ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.109
Committed: Wed Jan 14 02:03:43 2009 UTC (15 years, 5 months ago) by root
Branch: MAIN
Changes since 1.108: +5 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.108 our $VERSION = 4.331;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32 root 1.107 $cv->send;
33 elmex 1.2 },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68     =item B<new (%args)>
69    
70 root 1.8 The constructor supports these arguments (all as key => value pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.8 =item fh => $filehandle [MANDATORY]
75 elmex 1.1
76     The filehandle this L<AnyEvent::Handle> object will operate on.
77    
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.40 =item on_eof => $cb->($handle)
83 root 1.10
84 root 1.74 Set the callback to be called when an end-of-file condition is detected,
85 root 1.52 i.e. in the case of a socket, when the other side has closed the
86     connection cleanly.
87 root 1.8
88 root 1.82 For sockets, this just means that the other side has stopped sending data,
89 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
90 root 1.82 callback and continue writing data, as only the read part has been shut
91     down.
92    
93 root 1.101 While not mandatory, it is I<highly> recommended to set an EOF callback,
94 root 1.16 otherwise you might end up with a closed socket while you are still
95     waiting for data.
96    
97 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
98     set, then a fatal error will be raised with C<$!> set to <0>.
99    
100 root 1.52 =item on_error => $cb->($handle, $fatal)
101 root 1.10
102 root 1.52 This is the error callback, which is called when, well, some error
103     occured, such as not being able to resolve the hostname, failure to
104     connect or a read error.
105    
106     Some errors are fatal (which is indicated by C<$fatal> being true). On
107 root 1.82 fatal errors the handle object will be shut down and will not be usable
108 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
110     (C<EPIPE>) or I/O errors.
111    
112     Non-fatal errors can be retried by simply returning, but it is recommended
113     to simply ignore this parameter and instead abondon the handle object
114     when this callback is invoked. Examples of non-fatal errors are timeouts
115     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 root 1.8
117 root 1.10 On callback entrance, the value of C<$!> contains the operating system
118 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119 root 1.8
120 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
121     you will not be notified of errors otherwise. The default simply calls
122 root 1.52 C<croak>.
123 root 1.8
124 root 1.40 =item on_read => $cb->($handle)
125 root 1.8
126     This sets the default read callback, which is called when data arrives
127 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
128     callback will only be called when at least one octet of data is in the
129     read buffer).
130 root 1.8
131     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132 root 1.40 method or access the C<$handle->{rbuf}> member directly.
133 root 1.8
134     When an EOF condition is detected then AnyEvent::Handle will first try to
135     feed all the remaining data to the queued callbacks and C<on_read> before
136     calling the C<on_eof> callback. If no progress can be made, then a fatal
137     error will be raised (with C<$!> set to C<EPIPE>).
138 elmex 1.1
139 root 1.40 =item on_drain => $cb->($handle)
140 elmex 1.1
141 root 1.8 This sets the callback that is called when the write buffer becomes empty
142     (or when the callback is set and the buffer is empty already).
143 elmex 1.1
144 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
145 elmex 1.2
146 root 1.69 This callback is useful when you don't want to put all of your write data
147     into the queue at once, for example, when you want to write the contents
148     of some file to the socket you might not want to read the whole file into
149     memory and push it into the queue, but instead only read more data from
150     the file when the write queue becomes empty.
151    
152 root 1.43 =item timeout => $fractional_seconds
153    
154     If non-zero, then this enables an "inactivity" timeout: whenever this many
155     seconds pass without a successful read or write on the underlying file
156     handle, the C<on_timeout> callback will be invoked (and if that one is
157 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
158 root 1.43
159     Note that timeout processing is also active when you currently do not have
160     any outstanding read or write requests: If you plan to keep the connection
161     idle then you should disable the timout temporarily or ignore the timeout
162 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
163     restart the timeout.
164 root 1.43
165     Zero (the default) disables this timeout.
166    
167     =item on_timeout => $cb->($handle)
168    
169     Called whenever the inactivity timeout passes. If you return from this
170     callback, then the timeout will be reset as if some activity had happened,
171     so this condition is not fatal in any way.
172    
173 root 1.8 =item rbuf_max => <bytes>
174 elmex 1.2
175 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
176     when the read buffer ever (strictly) exceeds this size. This is useful to
177 root 1.88 avoid some forms of denial-of-service attacks.
178 elmex 1.2
179 root 1.8 For example, a server accepting connections from untrusted sources should
180     be configured to accept only so-and-so much data that it cannot act on
181     (for example, when expecting a line, an attacker could send an unlimited
182     amount of data without a callback ever being called as long as the line
183     isn't finished).
184 elmex 1.2
185 root 1.70 =item autocork => <boolean>
186    
187     When disabled (the default), then C<push_write> will try to immediately
188 root 1.88 write the data to the handle, if possible. This avoids having to register
189     a write watcher and wait for the next event loop iteration, but can
190     be inefficient if you write multiple small chunks (on the wire, this
191     disadvantage is usually avoided by your kernel's nagle algorithm, see
192     C<no_delay>, but this option can save costly syscalls).
193 root 1.70
194     When enabled, then writes will always be queued till the next event loop
195     iteration. This is efficient when you do many small writes per iteration,
196 root 1.88 but less efficient when you do a single write only per iteration (or when
197     the write buffer often is full). It also increases write latency.
198 root 1.70
199     =item no_delay => <boolean>
200    
201     When doing small writes on sockets, your operating system kernel might
202     wait a bit for more data before actually sending it out. This is called
203     the Nagle algorithm, and usually it is beneficial.
204    
205 root 1.88 In some situations you want as low a delay as possible, which can be
206     accomplishd by setting this option to a true value.
207 root 1.70
208 root 1.88 The default is your opertaing system's default behaviour (most likely
209     enabled), this option explicitly enables or disables it, if possible.
210 root 1.70
211 root 1.8 =item read_size => <bytes>
212 elmex 1.2
213 root 1.88 The default read block size (the amount of bytes this module will
214     try to read during each loop iteration, which affects memory
215     requirements). Default: C<8192>.
