ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.136
Committed: Fri Jul 3 21:44:14 2009 UTC (14 years, 11 months ago) by root
Branch: MAIN
Changes since 1.135: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.136 our $VERSION = 4.452;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32 root 1.107 $cv->send;
33 elmex 1.2 },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 elmex 1.1
70 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.8 =item fh => $filehandle [MANDATORY]
75 elmex 1.1
76     The filehandle this L<AnyEvent::Handle> object will operate on.
77    
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.40 =item on_eof => $cb->($handle)
83 root 1.10
84 root 1.74 Set the callback to be called when an end-of-file condition is detected,
85 root 1.52 i.e. in the case of a socket, when the other side has closed the
86     connection cleanly.
87 root 1.8
88 root 1.82 For sockets, this just means that the other side has stopped sending data,
89 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
90 root 1.82 callback and continue writing data, as only the read part has been shut
91     down.
92    
93 root 1.101 While not mandatory, it is I<highly> recommended to set an EOF callback,
94 root 1.16 otherwise you might end up with a closed socket while you are still
95     waiting for data.
96    
97 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
98     set, then a fatal error will be raised with C<$!> set to <0>.
99    
100 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
101 root 1.10
102 root 1.52 This is the error callback, which is called when, well, some error
103     occured, such as not being able to resolve the hostname, failure to
104     connect or a read error.
105    
106     Some errors are fatal (which is indicated by C<$fatal> being true). On
107 root 1.82 fatal errors the handle object will be shut down and will not be usable
108 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
110     (C<EPIPE>) or I/O errors.
111    
112 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
113     against, but in some cases (TLS errors), this does not work well. It is
114     recommended to always output the C<$message> argument in human-readable
115     error messages (it's usually the same as C<"$!">).
116    
117 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
118     to simply ignore this parameter and instead abondon the handle object
119     when this callback is invoked. Examples of non-fatal errors are timeouts
120     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
121 root 1.8
122 root 1.10 On callback entrance, the value of C<$!> contains the operating system
123 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
124     C<EPROTO>).
125 root 1.8
126 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
127     you will not be notified of errors otherwise. The default simply calls
128 root 1.52 C<croak>.
129 root 1.8
130 root 1.40 =item on_read => $cb->($handle)
131 root 1.8
132     This sets the default read callback, which is called when data arrives
133 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
134     callback will only be called when at least one octet of data is in the
135     read buffer).
136 root 1.8
137     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
138 root 1.117 method or access the C<$handle->{rbuf}> member directly. Note that you
139     must not enlarge or modify the read buffer, you can only remove data at
140     the beginning from it.
141 root 1.8
142     When an EOF condition is detected then AnyEvent::Handle will first try to
143     feed all the remaining data to the queued callbacks and C<on_read> before
144     calling the C<on_eof> callback. If no progress can be made, then a fatal
145     error will be raised (with C<$!> set to C<EPIPE>).
146 elmex 1.1
147 root 1.40 =item on_drain => $cb->($handle)
148 elmex 1.1
149 root 1.8 This sets the callback that is called when the write buffer becomes empty
150     (or when the callback is set and the buffer is empty already).
151 elmex 1.1
152 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
153 elmex 1.2
154 root 1.69 This callback is useful when you don't want to put all of your write data
155     into the queue at once, for example, when you want to write the contents
156     of some file to the socket you might not want to read the whole file into
157     memory and push it into the queue, but instead only read more data from
158     the file when the write queue becomes empty.
159    
160 root 1.43 =item timeout => $fractional_seconds
161    
162     If non-zero, then this enables an "inactivity" timeout: whenever this many
163     seconds pass without a successful read or write on the underlying file
164     handle, the C<on_timeout> callback will be invoked (and if that one is
165 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
166 root 1.43
167     Note that timeout processing is also active when you currently do not have
168     any outstanding read or write requests: If you plan to keep the connection
169     idle then you should disable the timout temporarily or ignore the timeout
170 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171     restart the timeout.
172 root 1.43
173     Zero (the default) disables this timeout.
174    
175     =item on_timeout => $cb->($handle)
176    
177     Called whenever the inactivity timeout passes. If you return from this
178     callback, then the timeout will be reset as if some activity had happened,
179     so this condition is not fatal in any way.
180    
181 root 1.8 =item rbuf_max => <bytes>
182 elmex 1.2
183 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
184     when the read buffer ever (strictly) exceeds this size. This is useful to
185 root 1.88 avoid some forms of denial-of-service attacks.
186 elmex 1.2
187 root 1.8 For example, a server accepting connections from untrusted sources should
188     be configured to accept only so-and-so much data that it cannot act on
189     (for example, when expecting a line, an attacker could send an unlimited
190     amount of data without a callback ever being called as long as the line
191     isn't finished).
192 elmex 1.2
193 root 1.70 =item autocork => <boolean>
194    
195     When disabled (the default), then C<push_write> will try to immediately
196 root 1.88 write the data to the handle, if possible. This avoids having to register
197     a write watcher and wait for the next event loop iteration, but can
198     be inefficient if you write multiple small chunks (on the wire, this
199     disadvantage is usually avoided by your kernel's nagle algorithm, see
200     C<no_delay>, but this option can save costly syscalls).
201 root 1.70
202     When enabled, then writes will always be queued till the next event loop
203     iteration. This is efficient when you do many small writes per iteration,
204 root 1.88 but less efficient when you do a single write only per iteration (or when
205     the write buffer often is full). It also increases write latency.
206 root 1.70
207     =item no_delay => <boolean>
208    
209     When doing small writes on sockets, your operating system kernel might
210     wait a bit for more data before actually sending it out. This is called
211     the Nagle algorithm, and usually it is beneficial.
212    
213 root 1.88 In some situations you want as low a delay as possible, which can be
214     accomplishd by setting this option to a true value.
215 root 1.70
216 root 1.88 The default is your opertaing system's default behaviour (most likely
217     enabled), this option explicitly enables or disables it, if possible.
218 root 1.70
219 root 1.8 =item read_size => <bytes>
220 elmex 1.2
221 root 1.88 The default read block size (the amount of bytes this module will
222     try to read during each loop iteration, which affects memory
223     requirements). Default: C<8192>.
224 root 1.8
225     =item low_water_mark => <bytes>
226    
227     Sets the amount of bytes (default: C<0>) that make up an "empty" write
228     buffer: If the write reaches this size or gets even samller it is
229     considered empty.
230 elmex 1.2
231 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
232     the write buffer before it is fully drained, but this is a rare case, as
233     the operating system kernel usually buffers data as well, so the default
234     is good in almost all cases.
