464 # now the anyevent environment is set up as the user told us to, so
1465 # call the actual user code - post detects
1466
1467 (shift @post_detect)->() while @post_detect;
1468 undef @post_detect;
1469
1470 *post_detect = sub(&) {
1471 shift->();
1472
1473 undef
1474 };
1475
988 $MODEL 1476 $MODEL
989} 1477}
990 1478
991sub AUTOLOAD { 1479for my $name (@methods) {
992 (my $func = $AUTOLOAD) =~ s/.*://; 1480 *$name = sub {
993 1481 detect;
994 $method{$func} 1482 # we use goto because
995 or croak "$func: not a valid method for AnyEvent objects"; 1483 # a) it makes the thunk more transparent
996 1484 # b) it allows us to delete the thunk later
997 detect unless $MODEL; 1485 goto &{ UNIVERSAL::can AnyEvent => "SUPER::$name" }
998 1486 };
999 my $class = shift;
1000 $class->$func (@_);
1001} 1487}
1002 1488
1003# utility function to dup a filehandle. this is used by many backends 1489# utility function to dup a filehandle. this is used by many backends
1004# to support binding more than one watcher per filehandle (they usually 1490# to support binding more than one watcher per filehandle (they usually
1005# allow only one watcher per fd, so we dup it to get a different one). 1491# allow only one watcher per fd, so we dup it to get a different one).
1006sub _dupfh($$$$) { 1492sub _dupfh($$;$$) {
1007 my ($poll, $fh, $r, $w) = @_; 1493 my ($poll, $fh, $r, $w) = @_;
1008 1494
1009 require Fcntl;
1010
1011 # cygwin requires the fh mode to be matching, unix doesn't 1495 # cygwin requires the fh mode to be matching, unix doesn't
1012 my ($rw, $mode) = $poll eq "r" ? ($r, "<") 1496 my ($rw, $mode) = $poll eq "r" ? ($r, "<&") : ($w, ">&");
1013 : $poll eq "w" ? ($w, ">")
1014 : Carp::croak "AnyEvent->io requires poll set to either 'r' or 'w'";
1015 1497
1016 open my $fh2, "$mode&" . fileno $fh 1498 open my $fh2, $mode, $fh
1017 or die "cannot dup() filehandle: $!"; 1499 or die "AnyEvent->io: cannot dup() filehandle in mode '$poll': $!,";
1018 1500
1019 # we assume CLOEXEC is already set by perl in all important cases 1501 # we assume CLOEXEC is already set by perl in all important cases
1020 1502
1021 ($fh2, $rw) 1503 ($fh2, $rw)
1022} 1504}
1023 1505
1506=head1 SIMPLIFIED AE API
1507
1508Starting with version 5.0, AnyEvent officially supports a second, much
1509simpler, API that is designed to reduce the calling, typing and memory
1510overhead by using function call syntax and a fixed number of parameters.
1511
1512See the L<AE> manpage for details.
1513
1514=cut
1515
1516package AE;
1517
1518our $VERSION = $AnyEvent::VERSION;
1519
1520sub _reset() {
1521 eval q{
1522 # fall back to the main API by default - backends and AnyEvent::Base
1523 # implementations can overwrite these.
1524
1525 sub io($$$) {
1526 AnyEvent->io (fh => $_[0], poll => $_[1] ? "w" : "r", cb => $_[2])
1527 }
1528
1529 sub timer($$$) {
1530 AnyEvent->timer (after => $_[0], interval => $_[1], cb => $_[2])
1531 }
1532
1533 sub signal($$) {
1534 AnyEvent->signal (signal => $_[0], cb => $_[1])
1535 }
1536
1537 sub child($$) {
1538 AnyEvent->child (pid => $_[0], cb => $_[1])
1539 }
1540
1541 sub idle($) {
1542 AnyEvent->idle (cb => $_[0]);
1543 }
1544
1545 sub cv(;&) {
1546 AnyEvent->condvar (@_ ? (cb => $_[0]) : ())
1547 }
1548
1549 sub now() {
1550 AnyEvent->now
1551 }
1552
1553 sub now_update() {
1554 AnyEvent->now_update
1555 }
1556
1557 sub time() {
1558 AnyEvent->time
1559 }
1560
1561 *postpone = \&AnyEvent::postpone;
1562 *log = \&AnyEvent::log;
1563 };
1564 die if $@;
1565}
1566
1567BEGIN { _reset }
1568
1024package AnyEvent::Base; 1569package AnyEvent::Base;
1025 1570
1026# default implementation for now and time 1571# default implementations for many methods
1027 1572
1028BEGIN { 1573sub time {
1574 eval q{ # poor man's autoloading {}
1575 # probe for availability of Time::HiRes
1029 if (eval "use Time::HiRes (); time (); 1") { 1576 if (eval "use Time::HiRes (); Time::HiRes::time (); 1") {
1577 *time = sub { Time::HiRes::time () };
1030 *_time = \&Time::HiRes::time; 1578 *AE::time = \& Time::HiRes::time ;
1579 *now = \&time;
1580 AnyEvent::log 8 => "AnyEvent: using Time::HiRes for sub-second timing accuracy.";
1031 # if (eval "use POSIX (); (POSIX::times())... 1581 # if (eval "use POSIX (); (POSIX::times())...
1032 } else { 1582 } else {
1033 *_time = sub { time }; # epic fail 1583 *time = sub { CORE::time };
1584 *AE::time = sub (){ CORE::time };
1585 *now = \&time;
1586 AnyEvent::log 3 => "using built-in time(), WARNING, no sub-second resolution!";
1587 }
1588 };
1589 die if $@;
1590
1591 &time
1592}
1593
1594*now = \&time;
1595sub now_update { }
1596
1597sub _poll {
1598 Carp::croak "$AnyEvent::MODEL does not support blocking waits. Caught";
1599}
1600
1601# default implementation for ->condvar
1602# in fact, the default should not be overwritten
1603
1604sub condvar {
1605 eval q{ # poor man's autoloading {}
1606 *condvar = sub {
1607 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, "AnyEvent::CondVar"
1608 };
1609
1610 *AE::cv = sub (;&) {
1611 bless { @_ ? (_ae_cb => shift) : () }, "AnyEvent::CondVar"
1612 };
1613 };
1614 die if $@;
1615
1616 &condvar
1617}
1618
1619# default implementation for ->signal
1620
1621our $HAVE_ASYNC_INTERRUPT;
1622
1623sub _have_async_interrupt() {
1624 $HAVE_ASYNC_INTERRUPT = 1*(!$ENV{PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT}
1625 && eval "use Async::Interrupt 1.02 (); 1")
1626 unless defined $HAVE_ASYNC_INTERRUPT;
1627
1628 $HAVE_ASYNC_INTERRUPT
1629}
1630
1631our ($SIGPIPE_R, $SIGPIPE_W, %SIG_CB, %SIG_EV, $SIG_IO);
1632our (%SIG_ASY, %SIG_ASY_W);
1633our ($SIG_COUNT, $SIG_TW);
1634
1635# install a dummy wakeup watcher to reduce signal catching latency
1636# used by Impls
1637sub _sig_add() {
1638 unless ($SIG_COUNT++) {
1639 # try to align timer on a full-second boundary, if possible