216 root 1.8
217     =item low_water_mark => <bytes>
218    
219     Sets the amount of bytes (default: C<0>) that make up an "empty" write
220     buffer: If the write reaches this size or gets even samller it is
221     considered empty.
222 elmex 1.2
223 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
224     the write buffer before it is fully drained, but this is a rare case, as
225     the operating system kernel usually buffers data as well, so the default
226     is good in almost all cases.
227    
228 root 1.62 =item linger => <seconds>
229    
230     If non-zero (default: C<3600>), then the destructor of the
231 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
232     write data and will install a watcher that will write this data to the
233     socket. No errors will be reported (this mostly matches how the operating
234     system treats outstanding data at socket close time).
235 root 1.62
236 root 1.88 This will not work for partial TLS data that could not be encoded
237 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
238     help.
239 root 1.62
240 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
241    
242 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
243 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
244     established and will transparently encrypt/decrypt data afterwards.
245 root 1.19
246 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
247 root 1.88 automatically when you try to create a TLS handle): this module doesn't
248     have a dependency on that module, so if your module requires it, you have
249     to add the dependency yourself.
250 root 1.26
251 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
252     C<accept>, and for the TLS client side of a connection, use C<connect>
253     mode.
254 root 1.19
255     You can also provide your own TLS connection object, but you have
256     to make sure that you call either C<Net::SSLeay::set_connect_state>
257     or C<Net::SSLeay::set_accept_state> on it before you pass it to
258     AnyEvent::Handle.
259    
260 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
261     passing in the wrong integer will lead to certain crash. This most often
262     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
263     segmentation fault.
264    
265 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
266 root 1.26
267 root 1.19 =item tls_ctx => $ssl_ctx
268    
269 root 1.88 Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
270 root 1.19 (unless a connection object was specified directly). If this parameter is
271     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
272    
273 root 1.40 =item json => JSON or JSON::XS object
274    
275     This is the json coder object used by the C<json> read and write types.
276    
277 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
278 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
279     texts.
280 root 1.40
281     Note that you are responsible to depend on the JSON module if you want to
282     use this functionality, as AnyEvent does not have a dependency itself.
283    
284 elmex 1.1 =back
285    
286     =cut
287    
288     sub new {
289 root 1.8 my $class = shift;
290    
291     my $self = bless { @_ }, $class;
292    
293     $self->{fh} or Carp::croak "mandatory argument fh is missing";
294    
295     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
296 elmex 1.1
297 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
298     if $self->{tls};
299 root 1.19
300 root 1.44 $self->{_activity} = AnyEvent->now;
301 root 1.43 $self->_timeout;
302 elmex 1.1
303 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
304     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
305 root 1.10
306 root 1.66 $self->start_read
307 root 1.67 if $self->{on_read};
308 root 1.66
309 root 1.8 $self
310     }
311 elmex 1.2
312 root 1.8 sub _shutdown {
313     my ($self) = @_;
314 elmex 1.2
315 root 1.46 delete $self->{_tw};
316 root 1.38 delete $self->{_rw};
317     delete $self->{_ww};
318 root 1.8 delete $self->{fh};
319 root 1.52
320 root 1.92 &_freetls;
321 root 1.82
322     delete $self->{on_read};
323     delete $self->{_queue};
324 root 1.8 }
325    
326 root 1.52 sub _error {
327     my ($self, $errno, $fatal) = @_;
328 root 1.8
329 root 1.52 $self->_shutdown
330     if $fatal;
331 elmex 1.1
332 root 1.52 $! = $errno;
333 root 1.37
334 root 1.52 if ($self->{on_error}) {
335     $self->{on_error}($self, $fatal);
336 root 1.100 } elsif ($self->{fh}) {
337 root 1.52 Carp::croak "AnyEvent::Handle uncaught error: $!";
338     }
339 elmex 1.1 }
340    
341 root 1.8 =item $fh = $handle->fh
342 elmex 1.1
343 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
344 elmex 1.1
345     =cut
346    
347 root 1.38 sub fh { $_[0]{fh} }
348 elmex 1.1
349 root 1.8 =item $handle->on_error ($cb)
350 elmex 1.1
351 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
352 elmex 1.1
353 root 1.8 =cut
354    
355     sub on_error {
356     $_[0]{on_error} = $_[1];
357     }
358    
359     =item $handle->on_eof ($cb)
360    
361     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
362 elmex 1.1
363     =cut
364    
365 root 1.8 sub on_eof {
366     $_[0]{on_eof} = $_[1];
367     }
368    
369 root 1.43 =item $handle->on_timeout ($cb)
370    
371 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
372     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
373     argument and method.
374 root 1.43
375     =cut
376    
377     sub on_timeout {
378     $_[0]{on_timeout} = $_[1];
379     }
380    
381 root 1.70 =item $handle->autocork ($boolean)
382    
383     Enables or disables the current autocork behaviour (see C<autocork>
384 root 1.105 constructor argument). Changes will only take effect on the next write.
385 root 1.70
386     =cut
387    
388 root 1.105 sub autocork {
389     $_[0]{autocork} = $_[1];
390     }
391    
392 root 1.70 =item $handle->no_delay ($boolean)
393    
394     Enables or disables the C<no_delay> setting (see constructor argument of
395     the same name for details).
396    
397     =cut
398    
399     sub no_delay {
400     $_[0]{no_delay} = $_[1];
401    
402     eval {
403     local $SIG{__DIE__};
404     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
405     };
406     }
407    
408 root 1.43 #############################################################################
409    
410     =item $handle->timeout ($seconds)
411    
412     Configures (or disables) the inactivity timeout.
413    
414     =cut
415    
416     sub timeout {
417     my ($self, $timeout) = @_;
418    
419     $self->{timeout} = $timeout;
420     $self->_timeout;
421     }
422    
423     # reset the timeout watcher, as neccessary
424     # also check for time-outs
425     sub _timeout {
426     my ($self) = @_;
427    
428     if ($self->{timeout}) {
429 root 1.44 my $NOW = AnyEvent->now;
430 root 1.43
431     # when would the timeout trigger?
432     my $after = $self->{_activity} + $self->{timeout} - $NOW;
433    
434     # now or in the past already?