235    
236 root 1.62 =item linger => <seconds>
237    
238     If non-zero (default: C<3600>), then the destructor of the
239 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
240     write data and will install a watcher that will write this data to the
241     socket. No errors will be reported (this mostly matches how the operating
242     system treats outstanding data at socket close time).
243 root 1.62
244 root 1.88 This will not work for partial TLS data that could not be encoded
245 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
246     help.
247 root 1.62
248 root 1.133 =item peername => $string
249    
250 root 1.134 A string used to identify the remote site - usually the DNS hostname
251     (I<not> IDN!) used to create the connection, rarely the IP address.
252 root 1.131
253 root 1.133 Apart from being useful in error messages, this string is also used in TLS
254     common name verification (see C<verify_cn> in L<AnyEvent::TLS>).
255 root 1.131
256 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
257    
258 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
259 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
260     established and will transparently encrypt/decrypt data afterwards.
261 root 1.19
262 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
263     appropriate error message.
264    
265 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
266 root 1.88 automatically when you try to create a TLS handle): this module doesn't
267     have a dependency on that module, so if your module requires it, you have
268     to add the dependency yourself.
269 root 1.26
270 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
271     C<accept>, and for the TLS client side of a connection, use C<connect>
272     mode.
273 root 1.19
274     You can also provide your own TLS connection object, but you have
275     to make sure that you call either C<Net::SSLeay::set_connect_state>
276     or C<Net::SSLeay::set_accept_state> on it before you pass it to
277 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
278     object.
279    
280     At some future point, AnyEvent::Handle might switch to another TLS
281     implementation, then the option to use your own session object will go
282     away.
283 root 1.19
284 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
285     passing in the wrong integer will lead to certain crash. This most often
286     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
287     segmentation fault.
288    
289 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
290 root 1.26
291 root 1.131 =item tls_ctx => $anyevent_tls
292 root 1.19
293 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
294 root 1.19 (unless a connection object was specified directly). If this parameter is
295     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
296    
297 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
298     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
299     new TLS context object.
300    
301 root 1.40 =item json => JSON or JSON::XS object
302    
303     This is the json coder object used by the C<json> read and write types.
304    
305 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
306 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
307     texts.
308 root 1.40
309     Note that you are responsible to depend on the JSON module if you want to
310     use this functionality, as AnyEvent does not have a dependency itself.
311    
312 elmex 1.1 =back
313    
314     =cut
315    
316     sub new {
317 root 1.8 my $class = shift;
318     my $self = bless { @_ }, $class;
319    
320     $self->{fh} or Carp::croak "mandatory argument fh is missing";
321    
322     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
323 elmex 1.1
324 root 1.131 $self->{_activity} = AnyEvent->now;
325     $self->_timeout;
326    
327     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
328    
329 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
330     if $self->{tls};
331 root 1.19
332 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
333 root 1.10
334 root 1.66 $self->start_read
335 root 1.67 if $self->{on_read};
336 root 1.66
337 root 1.131 $self->{fh} && $self
338 root 1.8 }
339 elmex 1.2
340 root 1.8 sub _shutdown {
341     my ($self) = @_;
342 elmex 1.2
343 elmex 1.132 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
344 root 1.131 $self->{_eof} = 1; # tell starttls et. al to stop trying
345 root 1.52
346 root 1.92 &_freetls;
347 root 1.8 }
348    
349 root 1.52 sub _error {
350 root 1.133 my ($self, $errno, $fatal, $message) = @_;
351 root 1.8
352 root 1.52 $self->_shutdown
353     if $fatal;
354 elmex 1.1
355 root 1.52 $! = $errno;
356 root 1.133 $message ||= "$!";
357 root 1.37
358 root 1.52 if ($self->{on_error}) {
359 root 1.133 $self->{on_error}($self, $fatal, $message);
360 root 1.100 } elsif ($self->{fh}) {
361 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
362 root 1.52 }
363 elmex 1.1 }
364    
365 root 1.8 =item $fh = $handle->fh
366 elmex 1.1
367 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
368 elmex 1.1
369     =cut
370    
371 root 1.38 sub fh { $_[0]{fh} }
372 elmex 1.1
373 root 1.8 =item $handle->on_error ($cb)
374 elmex 1.1
375 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
376 elmex 1.1
377 root 1.8 =cut
378    
379     sub on_error {
380     $_[0]{on_error} = $_[1];
381     }
382    
383     =item $handle->on_eof ($cb)
384    
385     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
386 elmex 1.1
387     =cut
388    
389 root 1.8 sub on_eof {
390     $_[0]{on_eof} = $_[1];
391     }
392    
393 root 1.43 =item $handle->on_timeout ($cb)
394    
395 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
396     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
397     argument and method.
398 root 1.43
399     =cut
400    
401     sub on_timeout {
402     $_[0]{on_timeout} = $_[1];
403     }
404    
405 root 1.70 =item $handle->autocork ($boolean)
406    
407     Enables or disables the current autocork behaviour (see C<autocork>
408 root 1.105 constructor argument). Changes will only take effect on the next write.
409 root 1.70
410     =cut
411    
412 root 1.105 sub autocork {
413     $_[0]{autocork} = $_[1];
414     }
415    
416 root 1.70 =item $handle->no_delay ($boolean)
417    
418     Enables or disables the C<no_delay> setting (see constructor argument of
419     the same name for details).
420    
421     =cut
422    
423     sub no_delay {
424     $_[0]{no_delay} = $_[1];
425    
426     eval {
427     local $SIG{__DIE__};
428     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
429     };
430     }
431    
432 root 1.43 #############################################################################
433    
434     =item $handle->timeout ($seconds)
435    
436     Configures (or disables) the inactivity timeout.
437    
438     =cut
439    
440     sub timeout {
441     my ($self, $timeout) = @_;
442    
443     $self->{timeout} = $timeout;
444     $self->_timeout;
445     }
446    
447     # reset the timeout watcher, as neccessary
448     # also check for time-outs
449     sub _timeout {
450     my ($self) = @_;
451    
452     if ($self->{timeout}) {
453 root 1.44 my $NOW = AnyEvent->now;
454 root 1.43
455     # when would the timeout trigger?
456     my $after = $self->{_activity} + $self->{timeout} - $NOW;
457    
458     # now or in the past already?