1640 my $NOW = AE::now;
1641
1642 $SIG_TW = AE::timer
1643 $MAX_SIGNAL_LATENCY - ($NOW - int $NOW),
1644 $MAX_SIGNAL_LATENCY,
1645 sub { } # just for the PERL_ASYNC_CHECK
1646 ;
1034 } 1647 }
1035} 1648}
1036 1649
1037sub time { _time } 1650sub _sig_del {
1038sub now { _time } 1651 undef $SIG_TW
1039 1652 unless --$SIG_COUNT;
1040# default implementation for ->condvar
1041
1042sub condvar {
1043 bless { @_ == 3 ? (_ae_cb => $_[2]) : () }, AnyEvent::CondVar::
1044} 1653}
1045 1654
1046# default implementation for ->signal 1655our $_sig_name_init; $_sig_name_init = sub {
1656 eval q{ # poor man's autoloading {}
1657 undef $_sig_name_init;
1047 1658
1048our %SIG_CB; 1659 if (_have_async_interrupt) {
1660 *sig2num = \&Async::Interrupt::sig2num;
1661 *sig2name = \&Async::Interrupt::sig2name;
1662 } else {
1663 require Config;
1664
1665 my %signame2num;
1666 @signame2num{ split ' ', $Config::Config{sig_name} }
1667 = split ' ', $Config::Config{sig_num};
1668
1669 my @signum2name;
1670 @signum2name[values %signame2num] = keys %signame2num;
1671
1672 *sig2num = sub($) {
1673 $_[0] > 0 ? shift : $signame2num{+shift}
1674 };
1675 *sig2name = sub ($) {
1676 $_[0] > 0 ? $signum2name[+shift] : shift
1677 };
1678 }
1679 };
1680 die if $@;
1681};
1682
1683sub sig2num ($) { &$_sig_name_init; &sig2num }
1684sub sig2name($) { &$_sig_name_init; &sig2name }
1049 1685
1050sub signal { 1686sub signal {
1687 eval q{ # poor man's autoloading {}
1688 # probe for availability of Async::Interrupt
1689 if (_have_async_interrupt) {
1690 AnyEvent::log 8 => "using Async::Interrupt for race-free signal handling.";
1691
1692 $SIGPIPE_R = new Async::Interrupt::EventPipe;
1693 $SIG_IO = AE::io $SIGPIPE_R->fileno, 0, \&_signal_exec;
1694
1695 } else {
1696 AnyEvent::log 8 => "using emulated perl signal handling with latency timer.";
1697
1698 if (AnyEvent::WIN32) {
1699 require AnyEvent::Util;
1700
1701 ($SIGPIPE_R, $SIGPIPE_W) = AnyEvent::Util::portable_pipe ();
1702 AnyEvent::Util::fh_nonblocking ($SIGPIPE_R, 1) if $SIGPIPE_R;
1703 AnyEvent::Util::fh_nonblocking ($SIGPIPE_W, 1) if $SIGPIPE_W; # just in case
1704 } else {
1705 pipe $SIGPIPE_R, $SIGPIPE_W;
1706 fcntl $SIGPIPE_R, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_R;
1707 fcntl $SIGPIPE_W, AnyEvent::F_SETFL, AnyEvent::O_NONBLOCK if $SIGPIPE_W; # just in case
1708
1709 # not strictly required, as $^F is normally 2, but let's make sure...
1710 fcntl $SIGPIPE_R, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1711 fcntl $SIGPIPE_W, AnyEvent::F_SETFD, AnyEvent::FD_CLOEXEC;
1712 }
1713
1714 $SIGPIPE_R
1715 or Carp::croak "AnyEvent: unable to create a signal reporting pipe: $!\n";
1716
1717 $SIG_IO = AE::io $SIGPIPE_R, 0, \&_signal_exec;
1718 }
1719
1720 *signal = $HAVE_ASYNC_INTERRUPT
1721 ? sub {
1051 my (undef, %arg) = @_; 1722 my (undef, %arg) = @_;
1052 1723
1724 # async::interrupt
1053 my $signal = uc $arg{signal} 1725 my $signal = sig2num $arg{signal};
1054 or Carp::croak "required option 'signal' is missing";
1055
1056 $SIG_CB{$signal}{$arg{cb}} = $arg{cb}; 1726 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1727
1728 $SIG_ASY{$signal} ||= new Async::Interrupt
1729 cb => sub { undef $SIG_EV{$signal} },
1730 signal => $signal,
1731 pipe => [$SIGPIPE_R->filenos],
1732 pipe_autodrain => 0,
1733 ;
1734
1735 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1736 }
1737 : sub {
1738 my (undef, %arg) = @_;
1739
1740 # pure perl
1741 my $signal = sig2name $arg{signal};
1742 $SIG_CB{$signal}{$arg{cb}} = $arg{cb};
1743
1057 $SIG{$signal} ||= sub { 1744 $SIG{$signal} ||= sub {
1745 local $!;
1746 syswrite $SIGPIPE_W, "\x00", 1 unless %SIG_EV;
1747 undef $SIG_EV{$signal};
1748 };
1749
1750 # can't do signal processing without introducing races in pure perl,
1751 # so limit the signal latency.
1752 _sig_add;
1753
1754 bless [$signal, $arg{cb}], "AnyEvent::Base::signal"
1755 }
1756 ;
1757
1758 *AnyEvent::Base::signal::DESTROY = sub {
1759 my ($signal, $cb) = @{$_[0]};
1760
1761 _sig_del;
1762
1763 delete $SIG_CB{$signal}{$cb};
1764
1765 $HAVE_ASYNC_INTERRUPT
1766 ? delete $SIG_ASY{$signal}
1767 : # delete doesn't work with older perls - they then
1768 # print weird messages, or just unconditionally exit
1769 # instead of getting the default action.
1770 undef $SIG{$signal}
1771 unless keys %{ $SIG_CB{$signal} };
1772 };
1773
1774 *_signal_exec = sub {
1775 $HAVE_ASYNC_INTERRUPT
1776 ? $SIGPIPE_R->drain
1777 : sysread $SIGPIPE_R, (my $dummy), 9;
1778
1779 while (%SIG_EV) {
1780 for (keys %SIG_EV) {
1781 delete $SIG_EV{$_};
1058 $_->() for values %{ $SIG_CB{$signal} || {} }; 1782 &$_ for values %{ $SIG_CB{$_} || {} };
1783 }
1784 }
1785 };
1059 }; 1786 };
1787 die if $@;
1060 1788
1061 bless [$signal, $arg{cb}], "AnyEvent::Base::Signal" 1789 &signal
1062}
1063
1064sub AnyEvent::Base::Signal::DESTROY {
1065 my ($signal, $cb) = @{$_[0]};
1066
1067 delete $SIG_CB{$signal}{$cb};
1068
1069 delete $SIG{$signal} unless keys %{ $SIG_CB{$signal} };
1070} 1790}
1071 1791
1072# default implementation for ->child 1792# default implementation for ->child
1073 1793
1074our %PID_CB; 1794our %PID_CB;
1075our $CHLD_W; 1795our $CHLD_W;
1076our $CHLD_DELAY_W; 1796our $CHLD_DELAY_W;
1077our $PID_IDLE;
1078our $WNOHANG;
1079 1797
1080sub _child_wait { 1798# used by many Impl's
1081 while (0 < (my $pid = waitpid -1, $WNOHANG)) { 1799sub _emit_childstatus($$) {
1800 my (undef, $rpid, $rstatus) = @_;
1801
1802 $_->($rpid, $rstatus)
1082 $_->($pid, $?) for (values %{ $PID_CB{$pid} || {} }), 1803 for values %{ $PID_CB{$rpid} || {} },
1083 (values %{ $PID_CB{0} || {} }); 1804 values %{ $PID_CB{0} || {} };
1084 }
1085
1086 undef $PID_IDLE;
1087}
1088
1089sub _sigchld {
1090 # make sure we deliver these changes "synchronous" with the event loop.
