ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.158
Committed: Fri Jul 24 08:40:35 2009 UTC (14 years, 11 months ago) by root
Branch: MAIN
Changes since 1.157: +10 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 root 1.8 use Scalar::Util ();
4     use Carp ();
5 root 1.43 use Errno qw(EAGAIN EINTR);
6 elmex 1.1
7 root 1.153 use AnyEvent (); BEGIN { AnyEvent::common_sense }
8     use AnyEvent::Util qw(WSAEWOULDBLOCK);
9    
10 elmex 1.1 =head1 NAME
11    
12 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
13 elmex 1.1
14     =cut
15    
16 root 1.155 our $VERSION = 4.86;
17 elmex 1.1
18     =head1 SYNOPSIS
19    
20     use AnyEvent;
21     use AnyEvent::Handle;
22    
23     my $cv = AnyEvent->condvar;
24    
25 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
26     fh => \*STDIN,
27     on_error => sub {
28 root 1.151 my ($hdl, $fatal, $msg) = @_;
29     warn "got error $msg\n";
30     $hdl->destroy;
31 root 1.149 $cv->send;
32 elmex 1.2 );
33    
34 root 1.31 # send some request line
35 root 1.149 $hdl->push_write ("getinfo\015\012");
36 root 1.31
37     # read the response line
38 root 1.149 $hdl->push_read (line => sub {
39     my ($hdl, $line) = @_;
40     warn "got line <$line>\n";
41 root 1.31 $cv->send;
42     });
43    
44     $cv->recv;
45 elmex 1.1
46     =head1 DESCRIPTION
47    
48 root 1.8 This module is a helper module to make it easier to do event-based I/O on
49 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
50     on sockets see L<AnyEvent::Util>.
51 root 1.8
52 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
53     AnyEvent::Handle examples.
54    
55 root 1.8 In the following, when the documentation refers to of "bytes" then this
56     means characters. As sysread and syswrite are used for all I/O, their
57     treatment of characters applies to this module as well.
58 elmex 1.1
59 root 1.8 All callbacks will be invoked with the handle object as their first
60     argument.
61 elmex 1.1
62     =head1 METHODS
63    
64     =over 4
65    
66 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
67 elmex 1.1
68 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
69 elmex 1.1
70     =over 4
71    
72 root 1.8 =item fh => $filehandle [MANDATORY]
73 elmex 1.1
74 root 1.158 #=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75    
76 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
77 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
78     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79     that mode.
80 root 1.8
81 root 1.158 #=item connect => [$host, $service]
82     #
83     # You have to specify either this parameter, or C<connect>, below.
84     #Try to connect to the specified host and service (port), using
85     #C<AnyEvent::Socket::tcp_connect>.
86     #
87     #When this
88    
89 root 1.40 =item on_eof => $cb->($handle)
90 root 1.10
91 root 1.74 Set the callback to be called when an end-of-file condition is detected,
92 root 1.52 i.e. in the case of a socket, when the other side has closed the
93 root 1.150 connection cleanly, and there are no outstanding read requests in the
94     queue (if there are read requests, then an EOF counts as an unexpected
95     connection close and will be flagged as an error).
96 root 1.8
97 root 1.82 For sockets, this just means that the other side has stopped sending data,
98 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
99 root 1.82 callback and continue writing data, as only the read part has been shut
100     down.
101    
102 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
103     set, then a fatal error will be raised with C<$!> set to <0>.
104    
105 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
106 root 1.10
107 root 1.52 This is the error callback, which is called when, well, some error
108     occured, such as not being able to resolve the hostname, failure to
109     connect or a read error.
110    
111     Some errors are fatal (which is indicated by C<$fatal> being true). On
112 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
113     destroy >>) after invoking the error callback (which means you are free to
114     examine the handle object). Examples of fatal errors are an EOF condition
115     with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
116 root 1.82
117 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
118     against, but in some cases (TLS errors), this does not work well. It is
119     recommended to always output the C<$message> argument in human-readable
120     error messages (it's usually the same as C<"$!">).
121    
122 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
123     to simply ignore this parameter and instead abondon the handle object
124     when this callback is invoked. Examples of non-fatal errors are timeouts
125     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
126 root 1.8
127 root 1.10 On callback entrance, the value of C<$!> contains the operating system
128 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
129     C<EPROTO>).
130 root 1.8
131 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
132     you will not be notified of errors otherwise. The default simply calls
133 root 1.52 C<croak>.
134 root 1.8
135 root 1.40 =item on_read => $cb->($handle)
136 root 1.8
137     This sets the default read callback, which is called when data arrives
138 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
139     callback will only be called when at least one octet of data is in the
140     read buffer).
141 root 1.8
142     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
143 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
144 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
145     the beginning from it.
146 root 1.8
147     When an EOF condition is detected then AnyEvent::Handle will first try to
148     feed all the remaining data to the queued callbacks and C<on_read> before
149     calling the C<on_eof> callback. If no progress can be made, then a fatal
150     error will be raised (with C<$!> set to C<EPIPE>).
151 elmex 1.1
152 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
153     doesn't mean you I<require> some data: if there is an EOF and there
154     are outstanding read requests then an error will be flagged. With an
155     C<on_read> callback, the C<on_eof> callback will be invoked.
156    
157 root 1.40 =item on_drain => $cb->($handle)
158 elmex 1.1
159 root 1.8 This sets the callback that is called when the write buffer becomes empty
160     (or when the callback is set and the buffer is empty already).
161 elmex 1.1
162 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
163 elmex 1.2
164 root 1.69 This callback is useful when you don't want to put all of your write data
165     into the queue at once, for example, when you want to write the contents
166     of some file to the socket you might not want to read the whole file into
167     memory and push it into the queue, but instead only read more data from
168     the file when the write queue becomes empty.
169    
170 root 1.43 =item timeout => $fractional_seconds
171    
172     If non-zero, then this enables an "inactivity" timeout: whenever this many
173     seconds pass without a successful read or write on the underlying file
174     handle, the C<on_timeout> callback will be invoked (and if that one is
175 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
176 root 1.43
177     Note that timeout processing is also active when you currently do not have
178     any outstanding read or write requests: If you plan to keep the connection
179     idle then you should disable the timout temporarily or ignore the timeout
180 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
181     restart the timeout.
182 root 1.43
183     Zero (the default) disables this timeout.
184    
185     =item on_timeout => $cb->($handle)
186    
187     Called whenever the inactivity timeout passes. If you return from this
188     callback, then the timeout will be reset as if some activity had happened,
189     so this condition is not fatal in any way.
190    
191 root 1.8 =item rbuf_max => <bytes>
192 elmex 1.2
193 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
194     when the read buffer ever (strictly) exceeds this size. This is useful to
195 root 1.88 avoid some forms of denial-of-service attacks.
196 elmex 1.2
197 root 1.8 For example, a server accepting connections from untrusted sources should
198     be configured to accept only so-and-so much data that it cannot act on
199     (for example, when expecting a line, an attacker could send an unlimited
200     amount of data without a callback ever being called as long as the line
201     isn't finished).
202 elmex 1.2
203 root 1.70 =item autocork => <boolean>
204    
205     When disabled (the default), then C<push_write> will try to immediately
206 root 1.88 write the data to the handle, if possible. This avoids having to register
207     a write watcher and wait for the next event loop iteration, but can
208     be inefficient if you write multiple small chunks (on the wire, this
209     disadvantage is usually avoided by your kernel's nagle algorithm, see
210     C<no_delay>, but this option can save costly syscalls).
211 root 1.70
212     When enabled, then writes will always be queued till the next event loop
213     iteration. This is efficient when you do many small writes per iteration,
214 root 1.88 but less efficient when you do a single write only per iteration (or when
215     the write buffer often is full). It also increases write latency.