459     if ($after <= 0) {
460     $self->{_activity} = $NOW;
461    
462     if ($self->{on_timeout}) {
463 root 1.48 $self->{on_timeout}($self);
464 root 1.43 } else {
465 root 1.52 $self->_error (&Errno::ETIMEDOUT);
466 root 1.43 }
467    
468 root 1.56 # callback could have changed timeout value, optimise
469 root 1.43 return unless $self->{timeout};
470    
471     # calculate new after
472     $after = $self->{timeout};
473     }
474    
475     Scalar::Util::weaken $self;
476 root 1.56 return unless $self; # ->error could have destroyed $self
477 root 1.43
478     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
479     delete $self->{_tw};
480     $self->_timeout;
481     });
482     } else {
483     delete $self->{_tw};
484     }
485     }
486    
487 root 1.9 #############################################################################
488    
489     =back
490    
491     =head2 WRITE QUEUE
492    
493     AnyEvent::Handle manages two queues per handle, one for writing and one
494     for reading.
495    
496     The write queue is very simple: you can add data to its end, and
497     AnyEvent::Handle will automatically try to get rid of it for you.
498    
499 elmex 1.20 When data could be written and the write buffer is shorter then the low
500 root 1.9 water mark, the C<on_drain> callback will be invoked.
501    
502     =over 4
503    
504 root 1.8 =item $handle->on_drain ($cb)
505    
506     Sets the C<on_drain> callback or clears it (see the description of
507     C<on_drain> in the constructor).
508    
509     =cut
510    
511     sub on_drain {
512 elmex 1.1 my ($self, $cb) = @_;
513    
514 root 1.8 $self->{on_drain} = $cb;
515    
516     $cb->($self)
517 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
518 root 1.8 }
519    
520     =item $handle->push_write ($data)
521    
522     Queues the given scalar to be written. You can push as much data as you
523     want (only limited by the available memory), as C<AnyEvent::Handle>
524     buffers it independently of the kernel.
525    
526     =cut
527    
528 root 1.17 sub _drain_wbuf {
529     my ($self) = @_;
530 root 1.8
531 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
532 root 1.35
533 root 1.8 Scalar::Util::weaken $self;
534 root 1.35
535 root 1.8 my $cb = sub {
536     my $len = syswrite $self->{fh}, $self->{wbuf};
537    
538 root 1.29 if ($len >= 0) {
539 root 1.8 substr $self->{wbuf}, 0, $len, "";
540    
541 root 1.44 $self->{_activity} = AnyEvent->now;
542 root 1.43
543 root 1.8 $self->{on_drain}($self)
544 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
545 root 1.8 && $self->{on_drain};
546    
547 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
548 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
549 root 1.52 $self->_error ($!, 1);
550 elmex 1.1 }
551 root 1.8 };
552    
553 root 1.35 # try to write data immediately
554 root 1.70 $cb->() unless $self->{autocork};
555 root 1.8
556 root 1.35 # if still data left in wbuf, we need to poll
557 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
558 root 1.35 if length $self->{wbuf};
559 root 1.8 };
560     }
561    
562 root 1.30 our %WH;
563    
564     sub register_write_type($$) {
565     $WH{$_[0]} = $_[1];
566     }
567    
568 root 1.17 sub push_write {
569     my $self = shift;
570    
571 root 1.29 if (@_ > 1) {
572     my $type = shift;
573    
574     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
575     ->($self, @_);
576     }
577    
578 root 1.93 if ($self->{tls}) {
579     $self->{_tls_wbuf} .= $_[0];
580 root 1.97
581 root 1.93 &_dotls ($self);
582 root 1.17 } else {
583     $self->{wbuf} .= $_[0];
584     $self->_drain_wbuf;
585     }
586     }
587    
588 root 1.29 =item $handle->push_write (type => @args)
589    
590     Instead of formatting your data yourself, you can also let this module do
591     the job by specifying a type and type-specific arguments.
592    
593 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
594     drop by and tell us):
595 root 1.29
596     =over 4
597    
598     =item netstring => $string
599    
600     Formats the given value as netstring
601     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
602    
603     =cut
604    
605     register_write_type netstring => sub {
606     my ($self, $string) = @_;
607    
608 root 1.96 (length $string) . ":$string,"
609 root 1.29 };
610    
611 root 1.61 =item packstring => $format, $data
612    
613     An octet string prefixed with an encoded length. The encoding C<$format>
614     uses the same format as a Perl C<pack> format, but must specify a single
615     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
616     optional C<!>, C<< < >> or C<< > >> modifier).
617    
618     =cut
619    
620     register_write_type packstring => sub {
621     my ($self, $format, $string) = @_;
622    
623 root 1.65 pack "$format/a*", $string
624 root 1.61 };
625    
626 root 1.39 =item json => $array_or_hashref
627    
628 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
629     provide your own JSON object, this means it will be encoded to JSON text
630     in UTF-8.
631    
632     JSON objects (and arrays) are self-delimiting, so you can write JSON at
633     one end of a handle and read them at the other end without using any
634     additional framing.
635    
636 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
637     this module doesn't need delimiters after or between JSON texts to be
638     able to read them, many other languages depend on that.
639    
640     A simple RPC protocol that interoperates easily with others is to send
641     JSON arrays (or objects, although arrays are usually the better choice as
642     they mimic how function argument passing works) and a newline after each
643     JSON text:
644    
645     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
646     $handle->push_write ("\012");
647    
648     An AnyEvent::Handle receiver would simply use the C<json> read type and
649     rely on the fact that the newline will be skipped as leading whitespace:
650    
651     $handle->push_read (json => sub { my $array = $_[1]; ... });
652    
653     Other languages could read single lines terminated by a newline and pass
654     this line into their JSON decoder of choice.
655    
656 root 1.40 =cut
657    
658     register_write_type json => sub {
659     my ($self, $ref) = @_;
660    
661     require JSON;
662    
663     $self->{json} ? $self->{json}->encode ($ref)
664     : JSON::encode_json ($ref)
665     };
666    
667 root 1.63 =item storable => $reference
668    
669     Freezes the given reference using L<Storable> and writes it to the
670     handle. Uses the C<nfreeze> format.
671    
672     =cut
673    
674     register_write_type storable => sub {
675     my ($self, $ref) = @_;
676    
677     require Storable;
678    
679 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
680 root 1.63 };
681    
682 root 1.53 =back
683    
684 root 1.133 =item $handle->push_shutdown
685    
686     Sometimes you know you want to close the socket after writing your data
687     before it was actually written. One way to do that is to replace your
688     C<on_drain> handler by a callback that shuts down the socket. This method
689     is a shorthand for just that, and replaces the C<on_drain> callback with:
690    
691     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
692    
693     This simply shuts down the write side and signals an EOF condition to the
694     the peer.