1091 $CHLD_DELAY_W ||= AnyEvent->timer (after => 0, cb => sub {
1092 undef $CHLD_DELAY_W;
1093 &_child_wait;
1094 });
1095} 1805}
1096 1806
1097sub child { 1807sub child {
1808 eval q{ # poor man's autoloading {}
1809 *_sigchld = sub {
1810 my $pid;
1811
1812 AnyEvent->_emit_childstatus ($pid, $?)
1813 while ($pid = waitpid -1, WNOHANG) > 0;
1814 };
1815
1816 *child = sub {
1098 my (undef, %arg) = @_; 1817 my (undef, %arg) = @_;
1099 1818
1100 defined (my $pid = $arg{pid} + 0) 1819 my $pid = $arg{pid};
1101 or Carp::croak "required option 'pid' is missing"; 1820 my $cb = $arg{cb};
1102 1821
1103 $PID_CB{$pid}{$arg{cb}} = $arg{cb}; 1822 $PID_CB{$pid}{$cb+0} = $cb;
1104 1823
1105 unless ($WNOHANG) {
1106 $WNOHANG = eval { local $SIG{__DIE__}; require POSIX; &POSIX::WNOHANG } || 1;
1107 }
1108
1109 unless ($CHLD_W) { 1824 unless ($CHLD_W) {
1110 $CHLD_W = AnyEvent->signal (signal => 'CHLD', cb => \&_sigchld); 1825 $CHLD_W = AE::signal CHLD => \&_sigchld;
1111 # child could be a zombie already, so make at least one round 1826 # child could be a zombie already, so make at least one round
1112 &_sigchld; 1827 &_sigchld;
1113 } 1828 }
1114 1829
1115 bless [$pid, $arg{cb}], "AnyEvent::Base::Child" 1830 bless [$pid, $cb+0], "AnyEvent::Base::child"
1116} 1831 };
1117 1832
1118sub AnyEvent::Base::Child::DESTROY { 1833 *AnyEvent::Base::child::DESTROY = sub {
1119 my ($pid, $cb) = @{$_[0]}; 1834 my ($pid, $icb) = @{$_[0]};
1120 1835
1121 delete $PID_CB{$pid}{$cb}; 1836 delete $PID_CB{$pid}{$icb};
1122 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} }; 1837 delete $PID_CB{$pid} unless keys %{ $PID_CB{$pid} };
1123 1838
1124 undef $CHLD_W unless keys %PID_CB; 1839 undef $CHLD_W unless keys %PID_CB;
1840 };
1841 };
1842 die if $@;
1843
1844 &child
1845}
1846
1847# idle emulation is done by simply using a timer, regardless
1848# of whether the process is idle or not, and not letting
1849# the callback use more than 50% of the time.
1850sub idle {
1851 eval q{ # poor man's autoloading {}
1852 *idle = sub {
1853 my (undef, %arg) = @_;
1854
1855 my ($cb, $w, $rcb) = $arg{cb};
1856
1857 $rcb = sub {
1858 if ($cb) {
1859 $w = AE::time;
1860 &$cb;
1861 $w = AE::time - $w;
1862
1863 # never use more then 50% of the time for the idle watcher,
1864 # within some limits
1865 $w = 0.0001 if $w < 0.0001;
1866 $w = 5 if $w > 5;
1867
1868 $w = AE::timer $w, 0, $rcb;
1869 } else {
1870 # clean up...
1871 undef $w;
1872 undef $rcb;
1873 }
1874 };
1875
1876 $w = AE::timer 0.05, 0, $rcb;
1877
1878 bless \\$cb, "AnyEvent::Base::idle"
1879 };
1880
1881 *AnyEvent::Base::idle::DESTROY = sub {
1882 undef $${$_[0]};
1883 };
1884 };
1885 die if $@;
1886
1887 &idle
1125} 1888}
1126 1889
1127package AnyEvent::CondVar; 1890package AnyEvent::CondVar;
1128 1891
1129our @ISA = AnyEvent::CondVar::Base::; 1892our @ISA = AnyEvent::CondVar::Base::;
1130 1893
1894# only to be used for subclassing
1895sub new {
1896 my $class = shift;
1897 bless AnyEvent->condvar (@_), $class
1898}
1899
1131package AnyEvent::CondVar::Base; 1900package AnyEvent::CondVar::Base;
1132 1901
1133use overload 1902#use overload
1134 '&{}' => sub { my $self = shift; sub { $self->send (@_) } }, 1903# '&{}' => sub { my $self = shift; sub { $self->send (@_) } },
1135 fallback => 1; 1904# fallback => 1;
1905
1906# save 300+ kilobytes by dirtily hardcoding overloading
1907${"AnyEvent::CondVar::Base::OVERLOAD"}{dummy}++; # Register with magic by touching.
1908*{'AnyEvent::CondVar::Base::()'} = sub { }; # "Make it findable via fetchmethod."
1909*{'AnyEvent::CondVar::Base::(&{}'} = sub { my $self = shift; sub { $self->send (@_) } }; # &{}
1910${'AnyEvent::CondVar::Base::()'} = 1; # fallback
1911
1912our $WAITING;
1136 1913
1137sub _send { 1914sub _send {
1138 # nop 1915 # nop
1916}
1917
1918sub _wait {
1919 AnyEvent->_poll until $_[0]{_ae_sent};
1139} 1920}
1140 1921
1141sub send { 1922sub send {
1142 my $cv = shift; 1923 my $cv = shift;
1143 $cv->{_ae_sent} = [@_]; 1924 $cv->{_ae_sent} = [@_];
1152 1933
1153sub ready { 1934sub ready {
1154 $_[0]{_ae_sent} 1935 $_[0]{_ae_sent}
1155} 1936}
1156 1937
1157sub _wait {
1158 AnyEvent->one_event while !$_[0]{_ae_sent};
1159}
1160
1161sub recv { 1938sub recv {
1939 unless ($_[0]{_ae_sent}) {
1940 $WAITING
1941 and Carp::croak "AnyEvent::CondVar: recursive blocking wait attempted";
1942
1943 local $WAITING = 1;
1162 $_[0]->_wait; 1944 $_[0]->_wait;
1945 }
1163 1946
1164 Carp::croak $_[0]{_ae_croak} if $_[0]{_ae_croak}; 1947 $_[0]{_ae_croak}
1165 wantarray ? @{ $_[0]{_ae_sent} } : $_[0]{_ae_sent}[0] 1948 and Carp::croak $_[0]{_ae_croak};
1949
1950 wantarray
1951 ? @{ $_[0]{_ae_sent} }
1952 : $_[0]{_ae_sent}[0]
1166} 1953}
1167 1954
1168sub cb { 1955sub cb {
1169 $_[0]{_ae_cb} = $_[1] if @_ > 1; 1956 my $cv = shift;
1957
1958 @_
1959 and $cv->{_ae_cb} = shift
1960 and $cv->{_ae_sent}
1961 and (delete $cv->{_ae_cb})->($cv);
1962
1170 $_[0]{_ae_cb} 1963 $cv->{_ae_cb}
1171} 1964}
1172 1965
1173sub begin { 1966sub begin {
1174 ++$_[0]{_ae_counter}; 1967 ++$_[0]{_ae_counter};
1175 $_[0]{_ae_end_cb} = $_[1] if @_ > 1; 1968 $_[0]{_ae_end_cb} = $_[1] if @_ > 1;
1180 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } }; 1973 &{ $_[0]{_ae_end_cb} || sub { $_[0]->send } };
1181} 1974}
1182 1975
1183# undocumented/compatibility with pre-3.4 1976# undocumented/compatibility with pre-3.4
1184*broadcast = \&send; 1977*broadcast = \&send;
1185*wait = \&_wait; 1978*wait = \&recv;
1186 1979
1187=head1 ERROR AND EXCEPTION HANDLING 1980=head1 ERROR AND EXCEPTION HANDLING
1188 1981
1189In general, AnyEvent does not do any error handling - it relies on the 1982In general, AnyEvent does not do any error handling - it relies on the
1190caller to do that if required. The L<AnyEvent::Strict> module (see also 1983caller to do that if required. The L<AnyEvent::Strict> module (see also
1202$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and 1995$Event/EV::DIED->() >>, L<Glib> uses C<< install_exception_handler >> and
1203so on. 1996so on.
