ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.149
Committed: Thu Jul 16 03:48:33 2009 UTC (14 years, 10 months ago) by root
Branch: MAIN
Changes since 1.148: +28 -26 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.148 our $VERSION = 4.82;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
29     fh => \*STDIN,
30     on_error => sub {
31     warn "got error $_[2]\n";
32     $cv->send;
33 elmex 1.2 );
34    
35 root 1.31 # send some request line
36 root 1.149 $hdl->push_write ("getinfo\015\012");
37 root 1.31
38     # read the response line
39 root 1.149 $hdl->push_read (line => sub {
40     my ($hdl, $line) = @_;
41     warn "got line <$line>\n";
42 root 1.31 $cv->send;
43     });
44    
45     $cv->recv;
46 elmex 1.1
47     =head1 DESCRIPTION
48    
49 root 1.8 This module is a helper module to make it easier to do event-based I/O on
50 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
51     on sockets see L<AnyEvent::Util>.
52 root 1.8
53 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
54     AnyEvent::Handle examples.
55    
56 root 1.8 In the following, when the documentation refers to of "bytes" then this
57     means characters. As sysread and syswrite are used for all I/O, their
58     treatment of characters applies to this module as well.
59 elmex 1.1
60 root 1.8 All callbacks will be invoked with the handle object as their first
61     argument.
62 elmex 1.1
63     =head1 METHODS
64    
65     =over 4
66    
67 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
68 elmex 1.1
69 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
70 elmex 1.1
71     =over 4
72    
73 root 1.8 =item fh => $filehandle [MANDATORY]
74 elmex 1.1
75     The filehandle this L<AnyEvent::Handle> object will operate on.
76    
77 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
78     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79     that mode.
80 root 1.8
81 root 1.40 =item on_eof => $cb->($handle)
82 root 1.10
83 root 1.74 Set the callback to be called when an end-of-file condition is detected,
84 root 1.52 i.e. in the case of a socket, when the other side has closed the
85     connection cleanly.
86 root 1.8
87 root 1.82 For sockets, this just means that the other side has stopped sending data,
88 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
89 root 1.82 callback and continue writing data, as only the read part has been shut
90     down.
91    
92 root 1.101 While not mandatory, it is I<highly> recommended to set an EOF callback,
93 root 1.16 otherwise you might end up with a closed socket while you are still
94     waiting for data.
95    
96 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
97     set, then a fatal error will be raised with C<$!> set to <0>.
98    
99 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
100 root 1.10
101 root 1.52 This is the error callback, which is called when, well, some error
102     occured, such as not being able to resolve the hostname, failure to
103     connect or a read error.
104    
105     Some errors are fatal (which is indicated by C<$fatal> being true). On
106 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
107     destroy >>) after invoking the error callback (which means you are free to
108     examine the handle object). Examples of fatal errors are an EOF condition
109     with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
110 root 1.82
111 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
112     against, but in some cases (TLS errors), this does not work well. It is
113     recommended to always output the C<$message> argument in human-readable
114     error messages (it's usually the same as C<"$!">).
115    
116 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
117     to simply ignore this parameter and instead abondon the handle object
118     when this callback is invoked. Examples of non-fatal errors are timeouts
119     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
120 root 1.8
121 root 1.10 On callback entrance, the value of C<$!> contains the operating system
122 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
123     C<EPROTO>).
124 root 1.8
125 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
126     you will not be notified of errors otherwise. The default simply calls
127 root 1.52 C<croak>.
128 root 1.8
129 root 1.40 =item on_read => $cb->($handle)
130 root 1.8
131     This sets the default read callback, which is called when data arrives
132 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
133     callback will only be called when at least one octet of data is in the
134     read buffer).
135 root 1.8
136     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
137 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
138 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
139     the beginning from it.
140 root 1.8
141     When an EOF condition is detected then AnyEvent::Handle will first try to
142     feed all the remaining data to the queued callbacks and C<on_read> before
143     calling the C<on_eof> callback. If no progress can be made, then a fatal
144     error will be raised (with C<$!> set to C<EPIPE>).
145 elmex 1.1
146 root 1.40 =item on_drain => $cb->($handle)
147 elmex 1.1
148 root 1.8 This sets the callback that is called when the write buffer becomes empty
149     (or when the callback is set and the buffer is empty already).
150 elmex 1.1
151 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
152 elmex 1.2
153 root 1.69 This callback is useful when you don't want to put all of your write data
154     into the queue at once, for example, when you want to write the contents
155     of some file to the socket you might not want to read the whole file into
156     memory and push it into the queue, but instead only read more data from
157     the file when the write queue becomes empty.
158    
159 root 1.43 =item timeout => $fractional_seconds
160    
161     If non-zero, then this enables an "inactivity" timeout: whenever this many
162     seconds pass without a successful read or write on the underlying file
163     handle, the C<on_timeout> callback will be invoked (and if that one is
164 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
165 root 1.43
166     Note that timeout processing is also active when you currently do not have
167     any outstanding read or write requests: If you plan to keep the connection
168     idle then you should disable the timout temporarily or ignore the timeout
169 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
170     restart the timeout.
171 root 1.43
172     Zero (the default) disables this timeout.
173    
174     =item on_timeout => $cb->($handle)
175    
176     Called whenever the inactivity timeout passes. If you return from this
177     callback, then the timeout will be reset as if some activity had happened,
178     so this condition is not fatal in any way.
179    
180 root 1.8 =item rbuf_max => <bytes>
181 elmex 1.2
182 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
183     when the read buffer ever (strictly) exceeds this size. This is useful to
184 root 1.88 avoid some forms of denial-of-service attacks.
185 elmex 1.2
186 root 1.8 For example, a server accepting connections from untrusted sources should
187     be configured to accept only so-and-so much data that it cannot act on
188     (for example, when expecting a line, an attacker could send an unlimited
189     amount of data without a callback ever being called as long as the line
190     isn't finished).
191 elmex 1.2
192 root 1.70 =item autocork => <boolean>
193    
194     When disabled (the default), then C<push_write> will try to immediately
195 root 1.88 write the data to the handle, if possible. This avoids having to register
196     a write watcher and wait for the next event loop iteration, but can
197     be inefficient if you write multiple small chunks (on the wire, this
198     disadvantage is usually avoided by your kernel's nagle algorithm, see
199     C<no_delay>, but this option can save costly syscalls).
200 root 1.70
201     When enabled, then writes will always be queued till the next event loop
202     iteration. This is efficient when you do many small writes per iteration,
203 root 1.88 but less efficient when you do a single write only per iteration (or when
204     the write buffer often is full). It also increases write latency.
205 root 1.70
206     =item no_delay => <boolean>
207    
208     When doing small writes on sockets, your operating system kernel might
209     wait a bit for more data before actually sending it out. This is called
210     the Nagle algorithm, and usually it is beneficial.
211    
212 root 1.88 In some situations you want as low a delay as possible, which can be
213     accomplishd by setting this option to a true value.
214 root 1.70
215 root 1.88 The default is your opertaing system's default behaviour (most likely
216     enabled), this option explicitly enables or disables it, if possible.
217 root 1.70
218 root 1.8 =item read_size => <bytes>
219 elmex 1.2
220 root 1.88 The default read block size (the amount of bytes this module will
221     try to read during each loop iteration, which affects memory
222     requirements). Default: C<8192>.