435     if ($after <= 0) {
436     $self->{_activity} = $NOW;
437    
438     if ($self->{on_timeout}) {
439 root 1.48 $self->{on_timeout}($self);
440 root 1.43 } else {
441 root 1.52 $self->_error (&Errno::ETIMEDOUT);
442 root 1.43 }
443    
444 root 1.56 # callback could have changed timeout value, optimise
445 root 1.43 return unless $self->{timeout};
446    
447     # calculate new after
448     $after = $self->{timeout};
449     }
450    
451     Scalar::Util::weaken $self;
452 root 1.56 return unless $self; # ->error could have destroyed $self
453 root 1.43
454     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
455     delete $self->{_tw};
456     $self->_timeout;
457     });
458     } else {
459     delete $self->{_tw};
460     }
461     }
462    
463 root 1.9 #############################################################################
464    
465     =back
466    
467     =head2 WRITE QUEUE
468    
469     AnyEvent::Handle manages two queues per handle, one for writing and one
470     for reading.
471    
472     The write queue is very simple: you can add data to its end, and
473     AnyEvent::Handle will automatically try to get rid of it for you.
474    
475 elmex 1.20 When data could be written and the write buffer is shorter then the low
476 root 1.9 water mark, the C<on_drain> callback will be invoked.
477    
478     =over 4
479    
480 root 1.8 =item $handle->on_drain ($cb)
481    
482     Sets the C<on_drain> callback or clears it (see the description of
483     C<on_drain> in the constructor).
484    
485     =cut
486    
487     sub on_drain {
488 elmex 1.1 my ($self, $cb) = @_;
489    
490 root 1.8 $self->{on_drain} = $cb;
491    
492     $cb->($self)
493 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
494 root 1.8 }
495    
496     =item $handle->push_write ($data)
497    
498     Queues the given scalar to be written. You can push as much data as you
499     want (only limited by the available memory), as C<AnyEvent::Handle>
500     buffers it independently of the kernel.
501    
502     =cut
503    
504 root 1.17 sub _drain_wbuf {
505     my ($self) = @_;
506 root 1.8
507 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
508 root 1.35
509 root 1.8 Scalar::Util::weaken $self;
510 root 1.35
511 root 1.8 my $cb = sub {
512     my $len = syswrite $self->{fh}, $self->{wbuf};
513    
514 root 1.29 if ($len >= 0) {
515 root 1.8 substr $self->{wbuf}, 0, $len, "";
516    
517 root 1.44 $self->{_activity} = AnyEvent->now;
518 root 1.43
519 root 1.8 $self->{on_drain}($self)
520 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
521 root 1.8 && $self->{on_drain};
522    
523 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
524 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
525 root 1.52 $self->_error ($!, 1);
526 elmex 1.1 }
527 root 1.8 };
528    
529 root 1.35 # try to write data immediately
530 root 1.70 $cb->() unless $self->{autocork};
531 root 1.8
532 root 1.35 # if still data left in wbuf, we need to poll
533 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
534 root 1.35 if length $self->{wbuf};
535 root 1.8 };
536     }
537    
538 root 1.30 our %WH;
539    
540     sub register_write_type($$) {
541     $WH{$_[0]} = $_[1];
542     }
543    
544 root 1.17 sub push_write {
545     my $self = shift;
546    
547 root 1.29 if (@_ > 1) {
548     my $type = shift;
549    
550     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
551     ->($self, @_);
552     }
553    
554 root 1.93 if ($self->{tls}) {
555     $self->{_tls_wbuf} .= $_[0];
556 root 1.97
557 root 1.93 &_dotls ($self);
558 root 1.17 } else {
559     $self->{wbuf} .= $_[0];
560     $self->_drain_wbuf;
561     }
562     }
563    
564 root 1.29 =item $handle->push_write (type => @args)
565    
566     Instead of formatting your data yourself, you can also let this module do
567     the job by specifying a type and type-specific arguments.
568    
569 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
570     drop by and tell us):
571 root 1.29
572     =over 4
573    
574     =item netstring => $string
575    
576     Formats the given value as netstring
577     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
578    
579     =cut
580    
581     register_write_type netstring => sub {
582     my ($self, $string) = @_;
583    
584 root 1.96 (length $string) . ":$string,"
585 root 1.29 };
586    
587 root 1.61 =item packstring => $format, $data
588    
589     An octet string prefixed with an encoded length. The encoding C<$format>
590     uses the same format as a Perl C<pack> format, but must specify a single
591     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
592     optional C<!>, C<< < >> or C<< > >> modifier).
593    
594     =cut
595    
596     register_write_type packstring => sub {
597     my ($self, $format, $string) = @_;
598    
599 root 1.65 pack "$format/a*", $string
600 root 1.61 };
601    
602 root 1.39 =item json => $array_or_hashref
603    
604 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
605     provide your own JSON object, this means it will be encoded to JSON text
606     in UTF-8.
607    
608     JSON objects (and arrays) are self-delimiting, so you can write JSON at
609     one end of a handle and read them at the other end without using any
610     additional framing.
611    
612 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
613     this module doesn't need delimiters after or between JSON texts to be
614     able to read them, many other languages depend on that.
615    
616     A simple RPC protocol that interoperates easily with others is to send
617     JSON arrays (or objects, although arrays are usually the better choice as
618     they mimic how function argument passing works) and a newline after each
619     JSON text:
620    
621     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
622     $handle->push_write ("\012");
623    
624     An AnyEvent::Handle receiver would simply use the C<json> read type and
625     rely on the fact that the newline will be skipped as leading whitespace:
626    
627     $handle->push_read (json => sub { my $array = $_[1]; ... });
628    
629     Other languages could read single lines terminated by a newline and pass
630     this line into their JSON decoder of choice.
631    
632 root 1.40 =cut
633    
634     register_write_type json => sub {
635     my ($self, $ref) = @_;
636    
637     require JSON;
638    
639     $self->{json} ? $self->{json}->encode ($ref)
640     : JSON::encode_json ($ref)
641     };
642    
643 root 1.63 =item storable => $reference
644    
645     Freezes the given reference using L<Storable> and writes it to the
646     handle. Uses the C<nfreeze> format.