1204 1997
1205=head1 ENVIRONMENT VARIABLES 1998=head1 ENVIRONMENT VARIABLES
1206 1999
1207The following environment variables are used by this module or its 2000AnyEvent supports a number of environment variables that tune the
1208submodules: 2001runtime behaviour. They are usually evaluated when AnyEvent is
2002loaded, initialised, or a submodule that uses them is loaded. Many of
2003them also cause AnyEvent to load additional modules - for example,
2004C<PERL_ANYEVENT_DEBUG_WRAP> causes the L<AnyEvent::Debug> module to be
2005loaded.
2006
2007All the environment variables documented here start with
2008C<PERL_ANYEVENT_>, which is what AnyEvent considers its own
2009namespace. Other modules are encouraged (but by no means required) to use
2010C<PERL_ANYEVENT_SUBMODULE> if they have registered the AnyEvent::Submodule
2011namespace on CPAN, for any submodule. For example, L<AnyEvent::HTTP> could
2012be expected to use C<PERL_ANYEVENT_HTTP_PROXY> (it should not access env
2013variables starting with C<AE_>, see below).
2014
2015All variables can also be set via the C<AE_> prefix, that is, instead
2016of setting C<PERL_ANYEVENT_VERBOSE> you can also set C<AE_VERBOSE>. In
2017case there is a clash btween anyevent and another program that uses
2018C<AE_something> you can set the corresponding C<PERL_ANYEVENT_something>
2019variable to the empty string, as those variables take precedence.
2020
2021When AnyEvent is first loaded, it copies all C<AE_xxx> env variables
2022to their C<PERL_ANYEVENT_xxx> counterpart unless that variable already
2023exists. If taint mode is on, then AnyEvent will remove I<all> environment
2024variables starting with C<PERL_ANYEVENT_> from C<%ENV> (or replace them
2025with C<undef> or the empty string, if the corresaponding C<AE_> variable
2026is set).
2027
2028The exact algorithm is currently:
2029
2030 1. if taint mode enabled, delete all PERL_ANYEVENT_xyz variables from %ENV
2031 2. copy over AE_xyz to PERL_ANYEVENT_xyz unless the latter alraedy exists
2032 3. if taint mode enabled, set all PERL_ANYEVENT_xyz variables to undef.
2033
2034This ensures that child processes will not see the C<AE_> variables.
2035
2036The following environment variables are currently known to AnyEvent:
1209 2037
1210=over 4 2038=over 4
1211 2039
1212=item C<PERL_ANYEVENT_VERBOSE> 2040=item C<PERL_ANYEVENT_VERBOSE>
1213 2041
1214By default, AnyEvent will be completely silent except in fatal 2042By default, AnyEvent will only log messages with loglevel C<3>
1215conditions. You can set this environment variable to make AnyEvent more 2043(C<critical>) or higher (see L<AnyEvent::Log>). You can set this
2044environment variable to a numerical loglevel to make AnyEvent more (or
1216talkative. 2045less) talkative.
1217 2046
2047If you want to do more than just set the global logging level
2048you should have a look at C<PERL_ANYEVENT_LOG>, which allows much more
2049complex specifications.
2050
2051When set to C<0> (C<off>), then no messages whatsoever will be logged with
2052the default logging settings.
2053
1218When set to C<1> or higher, causes AnyEvent to warn about unexpected 2054When set to C<5> or higher (C<warn>), causes AnyEvent to warn about
1219conditions, such as not being able to load the event model specified by 2055unexpected conditions, such as not being able to load the event model
1220C<PERL_ANYEVENT_MODEL>. 2056specified by C<PERL_ANYEVENT_MODEL>, or a guard callback throwing an
2057exception - this is the minimum recommended level.
1221 2058
1222When set to C<2> or higher, cause AnyEvent to report to STDERR which event 2059When set to C<7> or higher (info), cause AnyEvent to report which event model it
1223model it chooses. 2060chooses.
2061
2062When set to C<8> or higher (debug), then AnyEvent will report extra information on
2063which optional modules it loads and how it implements certain features.
2064
2065=item C<PERL_ANYEVENT_LOG>
2066
2067Accepts rather complex logging specifications. For example, you could log
2068all C<debug> messages of some module to stderr, warnings and above to
2069stderr, and errors and above to syslog, with:
2070
2071 PERL_ANYEVENT_LOG=Some::Module=debug,+log:filter=warn,+%syslog:%syslog=error,syslog
2072
2073For the rather extensive details, see L<AnyEvent::Log>.
2074
2075This variable is evaluated when AnyEvent (or L<AnyEvent::Log>) is loaded,
2076so will take effect even before AnyEvent has initialised itself.
2077
2078Note that specifying this environment variable causes the L<AnyEvent::Log>
2079module to be loaded, while C<PERL_ANYEVENT_VERBOSE> does not, so only
2080using the latter saves a few hundred kB of memory until the first message
2081is being logged.
1224 2082
1225=item C<PERL_ANYEVENT_STRICT> 2083=item C<PERL_ANYEVENT_STRICT>
1226 2084
1227AnyEvent does not do much argument checking by default, as thorough 2085AnyEvent does not do much argument checking by default, as thorough
1228argument checking is very costly. Setting this variable to a true value 2086argument checking is very costly. Setting this variable to a true value
1229will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly 2087will cause AnyEvent to load C<AnyEvent::Strict> and then to thoroughly
1230check the arguments passed to most method calls. If it finds any problems 2088check the arguments passed to most method calls. If it finds any problems,
1231it will croak. 2089it will croak.
1232 2090
1233In other words, enables "strict" mode. 2091In other words, enables "strict" mode.
1234 2092
1235Unlike C<use strict>, it is definitely recommended ot keep it off in 2093Unlike C<use strict> (or its modern cousin, C<< use L<common::sense>
1236production. Keeping C<PERL_ANYEVENT_STRICT=1> in your environment while 2094>>, it is definitely recommended to keep it off in production. Keeping
1237developing programs can be very useful, however. 2095C<PERL_ANYEVENT_STRICT=1> in your environment while developing programs
2096can be very useful, however.
2097
2098=item C<PERL_ANYEVENT_DEBUG_SHELL>
2099
2100If this env variable is set, then its contents will be interpreted by
2101C<AnyEvent::Socket::parse_hostport> (after replacing every occurance of
2102C<$$> by the process pid) and an C<AnyEvent::Debug::shell> is bound on
2103that port. The shell object is saved in C<$AnyEvent::Debug::SHELL>.
2104
2105This happens when the first watcher is created.
2106
2107For example, to bind a debug shell on a unix domain socket in
2108F<< /tmp/debug<pid>.sock >>, you could use this:
2109
2110 PERL_ANYEVENT_DEBUG_SHELL=/tmp/debug\$\$.sock perlprog
2111
2112Note that creating sockets in F</tmp> is very unsafe on multiuser
2113systems.