223 root 1.8
224     =item low_water_mark => <bytes>
225    
226     Sets the amount of bytes (default: C<0>) that make up an "empty" write
227     buffer: If the write reaches this size or gets even samller it is
228     considered empty.
229 elmex 1.2
230 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
231     the write buffer before it is fully drained, but this is a rare case, as
232     the operating system kernel usually buffers data as well, so the default
233     is good in almost all cases.
234    
235 root 1.62 =item linger => <seconds>
236    
237     If non-zero (default: C<3600>), then the destructor of the
238 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
239     write data and will install a watcher that will write this data to the
240     socket. No errors will be reported (this mostly matches how the operating
241     system treats outstanding data at socket close time).
242 root 1.62
243 root 1.88 This will not work for partial TLS data that could not be encoded
244 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
245     help.
246 root 1.62
247 root 1.133 =item peername => $string
248    
249 root 1.134 A string used to identify the remote site - usually the DNS hostname
250     (I<not> IDN!) used to create the connection, rarely the IP address.
251 root 1.131
252 root 1.133 Apart from being useful in error messages, this string is also used in TLS
253 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
254     verification will be skipped when C<peername> is not specified or
255     C<undef>.
256 root 1.131
257 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
258    
259 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
260 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
261     established and will transparently encrypt/decrypt data afterwards.
262 root 1.19
263 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
264     appropriate error message.
265    
266 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
267 root 1.88 automatically when you try to create a TLS handle): this module doesn't
268     have a dependency on that module, so if your module requires it, you have
269     to add the dependency yourself.
270 root 1.26
271 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
272     C<accept>, and for the TLS client side of a connection, use C<connect>
273     mode.
274 root 1.19
275     You can also provide your own TLS connection object, but you have
276     to make sure that you call either C<Net::SSLeay::set_connect_state>
277     or C<Net::SSLeay::set_accept_state> on it before you pass it to
278 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
279     object.
280    
281     At some future point, AnyEvent::Handle might switch to another TLS
282     implementation, then the option to use your own session object will go
283     away.
284 root 1.19
285 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
286     passing in the wrong integer will lead to certain crash. This most often
287     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
288     segmentation fault.
289    
290 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
291 root 1.26
292 root 1.131 =item tls_ctx => $anyevent_tls
293 root 1.19
294 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
295 root 1.19 (unless a connection object was specified directly). If this parameter is
296     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
297    
298 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
299     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
300     new TLS context object.
301    
302 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
303 root 1.142
304     This callback will be invoked when the TLS/SSL handshake has finished. If
305     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
306     (C<on_stoptls> will not be called in this case).
307    
308     The session in C<< $handle->{tls} >> can still be examined in this
309     callback, even when the handshake was not successful.
310    
311 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
312     callback is in effect, instead, the error message will be passed to C<on_starttls>.
313    
314     Without this callback, handshake failures lead to C<on_error> being
315     called, as normal.
316    
317     Note that you cannot call C<starttls> right again in this callback. If you
318     need to do that, start an zero-second timer instead whose callback can
319     then call C<< ->starttls >> again.
320    
321 root 1.142 =item on_stoptls => $cb->($handle)
322    
323     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
324     set, then it will be invoked after freeing the TLS session. If it is not,
325     then a TLS shutdown condition will be treated like a normal EOF condition
326     on the handle.
327    
328     The session in C<< $handle->{tls} >> can still be examined in this
329     callback.
330    
331     This callback will only be called on TLS shutdowns, not when the
332     underlying handle signals EOF.
333    
334 root 1.40 =item json => JSON or JSON::XS object
335    
336     This is the json coder object used by the C<json> read and write types.
337    
338 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
339 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
340     texts.
341 root 1.40
342     Note that you are responsible to depend on the JSON module if you want to
343     use this functionality, as AnyEvent does not have a dependency itself.
344    
345 elmex 1.1 =back
346    
347     =cut
348    
349     sub new {
350 root 1.8 my $class = shift;
351     my $self = bless { @_ }, $class;
352    
353     $self->{fh} or Carp::croak "mandatory argument fh is missing";
354    
355     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
356 elmex 1.1
357 root 1.131 $self->{_activity} = AnyEvent->now;
358     $self->_timeout;
359    
360     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
361    
362 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
363     if $self->{tls};
364 root 1.19
365 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
366 root 1.10
367 root 1.66 $self->start_read
368 root 1.67 if $self->{on_read};
369 root 1.66
370 root 1.131 $self->{fh} && $self
371 root 1.8 }
372 elmex 1.2
373 root 1.149 #sub _shutdown {
374     # my ($self) = @_;
375     #
376     # delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
377     # $self->{_eof} = 1; # tell starttls et. al to stop trying
378     #
379     # &_freetls;
380     #}
381 root 1.8
382 root 1.52 sub _error {
383 root 1.133 my ($self, $errno, $fatal, $message) = @_;
384 root 1.8
385 root 1.52 $! = $errno;
386 root 1.133 $message ||= "$!";
387 root 1.37
388 root 1.52 if ($self->{on_error}) {
389 root 1.133 $self->{on_error}($self, $fatal, $message);
390 root 1.149 $self->destroy;
391 root 1.100 } elsif ($self->{fh}) {
392 root 1.149 $self->destroy;
393 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
394 root 1.52 }
395 elmex 1.1 }
396    
397 root 1.8 =item $fh = $handle->fh
398 elmex 1.1
399 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
400 elmex 1.1
401     =cut
402    
403 root 1.38 sub fh { $_[0]{fh} }
404 elmex 1.1
405 root 1.8 =item $handle->on_error ($cb)
406 elmex 1.1
407 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
408 elmex 1.1
409 root 1.8 =cut
410    
411     sub on_error {
412     $_[0]{on_error} = $_[1];
413     }
414    
415     =item $handle->on_eof ($cb)
416    
417     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
418 elmex 1.1
419     =cut
420    
421 root 1.8 sub on_eof {
422     $_[0]{on_eof} = $_[1];
423     }
424    
425 root 1.43 =item $handle->on_timeout ($cb)
426    
427 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
428     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
429     argument and method.
430 root 1.43
431     =cut
432    
433     sub on_timeout {
434     $_[0]{on_timeout} = $_[1];
435     }
436    
437 root 1.70 =item $handle->autocork ($boolean)
438    
439     Enables or disables the current autocork behaviour (see C<autocork>
440 root 1.105 constructor argument). Changes will only take effect on the next write.
441 root 1.70
442     =cut
443    
444 root 1.105 sub autocork {
445     $_[0]{autocork} = $_[1];
446     }
447    
448 root 1.70 =item $handle->no_delay ($boolean)
449    
450     Enables or disables the C<no_delay> setting (see constructor argument of
451     the same name for details).