695    
696     You can rely on the normal read queue and C<on_eof> handling
697     afterwards. This is the cleanest way to close a connection.
698    
699     =cut
700    
701     sub push_shutdown {
702     $_[0]->{on_drain} = sub { shutdown $_[0]{fh}, 1 };
703     }
704    
705 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
706 root 1.30
707     This function (not method) lets you add your own types to C<push_write>.
708     Whenever the given C<type> is used, C<push_write> will invoke the code
709     reference with the handle object and the remaining arguments.
710 root 1.29
711 root 1.30 The code reference is supposed to return a single octet string that will
712     be appended to the write buffer.
713 root 1.29
714 root 1.30 Note that this is a function, and all types registered this way will be
715     global, so try to use unique names.
716 root 1.29
717 root 1.30 =cut
718 root 1.29
719 root 1.8 #############################################################################
720    
721 root 1.9 =back
722    
723     =head2 READ QUEUE
724    
725     AnyEvent::Handle manages two queues per handle, one for writing and one
726     for reading.
727    
728     The read queue is more complex than the write queue. It can be used in two
729     ways, the "simple" way, using only C<on_read> and the "complex" way, using
730     a queue.
731    
732     In the simple case, you just install an C<on_read> callback and whenever
733     new data arrives, it will be called. You can then remove some data (if
734 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
735     leave the data there if you want to accumulate more (e.g. when only a
736     partial message has been received so far).
737 root 1.9
738     In the more complex case, you want to queue multiple callbacks. In this
739     case, AnyEvent::Handle will call the first queued callback each time new
740 root 1.61 data arrives (also the first time it is queued) and removes it when it has
741     done its job (see C<push_read>, below).
742 root 1.9
743     This way you can, for example, push three line-reads, followed by reading
744     a chunk of data, and AnyEvent::Handle will execute them in order.
745    
746     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
747     the specified number of bytes which give an XML datagram.
748    
749     # in the default state, expect some header bytes
750     $handle->on_read (sub {
751     # some data is here, now queue the length-header-read (4 octets)
752 root 1.52 shift->unshift_read (chunk => 4, sub {
753 root 1.9 # header arrived, decode
754     my $len = unpack "N", $_[1];
755    
756     # now read the payload
757 root 1.52 shift->unshift_read (chunk => $len, sub {
758 root 1.9 my $xml = $_[1];
759     # handle xml
760     });
761     });
762     });
763    
764 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
765     and another line or "ERROR" for the first request that is sent, and 64
766     bytes for the second request. Due to the availability of a queue, we can
767     just pipeline sending both requests and manipulate the queue as necessary
768     in the callbacks.
769    
770     When the first callback is called and sees an "OK" response, it will
771     C<unshift> another line-read. This line-read will be queued I<before> the
772     64-byte chunk callback.
773 root 1.9
774 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
775 root 1.9 $handle->push_write ("request 1\015\012");
776    
777     # we expect "ERROR" or "OK" as response, so push a line read
778 root 1.52 $handle->push_read (line => sub {
779 root 1.9 # if we got an "OK", we have to _prepend_ another line,
780     # so it will be read before the second request reads its 64 bytes
781     # which are already in the queue when this callback is called
782     # we don't do this in case we got an error
783     if ($_[1] eq "OK") {
784 root 1.52 $_[0]->unshift_read (line => sub {
785 root 1.9 my $response = $_[1];
786     ...
787     });
788     }
789     });
790    
791 root 1.69 # request two, simply returns 64 octets
792 root 1.9 $handle->push_write ("request 2\015\012");
793    
794     # simply read 64 bytes, always
795 root 1.52 $handle->push_read (chunk => 64, sub {
796 root 1.9 my $response = $_[1];
797     ...
798     });
799    
800     =over 4
801    
802 root 1.10 =cut
803    
804 root 1.8 sub _drain_rbuf {
805     my ($self) = @_;
806 elmex 1.1
807 root 1.59 local $self->{_in_drain} = 1;
808    
809 root 1.17 if (
810     defined $self->{rbuf_max}
811     && $self->{rbuf_max} < length $self->{rbuf}
812     ) {
813 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
814 root 1.17 }
815    
816 root 1.59 while () {
817 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
818     # we are draining the buffer, and this can only happen with TLS.
819 root 1.116 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
820 root 1.115
821 root 1.59 my $len = length $self->{rbuf};
822 elmex 1.1
823 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
824 root 1.29 unless ($cb->($self)) {
825 root 1.38 if ($self->{_eof}) {
826 root 1.10 # no progress can be made (not enough data and no data forthcoming)
827 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
828 root 1.10 }
829    
830 root 1.38 unshift @{ $self->{_queue} }, $cb;
831 root 1.55 last;
832 root 1.8 }
833     } elsif ($self->{on_read}) {
834 root 1.61 last unless $len;
835    
836 root 1.8 $self->{on_read}($self);
837    
838     if (
839 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
840     && !@{ $self->{_queue} } # and the queue is still empty
841     && $self->{on_read} # but we still have on_read
842 root 1.8 ) {
843 root 1.55 # no further data will arrive
844     # so no progress can be made
845 root 1.82 $self->_error (&Errno::EPIPE, 1), return
846 root 1.55 if $self->{_eof};
847    
848     last; # more data might arrive
849 elmex 1.1 }
850 root 1.8 } else {
851     # read side becomes idle
852 root 1.93 delete $self->{_rw} unless $self->{tls};
853 root 1.55 last;
854 root 1.8 }
855     }
856    
857 root 1.80 if ($self->{_eof}) {
858     if ($self->{on_eof}) {
859     $self->{on_eof}($self)
860     } else {
861     $self->_error (0, 1);
862     }
863     }
864 root 1.55
865     # may need to restart read watcher
866     unless ($self->{_rw}) {
867     $self->start_read
868     if $self->{on_read} || @{ $self->{_queue} };
869     }
870 elmex 1.1 }
871    
872 root 1.8 =item $handle->on_read ($cb)
873 elmex 1.1
874 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
875     the new callback is C<undef>). See the description of C<on_read> in the
876     constructor.
877 elmex 1.1
878 root 1.8 =cut
879    
880     sub on_read {
881     my ($self, $cb) = @_;
882 elmex 1.1
883 root 1.8 $self->{on_read} = $cb;
884 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
885 elmex 1.1 }
886    
887 root 1.8 =item $handle->rbuf
888    
889     Returns the read buffer (as a modifiable lvalue).
890 elmex 1.1
891 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
892     member, if you want. However, the only operation allowed on the
893     read buffer (apart from looking at it) is removing data from its
894     beginning. Otherwise modifying or appending to it is not allowed and will
895     lead to hard-to-track-down bugs.