647    
648     =cut
649    
650     register_write_type storable => sub {
651     my ($self, $ref) = @_;
652    
653     require Storable;
654    
655 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
656 root 1.63 };
657    
658 root 1.53 =back
659    
660 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
661 root 1.30
662     This function (not method) lets you add your own types to C<push_write>.
663     Whenever the given C<type> is used, C<push_write> will invoke the code
664     reference with the handle object and the remaining arguments.
665 root 1.29
666 root 1.30 The code reference is supposed to return a single octet string that will
667     be appended to the write buffer.
668 root 1.29
669 root 1.30 Note that this is a function, and all types registered this way will be
670     global, so try to use unique names.
671 root 1.29
672 root 1.30 =cut
673 root 1.29
674 root 1.8 #############################################################################
675    
676 root 1.9 =back
677    
678     =head2 READ QUEUE
679    
680     AnyEvent::Handle manages two queues per handle, one for writing and one
681     for reading.
682    
683     The read queue is more complex than the write queue. It can be used in two
684     ways, the "simple" way, using only C<on_read> and the "complex" way, using
685     a queue.
686    
687     In the simple case, you just install an C<on_read> callback and whenever
688     new data arrives, it will be called. You can then remove some data (if
689 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
690     leave the data there if you want to accumulate more (e.g. when only a
691     partial message has been received so far).
692 root 1.9
693     In the more complex case, you want to queue multiple callbacks. In this
694     case, AnyEvent::Handle will call the first queued callback each time new
695 root 1.61 data arrives (also the first time it is queued) and removes it when it has
696     done its job (see C<push_read>, below).
697 root 1.9
698     This way you can, for example, push three line-reads, followed by reading
699     a chunk of data, and AnyEvent::Handle will execute them in order.
700    
701     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
702     the specified number of bytes which give an XML datagram.
703    
704     # in the default state, expect some header bytes
705     $handle->on_read (sub {
706     # some data is here, now queue the length-header-read (4 octets)
707 root 1.52 shift->unshift_read (chunk => 4, sub {
708 root 1.9 # header arrived, decode
709     my $len = unpack "N", $_[1];
710    
711     # now read the payload
712 root 1.52 shift->unshift_read (chunk => $len, sub {
713 root 1.9 my $xml = $_[1];
714     # handle xml
715     });
716     });
717     });
718    
719 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
720     and another line or "ERROR" for the first request that is sent, and 64
721     bytes for the second request. Due to the availability of a queue, we can
722     just pipeline sending both requests and manipulate the queue as necessary
723     in the callbacks.
724    
725     When the first callback is called and sees an "OK" response, it will
726     C<unshift> another line-read. This line-read will be queued I<before> the
727     64-byte chunk callback.
728 root 1.9
729 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
730 root 1.9 $handle->push_write ("request 1\015\012");
731    
732     # we expect "ERROR" or "OK" as response, so push a line read
733 root 1.52 $handle->push_read (line => sub {
734 root 1.9 # if we got an "OK", we have to _prepend_ another line,
735     # so it will be read before the second request reads its 64 bytes
736     # which are already in the queue when this callback is called
737     # we don't do this in case we got an error
738     if ($_[1] eq "OK") {
739 root 1.52 $_[0]->unshift_read (line => sub {
740 root 1.9 my $response = $_[1];
741     ...
742     });
743     }
744     });
745    
746 root 1.69 # request two, simply returns 64 octets
747 root 1.9 $handle->push_write ("request 2\015\012");
748    
749     # simply read 64 bytes, always
750 root 1.52 $handle->push_read (chunk => 64, sub {
751 root 1.9 my $response = $_[1];
752     ...
753     });
754    
755     =over 4
756    
757 root 1.10 =cut
758    
759 root 1.8 sub _drain_rbuf {
760     my ($self) = @_;
761 elmex 1.1
762 root 1.59 local $self->{_in_drain} = 1;
763    
764 root 1.17 if (
765     defined $self->{rbuf_max}
766     && $self->{rbuf_max} < length $self->{rbuf}
767     ) {
768 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
769 root 1.17 }
770    
771 root 1.59 while () {
772     my $len = length $self->{rbuf};
773 elmex 1.1
774 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
775 root 1.29 unless ($cb->($self)) {
776 root 1.38 if ($self->{_eof}) {
777 root 1.10 # no progress can be made (not enough data and no data forthcoming)
778 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
779 root 1.10 }
780    
781 root 1.38 unshift @{ $self->{_queue} }, $cb;
782 root 1.55 last;
783 root 1.8 }
784     } elsif ($self->{on_read}) {
785 root 1.61 last unless $len;
786    
787 root 1.8 $self->{on_read}($self);
788    
789     if (
790 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
791     && !@{ $self->{_queue} } # and the queue is still empty
792     && $self->{on_read} # but we still have on_read
793 root 1.8 ) {
794 root 1.55 # no further data will arrive
795     # so no progress can be made
796 root 1.82 $self->_error (&Errno::EPIPE, 1), return
797 root 1.55 if $self->{_eof};
798    
799     last; # more data might arrive
800 elmex 1.1 }
801 root 1.8 } else {
802     # read side becomes idle
803 root 1.93 delete $self->{_rw} unless $self->{tls};
804 root 1.55 last;
805 root 1.8 }
806     }
807    
808 root 1.80 if ($self->{_eof}) {
809     if ($self->{on_eof}) {
810     $self->{on_eof}($self)
811     } else {
812     $self->_error (0, 1);
813     }
814     }
815 root 1.55
816     # may need to restart read watcher
817     unless ($self->{_rw}) {
818     $self->start_read
819     if $self->{on_read} || @{ $self->{_queue} };
820     }
821 elmex 1.1 }
822    
823 root 1.8 =item $handle->on_read ($cb)
824 elmex 1.1
825 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
826     the new callback is C<undef>). See the description of C<on_read> in the
827     constructor.
828 elmex 1.1
829 root 1.8 =cut
830    
831     sub on_read {
832     my ($self, $cb) = @_;
833 elmex 1.1
834 root 1.8 $self->{on_read} = $cb;
835 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
836 elmex 1.1 }
837    
838 root 1.8 =item $handle->rbuf
839    
840     Returns the read buffer (as a modifiable lvalue).
841 elmex 1.1
842 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
843     you want.