452    
453     =cut
454    
455     sub no_delay {
456     $_[0]{no_delay} = $_[1];
457    
458     eval {
459     local $SIG{__DIE__};
460     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
461     };
462     }
463    
464 root 1.142 =item $handle->on_starttls ($cb)
465    
466     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
467    
468     =cut
469    
470     sub on_starttls {
471     $_[0]{on_starttls} = $_[1];
472     }
473    
474     =item $handle->on_stoptls ($cb)
475    
476     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
477    
478     =cut
479    
480     sub on_starttls {
481     $_[0]{on_stoptls} = $_[1];
482     }
483    
484 root 1.43 #############################################################################
485    
486     =item $handle->timeout ($seconds)
487    
488     Configures (or disables) the inactivity timeout.
489    
490     =cut
491    
492     sub timeout {
493     my ($self, $timeout) = @_;
494    
495     $self->{timeout} = $timeout;
496     $self->_timeout;
497     }
498    
499     # reset the timeout watcher, as neccessary
500     # also check for time-outs
501     sub _timeout {
502     my ($self) = @_;
503    
504     if ($self->{timeout}) {
505 root 1.44 my $NOW = AnyEvent->now;
506 root 1.43
507     # when would the timeout trigger?
508     my $after = $self->{_activity} + $self->{timeout} - $NOW;
509    
510     # now or in the past already?
511     if ($after <= 0) {
512     $self->{_activity} = $NOW;
513    
514     if ($self->{on_timeout}) {
515 root 1.48 $self->{on_timeout}($self);
516 root 1.43 } else {
517 root 1.52 $self->_error (&Errno::ETIMEDOUT);
518 root 1.43 }
519    
520 root 1.56 # callback could have changed timeout value, optimise
521 root 1.43 return unless $self->{timeout};
522    
523     # calculate new after
524     $after = $self->{timeout};
525     }
526    
527     Scalar::Util::weaken $self;
528 root 1.56 return unless $self; # ->error could have destroyed $self
529 root 1.43
530     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
531     delete $self->{_tw};
532     $self->_timeout;
533     });
534     } else {
535     delete $self->{_tw};
536     }
537     }
538    
539 root 1.9 #############################################################################
540    
541     =back
542    
543     =head2 WRITE QUEUE
544    
545     AnyEvent::Handle manages two queues per handle, one for writing and one
546     for reading.
547    
548     The write queue is very simple: you can add data to its end, and
549     AnyEvent::Handle will automatically try to get rid of it for you.
550    
551 elmex 1.20 When data could be written and the write buffer is shorter then the low
552 root 1.9 water mark, the C<on_drain> callback will be invoked.
553    
554     =over 4
555    
556 root 1.8 =item $handle->on_drain ($cb)
557    
558     Sets the C<on_drain> callback or clears it (see the description of
559     C<on_drain> in the constructor).
560    
561     =cut
562    
563     sub on_drain {
564 elmex 1.1 my ($self, $cb) = @_;
565    
566 root 1.8 $self->{on_drain} = $cb;
567    
568     $cb->($self)
569 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
570 root 1.8 }
571    
572     =item $handle->push_write ($data)
573    
574     Queues the given scalar to be written. You can push as much data as you
575     want (only limited by the available memory), as C<AnyEvent::Handle>
576     buffers it independently of the kernel.
577    
578     =cut
579    
580 root 1.17 sub _drain_wbuf {
581     my ($self) = @_;
582 root 1.8
583 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
584 root 1.35
585 root 1.8 Scalar::Util::weaken $self;
586 root 1.35
587 root 1.8 my $cb = sub {
588     my $len = syswrite $self->{fh}, $self->{wbuf};
589    
590 root 1.146 if (defined $len) {
591 root 1.8 substr $self->{wbuf}, 0, $len, "";
592    
593 root 1.44 $self->{_activity} = AnyEvent->now;
594 root 1.43
595 root 1.8 $self->{on_drain}($self)
596 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
597 root 1.8 && $self->{on_drain};
598    
599 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
600 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
601 root 1.52 $self->_error ($!, 1);
602 elmex 1.1 }
603 root 1.8 };
604    
605 root 1.35 # try to write data immediately
606 root 1.70 $cb->() unless $self->{autocork};
607 root 1.8
608 root 1.35 # if still data left in wbuf, we need to poll
609 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
610 root 1.35 if length $self->{wbuf};
611 root 1.8 };
612     }
613    
614 root 1.30 our %WH;
615    
616     sub register_write_type($$) {
617     $WH{$_[0]} = $_[1];
618     }
619    
620 root 1.17 sub push_write {
621     my $self = shift;
622    
623 root 1.29 if (@_ > 1) {
624     my $type = shift;
625    
626     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
627     ->($self, @_);
628     }
629    
630 root 1.93 if ($self->{tls}) {
631     $self->{_tls_wbuf} .= $_[0];
632 root 1.97
633 root 1.93 &_dotls ($self);
634 root 1.17 } else {
635     $self->{wbuf} .= $_[0];
636     $self->_drain_wbuf;
637     }
638     }
639    
640 root 1.29 =item $handle->push_write (type => @args)
641    
642     Instead of formatting your data yourself, you can also let this module do
643     the job by specifying a type and type-specific arguments.
644    
645 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
646     drop by and tell us):
647 root 1.29
648     =over 4
649    
650     =item netstring => $string
651    
652     Formats the given value as netstring
653     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
654    
655     =cut
656    
657     register_write_type netstring => sub {
658     my ($self, $string) = @_;
659    
660 root 1.96 (length $string) . ":$string,"
661 root 1.29 };
662    
663 root 1.61 =item packstring => $format, $data
664    
665     An octet string prefixed with an encoded length. The encoding C<$format>
666     uses the same format as a Perl C<pack> format, but must specify a single
667     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
668     optional C<!>, C<< < >> or C<< > >> modifier).
669    
670     =cut
671    
672     register_write_type packstring => sub {
673     my ($self, $format, $string) = @_;
674    
675 root 1.65 pack "$format/a*", $string
676 root 1.61 };
677    
678 root 1.39 =item json => $array_or_hashref
679    
680 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
681     provide your own JSON object, this means it will be encoded to JSON text
682     in UTF-8.
683    
684     JSON objects (and arrays) are self-delimiting, so you can write JSON at
685     one end of a handle and read them at the other end without using any
686     additional framing.
687    
688 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
689     this module doesn't need delimiters after or between JSON texts to be
690     able to read them, many other languages depend on that.
691    
692     A simple RPC protocol that interoperates easily with others is to send
693     JSON arrays (or objects, although arrays are usually the better choice as
694     they mimic how function argument passing works) and a newline after each
695     JSON text:
696    
697     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
698     $handle->push_write ("\012");
699    
700     An AnyEvent::Handle receiver would simply use the C<json> read type and
701     rely on the fact that the newline will be skipped as leading whitespace:
702    
703     $handle->push_read (json => sub { my $array = $_[1]; ... });
704    
705     Other languages could read single lines terminated by a newline and pass
706     this line into their JSON decoder of choice.
707    
708 root 1.40 =cut
709    
710     register_write_type json => sub {
711     my ($self, $ref) = @_;
712    
713     require JSON;
714    
715     $self->{json} ? $self->{json}->encode ($ref)
716     : JSON::encode_json ($ref)
717     };
718    
719 root 1.63 =item storable => $reference
720    
721     Freezes the given reference using L<Storable> and writes it to the
722     handle. Uses the C<nfreeze> format.