216 root 1.70
217     =item no_delay => <boolean>
218    
219     When doing small writes on sockets, your operating system kernel might
220     wait a bit for more data before actually sending it out. This is called
221     the Nagle algorithm, and usually it is beneficial.
222    
223 root 1.88 In some situations you want as low a delay as possible, which can be
224     accomplishd by setting this option to a true value.
225 root 1.70
226 root 1.88 The default is your opertaing system's default behaviour (most likely
227     enabled), this option explicitly enables or disables it, if possible.
228 root 1.70
229 root 1.8 =item read_size => <bytes>
230 elmex 1.2
231 root 1.88 The default read block size (the amount of bytes this module will
232     try to read during each loop iteration, which affects memory
233     requirements). Default: C<8192>.
234 root 1.8
235     =item low_water_mark => <bytes>
236    
237     Sets the amount of bytes (default: C<0>) that make up an "empty" write
238     buffer: If the write reaches this size or gets even samller it is
239     considered empty.
240 elmex 1.2
241 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
242     the write buffer before it is fully drained, but this is a rare case, as
243     the operating system kernel usually buffers data as well, so the default
244     is good in almost all cases.
245    
246 root 1.62 =item linger => <seconds>
247    
248     If non-zero (default: C<3600>), then the destructor of the
249 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
250     write data and will install a watcher that will write this data to the
251     socket. No errors will be reported (this mostly matches how the operating
252     system treats outstanding data at socket close time).
253 root 1.62
254 root 1.88 This will not work for partial TLS data that could not be encoded
255 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
256     help.
257 root 1.62
258 root 1.133 =item peername => $string
259    
260 root 1.134 A string used to identify the remote site - usually the DNS hostname
261     (I<not> IDN!) used to create the connection, rarely the IP address.
262 root 1.131
263 root 1.133 Apart from being useful in error messages, this string is also used in TLS
264 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
265     verification will be skipped when C<peername> is not specified or
266     C<undef>.
267 root 1.131
268 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
269    
270 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
271 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
272     established and will transparently encrypt/decrypt data afterwards.
273 root 1.19
274 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
275     appropriate error message.
276    
277 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
278 root 1.88 automatically when you try to create a TLS handle): this module doesn't
279     have a dependency on that module, so if your module requires it, you have
280     to add the dependency yourself.
281 root 1.26
282 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
283     C<accept>, and for the TLS client side of a connection, use C<connect>
284     mode.
285 root 1.19
286     You can also provide your own TLS connection object, but you have
287     to make sure that you call either C<Net::SSLeay::set_connect_state>
288     or C<Net::SSLeay::set_accept_state> on it before you pass it to
289 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
290     object.
291    
292     At some future point, AnyEvent::Handle might switch to another TLS
293     implementation, then the option to use your own session object will go
294     away.
295 root 1.19
296 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
297     passing in the wrong integer will lead to certain crash. This most often
298     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
299     segmentation fault.
300    
301 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
302 root 1.26
303 root 1.131 =item tls_ctx => $anyevent_tls
304 root 1.19
305 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
306 root 1.19 (unless a connection object was specified directly). If this parameter is
307     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
308    
309 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
310     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
311     new TLS context object.
312    
313 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
314 root 1.142
315     This callback will be invoked when the TLS/SSL handshake has finished. If
316     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
317     (C<on_stoptls> will not be called in this case).
318    
319     The session in C<< $handle->{tls} >> can still be examined in this
320     callback, even when the handshake was not successful.
321    
322 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
323     callback is in effect, instead, the error message will be passed to C<on_starttls>.
324    
325     Without this callback, handshake failures lead to C<on_error> being
326     called, as normal.
327    
328     Note that you cannot call C<starttls> right again in this callback. If you
329     need to do that, start an zero-second timer instead whose callback can
330     then call C<< ->starttls >> again.
331    
332 root 1.142 =item on_stoptls => $cb->($handle)
333    
334     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
335     set, then it will be invoked after freeing the TLS session. If it is not,
336     then a TLS shutdown condition will be treated like a normal EOF condition
337     on the handle.
338    
339     The session in C<< $handle->{tls} >> can still be examined in this
340     callback.
341    
342     This callback will only be called on TLS shutdowns, not when the
343     underlying handle signals EOF.
344    
345 root 1.40 =item json => JSON or JSON::XS object
346    
347     This is the json coder object used by the C<json> read and write types.
348    
349 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
350 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
351     texts.
352 root 1.40
353     Note that you are responsible to depend on the JSON module if you want to
354     use this functionality, as AnyEvent does not have a dependency itself.
355    
356 elmex 1.1 =back
357    
358     =cut
359    
360     sub new {
361 root 1.8 my $class = shift;
362     my $self = bless { @_ }, $class;
363    
364     $self->{fh} or Carp::croak "mandatory argument fh is missing";
365    
366     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
367 elmex 1.1
368 root 1.131 $self->{_activity} = AnyEvent->now;
369     $self->_timeout;
370    
371     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
372    
373 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
374     if $self->{tls};
375 root 1.19
376 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
377 root 1.10
378 root 1.66 $self->start_read
379 root 1.67 if $self->{on_read};
380 root 1.66
381 root 1.131 $self->{fh} && $self
382 root 1.8 }
383 elmex 1.2
384 root 1.149 #sub _shutdown {
385     # my ($self) = @_;
386     #
387     # delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
388     # $self->{_eof} = 1; # tell starttls et. al to stop trying
389     #
390     # &_freetls;
391     #}
392 root 1.8
393 root 1.52 sub _error {
394 root 1.133 my ($self, $errno, $fatal, $message) = @_;
395 root 1.8
396 root 1.52 $! = $errno;
397 root 1.133 $message ||= "$!";
398 root 1.37
399 root 1.52 if ($self->{on_error}) {
400 root 1.133 $self->{on_error}($self, $fatal, $message);
401 root 1.151 $self->destroy if $fatal;
402 root 1.100 } elsif ($self->{fh}) {
403 root 1.149 $self->destroy;
404 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
405 root 1.52 }
406 elmex 1.1 }
407    
408 root 1.8 =item $fh = $handle->fh
409 elmex 1.1
410 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
411 elmex 1.1
412     =cut
413    
414 root 1.38 sub fh { $_[0]{fh} }
415 elmex 1.1
416 root 1.8 =item $handle->on_error ($cb)
417 elmex 1.1
418 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
419 elmex 1.1
420 root 1.8 =cut
421    
422     sub on_error {
423     $_[0]{on_error} = $_[1];
424     }
425    
426     =item $handle->on_eof ($cb)
427    
428     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
429 elmex 1.1
430     =cut
431    
432 root 1.8 sub on_eof {
433     $_[0]{on_eof} = $_[1];
434     }
435    
436 root 1.43 =item $handle->on_timeout ($cb)
437    
438 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
439     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
440     argument and method.
441 root 1.43
442     =cut
443    
444     sub on_timeout {
445     $_[0]{on_timeout} = $_[1];
446     }
447    
448 root 1.70 =item $handle->autocork ($boolean)
449    
450     Enables or disables the current autocork behaviour (see C<autocork>
451 root 1.105 constructor argument). Changes will only take effect on the next write.