896 elmex 1.1
897 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
898     C<push_read> or C<unshift_read> methods are used. The other read methods
899     automatically manage the read buffer.
900 elmex 1.1
901     =cut
902    
903 elmex 1.2 sub rbuf : lvalue {
904 root 1.8 $_[0]{rbuf}
905 elmex 1.2 }
906 elmex 1.1
907 root 1.8 =item $handle->push_read ($cb)
908    
909     =item $handle->unshift_read ($cb)
910    
911     Append the given callback to the end of the queue (C<push_read>) or
912     prepend it (C<unshift_read>).
913    
914     The callback is called each time some additional read data arrives.
915 elmex 1.1
916 elmex 1.20 It must check whether enough data is in the read buffer already.
917 elmex 1.1
918 root 1.8 If not enough data is available, it must return the empty list or a false
919     value, in which case it will be called repeatedly until enough data is
920     available (or an error condition is detected).
921    
922     If enough data was available, then the callback must remove all data it is
923     interested in (which can be none at all) and return a true value. After returning
924     true, it will be removed from the queue.
925 elmex 1.1
926     =cut
927    
928 root 1.30 our %RH;
929    
930     sub register_read_type($$) {
931     $RH{$_[0]} = $_[1];
932     }
933    
934 root 1.8 sub push_read {
935 root 1.28 my $self = shift;
936     my $cb = pop;
937    
938     if (@_) {
939     my $type = shift;
940    
941     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
942     ->($self, $cb, @_);
943     }
944 elmex 1.1
945 root 1.38 push @{ $self->{_queue} }, $cb;
946 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
947 elmex 1.1 }
948    
949 root 1.8 sub unshift_read {
950 root 1.28 my $self = shift;
951     my $cb = pop;
952    
953     if (@_) {
954     my $type = shift;
955    
956     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
957     ->($self, $cb, @_);
958     }
959    
960 root 1.8
961 root 1.38 unshift @{ $self->{_queue} }, $cb;
962 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
963 root 1.8 }
964 elmex 1.1
965 root 1.28 =item $handle->push_read (type => @args, $cb)
966 elmex 1.1
967 root 1.28 =item $handle->unshift_read (type => @args, $cb)
968 elmex 1.1
969 root 1.28 Instead of providing a callback that parses the data itself you can chose
970     between a number of predefined parsing formats, for chunks of data, lines
971     etc.
972 elmex 1.1
973 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
974     drop by and tell us):
975 root 1.28
976     =over 4
977    
978 root 1.40 =item chunk => $octets, $cb->($handle, $data)
979 root 1.28
980     Invoke the callback only once C<$octets> bytes have been read. Pass the
981     data read to the callback. The callback will never be called with less
982     data.
983    
984     Example: read 2 bytes.
985    
986     $handle->push_read (chunk => 2, sub {
987     warn "yay ", unpack "H*", $_[1];
988     });
989 elmex 1.1
990     =cut
991    
992 root 1.28 register_read_type chunk => sub {
993     my ($self, $cb, $len) = @_;
994 elmex 1.1
995 root 1.8 sub {
996     $len <= length $_[0]{rbuf} or return;
997 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
998 root 1.8 1
999     }
1000 root 1.28 };
1001 root 1.8
1002 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1003 elmex 1.1
1004 root 1.8 The callback will be called only once a full line (including the end of
1005     line marker, C<$eol>) has been read. This line (excluding the end of line
1006     marker) will be passed to the callback as second argument (C<$line>), and
1007     the end of line marker as the third argument (C<$eol>).
1008 elmex 1.1
1009 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1010     will be interpreted as a fixed record end marker, or it can be a regex
1011     object (e.g. created by C<qr>), in which case it is interpreted as a
1012     regular expression.
1013 elmex 1.1
1014 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1015     undef), then C<qr|\015?\012|> is used (which is good for most internet
1016     protocols).
1017 elmex 1.1
1018 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1019     not marked by the end of line marker.
1020 elmex 1.1
1021 root 1.8 =cut
1022 elmex 1.1
1023 root 1.28 register_read_type line => sub {
1024     my ($self, $cb, $eol) = @_;
1025 elmex 1.1
1026 root 1.76 if (@_ < 3) {
1027     # this is more than twice as fast as the generic code below
1028     sub {
1029     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1030 elmex 1.1
1031 root 1.76 $cb->($_[0], $1, $2);
1032     1
1033     }
1034     } else {
1035     $eol = quotemeta $eol unless ref $eol;
1036     $eol = qr|^(.*?)($eol)|s;
1037    
1038     sub {
1039     $_[0]{rbuf} =~ s/$eol// or return;
1040 elmex 1.1
1041 root 1.76 $cb->($_[0], $1, $2);
1042     1
1043     }
1044 root 1.8 }
1045 root 1.28 };
1046 elmex 1.1
1047 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1048 root 1.36
1049     Makes a regex match against the regex object C<$accept> and returns
1050     everything up to and including the match.
1051    
1052     Example: read a single line terminated by '\n'.
1053    
1054     $handle->push_read (regex => qr<\n>, sub { ... });
1055    
1056     If C<$reject> is given and not undef, then it determines when the data is
1057     to be rejected: it is matched against the data when the C<$accept> regex
1058     does not match and generates an C<EBADMSG> error when it matches. This is
1059     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1060     receive buffer overflow).
1061    
1062     Example: expect a single decimal number followed by whitespace, reject
1063     anything else (not the use of an anchor).
1064    
1065     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1066    
1067     If C<$skip> is given and not C<undef>, then it will be matched against
1068     the receive buffer when neither C<$accept> nor C<$reject> match,
1069     and everything preceding and including the match will be accepted
1070     unconditionally. This is useful to skip large amounts of data that you
1071     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1072     have to start matching from the beginning. This is purely an optimisation
1073     and is usually worth only when you expect more than a few kilobytes.
1074    
1075     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1076     expect the header to be very large (it isn't in practise, but...), we use
1077     a skip regex to skip initial portions. The skip regex is tricky in that
1078     it only accepts something not ending in either \015 or \012, as these are
1079     required for the accept regex.