723    
724     =cut
725    
726     register_write_type storable => sub {
727     my ($self, $ref) = @_;
728    
729     require Storable;
730    
731 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
732 root 1.63 };
733    
734 root 1.53 =back
735    
736 root 1.133 =item $handle->push_shutdown
737    
738     Sometimes you know you want to close the socket after writing your data
739     before it was actually written. One way to do that is to replace your
740 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
741     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
742     replaces the C<on_drain> callback with:
743 root 1.133
744     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
745    
746     This simply shuts down the write side and signals an EOF condition to the
747     the peer.
748    
749     You can rely on the normal read queue and C<on_eof> handling
750     afterwards. This is the cleanest way to close a connection.
751    
752     =cut
753    
754     sub push_shutdown {
755 root 1.142 my ($self) = @_;
756    
757     delete $self->{low_water_mark};
758     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
759 root 1.133 }
760    
761 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
762 root 1.30
763     This function (not method) lets you add your own types to C<push_write>.
764     Whenever the given C<type> is used, C<push_write> will invoke the code
765     reference with the handle object and the remaining arguments.
766 root 1.29
767 root 1.30 The code reference is supposed to return a single octet string that will
768     be appended to the write buffer.
769 root 1.29
770 root 1.30 Note that this is a function, and all types registered this way will be
771     global, so try to use unique names.
772 root 1.29
773 root 1.30 =cut
774 root 1.29
775 root 1.8 #############################################################################
776    
777 root 1.9 =back
778    
779     =head2 READ QUEUE
780    
781     AnyEvent::Handle manages two queues per handle, one for writing and one
782     for reading.
783    
784     The read queue is more complex than the write queue. It can be used in two
785     ways, the "simple" way, using only C<on_read> and the "complex" way, using
786     a queue.
787    
788     In the simple case, you just install an C<on_read> callback and whenever
789     new data arrives, it will be called. You can then remove some data (if
790 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
791     leave the data there if you want to accumulate more (e.g. when only a
792     partial message has been received so far).
793 root 1.9
794     In the more complex case, you want to queue multiple callbacks. In this
795     case, AnyEvent::Handle will call the first queued callback each time new
796 root 1.61 data arrives (also the first time it is queued) and removes it when it has
797     done its job (see C<push_read>, below).
798 root 1.9
799     This way you can, for example, push three line-reads, followed by reading
800     a chunk of data, and AnyEvent::Handle will execute them in order.
801    
802     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
803     the specified number of bytes which give an XML datagram.
804    
805     # in the default state, expect some header bytes
806     $handle->on_read (sub {
807     # some data is here, now queue the length-header-read (4 octets)
808 root 1.52 shift->unshift_read (chunk => 4, sub {
809 root 1.9 # header arrived, decode
810     my $len = unpack "N", $_[1];
811    
812     # now read the payload
813 root 1.52 shift->unshift_read (chunk => $len, sub {
814 root 1.9 my $xml = $_[1];
815     # handle xml
816     });
817     });
818     });
819    
820 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
821     and another line or "ERROR" for the first request that is sent, and 64
822     bytes for the second request. Due to the availability of a queue, we can
823     just pipeline sending both requests and manipulate the queue as necessary
824     in the callbacks.
825    
826     When the first callback is called and sees an "OK" response, it will
827     C<unshift> another line-read. This line-read will be queued I<before> the
828     64-byte chunk callback.
829 root 1.9
830 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
831 root 1.9 $handle->push_write ("request 1\015\012");
832    
833     # we expect "ERROR" or "OK" as response, so push a line read
834 root 1.52 $handle->push_read (line => sub {
835 root 1.9 # if we got an "OK", we have to _prepend_ another line,
836     # so it will be read before the second request reads its 64 bytes
837     # which are already in the queue when this callback is called
838     # we don't do this in case we got an error
839     if ($_[1] eq "OK") {
840 root 1.52 $_[0]->unshift_read (line => sub {
841 root 1.9 my $response = $_[1];
842     ...
843     });
844     }
845     });
846    
847 root 1.69 # request two, simply returns 64 octets
848 root 1.9 $handle->push_write ("request 2\015\012");
849    
850     # simply read 64 bytes, always
851 root 1.52 $handle->push_read (chunk => 64, sub {
852 root 1.9 my $response = $_[1];
853     ...
854     });
855    
856     =over 4
857    
858 root 1.10 =cut
859    
860 root 1.8 sub _drain_rbuf {
861     my ($self) = @_;
862 elmex 1.1
863 root 1.59 local $self->{_in_drain} = 1;
864    
865 root 1.17 if (
866     defined $self->{rbuf_max}
867     && $self->{rbuf_max} < length $self->{rbuf}
868     ) {
869 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
870 root 1.17 }
871    
872 root 1.59 while () {
873 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
874     # we are draining the buffer, and this can only happen with TLS.
875 root 1.116 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
876 root 1.115
877 root 1.59 my $len = length $self->{rbuf};
878 elmex 1.1
879 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
880 root 1.29 unless ($cb->($self)) {
881 root 1.38 if ($self->{_eof}) {
882 root 1.10 # no progress can be made (not enough data and no data forthcoming)
883 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
884 root 1.10 }
885    
886 root 1.38 unshift @{ $self->{_queue} }, $cb;
887 root 1.55 last;
888 root 1.8 }
889     } elsif ($self->{on_read}) {
890 root 1.61 last unless $len;
891    
892 root 1.8 $self->{on_read}($self);
893    
894     if (
895 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
896     && !@{ $self->{_queue} } # and the queue is still empty
897     && $self->{on_read} # but we still have on_read
898 root 1.8 ) {
899 root 1.55 # no further data will arrive
900     # so no progress can be made
901 root 1.82 $self->_error (&Errno::EPIPE, 1), return
902 root 1.55 if $self->{_eof};
903    
904     last; # more data might arrive
905 elmex 1.1 }
906 root 1.8 } else {
907     # read side becomes idle
908 root 1.93 delete $self->{_rw} unless $self->{tls};
909 root 1.55 last;
910 root 1.8 }
911     }
912    
913 root 1.80 if ($self->{_eof}) {
914     if ($self->{on_eof}) {
915     $self->{on_eof}($self)
916     } else {
917 root 1.140 $self->_error (0, 1, "Unexpected end-of-file");
918 root 1.80 }
919     }
920 root 1.55
921     # may need to restart read watcher
922     unless ($self->{_rw}) {
923     $self->start_read
924     if $self->{on_read} || @{ $self->{_queue} };
925     }
926 elmex 1.1 }
927    
928 root 1.8 =item $handle->on_read ($cb)
929 elmex 1.1
930 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
931     the new callback is C<undef>). See the description of C<on_read> in the
932     constructor.
933 elmex 1.1
934 root 1.8 =cut
935    
936     sub on_read {
937     my ($self, $cb) = @_;
938 elmex 1.1
939 root 1.8 $self->{on_read} = $cb;
940 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
941 elmex 1.1 }
942    
943 root 1.8 =item $handle->rbuf
944    
945     Returns the read buffer (as a modifiable lvalue).
946 elmex 1.1
947 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
948     member, if you want. However, the only operation allowed on the
949     read buffer (apart from looking at it) is removing data from its
950     beginning. Otherwise modifying or appending to it is not allowed and will
951     lead to hard-to-track-down bugs.
952 elmex 1.1
953 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
954     C<push_read> or C<unshift_read> methods are used. The other read methods
955     automatically manage the read buffer.