2114
2115=item C<PERL_ANYEVENT_DEBUG_WRAP>
2116
2117Can be set to C<0>, C<1> or C<2> and enables wrapping of all watchers for
2118debugging purposes. See C<AnyEvent::Debug::wrap> for details.
1238 2119
1239=item C<PERL_ANYEVENT_MODEL> 2120=item C<PERL_ANYEVENT_MODEL>
1240 2121
1241This can be used to specify the event model to be used by AnyEvent, before 2122This can be used to specify the event model to be used by AnyEvent, before
1242auto detection and -probing kicks in. It must be a string consisting 2123auto detection and -probing kicks in.
1243entirely of ASCII letters. The string C<AnyEvent::Impl::> gets prepended 2124
2125It normally is a string consisting entirely of ASCII letters (e.g. C<EV>
2126or C<IOAsync>). The string C<AnyEvent::Impl::> gets prepended and the
1244and the resulting module name is loaded and if the load was successful, 2127resulting module name is loaded and - if the load was successful - used as
1245used as event model. If it fails to load AnyEvent will proceed with 2128event model backend. If it fails to load then AnyEvent will proceed with
1246auto detection and -probing. 2129auto detection and -probing.
1247 2130
1248This functionality might change in future versions. 2131If the string ends with C<::> instead (e.g. C<AnyEvent::Impl::EV::>) then
2132nothing gets prepended and the module name is used as-is (hint: C<::> at
2133the end of a string designates a module name and quotes it appropriately).
1249 2134
1250For example, to force the pure perl model (L<AnyEvent::Impl::Perl>) you 2135For example, to force the pure perl model (L<AnyEvent::Loop::Perl>) you
1251could start your program like this: 2136could start your program like this:
1252 2137
1253 PERL_ANYEVENT_MODEL=Perl perl ... 2138 PERL_ANYEVENT_MODEL=Perl perl ...
1254 2139
1255=item C<PERL_ANYEVENT_PROTOCOLS> 2140=item C<PERL_ANYEVENT_PROTOCOLS>
1263used, and preference will be given to protocols mentioned earlier in the 2148used, and preference will be given to protocols mentioned earlier in the
1264list. 2149list.
1265 2150
1266This variable can effectively be used for denial-of-service attacks 2151This variable can effectively be used for denial-of-service attacks
1267against local programs (e.g. when setuid), although the impact is likely 2152against local programs (e.g. when setuid), although the impact is likely
1268small, as the program has to handle connection errors already- 2153small, as the program has to handle conenction and other failures anyways.
1269 2154
1270Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6, 2155Examples: C<PERL_ANYEVENT_PROTOCOLS=ipv4,ipv6> - prefer IPv4 over IPv6,
1271but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4> 2156but support both and try to use both. C<PERL_ANYEVENT_PROTOCOLS=ipv4>
1272- only support IPv4, never try to resolve or contact IPv6 2157- only support IPv4, never try to resolve or contact IPv6
1273addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or 2158addresses. C<PERL_ANYEVENT_PROTOCOLS=ipv6,ipv4> support either IPv4 or
1274IPv6, but prefer IPv6 over IPv4. 2159IPv6, but prefer IPv6 over IPv4.
1275 2160
2161=item C<PERL_ANYEVENT_HOSTS>
2162
2163This variable, if specified, overrides the F</etc/hosts> file used by
2164L<AnyEvent::Socket>C<::resolve_sockaddr>, i.e. hosts aliases will be read
2165from that file instead.
2166
1276=item C<PERL_ANYEVENT_EDNS0> 2167=item C<PERL_ANYEVENT_EDNS0>
1277 2168
1278Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension 2169Used by L<AnyEvent::DNS> to decide whether to use the EDNS0 extension for
1279for DNS. This extension is generally useful to reduce DNS traffic, but 2170DNS. This extension is generally useful to reduce DNS traffic, especially
1280some (broken) firewalls drop such DNS packets, which is why it is off by 2171when DNSSEC is involved, but some (broken) firewalls drop such DNS
1281default. 2172packets, which is why it is off by default.
1282 2173
1283Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce 2174Setting this variable to C<1> will cause L<AnyEvent::DNS> to announce
1284EDNS0 in its DNS requests. 2175EDNS0 in its DNS requests.
1285 2176
1286=item C<PERL_ANYEVENT_MAX_FORKS> 2177=item C<PERL_ANYEVENT_MAX_FORKS>
1287 2178
1288The maximum number of child processes that C<AnyEvent::Util::fork_call> 2179The maximum number of child processes that C<AnyEvent::Util::fork_call>
1289will create in parallel. 2180will create in parallel.
2181
2182=item C<PERL_ANYEVENT_MAX_OUTSTANDING_DNS>
2183
2184The default value for the C<max_outstanding> parameter for the default DNS
2185resolver - this is the maximum number of parallel DNS requests that are
2186sent to the DNS server.
2187
2188=item C<PERL_ANYEVENT_RESOLV_CONF>
2189
2190The absolute path to a F<resolv.conf>-style file to use instead of
2191F</etc/resolv.conf> (or the OS-specific configuration) in the default
2192resolver, or the empty string to select the default configuration.
2193
2194=item C<PERL_ANYEVENT_CA_FILE>, C<PERL_ANYEVENT_CA_PATH>.
2195
2196When neither C<ca_file> nor C<ca_path> was specified during
2197L<AnyEvent::TLS> context creation, and either of these environment
2198variables are nonempty, they will be used to specify CA certificate
2199locations instead of a system-dependent default.
2200
2201=item C<PERL_ANYEVENT_AVOID_GUARD> and C<PERL_ANYEVENT_AVOID_ASYNC_INTERRUPT>
2202
2203When these are set to C<1>, then the respective modules are not
2204loaded. Mostly good for testing AnyEvent itself.
1290 2205
1291=back 2206=back
1292 2207
1293=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE 2208=head1 SUPPLYING YOUR OWN EVENT MODEL INTERFACE
1294 2209
1352 warn "read: $input\n"; # output what has been read 2267 warn "read: $input\n"; # output what has been read
1353 $cv->send if $input =~ /^q/i; # quit program if /^q/i 2268 $cv->send if $input =~ /^q/i; # quit program if /^q/i
1354 }, 2269 },
1355 ); 2270 );
1356 2271
1357 my $time_watcher; # can only be used once
1358
1359 sub new_timer {
1360 $timer = AnyEvent->timer (after => 1, cb => sub { 2272 my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub {
1361 warn "timeout\n"; # print 'timeout' about every second 2273 warn "timeout\n"; # print 'timeout' at most every second
1362 &new_timer; # and restart the time
1363 }); 2274 });
1364 }
1365
1366 new_timer; # create first timer
1367 2275
1368 $cv->recv; # wait until user enters /^q/i 2276 $cv->recv; # wait until user enters /^q/i
1369 2277
1370=head1 REAL-WORLD EXAMPLE 2278=head1 REAL-WORLD EXAMPLE
1371 2279
1444 2352
1445The actual code goes further and collects all errors (C<die>s, exceptions) 2353The actual code goes further and collects all errors (C<die>s, exceptions)
1446that occurred during request processing. The C<result> method detects 2354that occurred during request processing. The C<result> method detects
1447whether an exception as thrown (it is stored inside the $txn object) 2355whether an exception as thrown (it is stored inside the $txn object)
1448and just throws the exception, which means connection errors and other 2356and just throws the exception, which means connection errors and other
1449problems get reported tot he code that tries to use the result, not in a 2357problems get reported to the code that tries to use the result, not in a
1450random callback. 2358random callback.