1080    
1081     $handle->push_read (regex =>
1082     qr<\015\012\015\012>,
1083     undef, # no reject
1084     qr<^.*[^\015\012]>,
1085     sub { ... });
1086    
1087     =cut
1088    
1089     register_read_type regex => sub {
1090     my ($self, $cb, $accept, $reject, $skip) = @_;
1091    
1092     my $data;
1093     my $rbuf = \$self->{rbuf};
1094    
1095     sub {
1096     # accept
1097     if ($$rbuf =~ $accept) {
1098     $data .= substr $$rbuf, 0, $+[0], "";
1099     $cb->($self, $data);
1100     return 1;
1101     }
1102    
1103     # reject
1104     if ($reject && $$rbuf =~ $reject) {
1105 root 1.52 $self->_error (&Errno::EBADMSG);
1106 root 1.36 }
1107    
1108     # skip
1109     if ($skip && $$rbuf =~ $skip) {
1110     $data .= substr $$rbuf, 0, $+[0], "";
1111     }
1112    
1113     ()
1114     }
1115     };
1116    
1117 root 1.61 =item netstring => $cb->($handle, $string)
1118    
1119     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1120    
1121     Throws an error with C<$!> set to EBADMSG on format violations.
1122    
1123     =cut
1124    
1125     register_read_type netstring => sub {
1126     my ($self, $cb) = @_;
1127    
1128     sub {
1129     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1130     if ($_[0]{rbuf} =~ /[^0-9]/) {
1131     $self->_error (&Errno::EBADMSG);
1132     }
1133     return;
1134     }
1135    
1136     my $len = $1;
1137    
1138     $self->unshift_read (chunk => $len, sub {
1139     my $string = $_[1];
1140     $_[0]->unshift_read (chunk => 1, sub {
1141     if ($_[1] eq ",") {
1142     $cb->($_[0], $string);
1143     } else {
1144     $self->_error (&Errno::EBADMSG);
1145     }
1146     });
1147     });
1148    
1149     1
1150     }
1151     };
1152    
1153     =item packstring => $format, $cb->($handle, $string)
1154    
1155     An octet string prefixed with an encoded length. The encoding C<$format>
1156     uses the same format as a Perl C<pack> format, but must specify a single
1157     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1158     optional C<!>, C<< < >> or C<< > >> modifier).
1159    
1160 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1161     EPP uses a prefix of C<N> (4 octtes).
1162 root 1.61
1163     Example: read a block of data prefixed by its length in BER-encoded
1164     format (very efficient).
1165    
1166     $handle->push_read (packstring => "w", sub {
1167     my ($handle, $data) = @_;
1168     });
1169    
1170     =cut
1171    
1172     register_read_type packstring => sub {
1173     my ($self, $cb, $format) = @_;
1174    
1175     sub {
1176     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1177 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1178 root 1.61 or return;
1179    
1180 root 1.77 $format = length pack $format, $len;
1181 root 1.61
1182 root 1.77 # bypass unshift if we already have the remaining chunk
1183     if ($format + $len <= length $_[0]{rbuf}) {
1184     my $data = substr $_[0]{rbuf}, $format, $len;
1185     substr $_[0]{rbuf}, 0, $format + $len, "";
1186     $cb->($_[0], $data);
1187     } else {
1188     # remove prefix
1189     substr $_[0]{rbuf}, 0, $format, "";
1190    
1191     # read remaining chunk
1192     $_[0]->unshift_read (chunk => $len, $cb);
1193     }
1194 root 1.61
1195     1
1196     }
1197     };
1198    
1199 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1200    
1201 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1202     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1203 root 1.40
1204     If a C<json> object was passed to the constructor, then that will be used
1205     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1206    
1207     This read type uses the incremental parser available with JSON version
1208     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1209     dependency on your own: this module will load the JSON module, but
1210     AnyEvent does not depend on it itself.
1211    
1212     Since JSON texts are fully self-delimiting, the C<json> read and write
1213 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1214     the C<json> write type description, above, for an actual example.
1215 root 1.40
1216     =cut
1217    
1218     register_read_type json => sub {
1219 root 1.63 my ($self, $cb) = @_;
1220 root 1.40
1221 root 1.135 my $json = $self->{json} ||=
1222     eval { require JSON::XS; JSON::XS->new->utf8 }
1223     || do { require JSON; JSON->new->utf8 };
1224 root 1.40
1225     my $data;
1226     my $rbuf = \$self->{rbuf};
1227    
1228     sub {
1229 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1230 root 1.110
1231 root 1.113 if ($ref) {
1232     $self->{rbuf} = $json->incr_text;
1233     $json->incr_text = "";
1234     $cb->($self, $ref);
1235 root 1.110
1236     1
1237 root 1.113 } elsif ($@) {
1238 root 1.111 # error case
1239 root 1.110 $json->incr_skip;
1240 root 1.40
1241     $self->{rbuf} = $json->incr_text;
1242     $json->incr_text = "";
1243    
1244 root 1.110 $self->_error (&Errno::EBADMSG);
1245 root 1.114
1246 root 1.113 ()
1247     } else {
1248     $self->{rbuf} = "";
1249 root 1.114
1250 root 1.113 ()
1251     }
1252 root 1.40 }
1253     };
1254    
1255 root 1.63 =item storable => $cb->($handle, $ref)
1256    
1257     Deserialises a L<Storable> frozen representation as written by the
1258     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1259     data).
1260    
1261     Raises C<EBADMSG> error if the data could not be decoded.
1262    
1263     =cut
1264    
1265     register_read_type storable => sub {
1266     my ($self, $cb) = @_;
1267    
1268     require Storable;
1269    
1270     sub {
1271     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1272 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1273 root 1.63 or return;
1274    
1275 root 1.77 my $format = length pack "w", $len;
1276 root 1.63
1277 root 1.77 # bypass unshift if we already have the remaining chunk
1278     if ($format + $len <= length $_[0]{rbuf}) {
1279     my $data = substr $_[0]{rbuf}, $format, $len;
1280     substr $_[0]{rbuf}, 0, $format + $len, "";
1281     $cb->($_[0], Storable::thaw ($data));
1282     } else {
1283     # remove prefix
1284     substr $_[0]{rbuf}, 0, $format, "";
1285    
1286     # read remaining chunk
1287     $_[0]->unshift_read (chunk => $len, sub {
1288     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1289     $cb->($_[0], $ref);
1290     } else {
1291     $self->_error (&Errno::EBADMSG);
1292     }
1293     });
1294     }
1295    
1296     1
1297 root 1.63 }
1298     };
1299    
1300 root 1.28 =back
1301    
1302 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1303 root 1.30
1304     This function (not method) lets you add your own types to C<push_read>.
1305    
1306     Whenever the given C<type> is used, C<push_read> will invoke the code
1307     reference with the handle object, the callback and the remaining
1308     arguments.