956 elmex 1.1
957     =cut
958    
959 elmex 1.2 sub rbuf : lvalue {
960 root 1.8 $_[0]{rbuf}
961 elmex 1.2 }
962 elmex 1.1
963 root 1.8 =item $handle->push_read ($cb)
964    
965     =item $handle->unshift_read ($cb)
966    
967     Append the given callback to the end of the queue (C<push_read>) or
968     prepend it (C<unshift_read>).
969    
970     The callback is called each time some additional read data arrives.
971 elmex 1.1
972 elmex 1.20 It must check whether enough data is in the read buffer already.
973 elmex 1.1
974 root 1.8 If not enough data is available, it must return the empty list or a false
975     value, in which case it will be called repeatedly until enough data is
976     available (or an error condition is detected).
977    
978     If enough data was available, then the callback must remove all data it is
979     interested in (which can be none at all) and return a true value. After returning
980     true, it will be removed from the queue.
981 elmex 1.1
982     =cut
983    
984 root 1.30 our %RH;
985    
986     sub register_read_type($$) {
987     $RH{$_[0]} = $_[1];
988     }
989    
990 root 1.8 sub push_read {
991 root 1.28 my $self = shift;
992     my $cb = pop;
993    
994     if (@_) {
995     my $type = shift;
996    
997     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
998     ->($self, $cb, @_);
999     }
1000 elmex 1.1
1001 root 1.38 push @{ $self->{_queue} }, $cb;
1002 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1003 elmex 1.1 }
1004    
1005 root 1.8 sub unshift_read {
1006 root 1.28 my $self = shift;
1007     my $cb = pop;
1008    
1009     if (@_) {
1010     my $type = shift;
1011    
1012     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1013     ->($self, $cb, @_);
1014     }
1015    
1016 root 1.8
1017 root 1.38 unshift @{ $self->{_queue} }, $cb;
1018 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1019 root 1.8 }
1020 elmex 1.1
1021 root 1.28 =item $handle->push_read (type => @args, $cb)
1022 elmex 1.1
1023 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1024 elmex 1.1
1025 root 1.28 Instead of providing a callback that parses the data itself you can chose
1026     between a number of predefined parsing formats, for chunks of data, lines
1027     etc.
1028 elmex 1.1
1029 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1030     drop by and tell us):
1031 root 1.28
1032     =over 4
1033    
1034 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1035 root 1.28
1036     Invoke the callback only once C<$octets> bytes have been read. Pass the
1037     data read to the callback. The callback will never be called with less
1038     data.
1039    
1040     Example: read 2 bytes.
1041    
1042     $handle->push_read (chunk => 2, sub {
1043     warn "yay ", unpack "H*", $_[1];
1044     });
1045 elmex 1.1
1046     =cut
1047    
1048 root 1.28 register_read_type chunk => sub {
1049     my ($self, $cb, $len) = @_;
1050 elmex 1.1
1051 root 1.8 sub {
1052     $len <= length $_[0]{rbuf} or return;
1053 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1054 root 1.8 1
1055     }
1056 root 1.28 };
1057 root 1.8
1058 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1059 elmex 1.1
1060 root 1.8 The callback will be called only once a full line (including the end of
1061     line marker, C<$eol>) has been read. This line (excluding the end of line
1062     marker) will be passed to the callback as second argument (C<$line>), and
1063     the end of line marker as the third argument (C<$eol>).
1064 elmex 1.1
1065 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1066     will be interpreted as a fixed record end marker, or it can be a regex
1067     object (e.g. created by C<qr>), in which case it is interpreted as a
1068     regular expression.
1069 elmex 1.1
1070 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1071     undef), then C<qr|\015?\012|> is used (which is good for most internet
1072     protocols).
1073 elmex 1.1
1074 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1075     not marked by the end of line marker.
1076 elmex 1.1
1077 root 1.8 =cut
1078 elmex 1.1
1079 root 1.28 register_read_type line => sub {
1080     my ($self, $cb, $eol) = @_;
1081 elmex 1.1
1082 root 1.76 if (@_ < 3) {
1083     # this is more than twice as fast as the generic code below
1084     sub {
1085     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1086 elmex 1.1
1087 root 1.76 $cb->($_[0], $1, $2);
1088     1
1089     }
1090     } else {
1091     $eol = quotemeta $eol unless ref $eol;
1092     $eol = qr|^(.*?)($eol)|s;
1093    
1094     sub {
1095     $_[0]{rbuf} =~ s/$eol// or return;
1096 elmex 1.1
1097 root 1.76 $cb->($_[0], $1, $2);
1098     1
1099     }
1100 root 1.8 }
1101 root 1.28 };
1102 elmex 1.1
1103 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1104 root 1.36
1105     Makes a regex match against the regex object C<$accept> and returns
1106     everything up to and including the match.
1107    
1108     Example: read a single line terminated by '\n'.
1109    
1110     $handle->push_read (regex => qr<\n>, sub { ... });
1111    
1112     If C<$reject> is given and not undef, then it determines when the data is
1113     to be rejected: it is matched against the data when the C<$accept> regex
1114     does not match and generates an C<EBADMSG> error when it matches. This is
1115     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1116     receive buffer overflow).
1117    
1118     Example: expect a single decimal number followed by whitespace, reject
1119     anything else (not the use of an anchor).
1120    
1121     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1122    
1123     If C<$skip> is given and not C<undef>, then it will be matched against
1124     the receive buffer when neither C<$accept> nor C<$reject> match,
1125     and everything preceding and including the match will be accepted
1126     unconditionally. This is useful to skip large amounts of data that you
1127     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1128     have to start matching from the beginning. This is purely an optimisation
1129     and is usually worth only when you expect more than a few kilobytes.
1130    
1131     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1132     expect the header to be very large (it isn't in practise, but...), we use
1133     a skip regex to skip initial portions. The skip regex is tricky in that
1134     it only accepts something not ending in either \015 or \012, as these are
1135     required for the accept regex.
1136    
1137     $handle->push_read (regex =>
1138     qr<\015\012\015\012>,
1139     undef, # no reject
1140     qr<^.*[^\015\012]>,
1141     sub { ... });
1142    
1143     =cut
1144    
1145     register_read_type regex => sub {
1146     my ($self, $cb, $accept, $reject, $skip) = @_;
1147    
1148     my $data;
1149     my $rbuf = \$self->{rbuf};
1150    
1151     sub {
1152     # accept
1153     if ($$rbuf =~ $accept) {
1154     $data .= substr $$rbuf, 0, $+[0], "";
1155     $cb->($self, $data);
1156     return 1;
1157     }
1158    
1159     # reject
1160     if ($reject && $$rbuf =~ $reject) {
1161 root 1.52 $self->_error (&Errno::EBADMSG);
1162 root 1.36 }
1163    
1164     # skip
1165     if ($skip && $$rbuf =~ $skip) {
1166     $data .= substr $$rbuf, 0, $+[0], "";
1167     }
1168    
1169     ()
1170     }
1171     };
1172    
1173 root 1.61 =item netstring => $cb->($handle, $string)
1174    
1175     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1176    
1177     Throws an error with C<$!> set to EBADMSG on format violations.
1178    
1179     =cut
1180    
1181     register_read_type netstring => sub {
1182     my ($self, $cb) = @_;
1183    
1184     sub {
1185     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1186     if ($_[0]{rbuf} =~ /[^0-9]/) {
1187     $self->_error (&Errno::EBADMSG);
1188     }
1189     return;
1190     }
1191    
1192     my $len = $1;
1193    
1194     $self->unshift_read (chunk => $len, sub {
1195     my $string = $_[1];
1196     $_[0]->unshift_read (chunk => 1, sub {
1197     if ($_[1] eq ",") {
1198     $cb->($_[0], $string);
1199     } else {
1200     $self->_error (&Errno::EBADMSG);
1201     }
1202     });
1203     });
1204    
1205     1
1206     }
1207     };
1208    
1209     =item packstring => $format, $cb->($handle, $string)
1210    
1211     An octet string prefixed with an encoded length. The encoding C<$format>
1212     uses the same format as a Perl C<pack> format, but must specify a single
1213     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1214     optional C<!>, C<< < >> or C<< > >> modifier).