844 elmex 1.1
845 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
846     C<push_read> or C<unshift_read> methods are used. The other read methods
847     automatically manage the read buffer.
848 elmex 1.1
849     =cut
850    
851 elmex 1.2 sub rbuf : lvalue {
852 root 1.8 $_[0]{rbuf}
853 elmex 1.2 }
854 elmex 1.1
855 root 1.8 =item $handle->push_read ($cb)
856    
857     =item $handle->unshift_read ($cb)
858    
859     Append the given callback to the end of the queue (C<push_read>) or
860     prepend it (C<unshift_read>).
861    
862     The callback is called each time some additional read data arrives.
863 elmex 1.1
864 elmex 1.20 It must check whether enough data is in the read buffer already.
865 elmex 1.1
866 root 1.8 If not enough data is available, it must return the empty list or a false
867     value, in which case it will be called repeatedly until enough data is
868     available (or an error condition is detected).
869    
870     If enough data was available, then the callback must remove all data it is
871     interested in (which can be none at all) and return a true value. After returning
872     true, it will be removed from the queue.
873 elmex 1.1
874     =cut
875    
876 root 1.30 our %RH;
877    
878     sub register_read_type($$) {
879     $RH{$_[0]} = $_[1];
880     }
881    
882 root 1.8 sub push_read {
883 root 1.28 my $self = shift;
884     my $cb = pop;
885    
886     if (@_) {
887     my $type = shift;
888    
889     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
890     ->($self, $cb, @_);
891     }
892 elmex 1.1
893 root 1.38 push @{ $self->{_queue} }, $cb;
894 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
895 elmex 1.1 }
896    
897 root 1.8 sub unshift_read {
898 root 1.28 my $self = shift;
899     my $cb = pop;
900    
901     if (@_) {
902     my $type = shift;
903    
904     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
905     ->($self, $cb, @_);
906     }
907    
908 root 1.8
909 root 1.38 unshift @{ $self->{_queue} }, $cb;
910 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
911 root 1.8 }
912 elmex 1.1
913 root 1.28 =item $handle->push_read (type => @args, $cb)
914 elmex 1.1
915 root 1.28 =item $handle->unshift_read (type => @args, $cb)
916 elmex 1.1
917 root 1.28 Instead of providing a callback that parses the data itself you can chose
918     between a number of predefined parsing formats, for chunks of data, lines
919     etc.
920 elmex 1.1
921 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
922     drop by and tell us):
923 root 1.28
924     =over 4
925    
926 root 1.40 =item chunk => $octets, $cb->($handle, $data)
927 root 1.28
928     Invoke the callback only once C<$octets> bytes have been read. Pass the
929     data read to the callback. The callback will never be called with less
930     data.
931    
932     Example: read 2 bytes.
933    
934     $handle->push_read (chunk => 2, sub {
935     warn "yay ", unpack "H*", $_[1];
936     });
937 elmex 1.1
938     =cut
939    
940 root 1.28 register_read_type chunk => sub {
941     my ($self, $cb, $len) = @_;
942 elmex 1.1
943 root 1.8 sub {
944     $len <= length $_[0]{rbuf} or return;
945 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
946 root 1.8 1
947     }
948 root 1.28 };
949 root 1.8
950 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
951 elmex 1.1
952 root 1.8 The callback will be called only once a full line (including the end of
953     line marker, C<$eol>) has been read. This line (excluding the end of line
954     marker) will be passed to the callback as second argument (C<$line>), and
955     the end of line marker as the third argument (C<$eol>).
956 elmex 1.1
957 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
958     will be interpreted as a fixed record end marker, or it can be a regex
959     object (e.g. created by C<qr>), in which case it is interpreted as a
960     regular expression.
961 elmex 1.1
962 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
963     undef), then C<qr|\015?\012|> is used (which is good for most internet
964     protocols).
965 elmex 1.1
966 root 1.8 Partial lines at the end of the stream will never be returned, as they are
967     not marked by the end of line marker.
968 elmex 1.1
969 root 1.8 =cut
970 elmex 1.1
971 root 1.28 register_read_type line => sub {
972     my ($self, $cb, $eol) = @_;
973 elmex 1.1
974 root 1.76 if (@_ < 3) {
975     # this is more than twice as fast as the generic code below
976     sub {
977     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
978 elmex 1.1
979 root 1.76 $cb->($_[0], $1, $2);
980     1
981     }
982     } else {
983     $eol = quotemeta $eol unless ref $eol;
984     $eol = qr|^(.*?)($eol)|s;
985    
986     sub {
987     $_[0]{rbuf} =~ s/$eol// or return;
988 elmex 1.1
989 root 1.76 $cb->($_[0], $1, $2);
990     1
991     }
992 root 1.8 }
993 root 1.28 };
994 elmex 1.1
995 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
996 root 1.36
997     Makes a regex match against the regex object C<$accept> and returns
998     everything up to and including the match.
999    
1000     Example: read a single line terminated by '\n'.
1001    
1002     $handle->push_read (regex => qr<\n>, sub { ... });
1003    
1004     If C<$reject> is given and not undef, then it determines when the data is
1005     to be rejected: it is matched against the data when the C<$accept> regex
1006     does not match and generates an C<EBADMSG> error when it matches. This is
1007     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1008     receive buffer overflow).
1009    
1010     Example: expect a single decimal number followed by whitespace, reject
1011     anything else (not the use of an anchor).
1012    
1013     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1014    
1015     If C<$skip> is given and not C<undef>, then it will be matched against
1016     the receive buffer when neither C<$accept> nor C<$reject> match,
1017     and everything preceding and including the match will be accepted
1018     unconditionally. This is useful to skip large amounts of data that you
1019     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1020     have to start matching from the beginning. This is purely an optimisation
1021     and is usually worth only when you expect more than a few kilobytes.
1022    
1023     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1024     expect the header to be very large (it isn't in practise, but...), we use
1025     a skip regex to skip initial portions. The skip regex is tricky in that
1026     it only accepts something not ending in either \015 or \012, as these are
1027     required for the accept regex.