452 root 1.70
453     =cut
454    
455 root 1.105 sub autocork {
456     $_[0]{autocork} = $_[1];
457     }
458    
459 root 1.70 =item $handle->no_delay ($boolean)
460    
461     Enables or disables the C<no_delay> setting (see constructor argument of
462     the same name for details).
463    
464     =cut
465    
466     sub no_delay {
467     $_[0]{no_delay} = $_[1];
468    
469     eval {
470     local $SIG{__DIE__};
471     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
472     };
473     }
474    
475 root 1.142 =item $handle->on_starttls ($cb)
476    
477     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
478    
479     =cut
480    
481     sub on_starttls {
482     $_[0]{on_starttls} = $_[1];
483     }
484    
485     =item $handle->on_stoptls ($cb)
486    
487     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
488    
489     =cut
490    
491     sub on_starttls {
492     $_[0]{on_stoptls} = $_[1];
493     }
494    
495 root 1.43 #############################################################################
496    
497     =item $handle->timeout ($seconds)
498    
499     Configures (or disables) the inactivity timeout.
500    
501     =cut
502    
503     sub timeout {
504     my ($self, $timeout) = @_;
505    
506     $self->{timeout} = $timeout;
507     $self->_timeout;
508     }
509    
510     # reset the timeout watcher, as neccessary
511     # also check for time-outs
512     sub _timeout {
513     my ($self) = @_;
514    
515     if ($self->{timeout}) {
516 root 1.44 my $NOW = AnyEvent->now;
517 root 1.43
518     # when would the timeout trigger?
519     my $after = $self->{_activity} + $self->{timeout} - $NOW;
520    
521     # now or in the past already?
522     if ($after <= 0) {
523     $self->{_activity} = $NOW;
524    
525     if ($self->{on_timeout}) {
526 root 1.48 $self->{on_timeout}($self);
527 root 1.43 } else {
528 root 1.150 $self->_error (Errno::ETIMEDOUT);
529 root 1.43 }
530    
531 root 1.56 # callback could have changed timeout value, optimise
532 root 1.43 return unless $self->{timeout};
533    
534     # calculate new after
535     $after = $self->{timeout};
536     }
537    
538     Scalar::Util::weaken $self;
539 root 1.56 return unless $self; # ->error could have destroyed $self
540 root 1.43
541     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
542     delete $self->{_tw};
543     $self->_timeout;
544     });
545     } else {
546     delete $self->{_tw};
547     }
548     }
549    
550 root 1.9 #############################################################################
551    
552     =back
553    
554     =head2 WRITE QUEUE
555    
556     AnyEvent::Handle manages two queues per handle, one for writing and one
557     for reading.
558    
559     The write queue is very simple: you can add data to its end, and
560     AnyEvent::Handle will automatically try to get rid of it for you.
561    
562 elmex 1.20 When data could be written and the write buffer is shorter then the low
563 root 1.9 water mark, the C<on_drain> callback will be invoked.
564    
565     =over 4
566    
567 root 1.8 =item $handle->on_drain ($cb)
568    
569     Sets the C<on_drain> callback or clears it (see the description of
570     C<on_drain> in the constructor).
571    
572     =cut
573    
574     sub on_drain {
575 elmex 1.1 my ($self, $cb) = @_;
576    
577 root 1.8 $self->{on_drain} = $cb;
578    
579     $cb->($self)
580 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
581 root 1.8 }
582    
583     =item $handle->push_write ($data)
584    
585     Queues the given scalar to be written. You can push as much data as you
586     want (only limited by the available memory), as C<AnyEvent::Handle>
587     buffers it independently of the kernel.
588    
589     =cut
590    
591 root 1.17 sub _drain_wbuf {
592     my ($self) = @_;
593 root 1.8
594 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
595 root 1.35
596 root 1.8 Scalar::Util::weaken $self;
597 root 1.35
598 root 1.8 my $cb = sub {
599     my $len = syswrite $self->{fh}, $self->{wbuf};
600    
601 root 1.146 if (defined $len) {
602 root 1.8 substr $self->{wbuf}, 0, $len, "";
603    
604 root 1.44 $self->{_activity} = AnyEvent->now;
605 root 1.43
606 root 1.8 $self->{on_drain}($self)
607 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
608 root 1.8 && $self->{on_drain};
609    
610 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
611 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
612 root 1.52 $self->_error ($!, 1);
613 elmex 1.1 }
614 root 1.8 };
615    
616 root 1.35 # try to write data immediately
617 root 1.70 $cb->() unless $self->{autocork};
618 root 1.8
619 root 1.35 # if still data left in wbuf, we need to poll
620 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
621 root 1.35 if length $self->{wbuf};
622 root 1.8 };
623     }
624    
625 root 1.30 our %WH;
626    
627     sub register_write_type($$) {
628     $WH{$_[0]} = $_[1];
629     }
630    
631 root 1.17 sub push_write {
632     my $self = shift;
633    
634 root 1.29 if (@_ > 1) {
635     my $type = shift;
636    
637     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
638     ->($self, @_);
639     }
640    
641 root 1.93 if ($self->{tls}) {
642     $self->{_tls_wbuf} .= $_[0];
643 root 1.97
644 root 1.93 &_dotls ($self);
645 root 1.17 } else {
646     $self->{wbuf} .= $_[0];
647     $self->_drain_wbuf;
648     }
649     }
650    
651 root 1.29 =item $handle->push_write (type => @args)
652    
653     Instead of formatting your data yourself, you can also let this module do
654     the job by specifying a type and type-specific arguments.
655    
656 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
657     drop by and tell us):
658 root 1.29
659     =over 4
660    
661     =item netstring => $string
662    
663     Formats the given value as netstring
664     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
665    
666     =cut
667    
668     register_write_type netstring => sub {
669     my ($self, $string) = @_;
670    
671 root 1.96 (length $string) . ":$string,"
672 root 1.29 };
673    
674 root 1.61 =item packstring => $format, $data
675    
676     An octet string prefixed with an encoded length. The encoding C<$format>
677     uses the same format as a Perl C<pack> format, but must specify a single
678     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
679     optional C<!>, C<< < >> or C<< > >> modifier).
680    
681     =cut
682    
683     register_write_type packstring => sub {
684     my ($self, $format, $string) = @_;
685    
686 root 1.65 pack "$format/a*", $string
687 root 1.61 };
688    
689 root 1.39 =item json => $array_or_hashref
690    
691 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
692     provide your own JSON object, this means it will be encoded to JSON text
693     in UTF-8.
694    
695     JSON objects (and arrays) are self-delimiting, so you can write JSON at
696     one end of a handle and read them at the other end without using any
697     additional framing.
698    
699 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
700     this module doesn't need delimiters after or between JSON texts to be
701     able to read them, many other languages depend on that.
702    
703     A simple RPC protocol that interoperates easily with others is to send
704     JSON arrays (or objects, although arrays are usually the better choice as
705     they mimic how function argument passing works) and a newline after each
706     JSON text:
707    
708     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
709     $handle->push_write ("\012");
710    
711     An AnyEvent::Handle receiver would simply use the C<json> read type and
712     rely on the fact that the newline will be skipped as leading whitespace:
713    
714     $handle->push_read (json => sub { my $array = $_[1]; ... });
715    
716     Other languages could read single lines terminated by a newline and pass
717     this line into their JSON decoder of choice.