1215    
1216 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1217     EPP uses a prefix of C<N> (4 octtes).
1218 root 1.61
1219     Example: read a block of data prefixed by its length in BER-encoded
1220     format (very efficient).
1221    
1222     $handle->push_read (packstring => "w", sub {
1223     my ($handle, $data) = @_;
1224     });
1225    
1226     =cut
1227    
1228     register_read_type packstring => sub {
1229     my ($self, $cb, $format) = @_;
1230    
1231     sub {
1232     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1233 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1234 root 1.61 or return;
1235    
1236 root 1.77 $format = length pack $format, $len;
1237 root 1.61
1238 root 1.77 # bypass unshift if we already have the remaining chunk
1239     if ($format + $len <= length $_[0]{rbuf}) {
1240     my $data = substr $_[0]{rbuf}, $format, $len;
1241     substr $_[0]{rbuf}, 0, $format + $len, "";
1242     $cb->($_[0], $data);
1243     } else {
1244     # remove prefix
1245     substr $_[0]{rbuf}, 0, $format, "";
1246    
1247     # read remaining chunk
1248     $_[0]->unshift_read (chunk => $len, $cb);
1249     }
1250 root 1.61
1251     1
1252     }
1253     };
1254    
1255 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1256    
1257 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1258     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1259 root 1.40
1260     If a C<json> object was passed to the constructor, then that will be used
1261     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1262    
1263     This read type uses the incremental parser available with JSON version
1264     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1265     dependency on your own: this module will load the JSON module, but
1266     AnyEvent does not depend on it itself.
1267    
1268     Since JSON texts are fully self-delimiting, the C<json> read and write
1269 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1270     the C<json> write type description, above, for an actual example.
1271 root 1.40
1272     =cut
1273    
1274     register_read_type json => sub {
1275 root 1.63 my ($self, $cb) = @_;
1276 root 1.40
1277 root 1.135 my $json = $self->{json} ||=
1278     eval { require JSON::XS; JSON::XS->new->utf8 }
1279     || do { require JSON; JSON->new->utf8 };
1280 root 1.40
1281     my $data;
1282     my $rbuf = \$self->{rbuf};
1283    
1284     sub {
1285 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1286 root 1.110
1287 root 1.113 if ($ref) {
1288     $self->{rbuf} = $json->incr_text;
1289     $json->incr_text = "";
1290     $cb->($self, $ref);
1291 root 1.110
1292     1
1293 root 1.113 } elsif ($@) {
1294 root 1.111 # error case
1295 root 1.110 $json->incr_skip;
1296 root 1.40
1297     $self->{rbuf} = $json->incr_text;
1298     $json->incr_text = "";
1299    
1300 root 1.110 $self->_error (&Errno::EBADMSG);
1301 root 1.114
1302 root 1.113 ()
1303     } else {
1304     $self->{rbuf} = "";
1305 root 1.114
1306 root 1.113 ()
1307     }
1308 root 1.40 }
1309     };
1310    
1311 root 1.63 =item storable => $cb->($handle, $ref)
1312    
1313     Deserialises a L<Storable> frozen representation as written by the
1314     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1315     data).
1316    
1317     Raises C<EBADMSG> error if the data could not be decoded.
1318    
1319     =cut
1320    
1321     register_read_type storable => sub {
1322     my ($self, $cb) = @_;
1323    
1324     require Storable;
1325    
1326     sub {
1327     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1328 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1329 root 1.63 or return;
1330    
1331 root 1.77 my $format = length pack "w", $len;
1332 root 1.63
1333 root 1.77 # bypass unshift if we already have the remaining chunk
1334     if ($format + $len <= length $_[0]{rbuf}) {
1335     my $data = substr $_[0]{rbuf}, $format, $len;
1336     substr $_[0]{rbuf}, 0, $format + $len, "";
1337     $cb->($_[0], Storable::thaw ($data));
1338     } else {
1339     # remove prefix
1340     substr $_[0]{rbuf}, 0, $format, "";
1341    
1342     # read remaining chunk
1343     $_[0]->unshift_read (chunk => $len, sub {
1344     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1345     $cb->($_[0], $ref);
1346     } else {
1347     $self->_error (&Errno::EBADMSG);
1348     }
1349     });
1350     }
1351    
1352     1
1353 root 1.63 }
1354     };
1355    
1356 root 1.28 =back
1357    
1358 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1359 root 1.30
1360     This function (not method) lets you add your own types to C<push_read>.
1361    
1362     Whenever the given C<type> is used, C<push_read> will invoke the code
1363     reference with the handle object, the callback and the remaining
1364     arguments.
1365    
1366     The code reference is supposed to return a callback (usually a closure)
1367     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1368    
1369     It should invoke the passed callback when it is done reading (remember to
1370 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1371 root 1.30
1372     Note that this is a function, and all types registered this way will be
1373     global, so try to use unique names.
1374    
1375     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1376     search for C<register_read_type>)).
1377    
1378 root 1.10 =item $handle->stop_read
1379    
1380     =item $handle->start_read
1381    
1382 root 1.18 In rare cases you actually do not want to read anything from the
1383 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1384 root 1.22 any queued callbacks will be executed then. To start reading again, call
1385 root 1.10 C<start_read>.
1386    
1387 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1388     you change the C<on_read> callback or push/unshift a read callback, and it
1389     will automatically C<stop_read> for you when neither C<on_read> is set nor
1390     there are any read requests in the queue.
1391    
1392 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1393     half-duplex connections).