1028    
1029     $handle->push_read (regex =>
1030     qr<\015\012\015\012>,
1031     undef, # no reject
1032     qr<^.*[^\015\012]>,
1033     sub { ... });
1034    
1035     =cut
1036    
1037     register_read_type regex => sub {
1038     my ($self, $cb, $accept, $reject, $skip) = @_;
1039    
1040     my $data;
1041     my $rbuf = \$self->{rbuf};
1042    
1043     sub {
1044     # accept
1045     if ($$rbuf =~ $accept) {
1046     $data .= substr $$rbuf, 0, $+[0], "";
1047     $cb->($self, $data);
1048     return 1;
1049     }
1050    
1051     # reject
1052     if ($reject && $$rbuf =~ $reject) {
1053 root 1.52 $self->_error (&Errno::EBADMSG);
1054 root 1.36 }
1055    
1056     # skip
1057     if ($skip && $$rbuf =~ $skip) {
1058     $data .= substr $$rbuf, 0, $+[0], "";
1059     }
1060    
1061     ()
1062     }
1063     };
1064    
1065 root 1.61 =item netstring => $cb->($handle, $string)
1066    
1067     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1068    
1069     Throws an error with C<$!> set to EBADMSG on format violations.
1070    
1071     =cut
1072    
1073     register_read_type netstring => sub {
1074     my ($self, $cb) = @_;
1075    
1076     sub {
1077     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078     if ($_[0]{rbuf} =~ /[^0-9]/) {
1079     $self->_error (&Errno::EBADMSG);
1080     }
1081     return;
1082     }
1083    
1084     my $len = $1;
1085    
1086     $self->unshift_read (chunk => $len, sub {
1087     my $string = $_[1];
1088     $_[0]->unshift_read (chunk => 1, sub {
1089     if ($_[1] eq ",") {
1090     $cb->($_[0], $string);
1091     } else {
1092     $self->_error (&Errno::EBADMSG);
1093     }
1094     });
1095     });
1096    
1097     1
1098     }
1099     };
1100    
1101     =item packstring => $format, $cb->($handle, $string)
1102    
1103     An octet string prefixed with an encoded length. The encoding C<$format>
1104     uses the same format as a Perl C<pack> format, but must specify a single
1105     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1106     optional C<!>, C<< < >> or C<< > >> modifier).
1107    
1108 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1109     EPP uses a prefix of C<N> (4 octtes).
1110 root 1.61
1111     Example: read a block of data prefixed by its length in BER-encoded
1112     format (very efficient).
1113    
1114     $handle->push_read (packstring => "w", sub {
1115     my ($handle, $data) = @_;
1116     });
1117    
1118     =cut
1119    
1120     register_read_type packstring => sub {
1121     my ($self, $cb, $format) = @_;
1122    
1123     sub {
1124     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1125 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1126 root 1.61 or return;
1127    
1128 root 1.77 $format = length pack $format, $len;
1129 root 1.61
1130 root 1.77 # bypass unshift if we already have the remaining chunk
1131     if ($format + $len <= length $_[0]{rbuf}) {
1132     my $data = substr $_[0]{rbuf}, $format, $len;
1133     substr $_[0]{rbuf}, 0, $format + $len, "";
1134     $cb->($_[0], $data);
1135     } else {
1136     # remove prefix
1137     substr $_[0]{rbuf}, 0, $format, "";
1138    
1139     # read remaining chunk
1140     $_[0]->unshift_read (chunk => $len, $cb);
1141     }
1142 root 1.61
1143     1
1144     }
1145     };
1146    
1147 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1148    
1149     Reads a JSON object or array, decodes it and passes it to the callback.
1150    
1151     If a C<json> object was passed to the constructor, then that will be used
1152     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1153    
1154     This read type uses the incremental parser available with JSON version
1155     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1156     dependency on your own: this module will load the JSON module, but
1157     AnyEvent does not depend on it itself.
1158    
1159     Since JSON texts are fully self-delimiting, the C<json> read and write
1160 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1161     the C<json> write type description, above, for an actual example.
1162 root 1.40
1163     =cut
1164    
1165     register_read_type json => sub {
1166 root 1.63 my ($self, $cb) = @_;
1167 root 1.40
1168     require JSON;
1169    
1170     my $data;
1171     my $rbuf = \$self->{rbuf};
1172    
1173 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1174 root 1.40
1175     sub {
1176     my $ref = $json->incr_parse ($self->{rbuf});
1177    
1178     if ($ref) {
1179     $self->{rbuf} = $json->incr_text;
1180     $json->incr_text = "";
1181     $cb->($self, $ref);
1182    
1183     1
1184     } else {
1185     $self->{rbuf} = "";
1186     ()
1187     }
1188     }
1189     };
1190    
1191 root 1.63 =item storable => $cb->($handle, $ref)
1192    
1193     Deserialises a L<Storable> frozen representation as written by the
1194     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1195     data).
1196    
1197     Raises C<EBADMSG> error if the data could not be decoded.
1198    
1199     =cut
1200    
1201     register_read_type storable => sub {
1202     my ($self, $cb) = @_;
1203    
1204     require Storable;
1205    
1206     sub {
1207     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1208 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1209 root 1.63 or return;
1210    
1211 root 1.77 my $format = length pack "w", $len;
1212 root 1.63
1213 root 1.77 # bypass unshift if we already have the remaining chunk
1214     if ($format + $len <= length $_[0]{rbuf}) {
1215     my $data = substr $_[0]{rbuf}, $format, $len;
1216     substr $_[0]{rbuf}, 0, $format + $len, "";
1217     $cb->($_[0], Storable::thaw ($data));
1218     } else {
1219     # remove prefix
1220     substr $_[0]{rbuf}, 0, $format, "";
1221    
1222     # read remaining chunk
1223     $_[0]->unshift_read (chunk => $len, sub {
1224     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1225     $cb->($_[0], $ref);
1226     } else {
1227     $self->_error (&Errno::EBADMSG);
1228     }
1229     });
1230     }
1231    
1232     1
1233 root 1.63 }
1234     };
1235    
1236 root 1.28 =back
1237    
1238 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1239 root 1.30
1240     This function (not method) lets you add your own types to C<push_read>.
1241    
1242     Whenever the given C<type> is used, C<push_read> will invoke the code
1243     reference with the handle object, the callback and the remaining
1244     arguments.