1309    
1310     The code reference is supposed to return a callback (usually a closure)
1311     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1312    
1313     It should invoke the passed callback when it is done reading (remember to
1314 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1315 root 1.30
1316     Note that this is a function, and all types registered this way will be
1317     global, so try to use unique names.
1318    
1319     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1320     search for C<register_read_type>)).
1321    
1322 root 1.10 =item $handle->stop_read
1323    
1324     =item $handle->start_read
1325    
1326 root 1.18 In rare cases you actually do not want to read anything from the
1327 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1328 root 1.22 any queued callbacks will be executed then. To start reading again, call
1329 root 1.10 C<start_read>.
1330    
1331 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1332     you change the C<on_read> callback or push/unshift a read callback, and it
1333     will automatically C<stop_read> for you when neither C<on_read> is set nor
1334     there are any read requests in the queue.
1335    
1336 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1337     half-duplex connections).
1338    
1339 root 1.10 =cut
1340    
1341     sub stop_read {
1342     my ($self) = @_;
1343 elmex 1.1
1344 root 1.93 delete $self->{_rw} unless $self->{tls};
1345 root 1.8 }
1346 elmex 1.1
1347 root 1.10 sub start_read {
1348     my ($self) = @_;
1349    
1350 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1351 root 1.10 Scalar::Util::weaken $self;
1352    
1353 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1354 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1355 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1356 root 1.10
1357     if ($len > 0) {
1358 root 1.44 $self->{_activity} = AnyEvent->now;
1359 root 1.43
1360 root 1.93 if ($self->{tls}) {
1361     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1362 root 1.97
1363 root 1.93 &_dotls ($self);
1364     } else {
1365     $self->_drain_rbuf unless $self->{_in_drain};
1366     }
1367 root 1.10
1368     } elsif (defined $len) {
1369 root 1.38 delete $self->{_rw};
1370     $self->{_eof} = 1;
1371 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1372 root 1.10
1373 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1374 root 1.52 return $self->_error ($!, 1);
1375 root 1.10 }
1376     });
1377     }
1378 elmex 1.1 }
1379    
1380 root 1.133 our $ERROR_SYSCALL;
1381     our $ERROR_WANT_READ;
1382     our $ERROR_ZERO_RETURN;
1383    
1384     sub _tls_error {
1385     my ($self, $err) = @_;
1386     warn "$err,$!\n";#d#
1387    
1388     return $self->_error ($!, 1)
1389     if $err == Net::SSLeay::ERROR_SYSCALL ();
1390    
1391     $self->_error (&Errno::EPROTO, 1,
1392     Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ()));
1393     }
1394    
1395 root 1.97 # poll the write BIO and send the data if applicable
1396 root 1.133 # also decode read data if possible
1397     # this is basiclaly our TLS state machine
1398     # more efficient implementations are possible with openssl,
1399     # but not with the buggy and incomplete Net::SSLeay.
1400 root 1.19 sub _dotls {
1401     my ($self) = @_;
1402    
1403 root 1.97 my $tmp;
1404 root 1.56
1405 root 1.38 if (length $self->{_tls_wbuf}) {
1406 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1407     substr $self->{_tls_wbuf}, 0, $tmp, "";
1408 root 1.22 }
1409 root 1.133
1410     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1411     return $self->_tls_error ($tmp)
1412     if $tmp != $ERROR_WANT_READ
1413     && ($tmp != $ERROR_SYSCALL || $!)
1414     && $tmp != $ERROR_ZERO_RETURN;
1415 root 1.19 }
1416    
1417 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1418     unless (length $tmp) {
1419 root 1.56 # let's treat SSL-eof as we treat normal EOF
1420 root 1.91 delete $self->{_rw};
1421 root 1.56 $self->{_eof} = 1;
1422 root 1.92 &_freetls;
1423 root 1.56 }
1424 root 1.91
1425 root 1.116 $self->{_tls_rbuf} .= $tmp;
1426 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1427 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1428 root 1.23 }
1429    
1430 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1431 root 1.133 return $self->_tls_error ($tmp)
1432     if $tmp != $ERROR_WANT_READ
1433     && ($tmp != $ERROR_SYSCALL || $!)
1434     && $tmp != $ERROR_ZERO_RETURN;
1435 root 1.91
1436 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1437     $self->{wbuf} .= $tmp;
1438 root 1.91 $self->_drain_wbuf;
1439     }
1440 root 1.19 }
1441    
1442 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1443    
1444     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1445     object is created, you can also do that at a later time by calling
1446     C<starttls>.
1447    
1448     The first argument is the same as the C<tls> constructor argument (either
1449     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1450    
1451 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1452     when AnyEvent::Handle has to create its own TLS connection object, or
1453     a hash reference with C<< key => value >> pairs that will be used to
1454     construct a new context.
1455    
1456     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1457     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1458     changed to your liking. Note that the handshake might have already started
1459     when this function returns.
1460 root 1.38
1461 root 1.92 If it an error to start a TLS handshake more than once per
1462     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1463    
1464 root 1.25 =cut
1465    
1466 root 1.19 sub starttls {
1467     my ($self, $ssl, $ctx) = @_;
1468    
1469 root 1.94 require Net::SSLeay;
1470    
1471 root 1.102 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1472 root 1.92 if $self->{tls};
1473 root 1.131
1474 root 1.133 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1475     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1476     $ERROR_ZERO_RETURN = Net::SSLeay::ERROR_ZERO_RETURN ();
1477    
1478 root 1.131 $ctx ||= $self->{tls_ctx};
1479    
1480     if ("HASH" eq ref $ctx) {
1481     require AnyEvent::TLS;
1482    
1483     local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1484     $ctx = new AnyEvent::TLS %$ctx;
1485     }
1486 root 1.92
1487 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1488 root 1.133 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1489 root 1.19
1490 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1491     # but the openssl maintainers basically said: "trust us, it just works".
1492     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1493     # and mismaintained ssleay-module doesn't even offer them).
1494 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1495 root 1.87 #
1496     # in short: this is a mess.
1497     #
1498 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1499 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1500 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1501     # have identity issues in that area.
1502 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1503     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1504     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1505     Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1506 root 1.21
1507 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1508     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1509 root 1.19
1510 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1511 root 1.19
1512 root 1.93 &_dotls; # need to trigger the initial handshake
1513     $self->start_read; # make sure we actually do read
1514 root 1.19 }
1515    
1516 root 1.25 =item $handle->stoptls
1517    
1518 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1519     sending a close notify to the other side, but since OpenSSL doesn't
1520     support non-blocking shut downs, it is not possible to re-use the stream
1521     afterwards.
