ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.160
Committed: Fri Jul 24 22:47:04 2009 UTC (14 years, 10 months ago) by root
Branch: MAIN
Changes since 1.159: +28 -16 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 root 1.8 use Scalar::Util ();
4     use Carp ();
5 root 1.43 use Errno qw(EAGAIN EINTR);
6 elmex 1.1
7 root 1.153 use AnyEvent (); BEGIN { AnyEvent::common_sense }
8     use AnyEvent::Util qw(WSAEWOULDBLOCK);
9    
10 elmex 1.1 =head1 NAME
11    
12 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
13 elmex 1.1
14     =cut
15    
16 root 1.155 our $VERSION = 4.86;
17 elmex 1.1
18     =head1 SYNOPSIS
19    
20     use AnyEvent;
21     use AnyEvent::Handle;
22    
23     my $cv = AnyEvent->condvar;
24    
25 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
26     fh => \*STDIN,
27     on_error => sub {
28 root 1.151 my ($hdl, $fatal, $msg) = @_;
29     warn "got error $msg\n";
30     $hdl->destroy;
31 root 1.149 $cv->send;
32 elmex 1.2 );
33    
34 root 1.31 # send some request line
35 root 1.149 $hdl->push_write ("getinfo\015\012");
36 root 1.31
37     # read the response line
38 root 1.149 $hdl->push_read (line => sub {
39     my ($hdl, $line) = @_;
40     warn "got line <$line>\n";
41 root 1.31 $cv->send;
42     });
43    
44     $cv->recv;
45 elmex 1.1
46     =head1 DESCRIPTION
47    
48 root 1.8 This module is a helper module to make it easier to do event-based I/O on
49 root 1.159 filehandles.
50 root 1.8
51 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
52     AnyEvent::Handle examples.
53    
54 root 1.8 In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
59     C<on_error> callback.
60    
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 elmex 1.1
70 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 root 1.158
76 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
77 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
78     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79     that mode.
80 root 1.8
81 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82    
83     Try to connect to the specified host and service (port), using
84     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85     default C<peername>.
86    
87     You have to specify either this parameter, or C<fh>, above.
88    
89 root 1.160 It is possible to push requests on the read and write queues, and modify
90     properties of the stream, even while AnyEvent::Handle is connecting.
91    
92 root 1.159 When this parameter is specified, then the C<on_prepare>,
93     C<on_connect_error> and C<on_connect> callbacks will be called under the
94     appropriate circumstances:
95    
96     =over 4
97    
98     =item on_prepare => $cb->($handle)
99    
100     This (rarely used) callback is called before a new connection is
101     attempted, but after the file handle has been created. It could be used to
102     prepare the file handle with parameters required for the actual connect
103     (as opposed to settings that can be changed when the connection is already
104     established).
105    
106     =item on_connect => $cb->($handle, $host, $port, $retry->())
107    
108     This callback is called when a connection has been successfully established.
109    
110     The actual numeric host and port (the socket peername) are passed as
111     parameters, together with a retry callback.
112    
113     When, for some reason, the handle is not acceptable, then calling
114     C<$retry> will continue with the next conenction target (in case of
115     multi-homed hosts or SRV records there can be multiple connection
116     endpoints). When it is called then the read and write queues, eof status,
117     tls status and similar properties of the handle are being reset.
118    
119     In most cases, ignoring the C<$retry> parameter is the way to go.
120 root 1.158
121 root 1.159 =item on_connect_error => $cb->($handle, $message)
122 root 1.10
123 root 1.159 This callback is called when the conenction could not be
124     established. C<$!> will contain the relevant error code, and C<$message> a
125     message describing it (usually the same as C<"$!">).
126 root 1.8
127 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
128     fatal error instead.
129 root 1.82
130 root 1.159 =back
131 root 1.80
132 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
133 root 1.10
134 root 1.52 This is the error callback, which is called when, well, some error
135     occured, such as not being able to resolve the hostname, failure to
136     connect or a read error.