1245    
1246     The code reference is supposed to return a callback (usually a closure)
1247     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1248    
1249     It should invoke the passed callback when it is done reading (remember to
1250 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1251 root 1.30
1252     Note that this is a function, and all types registered this way will be
1253     global, so try to use unique names.
1254    
1255     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1256     search for C<register_read_type>)).
1257    
1258 root 1.10 =item $handle->stop_read
1259    
1260     =item $handle->start_read
1261    
1262 root 1.18 In rare cases you actually do not want to read anything from the
1263 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1264 root 1.22 any queued callbacks will be executed then. To start reading again, call
1265 root 1.10 C<start_read>.
1266    
1267 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1268     you change the C<on_read> callback or push/unshift a read callback, and it
1269     will automatically C<stop_read> for you when neither C<on_read> is set nor
1270     there are any read requests in the queue.
1271    
1272 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1273     half-duplex connections).
1274    
1275 root 1.10 =cut
1276    
1277     sub stop_read {
1278     my ($self) = @_;
1279 elmex 1.1
1280 root 1.93 delete $self->{_rw} unless $self->{tls};
1281 root 1.8 }
1282 elmex 1.1
1283 root 1.10 sub start_read {
1284     my ($self) = @_;
1285    
1286 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1287 root 1.10 Scalar::Util::weaken $self;
1288    
1289 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1290 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1291 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1292 root 1.10
1293     if ($len > 0) {
1294 root 1.44 $self->{_activity} = AnyEvent->now;
1295 root 1.43
1296 root 1.93 if ($self->{tls}) {
1297     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1298 root 1.97
1299 root 1.93 &_dotls ($self);
1300     } else {
1301     $self->_drain_rbuf unless $self->{_in_drain};
1302     }
1303 root 1.10
1304     } elsif (defined $len) {
1305 root 1.38 delete $self->{_rw};
1306     $self->{_eof} = 1;
1307 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1308 root 1.10
1309 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1310 root 1.52 return $self->_error ($!, 1);
1311 root 1.10 }
1312     });
1313     }
1314 elmex 1.1 }
1315    
1316 root 1.97 # poll the write BIO and send the data if applicable
1317 root 1.19 sub _dotls {
1318     my ($self) = @_;
1319    
1320 root 1.97 my $tmp;
1321 root 1.56
1322 root 1.38 if (length $self->{_tls_wbuf}) {
1323 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1324     substr $self->{_tls_wbuf}, 0, $tmp, "";
1325 root 1.22 }
1326 root 1.19 }
1327    
1328 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1329     unless (length $tmp) {
1330 root 1.56 # let's treat SSL-eof as we treat normal EOF
1331 root 1.91 delete $self->{_rw};
1332 root 1.56 $self->{_eof} = 1;
1333 root 1.92 &_freetls;
1334 root 1.56 }
1335 root 1.91
1336 root 1.97 $self->{rbuf} .= $tmp;
1337 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1338 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1339 root 1.23 }
1340    
1341 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1342 root 1.24
1343 root 1.97 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1344     if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1345 root 1.52 return $self->_error ($!, 1);
1346 root 1.97 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1347 root 1.52 return $self->_error (&Errno::EIO, 1);
1348 root 1.19 }
1349 root 1.23
1350 root 1.97 # all other errors are fine for our purposes
1351 root 1.19 }
1352 root 1.91
1353 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1354     $self->{wbuf} .= $tmp;
1355 root 1.91 $self->_drain_wbuf;
1356     }
1357 root 1.19 }
1358    
1359 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1360    
1361     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1362     object is created, you can also do that at a later time by calling
1363     C<starttls>.
1364    
1365     The first argument is the same as the C<tls> constructor argument (either
1366     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1367    
1368     The second argument is the optional C<Net::SSLeay::CTX> object that is
1369     used when AnyEvent::Handle has to create its own TLS connection object.
1370    
1371 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1372     call and can be used or changed to your liking. Note that the handshake
1373     might have already started when this function returns.
1374    
1375 root 1.92 If it an error to start a TLS handshake more than once per
1376     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1377    
1378 root 1.25 =cut
1379    
1380 root 1.19 sub starttls {
1381     my ($self, $ssl, $ctx) = @_;
1382    
1383 root 1.94 require Net::SSLeay;
1384    
1385 root 1.102 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1386 root 1.92 if $self->{tls};
1387    
1388 root 1.19 if ($ssl eq "accept") {
1389     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1390     Net::SSLeay::set_accept_state ($ssl);
1391     } elsif ($ssl eq "connect") {
1392     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1393     Net::SSLeay::set_connect_state ($ssl);
1394     }
1395    
1396     $self->{tls} = $ssl;
1397    
1398 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1399     # but the openssl maintainers basically said: "trust us, it just works".
1400     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1401     # and mismaintained ssleay-module doesn't even offer them).
1402 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1403 root 1.87 #
1404     # in short: this is a mess.
1405     #
1406 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1407 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1408 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1409     # have identity issues in that area.
1410 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1411 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1412     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1413 root 1.21
1414 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1415     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1416 root 1.19
1417 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1418 root 1.19
1419 root 1.93 &_dotls; # need to trigger the initial handshake
1420     $self->start_read; # make sure we actually do read
1421 root 1.19 }
1422    
1423 root 1.25 =item $handle->stoptls
1424    
1425 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1426     sending a close notify to the other side, but since OpenSSL doesn't
1427     support non-blocking shut downs, it is not possible to re-use the stream
1428     afterwards.
1429 root 1.25
1430     =cut
1431    
1432     sub stoptls {
1433     my ($self) = @_;
1434    
1435 root 1.92 if ($self->{tls}) {
1436 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1437 root 1.92
1438     &_dotls;
1439    
1440     # we don't give a shit. no, we do, but we can't. no...