1522 root 1.25
1523     =cut
1524    
1525     sub stoptls {
1526     my ($self) = @_;
1527    
1528 root 1.92 if ($self->{tls}) {
1529 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1530 root 1.92
1531     &_dotls;
1532    
1533     # we don't give a shit. no, we do, but we can't. no...
1534     # we, we... have to use openssl :/
1535     &_freetls;
1536     }
1537     }
1538    
1539     sub _freetls {
1540     my ($self) = @_;
1541    
1542     return unless $self->{tls};
1543 root 1.38
1544 root 1.131 $self->{tls_ctx}->_put_session (delete $self->{tls});
1545 root 1.92
1546 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1547 root 1.25 }
1548    
1549 root 1.19 sub DESTROY {
1550 root 1.120 my ($self) = @_;
1551 root 1.19
1552 root 1.92 &_freetls;
1553 root 1.62
1554     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1555    
1556     if ($linger && length $self->{wbuf}) {
1557     my $fh = delete $self->{fh};
1558     my $wbuf = delete $self->{wbuf};
1559    
1560     my @linger;
1561    
1562     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1563     my $len = syswrite $fh, $wbuf, length $wbuf;
1564    
1565     if ($len > 0) {
1566     substr $wbuf, 0, $len, "";
1567     } else {
1568     @linger = (); # end
1569     }
1570     });
1571     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1572     @linger = ();
1573     });
1574     }
1575 root 1.19 }
1576    
1577 root 1.99 =item $handle->destroy
1578    
1579 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1580 root 1.99 no further callbacks will be invoked and resources will be freed as much
1581     as possible. You must not call any methods on the object afterwards.
1582    
1583 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1584     object and it will simply shut down. This works in fatal error and EOF
1585     callbacks, as well as code outside. It does I<NOT> work in a read or write
1586     callback, so when you want to destroy the AnyEvent::Handle object from
1587     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1588     that case.
1589    
1590 root 1.99 The handle might still linger in the background and write out remaining
1591     data, as specified by the C<linger> option, however.
1592    
1593     =cut
1594    
1595     sub destroy {
1596     my ($self) = @_;
1597    
1598     $self->DESTROY;
1599     %$self = ();
1600     }
1601    
1602 root 1.19 =item AnyEvent::Handle::TLS_CTX
1603    
1604 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1605     for TLS mode.
1606 root 1.19
1607 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1608 root 1.19
1609     =cut
1610    
1611     our $TLS_CTX;
1612    
1613     sub TLS_CTX() {
1614 root 1.131 $TLS_CTX ||= do {
1615     require AnyEvent::TLS;
1616 root 1.19
1617 root 1.131 new AnyEvent::TLS
1618 root 1.19 }
1619     }
1620    
1621 elmex 1.1 =back
1622    
1623 root 1.95
1624     =head1 NONFREQUENTLY ASKED QUESTIONS
1625    
1626     =over 4
1627    
1628 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1629     still get further invocations!
1630    
1631     That's because AnyEvent::Handle keeps a reference to itself when handling
1632     read or write callbacks.
1633    
1634     It is only safe to "forget" the reference inside EOF or error callbacks,
1635     from within all other callbacks, you need to explicitly call the C<<
1636     ->destroy >> method.
1637    
1638     =item I get different callback invocations in TLS mode/Why can't I pause
1639     reading?
1640    
1641     Unlike, say, TCP, TLS connections do not consist of two independent
1642     communication channels, one for each direction. Or put differently. The
1643     read and write directions are not independent of each other: you cannot
1644     write data unless you are also prepared to read, and vice versa.
1645    
1646     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1647     callback invocations when you are not expecting any read data - the reason
1648     is that AnyEvent::Handle always reads in TLS mode.
1649    
1650     During the connection, you have to make sure that you always have a
1651     non-empty read-queue, or an C<on_read> watcher. At the end of the
1652     connection (or when you no longer want to use it) you can call the
1653     C<destroy> method.
1654    
1655 root 1.95 =item How do I read data until the other side closes the connection?
1656    
1657 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1658     to achieve this is by setting an C<on_read> callback that does nothing,
1659     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1660     will be in C<$_[0]{rbuf}>:
1661 root 1.95
1662     $handle->on_read (sub { });
1663     $handle->on_eof (undef);
1664     $handle->on_error (sub {
1665     my $data = delete $_[0]{rbuf};
1666     undef $handle;
1667     });
1668    
1669     The reason to use C<on_error> is that TCP connections, due to latencies
1670     and packets loss, might get closed quite violently with an error, when in
1671     fact, all data has been received.
1672    
1673 root 1.101 It is usually better to use acknowledgements when transferring data,
1674 root 1.95 to make sure the other side hasn't just died and you got the data
1675     intact. This is also one reason why so many internet protocols have an
1676     explicit QUIT command.
1677    
1678 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1679     all data has been written?
1680 root 1.95
1681     After writing your last bits of data, set the C<on_drain> callback
1682     and destroy the handle in there - with the default setting of
1683     C<low_water_mark> this will be called precisely when all data has been
1684     written to the socket:
1685    
1686     $handle->push_write (...);
1687     $handle->on_drain (sub {
1688     warn "all data submitted to the kernel\n";
1689     undef $handle;
1690     });
1691    
1692     =back
1693    
1694    
1695 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1696    
1697     In many cases, you might want to subclass AnyEvent::Handle.
1698    
1699     To make this easier, a given version of AnyEvent::Handle uses these
1700     conventions:
1701    
1702     =over 4
1703    
1704     =item * all constructor arguments become object members.
1705    
1706     At least initially, when you pass a C<tls>-argument to the constructor it
1707 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1708 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1709    
1710     =item * other object member names are prefixed with an C<_>.
1711    
1712     All object members not explicitly documented (internal use) are prefixed
1713     with an underscore character, so the remaining non-C<_>-namespace is free
1714     for use for subclasses.
1715    
1716     =item * all members not documented here and not prefixed with an underscore
1717     are free to use in subclasses.
1718    
1719     Of course, new versions of AnyEvent::Handle may introduce more "public"
1720     member variables, but thats just life, at least it is documented.
1721    
1722     =back
1723    
1724 elmex 1.1 =head1 AUTHOR
1725    
1726 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1727 elmex 1.1
1728     =cut
1729    
1730     1; # End of AnyEvent::Handle