1394    
1395 root 1.10 =cut
1396    
1397     sub stop_read {
1398     my ($self) = @_;
1399 elmex 1.1
1400 root 1.93 delete $self->{_rw} unless $self->{tls};
1401 root 1.8 }
1402 elmex 1.1
1403 root 1.10 sub start_read {
1404     my ($self) = @_;
1405    
1406 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1407 root 1.10 Scalar::Util::weaken $self;
1408    
1409 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1410 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1411 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1412 root 1.10
1413     if ($len > 0) {
1414 root 1.44 $self->{_activity} = AnyEvent->now;
1415 root 1.43
1416 root 1.93 if ($self->{tls}) {
1417     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1418 root 1.97
1419 root 1.93 &_dotls ($self);
1420     } else {
1421     $self->_drain_rbuf unless $self->{_in_drain};
1422     }
1423 root 1.10
1424     } elsif (defined $len) {
1425 root 1.38 delete $self->{_rw};
1426     $self->{_eof} = 1;
1427 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1428 root 1.10
1429 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1430 root 1.52 return $self->_error ($!, 1);
1431 root 1.10 }
1432     });
1433     }
1434 elmex 1.1 }
1435    
1436 root 1.133 our $ERROR_SYSCALL;
1437     our $ERROR_WANT_READ;
1438    
1439     sub _tls_error {
1440     my ($self, $err) = @_;
1441    
1442     return $self->_error ($!, 1)
1443     if $err == Net::SSLeay::ERROR_SYSCALL ();
1444    
1445 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1446    
1447     # reduce error string to look less scary
1448     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1449    
1450 root 1.143 if ($self->{_on_starttls}) {
1451     (delete $self->{_on_starttls})->($self, undef, $err);
1452     &_freetls;
1453     } else {
1454     &_freetls;
1455     $self->_error (&Errno::EPROTO, 1, $err);
1456     }
1457 root 1.133 }
1458    
1459 root 1.97 # poll the write BIO and send the data if applicable
1460 root 1.133 # also decode read data if possible
1461     # this is basiclaly our TLS state machine
1462     # more efficient implementations are possible with openssl,
1463     # but not with the buggy and incomplete Net::SSLeay.
1464 root 1.19 sub _dotls {
1465     my ($self) = @_;
1466    
1467 root 1.97 my $tmp;
1468 root 1.56
1469 root 1.38 if (length $self->{_tls_wbuf}) {
1470 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1471     substr $self->{_tls_wbuf}, 0, $tmp, "";
1472 root 1.22 }
1473 root 1.133
1474     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1475     return $self->_tls_error ($tmp)
1476     if $tmp != $ERROR_WANT_READ
1477 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1478 root 1.19 }
1479    
1480 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1481     unless (length $tmp) {
1482 root 1.143 $self->{_on_starttls}
1483     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1484 root 1.92 &_freetls;
1485 root 1.143
1486 root 1.142 if ($self->{on_stoptls}) {
1487     $self->{on_stoptls}($self);
1488     return;
1489     } else {
1490     # let's treat SSL-eof as we treat normal EOF
1491     delete $self->{_rw};
1492     $self->{_eof} = 1;
1493     }
1494 root 1.56 }
1495 root 1.91
1496 root 1.116 $self->{_tls_rbuf} .= $tmp;
1497 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1498 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1499 root 1.23 }
1500    
1501 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1502 root 1.133 return $self->_tls_error ($tmp)
1503     if $tmp != $ERROR_WANT_READ
1504 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1505 root 1.91
1506 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1507     $self->{wbuf} .= $tmp;
1508 root 1.91 $self->_drain_wbuf;
1509     }
1510 root 1.142
1511     $self->{_on_starttls}
1512     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1513 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1514 root 1.19 }
1515    
1516 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1517    
1518     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1519     object is created, you can also do that at a later time by calling
1520     C<starttls>.
1521    
1522     The first argument is the same as the C<tls> constructor argument (either
1523     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1524    
1525 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1526     when AnyEvent::Handle has to create its own TLS connection object, or
1527     a hash reference with C<< key => value >> pairs that will be used to
1528     construct a new context.
1529    
1530     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1531     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1532     changed to your liking. Note that the handshake might have already started
1533     when this function returns.
1534 root 1.38
1535 root 1.92 If it an error to start a TLS handshake more than once per
1536     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1537    
1538 root 1.25 =cut
1539    
1540 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1541    
1542 root 1.19 sub starttls {
1543     my ($self, $ssl, $ctx) = @_;
1544    
1545 root 1.94 require Net::SSLeay;
1546    
1547 root 1.102 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1548 root 1.92 if $self->{tls};
1549 root 1.131
1550 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1551     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1552 root 1.133
1553 root 1.131 $ctx ||= $self->{tls_ctx};
1554    
1555     if ("HASH" eq ref $ctx) {
1556     require AnyEvent::TLS;
1557    
1558     local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1559 root 1.137
1560     if ($ctx->{cache}) {
1561     my $key = $ctx+0;
1562     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1563     } else {
1564     $ctx = new AnyEvent::TLS %$ctx;
1565     }
1566 root 1.131 }
1567 root 1.92
1568 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1569 root 1.133 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1570 root 1.19
1571 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1572     # but the openssl maintainers basically said: "trust us, it just works".
1573     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1574     # and mismaintained ssleay-module doesn't even offer them).
1575 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1576 root 1.87 #
1577     # in short: this is a mess.
1578     #
1579 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1580 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1581 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1582     # have identity issues in that area.
1583 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1584     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1585     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1586     Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1587 root 1.21
1588 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1589     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1590 root 1.19
1591 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1592 root 1.19
1593 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1594 root 1.143 if $self->{on_starttls};
1595 root 1.142
1596 root 1.93 &_dotls; # need to trigger the initial handshake
1597     $self->start_read; # make sure we actually do read
1598 root 1.19 }
1599    
1600 root 1.25 =item $handle->stoptls
1601    
1602 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1603     sending a close notify to the other side, but since OpenSSL doesn't
1604     support non-blocking shut downs, it is not possible to re-use the stream
1605     afterwards.
1606 root 1.25
1607     =cut
1608    
1609     sub stoptls {
1610     my ($self) = @_;
1611    
1612 root 1.92 if ($self->{tls}) {
1613 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1614 root 1.92
1615     &_dotls;
1616    
1617 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1618     # # we, we... have to use openssl :/#d#
1619     # &_freetls;#d#
1620 root 1.92 }
1621     }
1622    
1623     sub _freetls {
1624     my ($self) = @_;
1625    
1626     return unless $self->{tls};
1627 root 1.38
1628 root 1.131 $self->{tls_ctx}->_put_session (delete $self->{tls});
1629 root 1.92
1630 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1631 root 1.25 }
1632    
1633 root 1.19 sub DESTROY {
1634 root 1.120 my ($self) = @_;
1635 root 1.19
1636 root 1.92 &_freetls;
1637 root 1.62
1638     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1639    
1640     if ($linger && length $self->{wbuf}) {
1641     my $fh = delete $self->{fh};
1642     my $wbuf = delete $self->{wbuf};
1643    
1644     my @linger;
1645    
1646     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1647     my $len = syswrite $fh, $wbuf, length $wbuf;
1648    
1649     if ($len > 0) {
1650     substr $wbuf, 0, $len, "";
1651     } else {
1652     @linger = (); # end
1653     }
1654     });
1655     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1656     @linger = ();
1657     });
1658     }
1659 root 1.19 }
1660    
1661 root 1.99 =item $handle->destroy
1662    
1663 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1664 root 1.141 no further callbacks will be invoked and as many resources as possible
1665     will be freed. You must not call any methods on the object afterwards.
1666 root 1.99
1667 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1668     object and it will simply shut down. This works in fatal error and EOF
1669     callbacks, as well as code outside. It does I<NOT> work in a read or write
1670     callback, so when you want to destroy the AnyEvent::Handle object from
1671     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1672     that case.
1673    
1674 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1675     will be removed as well, so if those are the only reference holders (as
1676     is common), then one doesn't need to do anything special to break any
1677     reference cycles.
