ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.129
Committed: Mon Jun 29 11:04:09 2009 UTC (14 years, 11 months ago) by root
Branch: MAIN
Changes since 1.128: +1 -7 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.128 our $VERSION = 4.42;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32 root 1.107 $cv->send;
33 elmex 1.2 },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68     =item B<new (%args)>
69    
70 root 1.8 The constructor supports these arguments (all as key => value pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.8 =item fh => $filehandle [MANDATORY]
75 elmex 1.1
76     The filehandle this L<AnyEvent::Handle> object will operate on.
77    
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.40 =item on_eof => $cb->($handle)
83 root 1.10
84 root 1.74 Set the callback to be called when an end-of-file condition is detected,
85 root 1.52 i.e. in the case of a socket, when the other side has closed the
86     connection cleanly.
87 root 1.8
88 root 1.82 For sockets, this just means that the other side has stopped sending data,
89 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
90 root 1.82 callback and continue writing data, as only the read part has been shut
91     down.
92    
93 root 1.101 While not mandatory, it is I<highly> recommended to set an EOF callback,
94 root 1.16 otherwise you might end up with a closed socket while you are still
95     waiting for data.
96    
97 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
98     set, then a fatal error will be raised with C<$!> set to <0>.
99    
100 root 1.52 =item on_error => $cb->($handle, $fatal)
101 root 1.10
102 root 1.52 This is the error callback, which is called when, well, some error
103     occured, such as not being able to resolve the hostname, failure to
104     connect or a read error.
105    
106     Some errors are fatal (which is indicated by C<$fatal> being true). On
107 root 1.82 fatal errors the handle object will be shut down and will not be usable
108 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
110     (C<EPIPE>) or I/O errors.
111    
112     Non-fatal errors can be retried by simply returning, but it is recommended
113     to simply ignore this parameter and instead abondon the handle object
114     when this callback is invoked. Examples of non-fatal errors are timeouts
115     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 root 1.8
117 root 1.10 On callback entrance, the value of C<$!> contains the operating system
118 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119 root 1.8
120 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
121     you will not be notified of errors otherwise. The default simply calls
122 root 1.52 C<croak>.
123 root 1.8
124 root 1.40 =item on_read => $cb->($handle)
125 root 1.8
126     This sets the default read callback, which is called when data arrives
127 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
128     callback will only be called when at least one octet of data is in the
129     read buffer).
130 root 1.8
131     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132 root 1.117 method or access the C<$handle->{rbuf}> member directly. Note that you
133     must not enlarge or modify the read buffer, you can only remove data at
134     the beginning from it.
135 root 1.8
136     When an EOF condition is detected then AnyEvent::Handle will first try to
137     feed all the remaining data to the queued callbacks and C<on_read> before
138     calling the C<on_eof> callback. If no progress can be made, then a fatal
139     error will be raised (with C<$!> set to C<EPIPE>).
140 elmex 1.1
141 root 1.40 =item on_drain => $cb->($handle)
142 elmex 1.1
143 root 1.8 This sets the callback that is called when the write buffer becomes empty
144     (or when the callback is set and the buffer is empty already).
145 elmex 1.1
146 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
147 elmex 1.2
148 root 1.69 This callback is useful when you don't want to put all of your write data
149     into the queue at once, for example, when you want to write the contents
150     of some file to the socket you might not want to read the whole file into
151     memory and push it into the queue, but instead only read more data from
152     the file when the write queue becomes empty.
153    
154 root 1.43 =item timeout => $fractional_seconds
155    
156     If non-zero, then this enables an "inactivity" timeout: whenever this many
157     seconds pass without a successful read or write on the underlying file
158     handle, the C<on_timeout> callback will be invoked (and if that one is
159 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
160 root 1.43
161     Note that timeout processing is also active when you currently do not have
162     any outstanding read or write requests: If you plan to keep the connection
163     idle then you should disable the timout temporarily or ignore the timeout
164 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
165     restart the timeout.
166 root 1.43
167     Zero (the default) disables this timeout.
168    
169     =item on_timeout => $cb->($handle)
170    
171     Called whenever the inactivity timeout passes. If you return from this
172     callback, then the timeout will be reset as if some activity had happened,
173     so this condition is not fatal in any way.
174    
175 root 1.8 =item rbuf_max => <bytes>
176 elmex 1.2
177 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
178     when the read buffer ever (strictly) exceeds this size. This is useful to
179 root 1.88 avoid some forms of denial-of-service attacks.
180 elmex 1.2
181 root 1.8 For example, a server accepting connections from untrusted sources should
182     be configured to accept only so-and-so much data that it cannot act on
183     (for example, when expecting a line, an attacker could send an unlimited
184     amount of data without a callback ever being called as long as the line
185     isn't finished).
186 elmex 1.2
187 root 1.70 =item autocork => <boolean>
188    
189     When disabled (the default), then C<push_write> will try to immediately
190 root 1.88 write the data to the handle, if possible. This avoids having to register
191     a write watcher and wait for the next event loop iteration, but can
192     be inefficient if you write multiple small chunks (on the wire, this
193     disadvantage is usually avoided by your kernel's nagle algorithm, see
194     C<no_delay>, but this option can save costly syscalls).
195 root 1.70
196     When enabled, then writes will always be queued till the next event loop
197     iteration. This is efficient when you do many small writes per iteration,
198 root 1.88 but less efficient when you do a single write only per iteration (or when
199     the write buffer often is full). It also increases write latency.
200 root 1.70
201     =item no_delay => <boolean>
202    
203     When doing small writes on sockets, your operating system kernel might
204     wait a bit for more data before actually sending it out. This is called
205     the Nagle algorithm, and usually it is beneficial.
206    
207 root 1.88 In some situations you want as low a delay as possible, which can be
208     accomplishd by setting this option to a true value.
209 root 1.70
210 root 1.88 The default is your opertaing system's default behaviour (most likely
211     enabled), this option explicitly enables or disables it, if possible.
212 root 1.70
213 root 1.8 =item read_size => <bytes>
214 elmex 1.2
215 root 1.88 The default read block size (the amount of bytes this module will
216     try to read during each loop iteration, which affects memory
217     requirements). Default: C<8192>.