1451 2359
1452All of this enables the following usage styles: 2360All of this enables the following usage styles:
1453 2361
14541. Blocking: 23621. Blocking:
1502through AnyEvent. The benchmark creates a lot of timers (with a zero 2410through AnyEvent. The benchmark creates a lot of timers (with a zero
1503timeout) and I/O watchers (watching STDOUT, a pty, to become writable, 2411timeout) and I/O watchers (watching STDOUT, a pty, to become writable,
1504which it is), lets them fire exactly once and destroys them again. 2412which it is), lets them fire exactly once and destroys them again.
1505 2413
1506Source code for this benchmark is found as F<eg/bench> in the AnyEvent 2414Source code for this benchmark is found as F<eg/bench> in the AnyEvent
1507distribution. 2415distribution. It uses the L<AE> interface, which makes a real difference
2416for the EV and Perl backends only.
1508 2417
1509=head3 Explanation of the columns 2418=head3 Explanation of the columns
1510 2419
1511I<watcher> is the number of event watchers created/destroyed. Since 2420I<watcher> is the number of event watchers created/destroyed. Since
1512different event models feature vastly different performances, each event 2421different event models feature vastly different performances, each event
1533watcher. 2442watcher.
1534 2443
1535=head3 Results 2444=head3 Results
1536 2445
1537 name watchers bytes create invoke destroy comment 2446 name watchers bytes create invoke destroy comment
1538 EV/EV 400000 224 0.47 0.35 0.27 EV native interface 2447 EV/EV 100000 223 0.47 0.43 0.27 EV native interface
1539 EV/Any 100000 224 2.88 0.34 0.27 EV + AnyEvent watchers 2448 EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers
1540 CoroEV/Any 100000 224 2.85 0.35 0.28 coroutines + Coro::Signal 2449 Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal
1541 Perl/Any 100000 452 4.14 0.75 0.99 pure perl implementation 2450 Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation
1542 Event/Event 16000 517 32.20 31.80 0.81 Event native interface 2451 Event/Event 16000 516 31.16 31.84 0.82 Event native interface
1543 Event/Any 16000 590 35.85 31.55 1.06 Event + AnyEvent watchers 2452 Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers
2453 IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll
2454 IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll
1544 Glib/Any 16000 1357 102.33 12.31 51.00 quadratic behaviour 2455 Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour
1545 Tk/Any 2000 1860 27.20 66.31 14.00 SEGV with >> 2000 watchers 2456 Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers
1546 POE/Event 2000 6328 109.99 751.67 14.02 via POE::Loop::Event 2457 POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event
1547 POE/Select 2000 6027 94.54 809.13 579.80 via POE::Loop::Select 2458 POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select
1548 2459
1549=head3 Discussion 2460=head3 Discussion
1550 2461
1551The benchmark does I<not> measure scalability of the event loop very 2462The benchmark does I<not> measure scalability of the event loop very
1552well. For example, a select-based event loop (such as the pure perl one) 2463well. For example, a select-based event loop (such as the pure perl one)
1564benchmark machine, handling an event takes roughly 1600 CPU cycles with 2475benchmark machine, handling an event takes roughly 1600 CPU cycles with
1565EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU 2476EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU
1566cycles with POE. 2477cycles with POE.
1567 2478
1568C<EV> is the sole leader regarding speed and memory use, which are both 2479C<EV> is the sole leader regarding speed and memory use, which are both
1569maximal/minimal, respectively. Even when going through AnyEvent, it uses 2480maximal/minimal, respectively. When using the L<AE> API there is zero
2481overhead (when going through the AnyEvent API create is about 5-6 times
2482slower, with other times being equal, so still uses far less memory than
1570far less memory than any other event loop and is still faster than Event 2483any other event loop and is still faster than Event natively).
1571natively.
1572 2484
1573The pure perl implementation is hit in a few sweet spots (both the 2485The pure perl implementation is hit in a few sweet spots (both the
1574constant timeout and the use of a single fd hit optimisations in the perl 2486constant timeout and the use of a single fd hit optimisations in the perl
1575interpreter and the backend itself). Nevertheless this shows that it 2487interpreter and the backend itself). Nevertheless this shows that it
1576adds very little overhead in itself. Like any select-based backend its 2488adds very little overhead in itself. Like any select-based backend its
1577performance becomes really bad with lots of file descriptors (and few of 2489performance becomes really bad with lots of file descriptors (and few of
1578them active), of course, but this was not subject of this benchmark. 2490them active), of course, but this was not subject of this benchmark.
1579 2491
1580The C<Event> module has a relatively high setup and callback invocation 2492The C<Event> module has a relatively high setup and callback invocation
1581cost, but overall scores in on the third place. 2493cost, but overall scores in on the third place.
2494
2495C<IO::Async> performs admirably well, about on par with C<Event>, even
2496when using its pure perl backend.
1582 2497
1583C<Glib>'s memory usage is quite a bit higher, but it features a 2498C<Glib>'s memory usage is quite a bit higher, but it features a
1584faster callback invocation and overall ends up in the same class as 2499faster callback invocation and overall ends up in the same class as
1585C<Event>. However, Glib scales extremely badly, doubling the number of 2500C<Event>. However, Glib scales extremely badly, doubling the number of
1586watchers increases the processing time by more than a factor of four, 2501watchers increases the processing time by more than a factor of four,
1621(even when used without AnyEvent), but most event loops have acceptable 2536(even when used without AnyEvent), but most event loops have acceptable
1622performance with or without AnyEvent. 2537performance with or without AnyEvent.
1623 2538
1624=item * The overhead AnyEvent adds is usually much smaller than the overhead of 2539=item * The overhead AnyEvent adds is usually much smaller than the overhead of
1625the actual event loop, only with extremely fast event loops such as EV 2540the actual event loop, only with extremely fast event loops such as EV
1626adds AnyEvent significant overhead. 2541does AnyEvent add significant overhead.
1627 2542
1628=item * You should avoid POE like the plague if you want performance or 2543=item * You should avoid POE like the plague if you want performance or
1629reasonable memory usage. 2544reasonable memory usage.
1630 2545
1631=back 2546=back
1647In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 2562In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100
1648(1%) are active. This mirrors the activity of large servers with many 2563(1%) are active. This mirrors the activity of large servers with many
1649connections, most of which are idle at any one point in time. 2564connections, most of which are idle at any one point in time.
1650 2565
1651Source code for this benchmark is found as F<eg/bench2> in the AnyEvent 2566Source code for this benchmark is found as F<eg/bench2> in the AnyEvent
1652distribution. 2567distribution. It uses the L<AE> interface, which makes a real difference
2568for the EV and Perl backends only.
1653 2569
1654=head3 Explanation of the columns 2570=head3 Explanation of the columns
1655 2571
1656I<sockets> is the number of sockets, and twice the number of "servers" (as 2572I<sockets> is the number of sockets, and twice the number of "servers" (as
1657each server has a read and write socket end). 2573each server has a read and write socket end).
1664it to another server. This includes deleting the old timeout and creating 2580it to another server. This includes deleting the old timeout and creating
1665a new one that moves the timeout into the future. 2581a new one that moves the timeout into the future.
1666 2582
1667=head3 Results 2583=head3 Results
1668 2584
1669 name sockets create request 2585 name sockets create request
1670 EV 20000 69.01 11.16 2586 EV 20000 62.66 7.99
1671 Perl 20000 73.32 35.87 2587 Perl 20000 68.32 32.64
1672 Event 20000 212.62 257.32 2588 IOAsync 20000 174.06 101.15 epoll
1673 Glib 20000 651.16 1896.30 2589 IOAsync 20000 174.67 610.84 poll
2590 Event 20000 202.69 242.91
2591 Glib 20000 557.01 1689.52
1674 POE 20000 349.67 12317.24 uses POE::Loop::Event 2592 POE 20000 341.54 12086.32 uses POE::Loop::Event
1675 2593
1676=head3 Discussion 2594=head3 Discussion
1677 2595
1678This benchmark I<does> measure scalability and overall performance of the 2596This benchmark I<does> measure scalability and overall performance of the
1679particular event loop. 2597particular event loop.