1441     # we, we... have to use openssl :/
1442     &_freetls;
1443     }
1444     }
1445    
1446     sub _freetls {
1447     my ($self) = @_;
1448    
1449     return unless $self->{tls};
1450 root 1.38
1451 root 1.92 Net::SSLeay::free (delete $self->{tls});
1452    
1453 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1454 root 1.25 }
1455    
1456 root 1.19 sub DESTROY {
1457     my $self = shift;
1458    
1459 root 1.92 &_freetls;
1460 root 1.62
1461     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1462    
1463     if ($linger && length $self->{wbuf}) {
1464     my $fh = delete $self->{fh};
1465     my $wbuf = delete $self->{wbuf};
1466    
1467     my @linger;
1468    
1469     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1470     my $len = syswrite $fh, $wbuf, length $wbuf;
1471    
1472     if ($len > 0) {
1473     substr $wbuf, 0, $len, "";
1474     } else {
1475     @linger = (); # end
1476     }
1477     });
1478     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1479     @linger = ();
1480     });
1481     }
1482 root 1.19 }
1483    
1484 root 1.99 =item $handle->destroy
1485    
1486 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1487 root 1.99 no further callbacks will be invoked and resources will be freed as much
1488     as possible. You must not call any methods on the object afterwards.
1489    
1490 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1491     object and it will simply shut down. This works in fatal error and EOF
1492     callbacks, as well as code outside. It does I<NOT> work in a read or write
1493     callback, so when you want to destroy the AnyEvent::Handle object from
1494     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1495     that case.
1496    
1497 root 1.99 The handle might still linger in the background and write out remaining
1498     data, as specified by the C<linger> option, however.
1499    
1500     =cut
1501    
1502     sub destroy {
1503     my ($self) = @_;
1504    
1505     $self->DESTROY;
1506     %$self = ();
1507     }
1508    
1509 root 1.19 =item AnyEvent::Handle::TLS_CTX
1510    
1511     This function creates and returns the Net::SSLeay::CTX object used by
1512     default for TLS mode.
1513    
1514     The context is created like this:
1515    
1516     Net::SSLeay::load_error_strings;
1517     Net::SSLeay::SSLeay_add_ssl_algorithms;
1518     Net::SSLeay::randomize;
1519    
1520     my $CTX = Net::SSLeay::CTX_new;
1521    
1522     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1523    
1524     =cut
1525    
1526     our $TLS_CTX;
1527    
1528     sub TLS_CTX() {
1529     $TLS_CTX || do {
1530     require Net::SSLeay;
1531    
1532     Net::SSLeay::load_error_strings ();
1533     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1534     Net::SSLeay::randomize ();
1535    
1536     $TLS_CTX = Net::SSLeay::CTX_new ();
1537    
1538     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1539    
1540     $TLS_CTX
1541     }
1542     }
1543    
1544 elmex 1.1 =back
1545    
1546 root 1.95
1547     =head1 NONFREQUENTLY ASKED QUESTIONS
1548    
1549     =over 4
1550    
1551 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1552     still get further invocations!
1553    
1554     That's because AnyEvent::Handle keeps a reference to itself when handling
1555     read or write callbacks.
1556    
1557     It is only safe to "forget" the reference inside EOF or error callbacks,
1558     from within all other callbacks, you need to explicitly call the C<<
1559     ->destroy >> method.
1560    
1561     =item I get different callback invocations in TLS mode/Why can't I pause
1562     reading?
1563    
1564     Unlike, say, TCP, TLS connections do not consist of two independent
1565     communication channels, one for each direction. Or put differently. The
1566     read and write directions are not independent of each other: you cannot
1567     write data unless you are also prepared to read, and vice versa.
1568    
1569     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1570     callback invocations when you are not expecting any read data - the reason
1571     is that AnyEvent::Handle always reads in TLS mode.
1572    
1573     During the connection, you have to make sure that you always have a
1574     non-empty read-queue, or an C<on_read> watcher. At the end of the
1575     connection (or when you no longer want to use it) you can call the
1576     C<destroy> method.
1577    
1578 root 1.95 =item How do I read data until the other side closes the connection?
1579    
1580 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1581     to achieve this is by setting an C<on_read> callback that does nothing,
1582     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1583     will be in C<$_[0]{rbuf}>:
1584 root 1.95
1585     $handle->on_read (sub { });
1586     $handle->on_eof (undef);
1587     $handle->on_error (sub {
1588     my $data = delete $_[0]{rbuf};
1589     undef $handle;
1590     });
1591    
1592     The reason to use C<on_error> is that TCP connections, due to latencies
1593     and packets loss, might get closed quite violently with an error, when in
1594     fact, all data has been received.
1595    
1596 root 1.101 It is usually better to use acknowledgements when transferring data,
1597 root 1.95 to make sure the other side hasn't just died and you got the data
1598     intact. This is also one reason why so many internet protocols have an
1599     explicit QUIT command.
1600    
1601 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1602     all data has been written?
1603 root 1.95
1604     After writing your last bits of data, set the C<on_drain> callback
1605     and destroy the handle in there - with the default setting of
1606     C<low_water_mark> this will be called precisely when all data has been
1607     written to the socket:
1608    
1609     $handle->push_write (...);
1610     $handle->on_drain (sub {
1611     warn "all data submitted to the kernel\n";
1612     undef $handle;
1613     });
1614    
1615     =back
1616    
1617    
1618 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1619    
1620     In many cases, you might want to subclass AnyEvent::Handle.
1621    
1622     To make this easier, a given version of AnyEvent::Handle uses these
1623     conventions:
1624    
1625     =over 4
1626    
1627     =item * all constructor arguments become object members.
1628    
1629     At least initially, when you pass a C<tls>-argument to the constructor it
1630 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1631 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1632    
1633     =item * other object member names are prefixed with an C<_>.
1634    
1635     All object members not explicitly documented (internal use) are prefixed
1636     with an underscore character, so the remaining non-C<_>-namespace is free
1637     for use for subclasses.
1638    
1639     =item * all members not documented here and not prefixed with an underscore
1640     are free to use in subclasses.
1641    
1642     Of course, new versions of AnyEvent::Handle may introduce more "public"
1643     member variables, but thats just life, at least it is documented.
1644    
1645     =back
1646    
1647 elmex 1.1 =head1 AUTHOR
1648    
1649 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1650 elmex 1.1
1651     =cut
1652    
1653     1; # End of AnyEvent::Handle