218 root 1.8
219     =item low_water_mark => <bytes>
220    
221     Sets the amount of bytes (default: C<0>) that make up an "empty" write
222     buffer: If the write reaches this size or gets even samller it is
223     considered empty.
224 elmex 1.2
225 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
226     the write buffer before it is fully drained, but this is a rare case, as
227     the operating system kernel usually buffers data as well, so the default
228     is good in almost all cases.
229    
230 root 1.62 =item linger => <seconds>
231    
232     If non-zero (default: C<3600>), then the destructor of the
233 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
234     write data and will install a watcher that will write this data to the
235     socket. No errors will be reported (this mostly matches how the operating
236     system treats outstanding data at socket close time).
237 root 1.62
238 root 1.88 This will not work for partial TLS data that could not be encoded
239 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
240     help.
241 root 1.62
242 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
243    
244 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
245 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
246     established and will transparently encrypt/decrypt data afterwards.
247 root 1.19
248 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
249 root 1.88 automatically when you try to create a TLS handle): this module doesn't
250     have a dependency on that module, so if your module requires it, you have
251     to add the dependency yourself.
252 root 1.26
253 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
254     C<accept>, and for the TLS client side of a connection, use C<connect>
255     mode.
256 root 1.19
257     You can also provide your own TLS connection object, but you have
258     to make sure that you call either C<Net::SSLeay::set_connect_state>
259     or C<Net::SSLeay::set_accept_state> on it before you pass it to
260     AnyEvent::Handle.
261    
262 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
263     passing in the wrong integer will lead to certain crash. This most often
264     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
265     segmentation fault.
266    
267 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
268 root 1.26
269 root 1.19 =item tls_ctx => $ssl_ctx
270    
271 root 1.88 Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
272 root 1.19 (unless a connection object was specified directly). If this parameter is
273     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
274    
275 root 1.40 =item json => JSON or JSON::XS object
276    
277     This is the json coder object used by the C<json> read and write types.
278    
279 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
280 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
281     texts.
282 root 1.40
283     Note that you are responsible to depend on the JSON module if you want to
284     use this functionality, as AnyEvent does not have a dependency itself.
285    
286 elmex 1.1 =back
287    
288     =cut
289    
290     sub new {
291 root 1.8 my $class = shift;
292    
293     my $self = bless { @_ }, $class;
294    
295     $self->{fh} or Carp::croak "mandatory argument fh is missing";
296    
297     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
298 elmex 1.1
299 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
300     if $self->{tls};
301 root 1.19
302 root 1.44 $self->{_activity} = AnyEvent->now;
303 root 1.43 $self->_timeout;
304 elmex 1.1
305 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
306     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
307 root 1.10
308 root 1.66 $self->start_read
309 root 1.67 if $self->{on_read};
310 root 1.66
311 root 1.8 $self
312     }
313 elmex 1.2
314 root 1.8 sub _shutdown {
315     my ($self) = @_;
316 elmex 1.2
317 root 1.129 delete @$self{qw(_tw _rw _ww fh rbuf wbuf on_read _queue)};
318 root 1.52
319 root 1.92 &_freetls;
320 root 1.8 }
321    
322 root 1.52 sub _error {
323     my ($self, $errno, $fatal) = @_;
324 root 1.8
325 root 1.52 $self->_shutdown
326     if $fatal;
327 elmex 1.1
328 root 1.52 $! = $errno;
329 root 1.37
330 root 1.52 if ($self->{on_error}) {
331     $self->{on_error}($self, $fatal);
332 root 1.100 } elsif ($self->{fh}) {
333 root 1.52 Carp::croak "AnyEvent::Handle uncaught error: $!";
334     }
335 elmex 1.1 }
336    
337 root 1.8 =item $fh = $handle->fh
338 elmex 1.1
339 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
340 elmex 1.1
341     =cut
342    
343 root 1.38 sub fh { $_[0]{fh} }
344 elmex 1.1
345 root 1.8 =item $handle->on_error ($cb)
346 elmex 1.1
347 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
348 elmex 1.1
349 root 1.8 =cut
350    
351     sub on_error {
352     $_[0]{on_error} = $_[1];
353     }
354    
355     =item $handle->on_eof ($cb)
356    
357     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
358 elmex 1.1
359     =cut
360    
361 root 1.8 sub on_eof {
362     $_[0]{on_eof} = $_[1];
363     }
364    
365 root 1.43 =item $handle->on_timeout ($cb)
366    
367 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
368     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
369     argument and method.
370 root 1.43
371     =cut
372    
373     sub on_timeout {
374     $_[0]{on_timeout} = $_[1];
375     }
376    
377 root 1.70 =item $handle->autocork ($boolean)
378    
379     Enables or disables the current autocork behaviour (see C<autocork>
380 root 1.105 constructor argument). Changes will only take effect on the next write.
381 root 1.70
382     =cut
383    
384 root 1.105 sub autocork {
385     $_[0]{autocork} = $_[1];
386     }
387    
388 root 1.70 =item $handle->no_delay ($boolean)
389    
390     Enables or disables the C<no_delay> setting (see constructor argument of
391     the same name for details).
392    
393     =cut
394    
395     sub no_delay {
396     $_[0]{no_delay} = $_[1];
397    
398     eval {
399     local $SIG{__DIE__};
400     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
401     };
402     }
403    
404 root 1.43 #############################################################################
405    
406     =item $handle->timeout ($seconds)
407    
408     Configures (or disables) the inactivity timeout.
409    
410     =cut
411    
412     sub timeout {
413     my ($self, $timeout) = @_;
414    
415     $self->{timeout} = $timeout;
416     $self->_timeout;
417     }
418    
419     # reset the timeout watcher, as neccessary
420     # also check for time-outs
421     sub _timeout {
422     my ($self) = @_;
423    
424     if ($self->{timeout}) {
425 root 1.44 my $NOW = AnyEvent->now;
426 root 1.43
427     # when would the timeout trigger?
428     my $after = $self->{_activity} + $self->{timeout} - $NOW;
429    
430     # now or in the past already?