1681EV is again fastest. Since it is using epoll on my system, the setup time 2599EV is again fastest. Since it is using epoll on my system, the setup time
1682is relatively high, though. 2600is relatively high, though.
1683 2601
1684Perl surprisingly comes second. It is much faster than the C-based event 2602Perl surprisingly comes second. It is much faster than the C-based event
1685loops Event and Glib. 2603loops Event and Glib.
2604
2605IO::Async performs very well when using its epoll backend, and still quite
2606good compared to Glib when using its pure perl backend.
1686 2607
1687Event suffers from high setup time as well (look at its code and you will 2608Event suffers from high setup time as well (look at its code and you will
1688understand why). Callback invocation also has a high overhead compared to 2609understand why). Callback invocation also has a high overhead compared to
1689the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event 2610the C<< $_->() for .. >>-style loop that the Perl event loop uses. Event
1690uses select or poll in basically all documented configurations. 2611uses select or poll in basically all documented configurations.
1753=item * C-based event loops perform very well with small number of 2674=item * C-based event loops perform very well with small number of
1754watchers, as the management overhead dominates. 2675watchers, as the management overhead dominates.
1755 2676
1756=back 2677=back
1757 2678
2679=head2 THE IO::Lambda BENCHMARK
2680
2681Recently I was told about the benchmark in the IO::Lambda manpage, which
2682could be misinterpreted to make AnyEvent look bad. In fact, the benchmark
2683simply compares IO::Lambda with POE, and IO::Lambda looks better (which
2684shouldn't come as a surprise to anybody). As such, the benchmark is
2685fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't
2686very optimal. But how would AnyEvent compare when used without the extra
2687baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.
2688
2689The benchmark itself creates an echo-server, and then, for 500 times,
2690connects to the echo server, sends a line, waits for the reply, and then
2691creates the next connection. This is a rather bad benchmark, as it doesn't
2692test the efficiency of the framework or much non-blocking I/O, but it is a
2693benchmark nevertheless.
2694
2695 name runtime
2696 Lambda/select 0.330 sec
2697 + optimized 0.122 sec
2698 Lambda/AnyEvent 0.327 sec
2699 + optimized 0.138 sec
2700 Raw sockets/select 0.077 sec
2701 POE/select, components 0.662 sec
2702 POE/select, raw sockets 0.226 sec
2703 POE/select, optimized 0.404 sec
2704
2705 AnyEvent/select/nb 0.085 sec
2706 AnyEvent/EV/nb 0.068 sec
2707 +state machine 0.134 sec
2708
2709The benchmark is also a bit unfair (my fault): the IO::Lambda/POE
2710benchmarks actually make blocking connects and use 100% blocking I/O,
2711defeating the purpose of an event-based solution. All of the newly
2712written AnyEvent benchmarks use 100% non-blocking connects (using
2713AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS
2714resolver), so AnyEvent is at a disadvantage here, as non-blocking connects
2715generally require a lot more bookkeeping and event handling than blocking
2716connects (which involve a single syscall only).
2717
2718The last AnyEvent benchmark additionally uses L<AnyEvent::Handle>, which
2719offers similar expressive power as POE and IO::Lambda, using conventional
2720Perl syntax. This means that both the echo server and the client are 100%
2721non-blocking, further placing it at a disadvantage.
2722
2723As you can see, the AnyEvent + EV combination even beats the
2724hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl
2725backend easily beats IO::Lambda and POE.
2726
2727And even the 100% non-blocking version written using the high-level (and
2728slow :) L<AnyEvent::Handle> abstraction beats both POE and IO::Lambda
2729higher level ("unoptimised") abstractions by a large margin, even though
2730it does all of DNS, tcp-connect and socket I/O in a non-blocking way.
2731
2732The two AnyEvent benchmarks programs can be found as F<eg/ae0.pl> and
2733F<eg/ae2.pl> in the AnyEvent distribution, the remaining benchmarks are
2734part of the IO::Lambda distribution and were used without any changes.
2735
1758 2736
1759=head1 SIGNALS 2737=head1 SIGNALS
1760 2738
1761AnyEvent currently installs handlers for these signals: 2739AnyEvent currently installs handlers for these signals:
1762 2740
1765=item SIGCHLD 2743=item SIGCHLD
1766 2744
1767A handler for C<SIGCHLD> is installed by AnyEvent's child watcher 2745A handler for C<SIGCHLD> is installed by AnyEvent's child watcher
1768emulation for event loops that do not support them natively. Also, some 2746emulation for event loops that do not support them natively. Also, some
1769event loops install a similar handler. 2747event loops install a similar handler.
2748
2749Additionally, when AnyEvent is loaded and SIGCHLD is set to IGNORE, then
2750AnyEvent will reset it to default, to avoid losing child exit statuses.
1770 2751
1771=item SIGPIPE 2752=item SIGPIPE
1772 2753
1773A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef> 2754A no-op handler is installed for C<SIGPIPE> when C<$SIG{PIPE}> is C<undef>
1774when AnyEvent gets loaded. 2755when AnyEvent gets loaded.
1786 2767
1787=back 2768=back
1788 2769
1789=cut 2770=cut
1790 2771
2772undef $SIG{CHLD}
2773 if $SIG{CHLD} eq 'IGNORE';
2774
1791$SIG{PIPE} = sub { } 2775$SIG{PIPE} = sub { }
1792 unless defined $SIG{PIPE}; 2776 unless defined $SIG{PIPE};
1793 2777
2778=head1 RECOMMENDED/OPTIONAL MODULES
2779
2780One of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and
2781its built-in modules) are required to use it.
2782
2783That does not mean that AnyEvent won't take advantage of some additional
2784modules if they are installed.
2785
2786This section explains which additional modules will be used, and how they
2787affect AnyEvent's operation.
2788
2789=over 4
2790
2791=item L<Async::Interrupt>
2792
2793This slightly arcane module is used to implement fast signal handling: To
2794my knowledge, there is no way to do completely race-free and quick
2795signal handling in pure perl. To ensure that signals still get
2796delivered, AnyEvent will start an interval timer to wake up perl (and
2797catch the signals) with some delay (default is 10 seconds, look for
2798C<$AnyEvent::MAX_SIGNAL_LATENCY>).
2799
2800If this module is available, then it will be used to implement signal
2801catching, which means that signals will not be delayed, and the event loop
2802will not be interrupted regularly, which is more efficient (and good for
2803battery life on laptops).
2804
2805This affects not just the pure-perl event loop, but also other event loops
2806that have no signal handling on their own (e.g. Glib, Tk, Qt).
2807
2808Some event loops (POE, Event, Event::Lib) offer signal watchers natively,
2809and either employ their own workarounds (POE) or use AnyEvent's workaround
2810(using C<$AnyEvent::MAX_SIGNAL_LATENCY>). Installing L<Async::Interrupt>
2811does nothing for those backends.
2812
2813=item L<EV>
2814
2815This module isn't really "optional", as it is simply one of the backend
2816event loops that AnyEvent can use. However, it is simply the best event
2817loop available in terms of features, speed and stability: It supports
2818the AnyEvent API optimally, implements all the watcher types in XS, does
2819automatic timer adjustments even when no monotonic clock is available,
2820can take avdantage of advanced kernel interfaces such as C<epoll> and
2821C<kqueue>, and is the fastest backend I<by far>. You can even embed
2822L<Glib>/L<Gtk2> in it (or vice versa, see L<EV::Glib> and L<Glib::EV>).