718    
719 root 1.40 =cut
720    
721     register_write_type json => sub {
722     my ($self, $ref) = @_;
723    
724     require JSON;
725    
726     $self->{json} ? $self->{json}->encode ($ref)
727     : JSON::encode_json ($ref)
728     };
729    
730 root 1.63 =item storable => $reference
731    
732     Freezes the given reference using L<Storable> and writes it to the
733     handle. Uses the C<nfreeze> format.
734    
735     =cut
736    
737     register_write_type storable => sub {
738     my ($self, $ref) = @_;
739    
740     require Storable;
741    
742 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
743 root 1.63 };
744    
745 root 1.53 =back
746    
747 root 1.133 =item $handle->push_shutdown
748    
749     Sometimes you know you want to close the socket after writing your data
750     before it was actually written. One way to do that is to replace your
751 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
752     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
753     replaces the C<on_drain> callback with:
754 root 1.133
755     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
756    
757     This simply shuts down the write side and signals an EOF condition to the
758     the peer.
759    
760     You can rely on the normal read queue and C<on_eof> handling
761     afterwards. This is the cleanest way to close a connection.
762    
763     =cut
764    
765     sub push_shutdown {
766 root 1.142 my ($self) = @_;
767    
768     delete $self->{low_water_mark};
769     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
770 root 1.133 }
771    
772 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
773 root 1.30
774     This function (not method) lets you add your own types to C<push_write>.
775     Whenever the given C<type> is used, C<push_write> will invoke the code
776     reference with the handle object and the remaining arguments.
777 root 1.29
778 root 1.30 The code reference is supposed to return a single octet string that will
779     be appended to the write buffer.
780 root 1.29
781 root 1.30 Note that this is a function, and all types registered this way will be
782     global, so try to use unique names.
783 root 1.29
784 root 1.30 =cut
785 root 1.29
786 root 1.8 #############################################################################
787    
788 root 1.9 =back
789    
790     =head2 READ QUEUE
791    
792     AnyEvent::Handle manages two queues per handle, one for writing and one
793     for reading.
794    
795     The read queue is more complex than the write queue. It can be used in two
796     ways, the "simple" way, using only C<on_read> and the "complex" way, using
797     a queue.
798    
799     In the simple case, you just install an C<on_read> callback and whenever
800     new data arrives, it will be called. You can then remove some data (if
801 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
802     leave the data there if you want to accumulate more (e.g. when only a
803     partial message has been received so far).
804 root 1.9
805     In the more complex case, you want to queue multiple callbacks. In this
806     case, AnyEvent::Handle will call the first queued callback each time new
807 root 1.61 data arrives (also the first time it is queued) and removes it when it has
808     done its job (see C<push_read>, below).
809 root 1.9
810     This way you can, for example, push three line-reads, followed by reading
811     a chunk of data, and AnyEvent::Handle will execute them in order.
812    
813     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
814     the specified number of bytes which give an XML datagram.
815    
816     # in the default state, expect some header bytes
817     $handle->on_read (sub {
818     # some data is here, now queue the length-header-read (4 octets)
819 root 1.52 shift->unshift_read (chunk => 4, sub {
820 root 1.9 # header arrived, decode
821     my $len = unpack "N", $_[1];
822    
823     # now read the payload
824 root 1.52 shift->unshift_read (chunk => $len, sub {
825 root 1.9 my $xml = $_[1];
826     # handle xml
827     });
828     });
829     });
830    
831 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
832     and another line or "ERROR" for the first request that is sent, and 64
833     bytes for the second request. Due to the availability of a queue, we can
834     just pipeline sending both requests and manipulate the queue as necessary
835     in the callbacks.
836    
837     When the first callback is called and sees an "OK" response, it will
838     C<unshift> another line-read. This line-read will be queued I<before> the
839     64-byte chunk callback.
840 root 1.9
841 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
842 root 1.9 $handle->push_write ("request 1\015\012");
843    
844     # we expect "ERROR" or "OK" as response, so push a line read
845 root 1.52 $handle->push_read (line => sub {
846 root 1.9 # if we got an "OK", we have to _prepend_ another line,
847     # so it will be read before the second request reads its 64 bytes
848     # which are already in the queue when this callback is called
849     # we don't do this in case we got an error
850     if ($_[1] eq "OK") {
851 root 1.52 $_[0]->unshift_read (line => sub {
852 root 1.9 my $response = $_[1];
853     ...
854     });
855     }
856     });
857    
858 root 1.69 # request two, simply returns 64 octets
859 root 1.9 $handle->push_write ("request 2\015\012");
860    
861     # simply read 64 bytes, always
862 root 1.52 $handle->push_read (chunk => 64, sub {
863 root 1.9 my $response = $_[1];
864     ...
865     });
866    
867     =over 4
868    
869 root 1.10 =cut
870    
871 root 1.8 sub _drain_rbuf {
872     my ($self) = @_;
873 elmex 1.1
874 root 1.59 local $self->{_in_drain} = 1;
875    
876 root 1.17 if (
877     defined $self->{rbuf_max}
878     && $self->{rbuf_max} < length $self->{rbuf}
879     ) {
880 root 1.150 $self->_error (Errno::ENOSPC, 1), return;
881 root 1.17 }
882    
883 root 1.59 while () {
884 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
885     # we are draining the buffer, and this can only happen with TLS.
886 root 1.116 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
887 root 1.115
888 root 1.59 my $len = length $self->{rbuf};
889 elmex 1.1
890 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
891 root 1.29 unless ($cb->($self)) {
892 root 1.38 if ($self->{_eof}) {
893 root 1.10 # no progress can be made (not enough data and no data forthcoming)
894 root 1.150 $self->_error (Errno::EPIPE, 1), return;
895 root 1.10 }
896    
897 root 1.38 unshift @{ $self->{_queue} }, $cb;
898 root 1.55 last;
899 root 1.8 }
900     } elsif ($self->{on_read}) {
901 root 1.61 last unless $len;
902    
903 root 1.8 $self->{on_read}($self);
904    
905     if (
906 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
907     && !@{ $self->{_queue} } # and the queue is still empty
908     && $self->{on_read} # but we still have on_read
909 root 1.8 ) {
910 root 1.55 # no further data will arrive
911     # so no progress can be made
912 root 1.150 $self->_error (Errno::EPIPE, 1), return
913 root 1.55 if $self->{_eof};
914    
915     last; # more data might arrive
916 elmex 1.1 }
917 root 1.8 } else {
918     # read side becomes idle
919 root 1.93 delete $self->{_rw} unless $self->{tls};
920 root 1.55 last;
921 root 1.8 }
922     }
923    
924 root 1.80 if ($self->{_eof}) {
925     if ($self->{on_eof}) {
926     $self->{on_eof}($self)
927     } else {
928 root 1.140 $self->_error (0, 1, "Unexpected end-of-file");
929 root 1.80 }
930     }
931 root 1.55
932     # may need to restart read watcher
933     unless ($self->{_rw}) {
934     $self->start_read
935     if $self->{on_read} || @{ $self->{_queue} };
936     }
937 elmex 1.1 }
938    
939 root 1.8 =item $handle->on_read ($cb)
940 elmex 1.1
941 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
942     the new callback is C<undef>). See the description of C<on_read> in the
943     constructor.