137    
138     Some errors are fatal (which is indicated by C<$fatal> being true). On
139 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
140     destroy >>) after invoking the error callback (which means you are free to
141     examine the handle object). Examples of fatal errors are an EOF condition
142 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
143     cases where the other side can close the connection at their will it is
144     often easiest to not report C<EPIPE> errors in this callback.
145 root 1.82
146 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
147     against, but in some cases (TLS errors), this does not work well. It is
148     recommended to always output the C<$message> argument in human-readable
149     error messages (it's usually the same as C<"$!">).
150    
151 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
152     to simply ignore this parameter and instead abondon the handle object
153     when this callback is invoked. Examples of non-fatal errors are timeouts
154     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
155 root 1.8
156 root 1.10 On callback entrance, the value of C<$!> contains the operating system
157 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
158     C<EPROTO>).
159 root 1.8
160 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
161     you will not be notified of errors otherwise. The default simply calls
162 root 1.52 C<croak>.
163 root 1.8
164 root 1.40 =item on_read => $cb->($handle)
165 root 1.8
166     This sets the default read callback, which is called when data arrives
167 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
168     callback will only be called when at least one octet of data is in the
169     read buffer).
170 root 1.8
171     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
172 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
173 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
174     the beginning from it.
175 root 1.8
176     When an EOF condition is detected then AnyEvent::Handle will first try to
177     feed all the remaining data to the queued callbacks and C<on_read> before
178     calling the C<on_eof> callback. If no progress can be made, then a fatal
179     error will be raised (with C<$!> set to C<EPIPE>).
180 elmex 1.1
181 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
182     doesn't mean you I<require> some data: if there is an EOF and there
183     are outstanding read requests then an error will be flagged. With an
184     C<on_read> callback, the C<on_eof> callback will be invoked.
185    
186 root 1.159 =item on_eof => $cb->($handle)
187    
188     Set the callback to be called when an end-of-file condition is detected,
189     i.e. in the case of a socket, when the other side has closed the
190     connection cleanly, and there are no outstanding read requests in the
191     queue (if there are read requests, then an EOF counts as an unexpected
192     connection close and will be flagged as an error).
193    
194     For sockets, this just means that the other side has stopped sending data,
195     you can still try to write data, and, in fact, one can return from the EOF
196     callback and continue writing data, as only the read part has been shut
197     down.
198    
199     If an EOF condition has been detected but no C<on_eof> callback has been
200     set, then a fatal error will be raised with C<$!> set to <0>.
201    
202 root 1.40 =item on_drain => $cb->($handle)
203 elmex 1.1
204 root 1.8 This sets the callback that is called when the write buffer becomes empty
205     (or when the callback is set and the buffer is empty already).
206 elmex 1.1
207 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
208 elmex 1.2
209 root 1.69 This callback is useful when you don't want to put all of your write data
210     into the queue at once, for example, when you want to write the contents
211     of some file to the socket you might not want to read the whole file into
212     memory and push it into the queue, but instead only read more data from
213     the file when the write queue becomes empty.
214    
215 root 1.43 =item timeout => $fractional_seconds
216    
217     If non-zero, then this enables an "inactivity" timeout: whenever this many
218     seconds pass without a successful read or write on the underlying file
219     handle, the C<on_timeout> callback will be invoked (and if that one is
220 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
221 root 1.43
222     Note that timeout processing is also active when you currently do not have
223     any outstanding read or write requests: If you plan to keep the connection
224     idle then you should disable the timout temporarily or ignore the timeout
225 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
226     restart the timeout.
227 root 1.43
228     Zero (the default) disables this timeout.
229    
230     =item on_timeout => $cb->($handle)
231    
232     Called whenever the inactivity timeout passes. If you return from this
233     callback, then the timeout will be reset as if some activity had happened,
234     so this condition is not fatal in any way.
235    
236 root 1.8 =item rbuf_max => <bytes>
237 elmex 1.2
238 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
239     when the read buffer ever (strictly) exceeds this size. This is useful to
240 root 1.88 avoid some forms of denial-of-service attacks.
241 elmex 1.2
242 root 1.8 For example, a server accepting connections from untrusted sources should
243     be configured to accept only so-and-so much data that it cannot act on
244     (for example, when expecting a line, an attacker could send an unlimited
245     amount of data without a callback ever being called as long as the line
246     isn't finished).
247 elmex 1.2
248 root 1.70 =item autocork => <boolean>
249    
250     When disabled (the default), then C<push_write> will try to immediately
251 root 1.88 write the data to the handle, if possible. This avoids having to register
252     a write watcher and wait for the next event loop iteration, but can
253     be inefficient if you write multiple small chunks (on the wire, this
254     disadvantage is usually avoided by your kernel's nagle algorithm, see
255     C<no_delay>, but this option can save costly syscalls).
256 root 1.70
257     When enabled, then writes will always be queued till the next event loop
258     iteration. This is efficient when you do many small writes per iteration,
259 root 1.88 but less efficient when you do a single write only per iteration (or when
260     the write buffer often is full). It also increases write latency.
261 root 1.70
262     =item no_delay => <boolean>
263    
264     When doing small writes on sockets, your operating system kernel might
265     wait a bit for more data before actually sending it out. This is called
266     the Nagle algorithm, and usually it is beneficial.
267    
268 root 1.88 In some situations you want as low a delay as possible, which can be
269     accomplishd by setting this option to a true value.
270 root 1.70
271 root 1.88 The default is your opertaing system's default behaviour (most likely
272     enabled), this option explicitly enables or disables it, if possible.
273 root 1.70
274 root 1.8 =item read_size => <bytes>
275 elmex 1.2
276 root 1.88 The default read block size (the amount of bytes this module will
277     try to read during each loop iteration, which affects memory
278     requirements). Default: C<8192>.
279 root 1.8
280     =item low_water_mark => <bytes>
281    
282     Sets the amount of bytes (default: C<0>) that make up an "empty" write
283     buffer: If the write reaches this size or gets even samller it is
284     considered empty.
285 elmex 1.2
286 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
287     the write buffer before it is fully drained, but this is a rare case, as
288     the operating system kernel usually buffers data as well, so the default
289     is good in almost all cases.
290    
291 root 1.62 =item linger => <seconds>
292    
293     If non-zero (default: C<3600>), then the destructor of the
294 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
295     write data and will install a watcher that will write this data to the
296     socket. No errors will be reported (this mostly matches how the operating
297     system treats outstanding data at socket close time).
298 root 1.62
299 root 1.88 This will not work for partial TLS data that could not be encoded
300 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
301     help.
302 root 1.62
303 root 1.133 =item peername => $string
304    
305 root 1.134 A string used to identify the remote site - usually the DNS hostname
306     (I<not> IDN!) used to create the connection, rarely the IP address.
307 root 1.131
308 root 1.133 Apart from being useful in error messages, this string is also used in TLS
309 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
310     verification will be skipped when C<peername> is not specified or
311     C<undef>.
312 root 1.131
313 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
314    
315 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
316 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
317     established and will transparently encrypt/decrypt data afterwards.
318 root 1.19
319 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
320     appropriate error message.
321    
322 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
323 root 1.88 automatically when you try to create a TLS handle): this module doesn't
324     have a dependency on that module, so if your module requires it, you have
325     to add the dependency yourself.
326 root 1.26
327 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
328     C<accept>, and for the TLS client side of a connection, use C<connect>
329     mode.
330 root 1.19
331     You can also provide your own TLS connection object, but you have
332     to make sure that you call either C<Net::SSLeay::set_connect_state>
333     or C<Net::SSLeay::set_accept_state> on it before you pass it to
334 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
335     object.
336    
337     At some future point, AnyEvent::Handle might switch to another TLS
338     implementation, then the option to use your own session object will go
339     away.
340 root 1.19
341 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
342     passing in the wrong integer will lead to certain crash. This most often
343     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
344     segmentation fault.
345    
346 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
347 root 1.26
348 root 1.131 =item tls_ctx => $anyevent_tls
349 root 1.19
350 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
351 root 1.19 (unless a connection object was specified directly). If this parameter is
352     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
353    
354 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
355     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
356     new TLS context object.
357    
358 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
359 root 1.142
360     This callback will be invoked when the TLS/SSL handshake has finished. If
361     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
362     (C<on_stoptls> will not be called in this case).
363    
364     The session in C<< $handle->{tls} >> can still be examined in this
365     callback, even when the handshake was not successful.
366    
367 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
368     callback is in effect, instead, the error message will be passed to C<on_starttls>.
369    
370     Without this callback, handshake failures lead to C<on_error> being
371     called, as normal.
372    
373     Note that you cannot call C<starttls> right again in this callback. If you
374     need to do that, start an zero-second timer instead whose callback can
375     then call C<< ->starttls >> again.
376    
377 root 1.142 =item on_stoptls => $cb->($handle)
378    
379     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
380     set, then it will be invoked after freeing the TLS session. If it is not,
381     then a TLS shutdown condition will be treated like a normal EOF condition
382     on the handle.
383    
384     The session in C<< $handle->{tls} >> can still be examined in this
385     callback.
386    
387     This callback will only be called on TLS shutdowns, not when the
388     underlying handle signals EOF.
389    
390 root 1.40 =item json => JSON or JSON::XS object
391    
392     This is the json coder object used by the C<json> read and write types.
393    
394 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
395 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
396     texts.
397 root 1.40
398     Note that you are responsible to depend on the JSON module if you want to
399     use this functionality, as AnyEvent does not have a dependency itself.
400    
401 elmex 1.1 =back
402    
403     =cut
404    
405     sub new {
406 root 1.8 my $class = shift;
407     my $self = bless { @_ }, $class;
408    
409 root 1.159 if ($self->{fh}) {
410     $self->_start;
411     return unless $self->{fh}; # could be gone by now
412    
413     } elsif ($self->{connect}) {
414     require AnyEvent::Socket;
415    
416     $self->{peername} = $self->{connect}[0]
417     unless exists $self->{peername};
418    
419     $self->{_skip_drain_rbuf} = 1;
420    
421     {
422     Scalar::Util::weaken (my $self = $self);
423    
424     $self->{_connect} =
425     AnyEvent::Socket::tcp_connect (
426     $self->{connect}[0],
427     $self->{connect}[1],
428     sub {
429     my ($fh, $host, $port, $retry) = @_;
430    
431     if ($fh) {
432     $self->{fh} = $fh;
433    
434     delete $self->{_skip_drain_rbuf};
435     $self->_start;
436    
437     $self->{on_connect}
438     and $self->{on_connect}($self, $host, $port, sub {
439     delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
440     $self->{_skip_drain_rbuf} = 1;
441     &$retry;
442     });
443    
444     } else {
445     if ($self->{on_connect_error}) {
446     $self->{on_connect_error}($self, "$!");
447     $self->destroy;
448     } else {
449     $self->fatal ($!, 1);
450     }
451     }
452     },
453     sub {
454     local $self->{fh} = $_[0];
455    
456     $self->{on_prepare}->($self)
457     if $self->{on_prepare};
458     }
459     );
460     }
461    
462     } else {
463     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
464     }
465    
466     $self
467     }
468    
469     sub _start {
470     my ($self) = @_;
471 root 1.8
472     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
473 elmex 1.1
474 root 1.131 $self->{_activity} = AnyEvent->now;
475     $self->_timeout;
476    
477     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
478    
479 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
480     if $self->{tls};
481 root 1.19
482 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
483 root 1.10
484 root 1.66 $self->start_read
485 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
486 root 1.160
487     $self->_drain_wbuf;
488 root 1.8 }
489 elmex 1.2
490 root 1.149 #sub _shutdown {
491     # my ($self) = @_;
492     #
493     # delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
494     # $self->{_eof} = 1; # tell starttls et. al to stop trying
495     #
496     # &_freetls;
497     #}
498 root 1.8
499 root 1.52 sub _error {
500 root 1.133 my ($self, $errno, $fatal, $message) = @_;
501 root 1.8
502 root 1.52 $! = $errno;
503 root 1.133 $message ||= "$!";
504 root 1.37
505 root 1.52 if ($self->{on_error}) {
506 root 1.133 $self->{on_error}($self, $fatal, $message);
507 root 1.151 $self->destroy if $fatal;
508 root 1.100 } elsif ($self->{fh}) {
509 root 1.149 $self->destroy;
510 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
511 root 1.52 }
512 elmex 1.1 }
513    
514 root 1.8 =item $fh = $handle->fh
515 elmex 1.1
516 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
517 elmex 1.1
518     =cut
519    
520 root 1.38 sub fh { $_[0]{fh} }
521 elmex 1.1
522 root 1.8 =item $handle->on_error ($cb)
523 elmex 1.1
524 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
525 elmex 1.1
526 root 1.8 =cut
527    
528     sub on_error {
529     $_[0]{on_error} = $_[1];
530     }
531    
532     =item $handle->on_eof ($cb)
533    
534     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
535 elmex 1.1
536     =cut
537    
538 root 1.8 sub on_eof {
539     $_[0]{on_eof} = $_[1];
540     }
541    
542 root 1.43 =item $handle->on_timeout ($cb)
543    
544 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
545     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
546     argument and method.
547 root 1.43
548     =cut
549    
550     sub on_timeout {
551     $_[0]{on_timeout} = $_[1];
552     }
553    
554 root 1.70 =item $handle->autocork ($boolean)
555    
556     Enables or disables the current autocork behaviour (see C<autocork>
557 root 1.105 constructor argument). Changes will only take effect on the next write.
558 root 1.70
559     =cut
560    
561 root 1.105 sub autocork {
562     $_[0]{autocork} = $_[1];
563     }
564    
565 root 1.70 =item $handle->no_delay ($boolean)
566    
567     Enables or disables the C<no_delay> setting (see constructor argument of
568     the same name for details).
569    
570     =cut
571    
572     sub no_delay {
573     $_[0]{no_delay} = $_[1];
574    
575     eval {
576     local $SIG{__DIE__};
577 root 1.159 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
578     if $_[0]{fh};
579 root 1.70 };
580     }
581    
582 root 1.142 =item $handle->on_starttls ($cb)
583    
584     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
585    
586     =cut
587    
588     sub on_starttls {
589     $_[0]{on_starttls} = $_[1];
590     }
591    
592     =item $handle->on_stoptls ($cb)
593    
594     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
595    
596     =cut
597    
598     sub on_starttls {
599     $_[0]{on_stoptls} = $_[1];
600     }
601    
602 root 1.43 #############################################################################
603    
604     =item $handle->timeout ($seconds)
605    
606     Configures (or disables) the inactivity timeout.
607    
608     =cut
609    
610     sub timeout {
611     my ($self, $timeout) = @_;
612    
613     $self->{timeout} = $timeout;
614     $self->_timeout;
615     }
616    
617     # reset the timeout watcher, as neccessary
618     # also check for time-outs
619     sub _timeout {
620     my ($self) = @_;
621    
622 root 1.159 if ($self->{timeout} && $self->{fh}) {
623 root 1.44 my $NOW = AnyEvent->now;
624 root 1.43
625     # when would the timeout trigger?
626     my $after = $self->{_activity} + $self->{timeout} - $NOW;
627    
628     # now or in the past already?
629     if ($after <= 0) {
630     $self->{_activity} = $NOW;
631    
632     if ($self->{on_timeout}) {
633 root 1.48 $self->{on_timeout}($self);
634 root 1.43 } else {
635 root 1.150 $self->_error (Errno::ETIMEDOUT);
636 root 1.43 }
637    
638 root 1.56 # callback could have changed timeout value, optimise
639 root 1.43 return unless $self->{timeout};
640    
641     # calculate new after
642     $after = $self->{timeout};
643     }
644    
645     Scalar::Util::weaken $self;
646 root 1.56 return unless $self; # ->error could have destroyed $self
647 root 1.43
648     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
649     delete $self->{_tw};
650     $self->_timeout;
651     });
652     } else {
653     delete $self->{_tw};
654     }
655     }
656    
657 root 1.9 #############################################################################
658    
659     =back
660    
661     =head2 WRITE QUEUE
662    
663     AnyEvent::Handle manages two queues per handle, one for writing and one
664     for reading.