431     if ($after <= 0) {
432     $self->{_activity} = $NOW;
433    
434     if ($self->{on_timeout}) {
435 root 1.48 $self->{on_timeout}($self);
436 root 1.43 } else {
437 root 1.52 $self->_error (&Errno::ETIMEDOUT);
438 root 1.43 }
439    
440 root 1.56 # callback could have changed timeout value, optimise
441 root 1.43 return unless $self->{timeout};
442    
443     # calculate new after
444     $after = $self->{timeout};
445     }
446    
447     Scalar::Util::weaken $self;
448 root 1.56 return unless $self; # ->error could have destroyed $self
449 root 1.43
450     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
451     delete $self->{_tw};
452     $self->_timeout;
453     });
454     } else {
455     delete $self->{_tw};
456     }
457     }
458    
459 root 1.9 #############################################################################
460    
461     =back
462    
463     =head2 WRITE QUEUE
464    
465     AnyEvent::Handle manages two queues per handle, one for writing and one
466     for reading.
467    
468     The write queue is very simple: you can add data to its end, and
469     AnyEvent::Handle will automatically try to get rid of it for you.
470    
471 elmex 1.20 When data could be written and the write buffer is shorter then the low
472 root 1.9 water mark, the C<on_drain> callback will be invoked.
473    
474     =over 4
475    
476 root 1.8 =item $handle->on_drain ($cb)
477    
478     Sets the C<on_drain> callback or clears it (see the description of
479     C<on_drain> in the constructor).
480    
481     =cut
482    
483     sub on_drain {
484 elmex 1.1 my ($self, $cb) = @_;
485    
486 root 1.8 $self->{on_drain} = $cb;
487    
488     $cb->($self)
489 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
490 root 1.8 }
491    
492     =item $handle->push_write ($data)
493    
494     Queues the given scalar to be written. You can push as much data as you
495     want (only limited by the available memory), as C<AnyEvent::Handle>
496     buffers it independently of the kernel.
497    
498     =cut
499    
500 root 1.17 sub _drain_wbuf {
501     my ($self) = @_;
502 root 1.8
503 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
504 root 1.35
505 root 1.8 Scalar::Util::weaken $self;
506 root 1.35
507 root 1.8 my $cb = sub {
508     my $len = syswrite $self->{fh}, $self->{wbuf};
509    
510 root 1.29 if ($len >= 0) {
511 root 1.8 substr $self->{wbuf}, 0, $len, "";
512    
513 root 1.44 $self->{_activity} = AnyEvent->now;
514 root 1.43
515 root 1.8 $self->{on_drain}($self)
516 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
517 root 1.8 && $self->{on_drain};
518    
519 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
520 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
521 root 1.52 $self->_error ($!, 1);
522 elmex 1.1 }
523 root 1.8 };
524    
525 root 1.35 # try to write data immediately
526 root 1.70 $cb->() unless $self->{autocork};
527 root 1.8
528 root 1.35 # if still data left in wbuf, we need to poll
529 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
530 root 1.35 if length $self->{wbuf};
531 root 1.8 };
532     }
533    
534 root 1.30 our %WH;
535    
536     sub register_write_type($$) {
537     $WH{$_[0]} = $_[1];
538     }
539    
540 root 1.17 sub push_write {
541     my $self = shift;
542    
543 root 1.29 if (@_ > 1) {
544     my $type = shift;
545    
546     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
547     ->($self, @_);
548     }
549    
550 root 1.93 if ($self->{tls}) {
551     $self->{_tls_wbuf} .= $_[0];
552 root 1.97
553 root 1.93 &_dotls ($self);
554 root 1.17 } else {
555     $self->{wbuf} .= $_[0];
556     $self->_drain_wbuf;
557     }
558     }
559    
560 root 1.29 =item $handle->push_write (type => @args)
561    
562     Instead of formatting your data yourself, you can also let this module do
563     the job by specifying a type and type-specific arguments.
564    
565 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
566     drop by and tell us):
567 root 1.29
568     =over 4
569    
570     =item netstring => $string
571    
572     Formats the given value as netstring
573     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
574    
575     =cut
576    
577     register_write_type netstring => sub {
578     my ($self, $string) = @_;
579    
580 root 1.96 (length $string) . ":$string,"
581 root 1.29 };
582    
583 root 1.61 =item packstring => $format, $data
584    
585     An octet string prefixed with an encoded length. The encoding C<$format>
586     uses the same format as a Perl C<pack> format, but must specify a single
587     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
588     optional C<!>, C<< < >> or C<< > >> modifier).
589    
590     =cut
591    
592     register_write_type packstring => sub {
593     my ($self, $format, $string) = @_;
594    
595 root 1.65 pack "$format/a*", $string
596 root 1.61 };
597    
598 root 1.39 =item json => $array_or_hashref
599    
600 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
601     provide your own JSON object, this means it will be encoded to JSON text
602     in UTF-8.
603    
604     JSON objects (and arrays) are self-delimiting, so you can write JSON at
605     one end of a handle and read them at the other end without using any
606     additional framing.
607    
608 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
609     this module doesn't need delimiters after or between JSON texts to be
610     able to read them, many other languages depend on that.
611    
612     A simple RPC protocol that interoperates easily with others is to send
613     JSON arrays (or objects, although arrays are usually the better choice as
614     they mimic how function argument passing works) and a newline after each
615     JSON text:
616    
617     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
618     $handle->push_write ("\012");
619    
620     An AnyEvent::Handle receiver would simply use the C<json> read type and
621     rely on the fact that the newline will be skipped as leading whitespace:
622    
623     $handle->push_read (json => sub { my $array = $_[1]; ... });
624    
625     Other languages could read single lines terminated by a newline and pass
626     this line into their JSON decoder of choice.
627    
628 root 1.40 =cut
629    
630     register_write_type json => sub {
631     my ($self, $ref) = @_;
632    
633     require JSON;
634    
635     $self->{json} ? $self->{json}->encode ($ref)
636     : JSON::encode_json ($ref)
637     };
638    
639 root 1.63 =item storable => $reference
640    
641     Freezes the given reference using L<Storable> and writes it to the
642     handle. Uses the C<nfreeze> format.
643    
644     =cut
645    
646     register_write_type storable => sub {
647     my ($self, $ref) = @_;
648    
649     require Storable;
650    
651 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
652 root 1.63 };
653    
654 root 1.53 =back
655    
656 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
657 root 1.30
658     This function (not method) lets you add your own types to C<push_write>.
659     Whenever the given C<type> is used, C<push_write> will invoke the code
660     reference with the handle object and the remaining arguments.
661 root 1.29
662 root 1.30 The code reference is supposed to return a single octet string that will
663     be appended to the write buffer.
664 root 1.29
665 root 1.30 Note that this is a function, and all types registered this way will be
666     global, so try to use unique names.
667 root 1.29
668 root 1.30 =cut
669 root 1.29
670 root 1.8 #############################################################################
671    
672 root 1.9 =back
673    
674     =head2 READ QUEUE
675    
676     AnyEvent::Handle manages two queues per handle, one for writing and one
677     for reading.
678    
679     The read queue is more complex than the write queue. It can be used in two
680     ways, the "simple" way, using only C<on_read> and the "complex" way, using
681     a queue.
682    
683     In the simple case, you just install an C<on_read> callback and whenever
684     new data arrives, it will be called. You can then remove some data (if
685 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
686     leave the data there if you want to accumulate more (e.g. when only a
687     partial message has been received so far).
688 root 1.9
689     In the more complex case, you want to queue multiple callbacks. In this
690     case, AnyEvent::Handle will call the first queued callback each time new
691 root 1.61 data arrives (also the first time it is queued) and removes it when it has
692     done its job (see C<push_read>, below).
693 root 1.9
694     This way you can, for example, push three line-reads, followed by reading
695     a chunk of data, and AnyEvent::Handle will execute them in order.
696    
697     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
698     the specified number of bytes which give an XML datagram.
699    
700     # in the default state, expect some header bytes
701     $handle->on_read (sub {
702     # some data is here, now queue the length-header-read (4 octets)
703 root 1.52 shift->unshift_read (chunk => 4, sub {
704 root 1.9 # header arrived, decode
705     my $len = unpack "N", $_[1];
706    
707     # now read the payload
708 root 1.52 shift->unshift_read (chunk => $len, sub {
709 root 1.9 my $xml = $_[1];
710     # handle xml
711     });
712     });
713     });
714    
715 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
716     and another line or "ERROR" for the first request that is sent, and 64
717     bytes for the second request. Due to the availability of a queue, we can
718     just pipeline sending both requests and manipulate the queue as necessary
719     in the callbacks.
720    
721     When the first callback is called and sees an "OK" response, it will
722     C<unshift> another line-read. This line-read will be queued I<before> the
723     64-byte chunk callback.
724 root 1.9
725 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
726 root 1.9 $handle->push_write ("request 1\015\012");
727    
728     # we expect "ERROR" or "OK" as response, so push a line read
729 root 1.52 $handle->push_read (line => sub {
730 root 1.9 # if we got an "OK", we have to _prepend_ another line,
731     # so it will be read before the second request reads its 64 bytes
732     # which are already in the queue when this callback is called
733     # we don't do this in case we got an error
734     if ($_[1] eq "OK") {
735 root 1.52 $_[0]->unshift_read (line => sub {
736 root 1.9 my $response = $_[1];
737     ...
738     });
739     }
740     });
741    
742 root 1.69 # request two, simply returns 64 octets
743 root 1.9 $handle->push_write ("request 2\015\012");
744    
745     # simply read 64 bytes, always
746 root 1.52 $handle->push_read (chunk => 64, sub {
747 root 1.9 my $response = $_[1];
748     ...
749     });
750    
751     =over 4
752    
753 root 1.10 =cut
754    
755 root 1.8 sub _drain_rbuf {
756     my ($self) = @_;
757 elmex 1.1
758 root 1.59 local $self->{_in_drain} = 1;
759    
760 root 1.17 if (
761     defined $self->{rbuf_max}
762     && $self->{rbuf_max} < length $self->{rbuf}
763     ) {
764 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
765 root 1.17 }
766    
767 root 1.59 while () {
768 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
769     # we are draining the buffer, and this can only happen with TLS.
770 root 1.116 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
771 root 1.115
772 root 1.59 my $len = length $self->{rbuf};
773 elmex 1.1
774 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
775 root 1.29 unless ($cb->($self)) {
776 root 1.38 if ($self->{_eof}) {
777 root 1.10 # no progress can be made (not enough data and no data forthcoming)
778 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
779 root 1.10 }
780    
781 root 1.38 unshift @{ $self->{_queue} }, $cb;
782 root 1.55 last;
783 root 1.8 }
784     } elsif ($self->{on_read}) {
785 root 1.61 last unless $len;
786    
787 root 1.8 $self->{on_read}($self);
788    
789     if (
790 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
791     && !@{ $self->{_queue} } # and the queue is still empty
792     && $self->{on_read} # but we still have on_read
793 root 1.8 ) {
794 root 1.55 # no further data will arrive
795     # so no progress can be made
796 root 1.82 $self->_error (&Errno::EPIPE, 1), return
797 root 1.55 if $self->{_eof};
798    
799     last; # more data might arrive
800 elmex 1.1 }
801 root 1.8 } else {
802     # read side becomes idle
803 root 1.93 delete $self->{_rw} unless $self->{tls};
804 root 1.55 last;
805 root 1.8 }
806     }
807    
808 root 1.80 if ($self->{_eof}) {
809     if ($self->{on_eof}) {
810     $self->{on_eof}($self)
811     } else {
812     $self->_error (0, 1);
813     }
814     }
815 root 1.55
816     # may need to restart read watcher
817     unless ($self->{_rw}) {
818     $self->start_read
819     if $self->{on_read} || @{ $self->{_queue} };
820     }
821 elmex 1.1 }
822    
823 root 1.8 =item $handle->on_read ($cb)
824 elmex 1.1
825 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
826     the new callback is C<undef>). See the description of C<on_read> in the
827     constructor.
828 elmex 1.1
829 root 1.8 =cut
830    
831     sub on_read {
832     my ($self, $cb) = @_;
833 elmex 1.1
834 root 1.8 $self->{on_read} = $cb;
835 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
836 elmex 1.1 }
837    
838 root 1.8 =item $handle->rbuf
839    
840     Returns the read buffer (as a modifiable lvalue).
841 elmex 1.1
842 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
843     member, if you want. However, the only operation allowed on the
844     read buffer (apart from looking at it) is removing data from its
845     beginning. Otherwise modifying or appending to it is not allowed and will
846     lead to hard-to-track-down bugs.
847 elmex 1.1
848 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
849     C<push_read> or C<unshift_read> methods are used. The other read methods
850     automatically manage the read buffer.
851 elmex 1.1
852     =cut
853    
854 elmex 1.2 sub rbuf : lvalue {
855 root 1.8 $_[0]{rbuf}
856 elmex 1.2 }
857 elmex 1.1
858 root 1.8 =item $handle->push_read ($cb)
859    
860     =item $handle->unshift_read ($cb)
861    
862     Append the given callback to the end of the queue (C<push_read>) or
863     prepend it (C<unshift_read>).
864    
865     The callback is called each time some additional read data arrives.
866 elmex 1.1
867 elmex 1.20 It must check whether enough data is in the read buffer already.
868 elmex 1.1
869 root 1.8 If not enough data is available, it must return the empty list or a false
870     value, in which case it will be called repeatedly until enough data is
871     available (or an error condition is detected).
872    
873     If enough data was available, then the callback must remove all data it is
874     interested in (which can be none at all) and return a true value. After returning
875     true, it will be removed from the queue.
876 elmex 1.1
877     =cut
878    
879 root 1.30 our %RH;
880    
881     sub register_read_type($$) {
882     $RH{$_[0]} = $_[1];
883     }
884    
885 root 1.8 sub push_read {
886 root 1.28 my $self = shift;
887     my $cb = pop;
888    
889     if (@_) {
890     my $type = shift;
891    
892     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
893     ->($self, $cb, @_);
894     }
895 elmex 1.1
896 root 1.38 push @{ $self->{_queue} }, $cb;
897 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
898 elmex 1.1 }
899    
900 root 1.8 sub unshift_read {
901 root 1.28 my $self = shift;
902     my $cb = pop;
903    
904     if (@_) {
905     my $type = shift;
906    
907     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
908     ->($self, $cb, @_);
909     }
910    
911 root 1.8
912 root 1.38 unshift @{ $self->{_queue} }, $cb;
913 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
914 root 1.8 }
915 elmex 1.1
916 root 1.28 =item $handle->push_read (type => @args, $cb)
917 elmex 1.1
918 root 1.28 =item $handle->unshift_read (type => @args, $cb)
919 elmex 1.1
920 root 1.28 Instead of providing a callback that parses the data itself you can chose
921     between a number of predefined parsing formats, for chunks of data, lines
922     etc.
923 elmex 1.1
924 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
925     drop by and tell us):
926 root 1.28
927     =over 4
928    
929 root 1.40 =item chunk => $octets, $cb->($handle, $data)
930 root 1.28
931     Invoke the callback only once C<$octets> bytes have been read. Pass the
932     data read to the callback. The callback will never be called with less
933     data.
934    
935     Example: read 2 bytes.
936    
937     $handle->push_read (chunk => 2, sub {
938     warn "yay ", unpack "H*", $_[1];
939     });
940 elmex 1.1
941     =cut
942    
943 root 1.28 register_read_type chunk => sub {
944     my ($self, $cb, $len) = @_;
945 elmex 1.1
946 root 1.8 sub {
947     $len <= length $_[0]{rbuf} or return;
948 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
949 root 1.8 1
950     }
951 root 1.28 };
952 root 1.8
953 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
954 elmex 1.1
955 root 1.8 The callback will be called only once a full line (including the end of
956     line marker, C<$eol>) has been read. This line (excluding the end of line
957     marker) will be passed to the callback as second argument (C<$line>), and
958     the end of line marker as the third argument (C<$eol>).
959 elmex 1.1
960 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
961     will be interpreted as a fixed record end marker, or it can be a regex
962     object (e.g. created by C<qr>), in which case it is interpreted as a
963     regular expression.
964 elmex 1.1
965 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
966     undef), then C<qr|\015?\012|> is used (which is good for most internet
967     protocols).
968 elmex 1.1
969 root 1.8 Partial lines at the end of the stream will never be returned, as they are
970     not marked by the end of line marker.
971 elmex 1.1
972 root 1.8 =cut
973 elmex 1.1
974 root 1.28 register_read_type line => sub {
975     my ($self, $cb, $eol) = @_;
976 elmex 1.1
977 root 1.76 if (@_ < 3) {
978     # this is more than twice as fast as the generic code below
979     sub {
980     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
981 elmex 1.1
982 root 1.76 $cb->($_[0], $1, $2);
983     1
984     }
985     } else {
986     $eol = quotemeta $eol unless ref $eol;
987     $eol = qr|^(.*?)($eol)|s;
988    
989     sub {
990     $_[0]{rbuf} =~ s/$eol// or return;
991 elmex 1.1
992 root 1.76 $cb->($_[0], $1, $2);
993     1
994     }
995 root 1.8 }
996 root 1.28 };
997 elmex 1.1
998 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
999 root 1.36
1000     Makes a regex match against the regex object C<$accept> and returns
1001     everything up to and including the match.
1002    
1003     Example: read a single line terminated by '\n'.
1004    
1005     $handle->push_read (regex => qr<\n>, sub { ... });
1006    
1007     If C<$reject> is given and not undef, then it determines when the data is
1008     to be rejected: it is matched against the data when the C<$accept> regex
1009     does not match and generates an C<EBADMSG> error when it matches. This is
1010     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1011     receive buffer overflow).
1012    
1013     Example: expect a single decimal number followed by whitespace, reject
1014     anything else (not the use of an anchor).
1015    
1016     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1017    
1018     If C<$skip> is given and not C<undef>, then it will be matched against
1019     the receive buffer when neither C<$accept> nor C<$reject> match,
1020     and everything preceding and including the match will be accepted
1021     unconditionally. This is useful to skip large amounts of data that you
1022     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1023     have to start matching from the beginning. This is purely an optimisation
1024     and is usually worth only when you expect more than a few kilobytes.
1025    
1026     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1027     expect the header to be very large (it isn't in practise, but...), we use
1028     a skip regex to skip initial portions. The skip regex is tricky in that
1029     it only accepts something not ending in either \015 or \012, as these are
1030     required for the accept regex.
1031    
1032     $handle->push_read (regex =>
1033     qr<\015\012\015\012>,
1034     undef, # no reject
1035     qr<^.*[^\015\012]>,
1036     sub { ... });
1037    
1038     =cut
1039    
1040     register_read_type regex => sub {
1041     my ($self, $cb, $accept, $reject, $skip) = @_;
1042    
1043     my $data;
1044     my $rbuf = \$self->{rbuf};
1045    
1046     sub {
1047     # accept
1048     if ($$rbuf =~ $accept) {
1049     $data .= substr $$rbuf, 0, $+[0], "";
1050     $cb->($self, $data);
1051     return 1;
1052     }
1053    
1054     # reject
1055     if ($reject && $$rbuf =~ $reject) {
1056 root 1.52 $self->_error (&Errno::EBADMSG);
1057 root 1.36 }
1058    
1059     # skip
1060     if ($skip && $$rbuf =~ $skip) {
1061     $data .= substr $$rbuf, 0, $+[0], "";
1062     }
1063    
1064     ()
1065     }
1066     };
1067    
1068 root 1.61 =item netstring => $cb->($handle, $string)
1069    
1070     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1071    
1072     Throws an error with C<$!> set to EBADMSG on format violations.
1073    
1074     =cut
1075    
1076     register_read_type netstring => sub {
1077     my ($self, $cb) = @_;
1078    
1079     sub {
1080     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1081     if ($_[0]{rbuf} =~ /[^0-9]/) {
1082     $self->_error (&Errno::EBADMSG);
1083     }
1084     return;
1085     }
1086    
1087     my $len = $1;
1088    
1089     $self->unshift_read (chunk => $len, sub {
1090     my $string = $_[1];
1091     $_[0]->unshift_read (chunk => 1, sub {
1092     if ($_[1] eq ",") {
1093     $cb->($_[0], $string);
1094     } else {
1095     $self->_error (&Errno::EBADMSG);
1096     }
1097     });
1098     });
1099    
1100     1
1101     }
1102     };
1103    
1104     =item packstring => $format, $cb->($handle, $string)
1105    
1106     An octet string prefixed with an encoded length. The encoding C<$format>
1107     uses the same format as a Perl C<pack> format, but must specify a single
1108     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1109     optional C<!>, C<< < >> or C<< > >> modifier).
1110    
1111 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1112     EPP uses a prefix of C<N> (4 octtes).
1113 root 1.61
1114     Example: read a block of data prefixed by its length in BER-encoded
1115     format (very efficient).
1116    
1117     $handle->push_read (packstring => "w", sub {
1118     my ($handle, $data) = @_;
1119     });
1120    
1121     =cut
1122    
1123     register_read_type packstring => sub {
1124     my ($self, $cb, $format) = @_;
1125    
1126     sub {
1127     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1128 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1129 root 1.61 or return;
1130    
1131 root 1.77 $format = length pack $format, $len;
1132 root 1.61
1133 root 1.77 # bypass unshift if we already have the remaining chunk
1134     if ($format + $len <= length $_[0]{rbuf}) {
1135     my $data = substr $_[0]{rbuf}, $format, $len;
1136     substr $_[0]{rbuf}, 0, $format + $len, "";
1137     $cb->($_[0], $data);
1138     } else {
1139     # remove prefix
1140     substr $_[0]{rbuf}, 0, $format, "";
1141    
1142     # read remaining chunk
1143     $_[0]->unshift_read (chunk => $len, $cb);
1144     }
1145 root 1.61
1146     1
1147     }
1148     };
1149    
1150 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1151    
1152 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1153     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1154 root 1.40
1155     If a C<json> object was passed to the constructor, then that will be used
1156     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1157    
1158     This read type uses the incremental parser available with JSON version
1159     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1160     dependency on your own: this module will load the JSON module, but
1161     AnyEvent does not depend on it itself.
1162    
1163     Since JSON texts are fully self-delimiting, the C<json> read and write
1164 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1165     the C<json> write type description, above, for an actual example.
1166 root 1.40
1167     =cut
1168    
1169     register_read_type json => sub {
1170 root 1.63 my ($self, $cb) = @_;
1171 root 1.40
1172     require JSON;
1173    
1174     my $data;
1175     my $rbuf = \$self->{rbuf};
1176    
1177 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1178 root 1.40
1179     sub {
1180 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1181 root 1.110
1182 root 1.113 if ($ref) {
1183     $self->{rbuf} = $json->incr_text;
1184     $json->incr_text = "";
1185     $cb->($self, $ref);
1186 root 1.110
1187     1
1188 root 1.113 } elsif ($@) {
1189 root 1.111 # error case
1190 root 1.110 $json->incr_skip;
1191 root 1.40
1192     $self->{rbuf} = $json->incr_text;
1193     $json->incr_text = "";
1194    
1195 root 1.110 $self->_error (&Errno::EBADMSG);
1196 root 1.114
1197 root 1.113 ()
1198     } else {
1199     $self->{rbuf} = "";
1200 root 1.114
1201 root 1.113 ()
1202     }
1203 root 1.40 }
1204     };
1205    
1206 root 1.63 =item storable => $cb->($handle, $ref)
1207    
1208     Deserialises a L<Storable> frozen representation as written by the
1209     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1210     data).
1211    
1212     Raises C<EBADMSG> error if the data could not be decoded.
1213    
1214     =cut
1215    
1216     register_read_type storable => sub {
1217     my ($self, $cb) = @_;
1218    
1219     require Storable;
1220    
1221     sub {
1222     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1223 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1224 root 1.63 or return;
1225    
1226 root 1.77 my $format = length pack "w", $len;
1227 root 1.63
1228 root 1.77 # bypass unshift if we already have the remaining chunk
1229     if ($format + $len <= length $_[0]{rbuf}) {
1230     my $data = substr $_[0]{rbuf}, $format, $len;
1231     substr $_[0]{rbuf}, 0, $format + $len, "";
1232     $cb->($_[0], Storable::thaw ($data));
1233     } else {
1234     # remove prefix
1235     substr $_[0]{rbuf}, 0, $format, "";
1236    
1237     # read remaining chunk
1238     $_[0]->unshift_read (chunk => $len, sub {
1239     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1240     $cb->($_[0], $ref);
1241     } else {
1242     $self->_error (&Errno::EBADMSG);
1243     }
1244     });
1245     }
1246    
1247     1
1248 root 1.63 }
1249     };
1250    
1251 root 1.28 =back
1252    
1253 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1254 root 1.30
1255     This function (not method) lets you add your own types to C<push_read>.
1256    
1257     Whenever the given C<type> is used, C<push_read> will invoke the code
1258     reference with the handle object, the callback and the remaining
1259     arguments.
1260    
1261     The code reference is supposed to return a callback (usually a closure)
1262     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1263    
1264     It should invoke the passed callback when it is done reading (remember to
1265 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1266 root 1.30
1267     Note that this is a function, and all types registered this way will be
1268     global, so try to use unique names.
1269    
1270     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1271     search for C<register_read_type>)).
1272    
1273 root 1.10 =item $handle->stop_read
1274    
1275     =item $handle->start_read
1276    
1277 root 1.18 In rare cases you actually do not want to read anything from the
1278 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1279 root 1.22 any queued callbacks will be executed then. To start reading again, call
1280 root 1.10 C<start_read>.
1281    
1282 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1283     you change the C<on_read> callback or push/unshift a read callback, and it
1284     will automatically C<stop_read> for you when neither C<on_read> is set nor
1285     there are any read requests in the queue.
1286    
1287 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1288     half-duplex connections).
1289    
1290 root 1.10 =cut
1291    
1292     sub stop_read {
1293     my ($self) = @_;
1294 elmex 1.1
1295 root 1.93 delete $self->{_rw} unless $self->{tls};
1296 root 1.8 }
1297 elmex 1.1
1298 root 1.10 sub start_read {
1299     my ($self) = @_;
1300    
1301 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1302 root 1.10 Scalar::Util::weaken $self;
1303    
1304 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1305 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1306 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1307 root 1.10
1308     if ($len > 0) {
1309 root 1.44 $self->{_activity} = AnyEvent->now;
1310 root 1.43
1311 root 1.93 if ($self->{tls}) {
1312     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1313 root 1.97
1314 root 1.93 &_dotls ($self);
1315     } else {
1316     $self->_drain_rbuf unless $self->{_in_drain};
1317     }
1318 root 1.10
1319     } elsif (defined $len) {
1320 root 1.38 delete $self->{_rw};
1321     $self->{_eof} = 1;
1322 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1323 root 1.10
1324 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1325 root 1.52 return $self->_error ($!, 1);
1326 root 1.10 }
1327     });
1328     }
1329 elmex 1.1 }
1330    
1331 root 1.97 # poll the write BIO and send the data if applicable
1332 root 1.19 sub _dotls {
1333     my ($self) = @_;
1334    
1335 root 1.97 my $tmp;
1336 root 1.56
1337 root 1.38 if (length $self->{_tls_wbuf}) {
1338 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1339     substr $self->{_tls_wbuf}, 0, $tmp, "";
1340 root 1.22 }
1341 root 1.19 }
1342    
1343 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1344     unless (length $tmp) {
1345 root 1.56 # let's treat SSL-eof as we treat normal EOF
1346 root 1.91 delete $self->{_rw};
1347 root 1.56 $self->{_eof} = 1;
1348 root 1.92 &_freetls;
1349 root 1.56 }
1350 root 1.91
1351 root 1.116 $self->{_tls_rbuf} .= $tmp;
1352 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1353 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1354 root 1.23 }
1355    
1356 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1357 root 1.24
1358 root 1.97 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1359     if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1360 root 1.52 return $self->_error ($!, 1);
1361 root 1.116 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1362 root 1.52 return $self->_error (&Errno::EIO, 1);
1363 root 1.19 }
1364 root 1.23
1365 root 1.97 # all other errors are fine for our purposes
1366 root 1.19 }
1367 root 1.91
1368 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1369     $self->{wbuf} .= $tmp;
1370 root 1.91 $self->_drain_wbuf;
1371     }
1372 root 1.19 }
1373    
1374 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1375    
1376     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1377     object is created, you can also do that at a later time by calling
1378     C<starttls>.
1379    
1380     The first argument is the same as the C<tls> constructor argument (either
1381     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1382    
1383     The second argument is the optional C<Net::SSLeay::CTX> object that is
1384     used when AnyEvent::Handle has to create its own TLS connection object.
1385    
1386 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1387     call and can be used or changed to your liking. Note that the handshake
1388     might have already started when this function returns.
1389    
1390 root 1.92 If it an error to start a TLS handshake more than once per
1391     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1392    
1393 root 1.25 =cut
1394    
1395 root 1.19 sub starttls {
1396     my ($self, $ssl, $ctx) = @_;
1397    
1398 root 1.94 require Net::SSLeay;
1399    
1400 root 1.102 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1401 root 1.92 if $self->{tls};
1402    
1403 root 1.19 if ($ssl eq "accept") {
1404     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1405     Net::SSLeay::set_accept_state ($ssl);
1406     } elsif ($ssl eq "connect") {
1407     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1408     Net::SSLeay::set_connect_state ($ssl);
1409     }
1410    
1411     $self->{tls} = $ssl;
1412    
1413 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1414     # but the openssl maintainers basically said: "trust us, it just works".
1415     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1416     # and mismaintained ssleay-module doesn't even offer them).
1417 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1418 root 1.87 #
1419     # in short: this is a mess.
1420     #
1421 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1422 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1423 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1424     # have identity issues in that area.
1425 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1426 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1427     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1428 root 1.21
1429 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1430     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1431 root 1.19
1432 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1433 root 1.19
1434 root 1.93 &_dotls; # need to trigger the initial handshake
1435     $self->start_read; # make sure we actually do read
1436 root 1.19 }
1437    
1438 root 1.25 =item $handle->stoptls
1439    
1440 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1441     sending a close notify to the other side, but since OpenSSL doesn't
1442     support non-blocking shut downs, it is not possible to re-use the stream
1443     afterwards.
1444 root 1.25
1445     =cut
1446    
1447     sub stoptls {
1448     my ($self) = @_;
1449    
1450 root 1.92 if ($self->{tls}) {
1451 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1452 root 1.92
1453     &_dotls;
1454    
1455     # we don't give a shit. no, we do, but we can't. no...
1456     # we, we... have to use openssl :/
1457     &_freetls;
1458     }
1459     }
1460    
1461     sub _freetls {
1462     my ($self) = @_;
1463    
1464     return unless $self->{tls};
1465 root 1.38
1466 root 1.92 Net::SSLeay::free (delete $self->{tls});
1467    
1468 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1469 root 1.25 }
1470    
1471 root 1.19 sub DESTROY {
1472 root 1.120 my ($self) = @_;
1473 root 1.19
1474 root 1.92 &_freetls;
1475 root 1.62
1476     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1477    
1478     if ($linger && length $self->{wbuf}) {
1479     my $fh = delete $self->{fh};
1480     my $wbuf = delete $self->{wbuf};
1481    
1482     my @linger;
1483    
1484     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1485     my $len = syswrite $fh, $wbuf, length $wbuf;
1486    
1487     if ($len > 0) {
1488     substr $wbuf, 0, $len, "";
1489     } else {
1490     @linger = (); # end
1491     }
1492     });
1493     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1494     @linger = ();
1495     });
1496     }
1497 root 1.19 }
1498    
1499 root 1.99 =item $handle->destroy
1500    
1501 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1502 root 1.99 no further callbacks will be invoked and resources will be freed as much
1503     as possible. You must not call any methods on the object afterwards.
1504    
1505 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1506     object and it will simply shut down. This works in fatal error and EOF
1507     callbacks, as well as code outside. It does I<NOT> work in a read or write
1508     callback, so when you want to destroy the AnyEvent::Handle object from
1509     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1510     that case.
1511    
1512 root 1.99 The handle might still linger in the background and write out remaining
1513     data, as specified by the C<linger> option, however.
1514    
1515     =cut
1516    
1517     sub destroy {
1518     my ($self) = @_;
1519    
1520     $self->DESTROY;
1521     %$self = ();
1522     }
1523    
1524 root 1.19 =item AnyEvent::Handle::TLS_CTX
1525    
1526     This function creates and returns the Net::SSLeay::CTX object used by
1527     default for TLS mode.
1528    
1529     The context is created like this:
1530    
1531     Net::SSLeay::load_error_strings;
1532     Net::SSLeay::SSLeay_add_ssl_algorithms;
1533     Net::SSLeay::randomize;
1534    
1535     my $CTX = Net::SSLeay::CTX_new;
1536    
1537     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1538    
1539     =cut
1540    
1541     our $TLS_CTX;
1542    
1543     sub TLS_CTX() {
1544     $TLS_CTX || do {
1545     require Net::SSLeay;
1546    
1547     Net::SSLeay::load_error_strings ();
1548     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1549     Net::SSLeay::randomize ();
1550    
1551     $TLS_CTX = Net::SSLeay::CTX_new ();
1552    
1553     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1554    
1555     $TLS_CTX
1556     }
1557     }
1558    
1559 elmex 1.1 =back
1560    
1561 root 1.95
1562     =head1 NONFREQUENTLY ASKED QUESTIONS
1563    
1564     =over 4
1565    
1566 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1567     still get further invocations!
1568    
1569     That's because AnyEvent::Handle keeps a reference to itself when handling
1570     read or write callbacks.
1571    
1572     It is only safe to "forget" the reference inside EOF or error callbacks,
1573     from within all other callbacks, you need to explicitly call the C<<
1574     ->destroy >> method.
1575    
1576     =item I get different callback invocations in TLS mode/Why can't I pause
1577     reading?
1578    
1579     Unlike, say, TCP, TLS connections do not consist of two independent
1580     communication channels, one for each direction. Or put differently. The
1581     read and write directions are not independent of each other: you cannot
1582     write data unless you are also prepared to read, and vice versa.
1583    
1584     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1585     callback invocations when you are not expecting any read data - the reason
1586     is that AnyEvent::Handle always reads in TLS mode.
1587    
1588     During the connection, you have to make sure that you always have a
1589     non-empty read-queue, or an C<on_read> watcher. At the end of the
1590     connection (or when you no longer want to use it) you can call the
1591     C<destroy> method.
1592    
1593 root 1.95 =item How do I read data until the other side closes the connection?
1594    
1595 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1596     to achieve this is by setting an C<on_read> callback that does nothing,
1597     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1598     will be in C<$_[0]{rbuf}>:
1599 root 1.95
1600     $handle->on_read (sub { });
1601     $handle->on_eof (undef);
1602     $handle->on_error (sub {
1603     my $data = delete $_[0]{rbuf};
1604     undef $handle;
1605     });
1606    
1607     The reason to use C<on_error> is that TCP connections, due to latencies
1608     and packets loss, might get closed quite violently with an error, when in
1609     fact, all data has been received.
1610    
1611 root 1.101 It is usually better to use acknowledgements when transferring data,
1612 root 1.95 to make sure the other side hasn't just died and you got the data
1613     intact. This is also one reason why so many internet protocols have an
1614     explicit QUIT command.
1615    
1616 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1617     all data has been written?
1618 root 1.95
1619     After writing your last bits of data, set the C<on_drain> callback
1620     and destroy the handle in there - with the default setting of
1621     C<low_water_mark> this will be called precisely when all data has been
1622     written to the socket:
1623    
1624     $handle->push_write (...);
1625     $handle->on_drain (sub {
1626     warn "all data submitted to the kernel\n";
1627     undef $handle;
1628     });
1629    
1630     =back
1631    
1632    
1633 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1634    
1635     In many cases, you might want to subclass AnyEvent::Handle.
1636    
1637     To make this easier, a given version of AnyEvent::Handle uses these
1638     conventions:
1639    
1640     =over 4
1641    
1642     =item * all constructor arguments become object members.
1643    
1644     At least initially, when you pass a C<tls>-argument to the constructor it
1645 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1646 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1647    
1648     =item * other object member names are prefixed with an C<_>.
1649    
1650     All object members not explicitly documented (internal use) are prefixed
1651     with an underscore character, so the remaining non-C<_>-namespace is free
1652     for use for subclasses.
1653    
1654     =item * all members not documented here and not prefixed with an underscore
1655     are free to use in subclasses.
1656    
1657     Of course, new versions of AnyEvent::Handle may introduce more "public"
1658     member variables, but thats just life, at least it is documented.
1659    
1660     =back
1661    
1662 elmex 1.1 =head1 AUTHOR
1663    
1664 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1665 elmex 1.1
1666     =cut
1667    
1668     1; # End of AnyEvent::Handle