944 elmex 1.1
945 root 1.8 =cut
946    
947     sub on_read {
948     my ($self, $cb) = @_;
949 elmex 1.1
950 root 1.8 $self->{on_read} = $cb;
951 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
952 elmex 1.1 }
953    
954 root 1.8 =item $handle->rbuf
955    
956     Returns the read buffer (as a modifiable lvalue).
957 elmex 1.1
958 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
959     member, if you want. However, the only operation allowed on the
960     read buffer (apart from looking at it) is removing data from its
961     beginning. Otherwise modifying or appending to it is not allowed and will
962     lead to hard-to-track-down bugs.
963 elmex 1.1
964 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
965     C<push_read> or C<unshift_read> methods are used. The other read methods
966     automatically manage the read buffer.
967 elmex 1.1
968     =cut
969    
970 elmex 1.2 sub rbuf : lvalue {
971 root 1.8 $_[0]{rbuf}
972 elmex 1.2 }
973 elmex 1.1
974 root 1.8 =item $handle->push_read ($cb)
975    
976     =item $handle->unshift_read ($cb)
977    
978     Append the given callback to the end of the queue (C<push_read>) or
979     prepend it (C<unshift_read>).
980    
981     The callback is called each time some additional read data arrives.
982 elmex 1.1
983 elmex 1.20 It must check whether enough data is in the read buffer already.
984 elmex 1.1
985 root 1.8 If not enough data is available, it must return the empty list or a false
986     value, in which case it will be called repeatedly until enough data is
987     available (or an error condition is detected).
988    
989     If enough data was available, then the callback must remove all data it is
990     interested in (which can be none at all) and return a true value. After returning
991     true, it will be removed from the queue.
992 elmex 1.1
993     =cut
994    
995 root 1.30 our %RH;
996    
997     sub register_read_type($$) {
998     $RH{$_[0]} = $_[1];
999     }
1000    
1001 root 1.8 sub push_read {
1002 root 1.28 my $self = shift;
1003     my $cb = pop;
1004    
1005     if (@_) {
1006     my $type = shift;
1007    
1008     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1009     ->($self, $cb, @_);
1010     }
1011 elmex 1.1
1012 root 1.38 push @{ $self->{_queue} }, $cb;
1013 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1014 elmex 1.1 }
1015    
1016 root 1.8 sub unshift_read {
1017 root 1.28 my $self = shift;
1018     my $cb = pop;
1019    
1020     if (@_) {
1021     my $type = shift;
1022    
1023     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1024     ->($self, $cb, @_);
1025     }
1026    
1027 root 1.8
1028 root 1.38 unshift @{ $self->{_queue} }, $cb;
1029 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1030 root 1.8 }
1031 elmex 1.1
1032 root 1.28 =item $handle->push_read (type => @args, $cb)
1033 elmex 1.1
1034 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1035 elmex 1.1
1036 root 1.28 Instead of providing a callback that parses the data itself you can chose
1037     between a number of predefined parsing formats, for chunks of data, lines
1038     etc.
1039 elmex 1.1
1040 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1041     drop by and tell us):
1042 root 1.28
1043     =over 4
1044    
1045 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1046 root 1.28
1047     Invoke the callback only once C<$octets> bytes have been read. Pass the
1048     data read to the callback. The callback will never be called with less
1049     data.
1050    
1051     Example: read 2 bytes.
1052    
1053     $handle->push_read (chunk => 2, sub {
1054     warn "yay ", unpack "H*", $_[1];
1055     });
1056 elmex 1.1
1057     =cut
1058    
1059 root 1.28 register_read_type chunk => sub {
1060     my ($self, $cb, $len) = @_;
1061 elmex 1.1
1062 root 1.8 sub {
1063     $len <= length $_[0]{rbuf} or return;
1064 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1065 root 1.8 1
1066     }
1067 root 1.28 };
1068 root 1.8
1069 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1070 elmex 1.1
1071 root 1.8 The callback will be called only once a full line (including the end of
1072     line marker, C<$eol>) has been read. This line (excluding the end of line
1073     marker) will be passed to the callback as second argument (C<$line>), and
1074     the end of line marker as the third argument (C<$eol>).
1075 elmex 1.1
1076 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1077     will be interpreted as a fixed record end marker, or it can be a regex
1078     object (e.g. created by C<qr>), in which case it is interpreted as a
1079     regular expression.
1080 elmex 1.1
1081 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1082     undef), then C<qr|\015?\012|> is used (which is good for most internet
1083     protocols).
1084 elmex 1.1
1085 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1086     not marked by the end of line marker.
1087 elmex 1.1
1088 root 1.8 =cut
1089 elmex 1.1
1090 root 1.28 register_read_type line => sub {
1091     my ($self, $cb, $eol) = @_;
1092 elmex 1.1
1093 root 1.76 if (@_ < 3) {
1094     # this is more than twice as fast as the generic code below
1095     sub {
1096     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1097 elmex 1.1
1098 root 1.76 $cb->($_[0], $1, $2);
1099     1
1100     }
1101     } else {
1102     $eol = quotemeta $eol unless ref $eol;
1103     $eol = qr|^(.*?)($eol)|s;
1104    
1105     sub {
1106     $_[0]{rbuf} =~ s/$eol// or return;
1107 elmex 1.1
1108 root 1.76 $cb->($_[0], $1, $2);
1109     1
1110     }
1111 root 1.8 }
1112 root 1.28 };
1113 elmex 1.1
1114 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1115 root 1.36
1116     Makes a regex match against the regex object C<$accept> and returns
1117     everything up to and including the match.
1118    
1119     Example: read a single line terminated by '\n'.
1120    
1121     $handle->push_read (regex => qr<\n>, sub { ... });
1122    
1123     If C<$reject> is given and not undef, then it determines when the data is
1124     to be rejected: it is matched against the data when the C<$accept> regex
1125     does not match and generates an C<EBADMSG> error when it matches. This is
1126     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1127     receive buffer overflow).
1128    
1129     Example: expect a single decimal number followed by whitespace, reject
1130     anything else (not the use of an anchor).
1131    
1132     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1133    
1134     If C<$skip> is given and not C<undef>, then it will be matched against
1135     the receive buffer when neither C<$accept> nor C<$reject> match,
1136     and everything preceding and including the match will be accepted
1137     unconditionally. This is useful to skip large amounts of data that you
1138     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1139     have to start matching from the beginning. This is purely an optimisation
1140     and is usually worth only when you expect more than a few kilobytes.
1141    
1142     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1143     expect the header to be very large (it isn't in practise, but...), we use
1144     a skip regex to skip initial portions. The skip regex is tricky in that
1145     it only accepts something not ending in either \015 or \012, as these are
1146     required for the accept regex.
1147    
1148     $handle->push_read (regex =>
1149     qr<\015\012\015\012>,
1150     undef, # no reject
1151     qr<^.*[^\015\012]>,
1152     sub { ... });
1153    
1154     =cut
1155    
1156     register_read_type regex => sub {
1157     my ($self, $cb, $accept, $reject, $skip) = @_;
1158    
1159     my $data;
1160     my $rbuf = \$self->{rbuf};
1161    
1162     sub {
1163     # accept
1164     if ($$rbuf =~ $accept) {
1165     $data .= substr $$rbuf, 0, $+[0], "";
1166     $cb->($self, $data);
1167     return 1;
1168     }
1169    
1170     # reject
1171     if ($reject && $$rbuf =~ $reject) {
1172 root 1.150 $self->_error (Errno::EBADMSG);
1173 root 1.36 }
1174    
1175     # skip
1176     if ($skip && $$rbuf =~ $skip) {
1177     $data .= substr $$rbuf, 0, $+[0], "";
1178     }
1179    
1180     ()
1181     }
1182     };
1183    
1184 root 1.61 =item netstring => $cb->($handle, $string)
1185    
1186     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1187    
1188     Throws an error with C<$!> set to EBADMSG on format violations.
1189    
1190     =cut
1191    
1192     register_read_type netstring => sub {
1193     my ($self, $cb) = @_;
1194    
1195     sub {
1196     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1197     if ($_[0]{rbuf} =~ /[^0-9]/) {
1198 root 1.150 $self->_error (Errno::EBADMSG);
1199 root 1.61 }
1200     return;
1201     }
1202    
1203     my $len = $1;
1204    
1205     $self->unshift_read (chunk => $len, sub {
1206     my $string = $_[1];
1207     $_[0]->unshift_read (chunk => 1, sub {
1208     if ($_[1] eq ",") {
1209     $cb->($_[0], $string);
1210     } else {
1211 root 1.150 $self->_error (Errno::EBADMSG);
1212 root 1.61 }
1213     });
1214     });
1215    
1216     1
1217     }
1218     };
1219    
1220     =item packstring => $format, $cb->($handle, $string)
1221    
1222     An octet string prefixed with an encoded length. The encoding C<$format>
1223     uses the same format as a Perl C<pack> format, but must specify a single
1224     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1225     optional C<!>, C<< < >> or C<< > >> modifier).
1226    
1227 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1228     EPP uses a prefix of C<N> (4 octtes).
1229 root 1.61
1230     Example: read a block of data prefixed by its length in BER-encoded
1231     format (very efficient).
1232    
1233     $handle->push_read (packstring => "w", sub {
1234     my ($handle, $data) = @_;
1235     });
1236    
1237     =cut
1238    
1239     register_read_type packstring => sub {
1240     my ($self, $cb, $format) = @_;
1241    
1242     sub {
1243     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1244 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1245 root 1.61 or return;
1246    
1247 root 1.77 $format = length pack $format, $len;
1248 root 1.61
1249 root 1.77 # bypass unshift if we already have the remaining chunk
1250     if ($format + $len <= length $_[0]{rbuf}) {
1251     my $data = substr $_[0]{rbuf}, $format, $len;
1252     substr $_[0]{rbuf}, 0, $format + $len, "";
1253     $cb->($_[0], $data);
1254     } else {
1255     # remove prefix
1256     substr $_[0]{rbuf}, 0, $format, "";
1257    
1258     # read remaining chunk
1259     $_[0]->unshift_read (chunk => $len, $cb);
1260     }
1261 root 1.61
1262     1
1263     }
1264     };
1265    
1266 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1267    
1268 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1269     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1270 root 1.40
1271     If a C<json> object was passed to the constructor, then that will be used
1272     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1273    
1274     This read type uses the incremental parser available with JSON version
1275     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1276     dependency on your own: this module will load the JSON module, but
1277     AnyEvent does not depend on it itself.
1278    
1279     Since JSON texts are fully self-delimiting, the C<json> read and write
1280 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1281     the C<json> write type description, above, for an actual example.
1282 root 1.40
1283     =cut
1284    
1285     register_read_type json => sub {
1286 root 1.63 my ($self, $cb) = @_;
1287 root 1.40
1288 root 1.135 my $json = $self->{json} ||=
1289     eval { require JSON::XS; JSON::XS->new->utf8 }
1290     || do { require JSON; JSON->new->utf8 };
1291 root 1.40
1292     my $data;
1293     my $rbuf = \$self->{rbuf};
1294    
1295     sub {
1296 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1297 root 1.110
1298 root 1.113 if ($ref) {
1299     $self->{rbuf} = $json->incr_text;
1300     $json->incr_text = "";
1301     $cb->($self, $ref);
1302 root 1.110
1303     1
1304 root 1.113 } elsif ($@) {
1305 root 1.111 # error case
1306 root 1.110 $json->incr_skip;
1307 root 1.40
1308     $self->{rbuf} = $json->incr_text;
1309     $json->incr_text = "";
1310    
1311 root 1.150 $self->_error (Errno::EBADMSG);
1312 root 1.114
1313 root 1.113 ()
1314     } else {
1315     $self->{rbuf} = "";
1316 root 1.114
1317 root 1.113 ()
1318     }
1319 root 1.40 }
1320     };
1321    
1322 root 1.63 =item storable => $cb->($handle, $ref)
1323    
1324     Deserialises a L<Storable> frozen representation as written by the
1325     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1326     data).
1327    
1328     Raises C<EBADMSG> error if the data could not be decoded.
1329    
1330     =cut
1331    
1332     register_read_type storable => sub {
1333     my ($self, $cb) = @_;
1334    
1335     require Storable;
1336    
1337     sub {
1338     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1339 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1340 root 1.63 or return;
1341    
1342 root 1.77 my $format = length pack "w", $len;
1343 root 1.63
1344 root 1.77 # bypass unshift if we already have the remaining chunk
1345     if ($format + $len <= length $_[0]{rbuf}) {
1346     my $data = substr $_[0]{rbuf}, $format, $len;
1347     substr $_[0]{rbuf}, 0, $format + $len, "";
1348     $cb->($_[0], Storable::thaw ($data));
1349     } else {
1350     # remove prefix
1351     substr $_[0]{rbuf}, 0, $format, "";
1352    
1353     # read remaining chunk
1354     $_[0]->unshift_read (chunk => $len, sub {
1355     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1356     $cb->($_[0], $ref);
1357     } else {
1358 root 1.150 $self->_error (Errno::EBADMSG);
1359 root 1.77 }
1360     });
1361     }
1362    
1363     1
1364 root 1.63 }
1365     };
1366    
1367 root 1.28 =back
1368    
1369 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1370 root 1.30
1371     This function (not method) lets you add your own types to C<push_read>.
1372    
1373     Whenever the given C<type> is used, C<push_read> will invoke the code
1374     reference with the handle object, the callback and the remaining
1375     arguments.
1376    
1377     The code reference is supposed to return a callback (usually a closure)
1378     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1379    
1380     It should invoke the passed callback when it is done reading (remember to
1381 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1382 root 1.30
1383     Note that this is a function, and all types registered this way will be
1384     global, so try to use unique names.
1385    
1386     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1387     search for C<register_read_type>)).
1388    
1389 root 1.10 =item $handle->stop_read
1390    
1391     =item $handle->start_read
1392    
1393 root 1.18 In rare cases you actually do not want to read anything from the
1394 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1395 root 1.22 any queued callbacks will be executed then. To start reading again, call
1396 root 1.10 C<start_read>.
1397    
1398 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1399     you change the C<on_read> callback or push/unshift a read callback, and it
1400     will automatically C<stop_read> for you when neither C<on_read> is set nor
1401     there are any read requests in the queue.
1402    
1403 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1404     half-duplex connections).
1405    
1406 root 1.10 =cut
1407    
1408     sub stop_read {
1409     my ($self) = @_;
1410 elmex 1.1
1411 root 1.93 delete $self->{_rw} unless $self->{tls};
1412 root 1.8 }
1413 elmex 1.1
1414 root 1.10 sub start_read {
1415     my ($self) = @_;
1416    
1417 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1418 root 1.10 Scalar::Util::weaken $self;
1419    
1420 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1421 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1422 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1423 root 1.10
1424     if ($len > 0) {
1425 root 1.44 $self->{_activity} = AnyEvent->now;
1426 root 1.43
1427 root 1.93 if ($self->{tls}) {
1428     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1429 root 1.97
1430 root 1.93 &_dotls ($self);
1431     } else {
1432     $self->_drain_rbuf unless $self->{_in_drain};
1433     }
1434 root 1.10
1435     } elsif (defined $len) {
1436 root 1.38 delete $self->{_rw};
1437     $self->{_eof} = 1;
1438 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1439 root 1.10
1440 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1441 root 1.52 return $self->_error ($!, 1);
1442 root 1.10 }
1443     });
1444     }
1445 elmex 1.1 }
1446    
1447 root 1.133 our $ERROR_SYSCALL;
1448     our $ERROR_WANT_READ;
1449    
1450     sub _tls_error {
1451     my ($self, $err) = @_;
1452    
1453     return $self->_error ($!, 1)
1454     if $err == Net::SSLeay::ERROR_SYSCALL ();
1455    
1456 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1457    
1458     # reduce error string to look less scary
1459     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1460    
1461 root 1.143 if ($self->{_on_starttls}) {
1462     (delete $self->{_on_starttls})->($self, undef, $err);
1463     &_freetls;
1464     } else {
1465     &_freetls;
1466 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1467 root 1.143 }
1468 root 1.133 }
1469    
1470 root 1.97 # poll the write BIO and send the data if applicable
1471 root 1.133 # also decode read data if possible
1472     # this is basiclaly our TLS state machine
1473     # more efficient implementations are possible with openssl,
1474     # but not with the buggy and incomplete Net::SSLeay.
1475 root 1.19 sub _dotls {
1476     my ($self) = @_;
1477    
1478 root 1.97 my $tmp;
1479 root 1.56
1480 root 1.38 if (length $self->{_tls_wbuf}) {
1481 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1482     substr $self->{_tls_wbuf}, 0, $tmp, "";
1483 root 1.22 }
1484 root 1.133
1485     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1486     return $self->_tls_error ($tmp)
1487     if $tmp != $ERROR_WANT_READ
1488 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1489 root 1.19 }
1490    
1491 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1492     unless (length $tmp) {
1493 root 1.143 $self->{_on_starttls}
1494     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1495 root 1.92 &_freetls;
1496 root 1.143
1497 root 1.142 if ($self->{on_stoptls}) {
1498     $self->{on_stoptls}($self);
1499     return;
1500     } else {
1501     # let's treat SSL-eof as we treat normal EOF
1502     delete $self->{_rw};
1503     $self->{_eof} = 1;
1504     }
1505 root 1.56 }
1506 root 1.91
1507 root 1.116 $self->{_tls_rbuf} .= $tmp;
1508 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1509 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1510 root 1.23 }
1511    
1512 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1513 root 1.133 return $self->_tls_error ($tmp)
1514     if $tmp != $ERROR_WANT_READ
1515 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1516 root 1.91
1517 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1518     $self->{wbuf} .= $tmp;
1519 root 1.91 $self->_drain_wbuf;
1520     }
1521 root 1.142
1522     $self->{_on_starttls}
1523     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1524 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1525 root 1.19 }
1526    
1527 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1528    
1529     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1530     object is created, you can also do that at a later time by calling
1531     C<starttls>.
1532    
1533 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1534     write data and then call C<< ->starttls >> then TLS negotiation will start
1535     immediately, after which the queued write data is then sent.
1536    
1537 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1538     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1539    
1540 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1541     when AnyEvent::Handle has to create its own TLS connection object, or
1542     a hash reference with C<< key => value >> pairs that will be used to
1543     construct a new context.
1544    
1545     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1546     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1547     changed to your liking. Note that the handshake might have already started
1548     when this function returns.
1549 root 1.38
1550 root 1.92 If it an error to start a TLS handshake more than once per
1551     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1552    
1553 root 1.25 =cut
1554    
1555 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1556    
1557 root 1.19 sub starttls {
1558     my ($self, $ssl, $ctx) = @_;
1559    
1560 root 1.94 require Net::SSLeay;
1561    
1562 root 1.102 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1563 root 1.92 if $self->{tls};
1564 root 1.131
1565 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1566     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1567 root 1.133
1568 root 1.131 $ctx ||= $self->{tls_ctx};
1569    
1570 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1571    
1572 root 1.131 if ("HASH" eq ref $ctx) {
1573     require AnyEvent::TLS;
1574    
1575 root 1.137 if ($ctx->{cache}) {
1576     my $key = $ctx+0;
1577     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1578     } else {
1579     $ctx = new AnyEvent::TLS %$ctx;
1580     }
1581 root 1.131 }
1582 root 1.92
1583 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1584 root 1.133 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1585 root 1.19
1586 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1587     # but the openssl maintainers basically said: "trust us, it just works".
1588     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1589     # and mismaintained ssleay-module doesn't even offer them).
1590 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1591 root 1.87 #
1592     # in short: this is a mess.
1593     #
1594 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1595 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1596 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1597     # have identity issues in that area.
1598 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1599     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1600     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1601     Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1602 root 1.21
1603 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1604     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1605 root 1.19
1606 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1607 root 1.19
1608 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1609 root 1.143 if $self->{on_starttls};
1610 root 1.142
1611 root 1.93 &_dotls; # need to trigger the initial handshake
1612     $self->start_read; # make sure we actually do read
1613 root 1.19 }
1614    
1615 root 1.25 =item $handle->stoptls
1616    
1617 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1618     sending a close notify to the other side, but since OpenSSL doesn't
1619     support non-blocking shut downs, it is not possible to re-use the stream
1620     afterwards.
1621 root 1.25
1622     =cut
1623    
1624     sub stoptls {
1625     my ($self) = @_;
1626    
1627 root 1.92 if ($self->{tls}) {
1628 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1629 root 1.92
1630     &_dotls;
1631    
1632 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1633     # # we, we... have to use openssl :/#d#
1634     # &_freetls;#d#
1635 root 1.92 }
1636     }
1637    
1638     sub _freetls {
1639     my ($self) = @_;
1640    
1641     return unless $self->{tls};
1642 root 1.38
1643 root 1.131 $self->{tls_ctx}->_put_session (delete $self->{tls});
1644 root 1.92
1645 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1646 root 1.25 }
1647    
1648 root 1.19 sub DESTROY {
1649 root 1.120 my ($self) = @_;
1650 root 1.19
1651 root 1.92 &_freetls;
1652 root 1.62
1653     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1654    
1655 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1656 root 1.62 my $fh = delete $self->{fh};
1657     my $wbuf = delete $self->{wbuf};
1658    
1659     my @linger;
1660    
1661     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1662     my $len = syswrite $fh, $wbuf, length $wbuf;
1663    
1664     if ($len > 0) {
1665     substr $wbuf, 0, $len, "";
1666     } else {
1667     @linger = (); # end
1668     }
1669     });
1670     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1671     @linger = ();
1672     });
1673     }
1674 root 1.19 }
1675    
1676 root 1.99 =item $handle->destroy
1677    
1678 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1679 root 1.141 no further callbacks will be invoked and as many resources as possible
1680     will be freed. You must not call any methods on the object afterwards.
1681 root 1.99
1682 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1683     object and it will simply shut down. This works in fatal error and EOF
1684     callbacks, as well as code outside. It does I<NOT> work in a read or write
1685     callback, so when you want to destroy the AnyEvent::Handle object from
1686     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1687     that case.