2823
2824If you only use backends that rely on another event loop (e.g. C<Tk>),
2825then this module will do nothing for you.
2826
2827=item L<Guard>
2828
2829The guard module, when used, will be used to implement
2830C<AnyEvent::Util::guard>. This speeds up guards considerably (and uses a
2831lot less memory), but otherwise doesn't affect guard operation much. It is
2832purely used for performance.
2833
2834=item L<JSON> and L<JSON::XS>
2835
2836One of these modules is required when you want to read or write JSON data
2837via L<AnyEvent::Handle>. L<JSON> is also written in pure-perl, but can take
2838advantage of the ultra-high-speed L<JSON::XS> module when it is installed.
2839
2840=item L<Net::SSLeay>
2841
2842Implementing TLS/SSL in Perl is certainly interesting, but not very
2843worthwhile: If this module is installed, then L<AnyEvent::Handle> (with
2844the help of L<AnyEvent::TLS>), gains the ability to do TLS/SSL.
2845
2846=item L<Time::HiRes>
2847
2848This module is part of perl since release 5.008. It will be used when the
2849chosen event library does not come with a timing source of its own. The
2850pure-perl event loop (L<AnyEvent::Loop>) will additionally load it to
2851try to use a monotonic clock for timing stability.
2852
2853=back
2854
1794 2855
1795=head1 FORK 2856=head1 FORK
1796 2857
1797Most event libraries are not fork-safe. The ones who are usually are 2858Most event libraries are not fork-safe. The ones who are usually are
1798because they rely on inefficient but fork-safe C<select> or C<poll> 2859because they rely on inefficient but fork-safe C<select> or C<poll> calls
1799calls. Only L<EV> is fully fork-aware. 2860- higher performance APIs such as BSD's kqueue or the dreaded Linux epoll
2861are usually badly thought-out hacks that are incompatible with fork in
2862one way or another. Only L<EV> is fully fork-aware and ensures that you
2863continue event-processing in both parent and child (or both, if you know
2864what you are doing).
2865
2866This means that, in general, you cannot fork and do event processing in
2867the child if the event library was initialised before the fork (which
2868usually happens when the first AnyEvent watcher is created, or the library
2869is loaded).
1800 2870
1801If you have to fork, you must either do so I<before> creating your first 2871If you have to fork, you must either do so I<before> creating your first
1802watcher OR you must not use AnyEvent at all in the child. 2872watcher OR you must not use AnyEvent at all in the child OR you must do
2873something completely out of the scope of AnyEvent.
2874
2875The problem of doing event processing in the parent I<and> the child
2876is much more complicated: even for backends that I<are> fork-aware or
2877fork-safe, their behaviour is not usually what you want: fork clones all
2878watchers, that means all timers, I/O watchers etc. are active in both
2879parent and child, which is almost never what you want. USing C<exec>
2880to start worker children from some kind of manage rprocess is usually
2881preferred, because it is much easier and cleaner, at the expense of having
2882to have another binary.
1803 2883
1804 2884
1805=head1 SECURITY CONSIDERATIONS 2885=head1 SECURITY CONSIDERATIONS
1806 2886
1807AnyEvent can be forced to load any event model via 2887AnyEvent can be forced to load any event model via
1819 use AnyEvent; 2899 use AnyEvent;
1820 2900
1821Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can 2901Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can
1822be used to probe what backend is used and gain other information (which is 2902be used to probe what backend is used and gain other information (which is
1823probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and 2903probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and
1824$ENV{PERL_ANYEGENT_STRICT}. 2904$ENV{PERL_ANYEVENT_STRICT}.
2905
2906Note that AnyEvent will remove I<all> environment variables starting with
2907C<PERL_ANYEVENT_> from C<%ENV> when it is loaded while taint mode is
2908enabled.
1825 2909
1826 2910
1827=head1 BUGS 2911=head1 BUGS
1828 2912
1829Perl 5.8 has numerous memleaks that sometimes hit this module and are hard 2913Perl 5.8 has numerous memleaks that sometimes hit this module and are hard
1830to work around. If you suffer from memleaks, first upgrade to Perl 5.10 2914to work around. If you suffer from memleaks, first upgrade to Perl 5.10
1831and check wether the leaks still show up. (Perl 5.10.0 has other annoying 2915and check wether the leaks still show up. (Perl 5.10.0 has other annoying
1832mamleaks, such as leaking on C<map> and C<grep> but it is usually not as 2916memleaks, such as leaking on C<map> and C<grep> but it is usually not as
1833pronounced). 2917pronounced).
1834 2918
1835 2919
1836=head1 SEE ALSO 2920=head1 SEE ALSO
1837 2921
1838Utility functions: L<AnyEvent::Util>. 2922Tutorial/Introduction: L<AnyEvent::Intro>.
1839 2923
1840Event modules: L<EV>, L<EV::Glib>, L<Glib::EV>, L<Event>, L<Glib::Event>, 2924FAQ: L<AnyEvent::FAQ>.
1841L<Glib>, L<Tk>, L<Event::Lib>, L<Qt>, L<POE>. 2925
2926Utility functions: L<AnyEvent::Util> (misc. grab-bag), L<AnyEvent::Log>
2927(simply logging).
2928
2929Development/Debugging: L<AnyEvent::Strict> (stricter checking),
2930L<AnyEvent::Debug> (interactive shell, watcher tracing).
2931
2932Supported event modules: L<AnyEvent::Loop>, L<EV>, L<EV::Glib>,
2933L<Glib::EV>, L<Event>, L<Glib::Event>, L<Glib>, L<Tk>, L<Event::Lib>,
2934L<Qt>, L<POE>, L<FLTK>.
1842 2935
1843Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>, 2936Implementations: L<AnyEvent::Impl::EV>, L<AnyEvent::Impl::Event>,
1844L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>, 2937L<AnyEvent::Impl::Glib>, L<AnyEvent::Impl::Tk>, L<AnyEvent::Impl::Perl>,
1845L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>, 2938L<AnyEvent::Impl::EventLib>, L<AnyEvent::Impl::Qt>,
2939L<AnyEvent::Impl::POE>, L<AnyEvent::Impl::IOAsync>, L<Anyevent::Impl::Irssi>,
1846L<AnyEvent::Impl::POE>. 2940L<AnyEvent::Impl::FLTK>.
1847 2941
1848Non-blocking file handles, sockets, TCP clients and 2942Non-blocking handles, pipes, stream sockets, TCP clients and
1849servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>. 2943servers: L<AnyEvent::Handle>, L<AnyEvent::Socket>, L<AnyEvent::TLS>.
1850 2944
1851Asynchronous DNS: L<AnyEvent::DNS>. 2945Asynchronous DNS: L<AnyEvent::DNS>.
1852 2946
1853Coroutine support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>, 2947Thread support: L<Coro>, L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
1854 2948
1855Nontrivial usage examples: L<Net::FCP>, L<Net::XMPP2>, L<AnyEvent::DNS>. 2949Nontrivial usage examples: L<AnyEvent::GPSD>, L<AnyEvent::IRC>,
2950L<AnyEvent::HTTP>.
1856 2951
1857 2952
1858=head1 AUTHOR 2953=head1 AUTHOR
1859 2954
1860 Marc Lehmann <schmorp@schmorp.de> 2955 Marc Lehmann <schmorp@schmorp.de>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines