ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.132
Committed: Thu Jul 2 22:25:13 2009 UTC (14 years, 11 months ago) by elmex
Branch: MAIN
Changes since 1.131: +1 -1 lines
Log Message:
removed rbuf from shutdown cleanup.

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.130 our $VERSION = 4.45;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32 root 1.107 $cv->send;
33 elmex 1.2 },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 elmex 1.1
70 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.8 =item fh => $filehandle [MANDATORY]
75 elmex 1.1
76     The filehandle this L<AnyEvent::Handle> object will operate on.
77    
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.40 =item on_eof => $cb->($handle)
83 root 1.10
84 root 1.74 Set the callback to be called when an end-of-file condition is detected,
85 root 1.52 i.e. in the case of a socket, when the other side has closed the
86     connection cleanly.
87 root 1.8
88 root 1.82 For sockets, this just means that the other side has stopped sending data,
89 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
90 root 1.82 callback and continue writing data, as only the read part has been shut
91     down.
92    
93 root 1.101 While not mandatory, it is I<highly> recommended to set an EOF callback,
94 root 1.16 otherwise you might end up with a closed socket while you are still
95     waiting for data.
96    
97 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
98     set, then a fatal error will be raised with C<$!> set to <0>.
99    
100 root 1.52 =item on_error => $cb->($handle, $fatal)
101 root 1.10
102 root 1.52 This is the error callback, which is called when, well, some error
103     occured, such as not being able to resolve the hostname, failure to
104     connect or a read error.
105    
106     Some errors are fatal (which is indicated by C<$fatal> being true). On
107 root 1.82 fatal errors the handle object will be shut down and will not be usable
108 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
110     (C<EPIPE>) or I/O errors.
111    
112     Non-fatal errors can be retried by simply returning, but it is recommended
113     to simply ignore this parameter and instead abondon the handle object
114     when this callback is invoked. Examples of non-fatal errors are timeouts
115     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 root 1.8
117 root 1.10 On callback entrance, the value of C<$!> contains the operating system
118 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119 root 1.8
120 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
121     you will not be notified of errors otherwise. The default simply calls
122 root 1.52 C<croak>.
123 root 1.8
124 root 1.40 =item on_read => $cb->($handle)
125 root 1.8
126     This sets the default read callback, which is called when data arrives
127 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
128     callback will only be called when at least one octet of data is in the
129     read buffer).
130 root 1.8
131     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132 root 1.117 method or access the C<$handle->{rbuf}> member directly. Note that you
133     must not enlarge or modify the read buffer, you can only remove data at
134     the beginning from it.
135 root 1.8
136     When an EOF condition is detected then AnyEvent::Handle will first try to
137     feed all the remaining data to the queued callbacks and C<on_read> before
138     calling the C<on_eof> callback. If no progress can be made, then a fatal
139     error will be raised (with C<$!> set to C<EPIPE>).
140 elmex 1.1
141 root 1.40 =item on_drain => $cb->($handle)
142 elmex 1.1
143 root 1.8 This sets the callback that is called when the write buffer becomes empty
144     (or when the callback is set and the buffer is empty already).
145 elmex 1.1
146 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
147 elmex 1.2
148 root 1.69 This callback is useful when you don't want to put all of your write data
149     into the queue at once, for example, when you want to write the contents
150     of some file to the socket you might not want to read the whole file into
151     memory and push it into the queue, but instead only read more data from
152     the file when the write queue becomes empty.
153    
154 root 1.43 =item timeout => $fractional_seconds
155    
156     If non-zero, then this enables an "inactivity" timeout: whenever this many
157     seconds pass without a successful read or write on the underlying file
158     handle, the C<on_timeout> callback will be invoked (and if that one is
159 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
160 root 1.43
161     Note that timeout processing is also active when you currently do not have
162     any outstanding read or write requests: If you plan to keep the connection
163     idle then you should disable the timout temporarily or ignore the timeout
164 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
165     restart the timeout.
166 root 1.43
167     Zero (the default) disables this timeout.
168    
169     =item on_timeout => $cb->($handle)
170    
171     Called whenever the inactivity timeout passes. If you return from this
172     callback, then the timeout will be reset as if some activity had happened,
173     so this condition is not fatal in any way.
174    
175 root 1.8 =item rbuf_max => <bytes>
176 elmex 1.2
177 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
178     when the read buffer ever (strictly) exceeds this size. This is useful to
179 root 1.88 avoid some forms of denial-of-service attacks.
180 elmex 1.2
181 root 1.8 For example, a server accepting connections from untrusted sources should
182     be configured to accept only so-and-so much data that it cannot act on
183     (for example, when expecting a line, an attacker could send an unlimited
184     amount of data without a callback ever being called as long as the line
185     isn't finished).
186 elmex 1.2
187 root 1.70 =item autocork => <boolean>
188    
189     When disabled (the default), then C<push_write> will try to immediately
190 root 1.88 write the data to the handle, if possible. This avoids having to register
191     a write watcher and wait for the next event loop iteration, but can
192     be inefficient if you write multiple small chunks (on the wire, this
193     disadvantage is usually avoided by your kernel's nagle algorithm, see
194     C<no_delay>, but this option can save costly syscalls).
195 root 1.70
196     When enabled, then writes will always be queued till the next event loop
197     iteration. This is efficient when you do many small writes per iteration,
198 root 1.88 but less efficient when you do a single write only per iteration (or when
199     the write buffer often is full). It also increases write latency.
200 root 1.70
201     =item no_delay => <boolean>
202    
203     When doing small writes on sockets, your operating system kernel might
204     wait a bit for more data before actually sending it out. This is called
205     the Nagle algorithm, and usually it is beneficial.
206    
207 root 1.88 In some situations you want as low a delay as possible, which can be
208     accomplishd by setting this option to a true value.
209 root 1.70
210 root 1.88 The default is your opertaing system's default behaviour (most likely
211     enabled), this option explicitly enables or disables it, if possible.
212 root 1.70
213 root 1.8 =item read_size => <bytes>
214 elmex 1.2
215 root 1.88 The default read block size (the amount of bytes this module will
216     try to read during each loop iteration, which affects memory
217     requirements). Default: C<8192>.
218 root 1.8
219     =item low_water_mark => <bytes>
220    
221     Sets the amount of bytes (default: C<0>) that make up an "empty" write
222     buffer: If the write reaches this size or gets even samller it is
223     considered empty.
224 elmex 1.2
225 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
226     the write buffer before it is fully drained, but this is a rare case, as
227     the operating system kernel usually buffers data as well, so the default
228     is good in almost all cases.
229    
230 root 1.62 =item linger => <seconds>
231    
232     If non-zero (default: C<3600>), then the destructor of the
233 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
234     write data and will install a watcher that will write this data to the
235     socket. No errors will be reported (this mostly matches how the operating
236     system treats outstanding data at socket close time).
237 root 1.62
238 root 1.88 This will not work for partial TLS data that could not be encoded
239 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
240     help.
241 root 1.62
242 root 1.131 =item common_name => $string
243    
244     The common name used by some verification methods (most notably SSL/TLS)
245     associated with this connection. Usually this is the remote hostname used
246     to connect, but can be almost anything.
247    
248 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
249    
250 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
251 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
252     established and will transparently encrypt/decrypt data afterwards.
253 root 1.19
254 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
255 root 1.88 automatically when you try to create a TLS handle): this module doesn't
256     have a dependency on that module, so if your module requires it, you have
257     to add the dependency yourself.
258 root 1.26
259 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
260     C<accept>, and for the TLS client side of a connection, use C<connect>
261     mode.
262 root 1.19
263     You can also provide your own TLS connection object, but you have
264     to make sure that you call either C<Net::SSLeay::set_connect_state>
265     or C<Net::SSLeay::set_accept_state> on it before you pass it to
266 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
267     object.
268    
269     At some future point, AnyEvent::Handle might switch to another TLS
270     implementation, then the option to use your own session object will go
271     away.
272 root 1.19
273 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
274     passing in the wrong integer will lead to certain crash. This most often
275     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
276     segmentation fault.
277    
278 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
279 root 1.26
280 root 1.131 =item tls_ctx => $anyevent_tls
281 root 1.19
282 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
283 root 1.19 (unless a connection object was specified directly). If this parameter is
284     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
285    
286 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
287     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
288     new TLS context object.
289    
290 root 1.40 =item json => JSON or JSON::XS object
291    
292     This is the json coder object used by the C<json> read and write types.
293    
294 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
295 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
296     texts.
297 root 1.40
298     Note that you are responsible to depend on the JSON module if you want to
299     use this functionality, as AnyEvent does not have a dependency itself.
300    
301 elmex 1.1 =back
302    
303     =cut
304    
305     sub new {
306 root 1.8 my $class = shift;
307     my $self = bless { @_ }, $class;
308    
309     $self->{fh} or Carp::croak "mandatory argument fh is missing";
310    
311     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
312 elmex 1.1
313 root 1.131 $self->{_activity} = AnyEvent->now;
314     $self->_timeout;
315    
316     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
317    
318 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
319     if $self->{tls};
320 root 1.19
321 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
322 root 1.10
323 root 1.66 $self->start_read
324 root 1.67 if $self->{on_read};
325 root 1.66
326 root 1.131 $self->{fh} && $self
327 root 1.8 }
328 elmex 1.2
329 root 1.8 sub _shutdown {
330     my ($self) = @_;
331 elmex 1.2
332 elmex 1.132 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
333 root 1.131 $self->{_eof} = 1; # tell starttls et. al to stop trying
334 root 1.52
335 root 1.92 &_freetls;
336 root 1.8 }
337    
338 root 1.52 sub _error {
339     my ($self, $errno, $fatal) = @_;
340 root 1.8
341 root 1.52 $self->_shutdown
342     if $fatal;
343 elmex 1.1
344 root 1.52 $! = $errno;
345 root 1.37
346 root 1.52 if ($self->{on_error}) {
347     $self->{on_error}($self, $fatal);
348 root 1.100 } elsif ($self->{fh}) {
349 root 1.52 Carp::croak "AnyEvent::Handle uncaught error: $!";
350     }
351 elmex 1.1 }
352    
353 root 1.8 =item $fh = $handle->fh
354 elmex 1.1
355 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
356 elmex 1.1
357     =cut
358    
359 root 1.38 sub fh { $_[0]{fh} }
360 elmex 1.1
361 root 1.8 =item $handle->on_error ($cb)
362 elmex 1.1
363 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
364 elmex 1.1
365 root 1.8 =cut
366    
367     sub on_error {
368     $_[0]{on_error} = $_[1];
369     }
370    
371     =item $handle->on_eof ($cb)
372    
373     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
374 elmex 1.1
375     =cut
376    
377 root 1.8 sub on_eof {
378     $_[0]{on_eof} = $_[1];
379     }
380    
381 root 1.43 =item $handle->on_timeout ($cb)
382    
383 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
384     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
385     argument and method.
386 root 1.43
387     =cut
388    
389     sub on_timeout {
390     $_[0]{on_timeout} = $_[1];
391     }
392    
393 root 1.70 =item $handle->autocork ($boolean)
394    
395     Enables or disables the current autocork behaviour (see C<autocork>
396 root 1.105 constructor argument). Changes will only take effect on the next write.
397 root 1.70
398     =cut
399    
400 root 1.105 sub autocork {
401     $_[0]{autocork} = $_[1];
402     }
403    
404 root 1.70 =item $handle->no_delay ($boolean)
405    
406     Enables or disables the C<no_delay> setting (see constructor argument of
407     the same name for details).
408    
409     =cut
410    
411     sub no_delay {
412     $_[0]{no_delay} = $_[1];
413    
414     eval {
415     local $SIG{__DIE__};
416     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
417     };
418     }
419    
420 root 1.43 #############################################################################
421    
422     =item $handle->timeout ($seconds)
423    
424     Configures (or disables) the inactivity timeout.
425    
426     =cut
427    
428     sub timeout {
429     my ($self, $timeout) = @_;
430    
431     $self->{timeout} = $timeout;
432     $self->_timeout;
433     }
434    
435     # reset the timeout watcher, as neccessary
436     # also check for time-outs
437     sub _timeout {
438     my ($self) = @_;
439    
440     if ($self->{timeout}) {
441 root 1.44 my $NOW = AnyEvent->now;
442 root 1.43
443     # when would the timeout trigger?
444     my $after = $self->{_activity} + $self->{timeout} - $NOW;
445    
446     # now or in the past already?
447     if ($after <= 0) {
448     $self->{_activity} = $NOW;
449    
450     if ($self->{on_timeout}) {
451 root 1.48 $self->{on_timeout}($self);
452 root 1.43 } else {
453 root 1.52 $self->_error (&Errno::ETIMEDOUT);
454 root 1.43 }
455    
456 root 1.56 # callback could have changed timeout value, optimise
457 root 1.43 return unless $self->{timeout};
458    
459     # calculate new after
460     $after = $self->{timeout};
461     }
462    
463     Scalar::Util::weaken $self;
464 root 1.56 return unless $self; # ->error could have destroyed $self
465 root 1.43
466     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
467     delete $self->{_tw};
468     $self->_timeout;
469     });
470     } else {
471     delete $self->{_tw};
472     }
473     }
474    
475 root 1.9 #############################################################################
476    
477     =back
478    
479     =head2 WRITE QUEUE
480    
481     AnyEvent::Handle manages two queues per handle, one for writing and one
482     for reading.
483    
484     The write queue is very simple: you can add data to its end, and
485     AnyEvent::Handle will automatically try to get rid of it for you.
486    
487 elmex 1.20 When data could be written and the write buffer is shorter then the low
488 root 1.9 water mark, the C<on_drain> callback will be invoked.
489    
490     =over 4
491    
492 root 1.8 =item $handle->on_drain ($cb)
493    
494     Sets the C<on_drain> callback or clears it (see the description of
495     C<on_drain> in the constructor).
496    
497     =cut
498    
499     sub on_drain {
500 elmex 1.1 my ($self, $cb) = @_;
501    
502 root 1.8 $self->{on_drain} = $cb;
503    
504     $cb->($self)
505 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
506 root 1.8 }
507    
508     =item $handle->push_write ($data)
509    
510     Queues the given scalar to be written. You can push as much data as you
511     want (only limited by the available memory), as C<AnyEvent::Handle>
512     buffers it independently of the kernel.
513    
514     =cut
515    
516 root 1.17 sub _drain_wbuf {
517     my ($self) = @_;
518 root 1.8
519 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
520 root 1.35
521 root 1.8 Scalar::Util::weaken $self;
522 root 1.35
523 root 1.8 my $cb = sub {
524     my $len = syswrite $self->{fh}, $self->{wbuf};
525    
526 root 1.29 if ($len >= 0) {
527 root 1.8 substr $self->{wbuf}, 0, $len, "";
528    
529 root 1.44 $self->{_activity} = AnyEvent->now;
530 root 1.43
531 root 1.8 $self->{on_drain}($self)
532 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
533 root 1.8 && $self->{on_drain};
534    
535 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
536 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
537 root 1.52 $self->_error ($!, 1);
538 elmex 1.1 }
539 root 1.8 };
540    
541 root 1.35 # try to write data immediately
542 root 1.70 $cb->() unless $self->{autocork};
543 root 1.8
544 root 1.35 # if still data left in wbuf, we need to poll
545 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
546 root 1.35 if length $self->{wbuf};
547 root 1.8 };
548     }
549    
550 root 1.30 our %WH;
551    
552     sub register_write_type($$) {
553     $WH{$_[0]} = $_[1];
554     }
555    
556 root 1.17 sub push_write {
557     my $self = shift;
558    
559 root 1.29 if (@_ > 1) {
560     my $type = shift;
561    
562     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
563     ->($self, @_);
564     }
565    
566 root 1.93 if ($self->{tls}) {
567     $self->{_tls_wbuf} .= $_[0];
568 root 1.97
569 root 1.93 &_dotls ($self);
570 root 1.17 } else {
571     $self->{wbuf} .= $_[0];
572     $self->_drain_wbuf;
573     }
574     }
575    
576 root 1.29 =item $handle->push_write (type => @args)
577    
578     Instead of formatting your data yourself, you can also let this module do
579     the job by specifying a type and type-specific arguments.
580    
581 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
582     drop by and tell us):
583 root 1.29
584     =over 4
585    
586     =item netstring => $string
587    
588     Formats the given value as netstring
589     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
590    
591     =cut
592    
593     register_write_type netstring => sub {
594     my ($self, $string) = @_;
595    
596 root 1.96 (length $string) . ":$string,"
597 root 1.29 };
598    
599 root 1.61 =item packstring => $format, $data
600    
601     An octet string prefixed with an encoded length. The encoding C<$format>
602     uses the same format as a Perl C<pack> format, but must specify a single
603     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
604     optional C<!>, C<< < >> or C<< > >> modifier).
605    
606     =cut
607    
608     register_write_type packstring => sub {
609     my ($self, $format, $string) = @_;
610    
611 root 1.65 pack "$format/a*", $string
612 root 1.61 };
613    
614 root 1.39 =item json => $array_or_hashref
615    
616 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
617     provide your own JSON object, this means it will be encoded to JSON text
618     in UTF-8.
619    
620     JSON objects (and arrays) are self-delimiting, so you can write JSON at
621     one end of a handle and read them at the other end without using any
622     additional framing.
623    
624 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
625     this module doesn't need delimiters after or between JSON texts to be
626     able to read them, many other languages depend on that.
627    
628     A simple RPC protocol that interoperates easily with others is to send
629     JSON arrays (or objects, although arrays are usually the better choice as
630     they mimic how function argument passing works) and a newline after each
631     JSON text:
632    
633     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
634     $handle->push_write ("\012");
635    
636     An AnyEvent::Handle receiver would simply use the C<json> read type and
637     rely on the fact that the newline will be skipped as leading whitespace:
638    
639     $handle->push_read (json => sub { my $array = $_[1]; ... });
640    
641     Other languages could read single lines terminated by a newline and pass
642     this line into their JSON decoder of choice.
643    
644 root 1.40 =cut
645    
646     register_write_type json => sub {
647     my ($self, $ref) = @_;
648    
649     require JSON;
650    
651     $self->{json} ? $self->{json}->encode ($ref)
652     : JSON::encode_json ($ref)
653     };
654    
655 root 1.63 =item storable => $reference
656    
657     Freezes the given reference using L<Storable> and writes it to the
658     handle. Uses the C<nfreeze> format.
659    
660     =cut
661    
662     register_write_type storable => sub {
663     my ($self, $ref) = @_;
664    
665     require Storable;
666    
667 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
668 root 1.63 };
669    
670 root 1.53 =back
671    
672 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
673 root 1.30
674     This function (not method) lets you add your own types to C<push_write>.
675     Whenever the given C<type> is used, C<push_write> will invoke the code
676     reference with the handle object and the remaining arguments.
677 root 1.29
678 root 1.30 The code reference is supposed to return a single octet string that will
679     be appended to the write buffer.
680 root 1.29
681 root 1.30 Note that this is a function, and all types registered this way will be
682     global, so try to use unique names.
683 root 1.29
684 root 1.30 =cut
685 root 1.29
686 root 1.8 #############################################################################
687    
688 root 1.9 =back
689    
690     =head2 READ QUEUE
691    
692     AnyEvent::Handle manages two queues per handle, one for writing and one
693     for reading.
694    
695     The read queue is more complex than the write queue. It can be used in two
696     ways, the "simple" way, using only C<on_read> and the "complex" way, using
697     a queue.
698    
699     In the simple case, you just install an C<on_read> callback and whenever
700     new data arrives, it will be called. You can then remove some data (if
701 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
702     leave the data there if you want to accumulate more (e.g. when only a
703     partial message has been received so far).
704 root 1.9
705     In the more complex case, you want to queue multiple callbacks. In this
706     case, AnyEvent::Handle will call the first queued callback each time new
707 root 1.61 data arrives (also the first time it is queued) and removes it when it has
708     done its job (see C<push_read>, below).
709 root 1.9
710     This way you can, for example, push three line-reads, followed by reading
711     a chunk of data, and AnyEvent::Handle will execute them in order.
712    
713     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
714     the specified number of bytes which give an XML datagram.
715    
716     # in the default state, expect some header bytes
717     $handle->on_read (sub {
718     # some data is here, now queue the length-header-read (4 octets)
719 root 1.52 shift->unshift_read (chunk => 4, sub {
720 root 1.9 # header arrived, decode
721     my $len = unpack "N", $_[1];
722    
723     # now read the payload
724 root 1.52 shift->unshift_read (chunk => $len, sub {
725 root 1.9 my $xml = $_[1];
726     # handle xml
727     });
728     });
729     });
730    
731 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
732     and another line or "ERROR" for the first request that is sent, and 64
733     bytes for the second request. Due to the availability of a queue, we can
734     just pipeline sending both requests and manipulate the queue as necessary
735     in the callbacks.
736    
737     When the first callback is called and sees an "OK" response, it will
738     C<unshift> another line-read. This line-read will be queued I<before> the
739     64-byte chunk callback.
740 root 1.9
741 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
742 root 1.9 $handle->push_write ("request 1\015\012");
743    
744     # we expect "ERROR" or "OK" as response, so push a line read
745 root 1.52 $handle->push_read (line => sub {
746 root 1.9 # if we got an "OK", we have to _prepend_ another line,
747     # so it will be read before the second request reads its 64 bytes
748     # which are already in the queue when this callback is called
749     # we don't do this in case we got an error
750     if ($_[1] eq "OK") {
751 root 1.52 $_[0]->unshift_read (line => sub {
752 root 1.9 my $response = $_[1];
753     ...
754     });
755     }
756     });
757    
758 root 1.69 # request two, simply returns 64 octets
759 root 1.9 $handle->push_write ("request 2\015\012");
760    
761     # simply read 64 bytes, always
762 root 1.52 $handle->push_read (chunk => 64, sub {
763 root 1.9 my $response = $_[1];
764     ...
765     });
766    
767     =over 4
768    
769 root 1.10 =cut
770    
771 root 1.8 sub _drain_rbuf {
772     my ($self) = @_;
773 elmex 1.1
774 root 1.59 local $self->{_in_drain} = 1;
775    
776 root 1.17 if (
777     defined $self->{rbuf_max}
778     && $self->{rbuf_max} < length $self->{rbuf}
779     ) {
780 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
781 root 1.17 }
782    
783 root 1.59 while () {
784 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
785     # we are draining the buffer, and this can only happen with TLS.
786 root 1.116 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
787 root 1.115
788 root 1.59 my $len = length $self->{rbuf};
789 elmex 1.1
790 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
791 root 1.29 unless ($cb->($self)) {
792 root 1.38 if ($self->{_eof}) {
793 root 1.10 # no progress can be made (not enough data and no data forthcoming)
794 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
795 root 1.10 }
796    
797 root 1.38 unshift @{ $self->{_queue} }, $cb;
798 root 1.55 last;
799 root 1.8 }
800     } elsif ($self->{on_read}) {
801 root 1.61 last unless $len;
802    
803 root 1.8 $self->{on_read}($self);
804    
805     if (
806 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
807     && !@{ $self->{_queue} } # and the queue is still empty
808     && $self->{on_read} # but we still have on_read
809 root 1.8 ) {
810 root 1.55 # no further data will arrive
811     # so no progress can be made
812 root 1.82 $self->_error (&Errno::EPIPE, 1), return
813 root 1.55 if $self->{_eof};
814    
815     last; # more data might arrive
816 elmex 1.1 }
817 root 1.8 } else {
818     # read side becomes idle
819 root 1.93 delete $self->{_rw} unless $self->{tls};
820 root 1.55 last;
821 root 1.8 }
822     }
823    
824 root 1.80 if ($self->{_eof}) {
825     if ($self->{on_eof}) {
826     $self->{on_eof}($self)
827     } else {
828     $self->_error (0, 1);
829     }
830     }
831 root 1.55
832     # may need to restart read watcher
833     unless ($self->{_rw}) {
834     $self->start_read
835     if $self->{on_read} || @{ $self->{_queue} };
836     }
837 elmex 1.1 }
838    
839 root 1.8 =item $handle->on_read ($cb)
840 elmex 1.1
841 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
842     the new callback is C<undef>). See the description of C<on_read> in the
843     constructor.
844 elmex 1.1
845 root 1.8 =cut
846    
847     sub on_read {
848     my ($self, $cb) = @_;
849 elmex 1.1
850 root 1.8 $self->{on_read} = $cb;
851 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
852 elmex 1.1 }
853    
854 root 1.8 =item $handle->rbuf
855    
856     Returns the read buffer (as a modifiable lvalue).
857 elmex 1.1
858 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
859     member, if you want. However, the only operation allowed on the
860     read buffer (apart from looking at it) is removing data from its
861     beginning. Otherwise modifying or appending to it is not allowed and will
862     lead to hard-to-track-down bugs.
863 elmex 1.1
864 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
865     C<push_read> or C<unshift_read> methods are used. The other read methods
866     automatically manage the read buffer.
867 elmex 1.1
868     =cut
869    
870 elmex 1.2 sub rbuf : lvalue {
871 root 1.8 $_[0]{rbuf}
872 elmex 1.2 }
873 elmex 1.1
874 root 1.8 =item $handle->push_read ($cb)
875    
876     =item $handle->unshift_read ($cb)
877    
878     Append the given callback to the end of the queue (C<push_read>) or
879     prepend it (C<unshift_read>).
880    
881     The callback is called each time some additional read data arrives.
882 elmex 1.1
883 elmex 1.20 It must check whether enough data is in the read buffer already.
884 elmex 1.1
885 root 1.8 If not enough data is available, it must return the empty list or a false
886     value, in which case it will be called repeatedly until enough data is
887     available (or an error condition is detected).
888    
889     If enough data was available, then the callback must remove all data it is
890     interested in (which can be none at all) and return a true value. After returning
891     true, it will be removed from the queue.
892 elmex 1.1
893     =cut
894    
895 root 1.30 our %RH;
896    
897     sub register_read_type($$) {
898     $RH{$_[0]} = $_[1];
899     }
900    
901 root 1.8 sub push_read {
902 root 1.28 my $self = shift;
903     my $cb = pop;
904    
905     if (@_) {
906     my $type = shift;
907    
908     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
909     ->($self, $cb, @_);
910     }
911 elmex 1.1
912 root 1.38 push @{ $self->{_queue} }, $cb;
913 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
914 elmex 1.1 }
915    
916 root 1.8 sub unshift_read {
917 root 1.28 my $self = shift;
918     my $cb = pop;
919    
920     if (@_) {
921     my $type = shift;
922    
923     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
924     ->($self, $cb, @_);
925     }
926    
927 root 1.8
928 root 1.38 unshift @{ $self->{_queue} }, $cb;
929 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
930 root 1.8 }
931 elmex 1.1
932 root 1.28 =item $handle->push_read (type => @args, $cb)
933 elmex 1.1
934 root 1.28 =item $handle->unshift_read (type => @args, $cb)
935 elmex 1.1
936 root 1.28 Instead of providing a callback that parses the data itself you can chose
937     between a number of predefined parsing formats, for chunks of data, lines
938     etc.
939 elmex 1.1
940 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
941     drop by and tell us):
942 root 1.28
943     =over 4
944    
945 root 1.40 =item chunk => $octets, $cb->($handle, $data)
946 root 1.28
947     Invoke the callback only once C<$octets> bytes have been read. Pass the
948     data read to the callback. The callback will never be called with less
949     data.
950    
951     Example: read 2 bytes.
952    
953     $handle->push_read (chunk => 2, sub {
954     warn "yay ", unpack "H*", $_[1];
955     });
956 elmex 1.1
957     =cut
958    
959 root 1.28 register_read_type chunk => sub {
960     my ($self, $cb, $len) = @_;
961 elmex 1.1
962 root 1.8 sub {
963     $len <= length $_[0]{rbuf} or return;
964 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
965 root 1.8 1
966     }
967 root 1.28 };
968 root 1.8
969 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
970 elmex 1.1
971 root 1.8 The callback will be called only once a full line (including the end of
972     line marker, C<$eol>) has been read. This line (excluding the end of line
973     marker) will be passed to the callback as second argument (C<$line>), and
974     the end of line marker as the third argument (C<$eol>).
975 elmex 1.1
976 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
977     will be interpreted as a fixed record end marker, or it can be a regex
978     object (e.g. created by C<qr>), in which case it is interpreted as a
979     regular expression.
980 elmex 1.1
981 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
982     undef), then C<qr|\015?\012|> is used (which is good for most internet
983     protocols).
984 elmex 1.1
985 root 1.8 Partial lines at the end of the stream will never be returned, as they are
986     not marked by the end of line marker.
987 elmex 1.1
988 root 1.8 =cut
989 elmex 1.1
990 root 1.28 register_read_type line => sub {
991     my ($self, $cb, $eol) = @_;
992 elmex 1.1
993 root 1.76 if (@_ < 3) {
994     # this is more than twice as fast as the generic code below
995     sub {
996     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
997 elmex 1.1
998 root 1.76 $cb->($_[0], $1, $2);
999     1
1000     }
1001     } else {
1002     $eol = quotemeta $eol unless ref $eol;
1003     $eol = qr|^(.*?)($eol)|s;
1004    
1005     sub {
1006     $_[0]{rbuf} =~ s/$eol// or return;
1007 elmex 1.1
1008 root 1.76 $cb->($_[0], $1, $2);
1009     1
1010     }
1011 root 1.8 }
1012 root 1.28 };
1013 elmex 1.1
1014 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1015 root 1.36
1016     Makes a regex match against the regex object C<$accept> and returns
1017     everything up to and including the match.
1018    
1019     Example: read a single line terminated by '\n'.
1020    
1021     $handle->push_read (regex => qr<\n>, sub { ... });
1022    
1023     If C<$reject> is given and not undef, then it determines when the data is
1024     to be rejected: it is matched against the data when the C<$accept> regex
1025     does not match and generates an C<EBADMSG> error when it matches. This is
1026     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1027     receive buffer overflow).
1028    
1029     Example: expect a single decimal number followed by whitespace, reject
1030     anything else (not the use of an anchor).
1031    
1032     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1033    
1034     If C<$skip> is given and not C<undef>, then it will be matched against
1035     the receive buffer when neither C<$accept> nor C<$reject> match,
1036     and everything preceding and including the match will be accepted
1037     unconditionally. This is useful to skip large amounts of data that you
1038     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1039     have to start matching from the beginning. This is purely an optimisation
1040     and is usually worth only when you expect more than a few kilobytes.
1041    
1042     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1043     expect the header to be very large (it isn't in practise, but...), we use
1044     a skip regex to skip initial portions. The skip regex is tricky in that
1045     it only accepts something not ending in either \015 or \012, as these are
1046     required for the accept regex.
1047    
1048     $handle->push_read (regex =>
1049     qr<\015\012\015\012>,
1050     undef, # no reject
1051     qr<^.*[^\015\012]>,
1052     sub { ... });
1053    
1054     =cut
1055    
1056     register_read_type regex => sub {
1057     my ($self, $cb, $accept, $reject, $skip) = @_;
1058    
1059     my $data;
1060     my $rbuf = \$self->{rbuf};
1061    
1062     sub {
1063     # accept
1064     if ($$rbuf =~ $accept) {
1065     $data .= substr $$rbuf, 0, $+[0], "";
1066     $cb->($self, $data);
1067     return 1;
1068     }
1069    
1070     # reject
1071     if ($reject && $$rbuf =~ $reject) {
1072 root 1.52 $self->_error (&Errno::EBADMSG);
1073 root 1.36 }
1074    
1075     # skip
1076     if ($skip && $$rbuf =~ $skip) {
1077     $data .= substr $$rbuf, 0, $+[0], "";
1078     }
1079    
1080     ()
1081     }
1082     };
1083    
1084 root 1.61 =item netstring => $cb->($handle, $string)
1085    
1086     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1087    
1088     Throws an error with C<$!> set to EBADMSG on format violations.
1089    
1090     =cut
1091    
1092     register_read_type netstring => sub {
1093     my ($self, $cb) = @_;
1094    
1095     sub {
1096     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1097     if ($_[0]{rbuf} =~ /[^0-9]/) {
1098     $self->_error (&Errno::EBADMSG);
1099     }
1100     return;
1101     }
1102    
1103     my $len = $1;
1104    
1105     $self->unshift_read (chunk => $len, sub {
1106     my $string = $_[1];
1107     $_[0]->unshift_read (chunk => 1, sub {
1108     if ($_[1] eq ",") {
1109     $cb->($_[0], $string);
1110     } else {
1111     $self->_error (&Errno::EBADMSG);
1112     }
1113     });
1114     });
1115    
1116     1
1117     }
1118     };
1119    
1120     =item packstring => $format, $cb->($handle, $string)
1121    
1122     An octet string prefixed with an encoded length. The encoding C<$format>
1123     uses the same format as a Perl C<pack> format, but must specify a single
1124     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1125     optional C<!>, C<< < >> or C<< > >> modifier).
1126    
1127 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1128     EPP uses a prefix of C<N> (4 octtes).
1129 root 1.61
1130     Example: read a block of data prefixed by its length in BER-encoded
1131     format (very efficient).
1132    
1133     $handle->push_read (packstring => "w", sub {
1134     my ($handle, $data) = @_;
1135     });
1136    
1137     =cut
1138    
1139     register_read_type packstring => sub {
1140     my ($self, $cb, $format) = @_;
1141    
1142     sub {
1143     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1144 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1145 root 1.61 or return;
1146    
1147 root 1.77 $format = length pack $format, $len;
1148 root 1.61
1149 root 1.77 # bypass unshift if we already have the remaining chunk
1150     if ($format + $len <= length $_[0]{rbuf}) {
1151     my $data = substr $_[0]{rbuf}, $format, $len;
1152     substr $_[0]{rbuf}, 0, $format + $len, "";
1153     $cb->($_[0], $data);
1154     } else {
1155     # remove prefix
1156     substr $_[0]{rbuf}, 0, $format, "";
1157    
1158     # read remaining chunk
1159     $_[0]->unshift_read (chunk => $len, $cb);
1160     }
1161 root 1.61
1162     1
1163     }
1164     };
1165    
1166 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1167    
1168 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1169     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1170 root 1.40
1171     If a C<json> object was passed to the constructor, then that will be used
1172     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1173    
1174     This read type uses the incremental parser available with JSON version
1175     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1176     dependency on your own: this module will load the JSON module, but
1177     AnyEvent does not depend on it itself.
1178    
1179     Since JSON texts are fully self-delimiting, the C<json> read and write
1180 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1181     the C<json> write type description, above, for an actual example.
1182 root 1.40
1183     =cut
1184    
1185     register_read_type json => sub {
1186 root 1.63 my ($self, $cb) = @_;
1187 root 1.40
1188     require JSON;
1189    
1190     my $data;
1191     my $rbuf = \$self->{rbuf};
1192    
1193 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1194 root 1.40
1195     sub {
1196 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1197 root 1.110
1198 root 1.113 if ($ref) {
1199     $self->{rbuf} = $json->incr_text;
1200     $json->incr_text = "";
1201     $cb->($self, $ref);
1202 root 1.110
1203     1
1204 root 1.113 } elsif ($@) {
1205 root 1.111 # error case
1206 root 1.110 $json->incr_skip;
1207 root 1.40
1208     $self->{rbuf} = $json->incr_text;
1209     $json->incr_text = "";
1210    
1211 root 1.110 $self->_error (&Errno::EBADMSG);
1212 root 1.114
1213 root 1.113 ()
1214     } else {
1215     $self->{rbuf} = "";
1216 root 1.114
1217 root 1.113 ()
1218     }
1219 root 1.40 }
1220     };
1221    
1222 root 1.63 =item storable => $cb->($handle, $ref)
1223    
1224     Deserialises a L<Storable> frozen representation as written by the
1225     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1226     data).
1227    
1228     Raises C<EBADMSG> error if the data could not be decoded.
1229    
1230     =cut
1231    
1232     register_read_type storable => sub {
1233     my ($self, $cb) = @_;
1234    
1235     require Storable;
1236    
1237     sub {
1238     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1239 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1240 root 1.63 or return;
1241    
1242 root 1.77 my $format = length pack "w", $len;
1243 root 1.63
1244 root 1.77 # bypass unshift if we already have the remaining chunk
1245     if ($format + $len <= length $_[0]{rbuf}) {
1246     my $data = substr $_[0]{rbuf}, $format, $len;
1247     substr $_[0]{rbuf}, 0, $format + $len, "";
1248     $cb->($_[0], Storable::thaw ($data));
1249     } else {
1250     # remove prefix
1251     substr $_[0]{rbuf}, 0, $format, "";
1252    
1253     # read remaining chunk
1254     $_[0]->unshift_read (chunk => $len, sub {
1255     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1256     $cb->($_[0], $ref);
1257     } else {
1258     $self->_error (&Errno::EBADMSG);
1259     }
1260     });
1261     }
1262    
1263     1
1264 root 1.63 }
1265     };
1266    
1267 root 1.28 =back
1268    
1269 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1270 root 1.30
1271     This function (not method) lets you add your own types to C<push_read>.
1272    
1273     Whenever the given C<type> is used, C<push_read> will invoke the code
1274     reference with the handle object, the callback and the remaining
1275     arguments.
1276    
1277     The code reference is supposed to return a callback (usually a closure)
1278     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1279    
1280     It should invoke the passed callback when it is done reading (remember to
1281 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1282 root 1.30
1283     Note that this is a function, and all types registered this way will be
1284     global, so try to use unique names.
1285    
1286     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1287     search for C<register_read_type>)).
1288    
1289 root 1.10 =item $handle->stop_read
1290    
1291     =item $handle->start_read
1292    
1293 root 1.18 In rare cases you actually do not want to read anything from the
1294 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1295 root 1.22 any queued callbacks will be executed then. To start reading again, call
1296 root 1.10 C<start_read>.
1297    
1298 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1299     you change the C<on_read> callback or push/unshift a read callback, and it
1300     will automatically C<stop_read> for you when neither C<on_read> is set nor
1301     there are any read requests in the queue.
1302    
1303 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1304     half-duplex connections).
1305    
1306 root 1.10 =cut
1307    
1308     sub stop_read {
1309     my ($self) = @_;
1310 elmex 1.1
1311 root 1.93 delete $self->{_rw} unless $self->{tls};
1312 root 1.8 }
1313 elmex 1.1
1314 root 1.10 sub start_read {
1315     my ($self) = @_;
1316    
1317 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1318 root 1.10 Scalar::Util::weaken $self;
1319    
1320 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1321 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1322 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1323 root 1.10
1324     if ($len > 0) {
1325 root 1.44 $self->{_activity} = AnyEvent->now;
1326 root 1.43
1327 root 1.93 if ($self->{tls}) {
1328     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1329 root 1.97
1330 root 1.93 &_dotls ($self);
1331     } else {
1332     $self->_drain_rbuf unless $self->{_in_drain};
1333     }
1334 root 1.10
1335     } elsif (defined $len) {
1336 root 1.38 delete $self->{_rw};
1337     $self->{_eof} = 1;
1338 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1339 root 1.10
1340 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1341 root 1.52 return $self->_error ($!, 1);
1342 root 1.10 }
1343     });
1344     }
1345 elmex 1.1 }
1346    
1347 root 1.97 # poll the write BIO and send the data if applicable
1348 root 1.19 sub _dotls {
1349     my ($self) = @_;
1350    
1351 root 1.97 my $tmp;
1352 root 1.56
1353 root 1.38 if (length $self->{_tls_wbuf}) {
1354 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1355     substr $self->{_tls_wbuf}, 0, $tmp, "";
1356 root 1.22 }
1357 root 1.19 }
1358    
1359 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1360     unless (length $tmp) {
1361 root 1.56 # let's treat SSL-eof as we treat normal EOF
1362 root 1.91 delete $self->{_rw};
1363 root 1.56 $self->{_eof} = 1;
1364 root 1.92 &_freetls;
1365 root 1.56 }
1366 root 1.91
1367 root 1.116 $self->{_tls_rbuf} .= $tmp;
1368 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1369 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1370 root 1.23 }
1371    
1372 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1373 root 1.24
1374 root 1.97 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1375     if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1376 root 1.52 return $self->_error ($!, 1);
1377 root 1.116 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1378 root 1.52 return $self->_error (&Errno::EIO, 1);
1379 root 1.19 }
1380 root 1.23
1381 root 1.97 # all other errors are fine for our purposes
1382 root 1.19 }
1383 root 1.91
1384 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1385     $self->{wbuf} .= $tmp;
1386 root 1.91 $self->_drain_wbuf;
1387     }
1388 root 1.19 }
1389    
1390 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1391    
1392     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1393     object is created, you can also do that at a later time by calling
1394     C<starttls>.
1395    
1396     The first argument is the same as the C<tls> constructor argument (either
1397     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1398    
1399 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1400     when AnyEvent::Handle has to create its own TLS connection object, or
1401     a hash reference with C<< key => value >> pairs that will be used to
1402     construct a new context.
1403    
1404     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1405     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1406     changed to your liking. Note that the handshake might have already started
1407     when this function returns.
1408 root 1.38
1409 root 1.92 If it an error to start a TLS handshake more than once per
1410     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1411    
1412 root 1.25 =cut
1413    
1414 root 1.19 sub starttls {
1415     my ($self, $ssl, $ctx) = @_;
1416    
1417 root 1.94 require Net::SSLeay;
1418    
1419 root 1.102 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1420 root 1.92 if $self->{tls};
1421 root 1.131
1422     $ctx ||= $self->{tls_ctx};
1423    
1424     if ("HASH" eq ref $ctx) {
1425     require AnyEvent::TLS;
1426    
1427     local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1428     $ctx = new AnyEvent::TLS %$ctx;
1429     }
1430 root 1.92
1431 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1432     $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self);
1433 root 1.19
1434 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1435     # but the openssl maintainers basically said: "trust us, it just works".
1436     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1437     # and mismaintained ssleay-module doesn't even offer them).
1438 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1439 root 1.87 #
1440     # in short: this is a mess.
1441     #
1442 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1443 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1444 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1445     # have identity issues in that area.
1446 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1447     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1448     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1449     Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1450 root 1.21
1451 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1452     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1453 root 1.19
1454 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1455 root 1.19
1456 root 1.93 &_dotls; # need to trigger the initial handshake
1457     $self->start_read; # make sure we actually do read
1458 root 1.19 }
1459    
1460 root 1.25 =item $handle->stoptls
1461    
1462 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1463     sending a close notify to the other side, but since OpenSSL doesn't
1464     support non-blocking shut downs, it is not possible to re-use the stream
1465     afterwards.
1466 root 1.25
1467     =cut
1468    
1469     sub stoptls {
1470     my ($self) = @_;
1471    
1472 root 1.92 if ($self->{tls}) {
1473 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1474 root 1.92
1475     &_dotls;
1476    
1477     # we don't give a shit. no, we do, but we can't. no...
1478     # we, we... have to use openssl :/
1479     &_freetls;
1480     }
1481     }
1482    
1483     sub _freetls {
1484     my ($self) = @_;
1485    
1486     return unless $self->{tls};
1487 root 1.38
1488 root 1.131 $self->{tls_ctx}->_put_session (delete $self->{tls});
1489 root 1.92
1490 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1491 root 1.25 }
1492    
1493 root 1.19 sub DESTROY {
1494 root 1.120 my ($self) = @_;
1495 root 1.19
1496 root 1.92 &_freetls;
1497 root 1.62
1498     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1499    
1500     if ($linger && length $self->{wbuf}) {
1501     my $fh = delete $self->{fh};
1502     my $wbuf = delete $self->{wbuf};
1503    
1504     my @linger;
1505    
1506     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1507     my $len = syswrite $fh, $wbuf, length $wbuf;
1508    
1509     if ($len > 0) {
1510     substr $wbuf, 0, $len, "";
1511     } else {
1512     @linger = (); # end
1513     }
1514     });
1515     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1516     @linger = ();
1517     });
1518     }
1519 root 1.19 }
1520    
1521 root 1.99 =item $handle->destroy
1522    
1523 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1524 root 1.99 no further callbacks will be invoked and resources will be freed as much
1525     as possible. You must not call any methods on the object afterwards.
1526    
1527 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1528     object and it will simply shut down. This works in fatal error and EOF
1529     callbacks, as well as code outside. It does I<NOT> work in a read or write
1530     callback, so when you want to destroy the AnyEvent::Handle object from
1531     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1532     that case.
1533    
1534 root 1.99 The handle might still linger in the background and write out remaining
1535     data, as specified by the C<linger> option, however.
1536    
1537     =cut
1538    
1539     sub destroy {
1540     my ($self) = @_;
1541    
1542     $self->DESTROY;
1543     %$self = ();
1544     }
1545    
1546 root 1.19 =item AnyEvent::Handle::TLS_CTX
1547    
1548 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1549     for TLS mode.
1550 root 1.19
1551 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1552 root 1.19
1553     =cut
1554    
1555     our $TLS_CTX;
1556    
1557     sub TLS_CTX() {
1558 root 1.131 $TLS_CTX ||= do {
1559     require AnyEvent::TLS;
1560 root 1.19
1561 root 1.131 new AnyEvent::TLS
1562 root 1.19 }
1563     }
1564    
1565 elmex 1.1 =back
1566    
1567 root 1.95
1568     =head1 NONFREQUENTLY ASKED QUESTIONS
1569    
1570     =over 4
1571    
1572 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1573     still get further invocations!
1574    
1575     That's because AnyEvent::Handle keeps a reference to itself when handling
1576     read or write callbacks.
1577    
1578     It is only safe to "forget" the reference inside EOF or error callbacks,
1579     from within all other callbacks, you need to explicitly call the C<<
1580     ->destroy >> method.
1581    
1582     =item I get different callback invocations in TLS mode/Why can't I pause
1583     reading?
1584    
1585     Unlike, say, TCP, TLS connections do not consist of two independent
1586     communication channels, one for each direction. Or put differently. The
1587     read and write directions are not independent of each other: you cannot
1588     write data unless you are also prepared to read, and vice versa.
1589    
1590     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1591     callback invocations when you are not expecting any read data - the reason
1592     is that AnyEvent::Handle always reads in TLS mode.
1593    
1594     During the connection, you have to make sure that you always have a
1595     non-empty read-queue, or an C<on_read> watcher. At the end of the
1596     connection (or when you no longer want to use it) you can call the
1597     C<destroy> method.
1598    
1599 root 1.95 =item How do I read data until the other side closes the connection?
1600    
1601 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1602     to achieve this is by setting an C<on_read> callback that does nothing,
1603     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1604     will be in C<$_[0]{rbuf}>:
1605 root 1.95
1606     $handle->on_read (sub { });
1607     $handle->on_eof (undef);
1608     $handle->on_error (sub {
1609     my $data = delete $_[0]{rbuf};
1610     undef $handle;
1611     });
1612    
1613     The reason to use C<on_error> is that TCP connections, due to latencies
1614     and packets loss, might get closed quite violently with an error, when in
1615     fact, all data has been received.
1616    
1617 root 1.101 It is usually better to use acknowledgements when transferring data,
1618 root 1.95 to make sure the other side hasn't just died and you got the data
1619     intact. This is also one reason why so many internet protocols have an
1620     explicit QUIT command.
1621    
1622 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1623     all data has been written?
1624 root 1.95
1625     After writing your last bits of data, set the C<on_drain> callback
1626     and destroy the handle in there - with the default setting of
1627     C<low_water_mark> this will be called precisely when all data has been
1628     written to the socket:
1629    
1630     $handle->push_write (...);
1631     $handle->on_drain (sub {
1632     warn "all data submitted to the kernel\n";
1633     undef $handle;
1634     });
1635    
1636     =back
1637    
1638    
1639 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1640    
1641     In many cases, you might want to subclass AnyEvent::Handle.
1642    
1643     To make this easier, a given version of AnyEvent::Handle uses these
1644     conventions:
1645    
1646     =over 4
1647    
1648     =item * all constructor arguments become object members.
1649    
1650     At least initially, when you pass a C<tls>-argument to the constructor it
1651 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1652 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1653    
1654     =item * other object member names are prefixed with an C<_>.
1655    
1656     All object members not explicitly documented (internal use) are prefixed
1657     with an underscore character, so the remaining non-C<_>-namespace is free
1658     for use for subclasses.
1659    
1660     =item * all members not documented here and not prefixed with an underscore
1661     are free to use in subclasses.
1662    
1663     Of course, new versions of AnyEvent::Handle may introduce more "public"
1664     member variables, but thats just life, at least it is documented.
1665    
1666     =back
1667    
1668 elmex 1.1 =head1 AUTHOR
1669    
1670 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1671 elmex 1.1
1672     =cut
1673    
1674     1; # End of AnyEvent::Handle