1688    
1689 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1690     will be removed as well, so if those are the only reference holders (as
1691     is common), then one doesn't need to do anything special to break any
1692     reference cycles.
1693    
1694 root 1.99 The handle might still linger in the background and write out remaining
1695     data, as specified by the C<linger> option, however.
1696    
1697     =cut
1698    
1699     sub destroy {
1700     my ($self) = @_;
1701    
1702     $self->DESTROY;
1703     %$self = ();
1704     }
1705    
1706 root 1.19 =item AnyEvent::Handle::TLS_CTX
1707    
1708 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1709     for TLS mode.
1710 root 1.19
1711 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1712 root 1.19
1713     =cut
1714    
1715     our $TLS_CTX;
1716    
1717     sub TLS_CTX() {
1718 root 1.131 $TLS_CTX ||= do {
1719     require AnyEvent::TLS;
1720 root 1.19
1721 root 1.131 new AnyEvent::TLS
1722 root 1.19 }
1723     }
1724    
1725 elmex 1.1 =back
1726    
1727 root 1.95
1728     =head1 NONFREQUENTLY ASKED QUESTIONS
1729    
1730     =over 4
1731    
1732 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1733     still get further invocations!
1734    
1735     That's because AnyEvent::Handle keeps a reference to itself when handling
1736     read or write callbacks.
1737    
1738     It is only safe to "forget" the reference inside EOF or error callbacks,
1739     from within all other callbacks, you need to explicitly call the C<<
1740     ->destroy >> method.
1741    
1742     =item I get different callback invocations in TLS mode/Why can't I pause
1743     reading?
1744    
1745     Unlike, say, TCP, TLS connections do not consist of two independent
1746     communication channels, one for each direction. Or put differently. The
1747     read and write directions are not independent of each other: you cannot
1748     write data unless you are also prepared to read, and vice versa.
1749    
1750     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1751     callback invocations when you are not expecting any read data - the reason
1752     is that AnyEvent::Handle always reads in TLS mode.
1753    
1754     During the connection, you have to make sure that you always have a
1755     non-empty read-queue, or an C<on_read> watcher. At the end of the
1756     connection (or when you no longer want to use it) you can call the
1757     C<destroy> method.
1758    
1759 root 1.95 =item How do I read data until the other side closes the connection?
1760    
1761 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1762     to achieve this is by setting an C<on_read> callback that does nothing,
1763     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1764     will be in C<$_[0]{rbuf}>:
1765 root 1.95
1766     $handle->on_read (sub { });
1767     $handle->on_eof (undef);
1768     $handle->on_error (sub {
1769     my $data = delete $_[0]{rbuf};
1770     });
1771    
1772     The reason to use C<on_error> is that TCP connections, due to latencies
1773     and packets loss, might get closed quite violently with an error, when in
1774     fact, all data has been received.
1775    
1776 root 1.101 It is usually better to use acknowledgements when transferring data,
1777 root 1.95 to make sure the other side hasn't just died and you got the data
1778     intact. This is also one reason why so many internet protocols have an
1779     explicit QUIT command.
1780    
1781 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1782     all data has been written?
1783 root 1.95
1784     After writing your last bits of data, set the C<on_drain> callback
1785     and destroy the handle in there - with the default setting of
1786     C<low_water_mark> this will be called precisely when all data has been
1787     written to the socket:
1788    
1789     $handle->push_write (...);
1790     $handle->on_drain (sub {
1791     warn "all data submitted to the kernel\n";
1792     undef $handle;
1793     });
1794    
1795 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1796     consider using C<< ->push_shutdown >> instead.
1797    
1798     =item I want to contact a TLS/SSL server, I don't care about security.
1799    
1800     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1801     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1802     parameter:
1803    
1804 root 1.144 tcp_connect $host, $port, sub {
1805     my ($fh) = @_;
1806 root 1.143
1807 root 1.144 my $handle = new AnyEvent::Handle
1808     fh => $fh,
1809     tls => "connect",
1810     on_error => sub { ... };
1811    
1812     $handle->push_write (...);
1813     };
1814 root 1.143
1815     =item I want to contact a TLS/SSL server, I do care about security.
1816    
1817 root 1.144 Then you should additionally enable certificate verification, including
1818     peername verification, if the protocol you use supports it (see
1819     L<AnyEvent::TLS>, C<verify_peername>).
1820    
1821     E.g. for HTTPS:
1822    
1823     tcp_connect $host, $port, sub {
1824     my ($fh) = @_;
1825    
1826     my $handle = new AnyEvent::Handle
1827     fh => $fh,
1828     peername => $host,
1829     tls => "connect",
1830     tls_ctx => { verify => 1, verify_peername => "https" },
1831     ...
1832    
1833     Note that you must specify the hostname you connected to (or whatever
1834     "peername" the protocol needs) as the C<peername> argument, otherwise no
1835     peername verification will be done.
1836    
1837     The above will use the system-dependent default set of trusted CA
1838     certificates. If you want to check against a specific CA, add the
1839     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1840    
1841     tls_ctx => {
1842     verify => 1,
1843     verify_peername => "https",
1844     ca_file => "my-ca-cert.pem",
1845     },
1846    
1847     =item I want to create a TLS/SSL server, how do I do that?
1848    
1849     Well, you first need to get a server certificate and key. You have
1850     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1851     self-signed certificate (cheap. check the search engine of your choice,
1852     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1853     nice program for that purpose).
1854    
1855     Then create a file with your private key (in PEM format, see
1856     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1857     file should then look like this:
1858    
1859     -----BEGIN RSA PRIVATE KEY-----
1860     ...header data
1861     ... lots of base64'y-stuff
1862     -----END RSA PRIVATE KEY-----
1863    
1864     -----BEGIN CERTIFICATE-----
1865     ... lots of base64'y-stuff
1866     -----END CERTIFICATE-----
1867    
1868     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1869     specify this file as C<cert_file>:
1870    
1871     tcp_server undef, $port, sub {
1872     my ($fh) = @_;
1873    
1874     my $handle = new AnyEvent::Handle
1875     fh => $fh,
1876     tls => "accept",
1877     tls_ctx => { cert_file => "my-server-keycert.pem" },
1878     ...
1879 root 1.143
1880 root 1.144 When you have intermediate CA certificates that your clients might not
1881     know about, just append them to the C<cert_file>.
1882 root 1.143
1883 root 1.95 =back
1884    
1885    
1886 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1887    
1888     In many cases, you might want to subclass AnyEvent::Handle.
1889    
1890     To make this easier, a given version of AnyEvent::Handle uses these
1891     conventions:
1892    
1893     =over 4
1894    
1895     =item * all constructor arguments become object members.
1896    
1897     At least initially, when you pass a C<tls>-argument to the constructor it
1898 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1899 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1900    
1901     =item * other object member names are prefixed with an C<_>.
1902    
1903     All object members not explicitly documented (internal use) are prefixed
1904     with an underscore character, so the remaining non-C<_>-namespace is free
1905     for use for subclasses.
1906    
1907     =item * all members not documented here and not prefixed with an underscore
1908     are free to use in subclasses.
1909    
1910     Of course, new versions of AnyEvent::Handle may introduce more "public"
1911     member variables, but thats just life, at least it is documented.
1912    
1913     =back
1914    
1915 elmex 1.1 =head1 AUTHOR
1916    
1917 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1918 elmex 1.1
1919     =cut
1920    
1921     1; # End of AnyEvent::Handle