1678    
1679 root 1.99 The handle might still linger in the background and write out remaining
1680     data, as specified by the C<linger> option, however.
1681    
1682     =cut
1683    
1684     sub destroy {
1685     my ($self) = @_;
1686    
1687     $self->DESTROY;
1688     %$self = ();
1689     }
1690    
1691 root 1.19 =item AnyEvent::Handle::TLS_CTX
1692    
1693 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1694     for TLS mode.
1695 root 1.19
1696 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1697 root 1.19
1698     =cut
1699    
1700     our $TLS_CTX;
1701    
1702     sub TLS_CTX() {
1703 root 1.131 $TLS_CTX ||= do {
1704     require AnyEvent::TLS;
1705 root 1.19
1706 root 1.131 new AnyEvent::TLS
1707 root 1.19 }
1708     }
1709    
1710 elmex 1.1 =back
1711    
1712 root 1.95
1713     =head1 NONFREQUENTLY ASKED QUESTIONS
1714    
1715     =over 4
1716    
1717 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1718     still get further invocations!
1719    
1720     That's because AnyEvent::Handle keeps a reference to itself when handling
1721     read or write callbacks.
1722    
1723     It is only safe to "forget" the reference inside EOF or error callbacks,
1724     from within all other callbacks, you need to explicitly call the C<<
1725     ->destroy >> method.
1726    
1727     =item I get different callback invocations in TLS mode/Why can't I pause
1728     reading?
1729    
1730     Unlike, say, TCP, TLS connections do not consist of two independent
1731     communication channels, one for each direction. Or put differently. The
1732     read and write directions are not independent of each other: you cannot
1733     write data unless you are also prepared to read, and vice versa.
1734    
1735     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1736     callback invocations when you are not expecting any read data - the reason
1737     is that AnyEvent::Handle always reads in TLS mode.
1738    
1739     During the connection, you have to make sure that you always have a
1740     non-empty read-queue, or an C<on_read> watcher. At the end of the
1741     connection (or when you no longer want to use it) you can call the
1742     C<destroy> method.
1743    
1744 root 1.95 =item How do I read data until the other side closes the connection?
1745    
1746 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1747     to achieve this is by setting an C<on_read> callback that does nothing,
1748     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1749     will be in C<$_[0]{rbuf}>:
1750 root 1.95
1751     $handle->on_read (sub { });
1752     $handle->on_eof (undef);
1753     $handle->on_error (sub {
1754     my $data = delete $_[0]{rbuf};
1755     });
1756    
1757     The reason to use C<on_error> is that TCP connections, due to latencies
1758     and packets loss, might get closed quite violently with an error, when in
1759     fact, all data has been received.
1760    
1761 root 1.101 It is usually better to use acknowledgements when transferring data,
1762 root 1.95 to make sure the other side hasn't just died and you got the data
1763     intact. This is also one reason why so many internet protocols have an
1764     explicit QUIT command.
1765    
1766 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1767     all data has been written?
1768 root 1.95
1769     After writing your last bits of data, set the C<on_drain> callback
1770     and destroy the handle in there - with the default setting of
1771     C<low_water_mark> this will be called precisely when all data has been
1772     written to the socket:
1773    
1774     $handle->push_write (...);
1775     $handle->on_drain (sub {
1776     warn "all data submitted to the kernel\n";
1777     undef $handle;
1778     });
1779    
1780 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1781     consider using C<< ->push_shutdown >> instead.
1782    
1783     =item I want to contact a TLS/SSL server, I don't care about security.
1784    
1785     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1786     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1787     parameter:
1788    
1789 root 1.144 tcp_connect $host, $port, sub {
1790     my ($fh) = @_;
1791 root 1.143
1792 root 1.144 my $handle = new AnyEvent::Handle
1793     fh => $fh,
1794     tls => "connect",
1795     on_error => sub { ... };
1796    
1797     $handle->push_write (...);
1798     };
1799 root 1.143
1800     =item I want to contact a TLS/SSL server, I do care about security.
1801    
1802 root 1.144 Then you should additionally enable certificate verification, including
1803     peername verification, if the protocol you use supports it (see
1804     L<AnyEvent::TLS>, C<verify_peername>).
1805    
1806     E.g. for HTTPS:
1807    
1808     tcp_connect $host, $port, sub {
1809     my ($fh) = @_;
1810    
1811     my $handle = new AnyEvent::Handle
1812     fh => $fh,
1813     peername => $host,
1814     tls => "connect",
1815     tls_ctx => { verify => 1, verify_peername => "https" },
1816     ...
1817    
1818     Note that you must specify the hostname you connected to (or whatever
1819     "peername" the protocol needs) as the C<peername> argument, otherwise no
1820     peername verification will be done.
1821    
1822     The above will use the system-dependent default set of trusted CA
1823     certificates. If you want to check against a specific CA, add the
1824     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1825    
1826     tls_ctx => {
1827     verify => 1,
1828     verify_peername => "https",
1829     ca_file => "my-ca-cert.pem",
1830     },
1831    
1832     =item I want to create a TLS/SSL server, how do I do that?
1833    
1834     Well, you first need to get a server certificate and key. You have
1835     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1836     self-signed certificate (cheap. check the search engine of your choice,
1837     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1838     nice program for that purpose).
1839    
1840     Then create a file with your private key (in PEM format, see
1841     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1842     file should then look like this:
1843    
1844     -----BEGIN RSA PRIVATE KEY-----
1845     ...header data
1846     ... lots of base64'y-stuff
1847     -----END RSA PRIVATE KEY-----
1848    
1849     -----BEGIN CERTIFICATE-----
1850     ... lots of base64'y-stuff
1851     -----END CERTIFICATE-----
1852    
1853     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1854     specify this file as C<cert_file>:
1855    
1856     tcp_server undef, $port, sub {
1857     my ($fh) = @_;
1858    
1859     my $handle = new AnyEvent::Handle
1860     fh => $fh,
1861     tls => "accept",
1862     tls_ctx => { cert_file => "my-server-keycert.pem" },
1863     ...
1864 root 1.143
1865 root 1.144 When you have intermediate CA certificates that your clients might not
1866     know about, just append them to the C<cert_file>.
1867 root 1.143
1868 root 1.95 =back
1869    
1870    
1871 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1872    
1873     In many cases, you might want to subclass AnyEvent::Handle.
1874    
1875     To make this easier, a given version of AnyEvent::Handle uses these
1876     conventions:
1877    
1878     =over 4
1879    
1880     =item * all constructor arguments become object members.
1881    
1882     At least initially, when you pass a C<tls>-argument to the constructor it
1883 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1884 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1885    
1886     =item * other object member names are prefixed with an C<_>.
1887    
1888     All object members not explicitly documented (internal use) are prefixed
1889     with an underscore character, so the remaining non-C<_>-namespace is free
1890     for use for subclasses.
1891    
1892     =item * all members not documented here and not prefixed with an underscore
1893     are free to use in subclasses.
1894    
1895     Of course, new versions of AnyEvent::Handle may introduce more "public"
1896     member variables, but thats just life, at least it is documented.
1897    
1898     =back
1899    
1900 elmex 1.1 =head1 AUTHOR
1901    
1902 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1903 elmex 1.1
1904     =cut
1905    
1906     1; # End of AnyEvent::Handle