665    
666     The write queue is very simple: you can add data to its end, and
667     AnyEvent::Handle will automatically try to get rid of it for you.
668    
669 elmex 1.20 When data could be written and the write buffer is shorter then the low
670 root 1.9 water mark, the C<on_drain> callback will be invoked.
671    
672     =over 4
673    
674 root 1.8 =item $handle->on_drain ($cb)
675    
676     Sets the C<on_drain> callback or clears it (see the description of
677     C<on_drain> in the constructor).
678    
679     =cut
680    
681     sub on_drain {
682 elmex 1.1 my ($self, $cb) = @_;
683    
684 root 1.8 $self->{on_drain} = $cb;
685    
686     $cb->($self)
687 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
688 root 1.8 }
689    
690     =item $handle->push_write ($data)
691    
692     Queues the given scalar to be written. You can push as much data as you
693     want (only limited by the available memory), as C<AnyEvent::Handle>
694     buffers it independently of the kernel.
695    
696     =cut
697    
698 root 1.17 sub _drain_wbuf {
699     my ($self) = @_;
700 root 1.8
701 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
702 root 1.35
703 root 1.8 Scalar::Util::weaken $self;
704 root 1.35
705 root 1.8 my $cb = sub {
706     my $len = syswrite $self->{fh}, $self->{wbuf};
707    
708 root 1.146 if (defined $len) {
709 root 1.8 substr $self->{wbuf}, 0, $len, "";
710    
711 root 1.44 $self->{_activity} = AnyEvent->now;
712 root 1.43
713 root 1.8 $self->{on_drain}($self)
714 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
715 root 1.8 && $self->{on_drain};
716    
717 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
718 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
719 root 1.52 $self->_error ($!, 1);
720 elmex 1.1 }
721 root 1.8 };
722    
723 root 1.35 # try to write data immediately
724 root 1.70 $cb->() unless $self->{autocork};
725 root 1.8
726 root 1.35 # if still data left in wbuf, we need to poll
727 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
728 root 1.35 if length $self->{wbuf};
729 root 1.8 };
730     }
731    
732 root 1.30 our %WH;
733    
734     sub register_write_type($$) {
735     $WH{$_[0]} = $_[1];
736     }
737    
738 root 1.17 sub push_write {
739     my $self = shift;
740    
741 root 1.29 if (@_ > 1) {
742     my $type = shift;
743    
744     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
745     ->($self, @_);
746     }
747    
748 root 1.93 if ($self->{tls}) {
749     $self->{_tls_wbuf} .= $_[0];
750 root 1.160 &_dotls ($self) if $self->{fh};
751 root 1.17 } else {
752 root 1.160 $self->{wbuf} .= $_[0];
753 root 1.159 $self->_drain_wbuf if $self->{fh};
754 root 1.17 }
755     }
756    
757 root 1.29 =item $handle->push_write (type => @args)
758    
759     Instead of formatting your data yourself, you can also let this module do
760     the job by specifying a type and type-specific arguments.
761    
762 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
763     drop by and tell us):
764 root 1.29
765     =over 4
766    
767     =item netstring => $string
768    
769     Formats the given value as netstring
770     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
771    
772     =cut
773    
774     register_write_type netstring => sub {
775     my ($self, $string) = @_;
776    
777 root 1.96 (length $string) . ":$string,"
778 root 1.29 };
779    
780 root 1.61 =item packstring => $format, $data
781    
782     An octet string prefixed with an encoded length. The encoding C<$format>
783     uses the same format as a Perl C<pack> format, but must specify a single
784     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
785     optional C<!>, C<< < >> or C<< > >> modifier).
786    
787     =cut
788    
789     register_write_type packstring => sub {
790     my ($self, $format, $string) = @_;
791    
792 root 1.65 pack "$format/a*", $string
793 root 1.61 };
794    
795 root 1.39 =item json => $array_or_hashref
796    
797 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
798     provide your own JSON object, this means it will be encoded to JSON text
799     in UTF-8.
800    
801     JSON objects (and arrays) are self-delimiting, so you can write JSON at
802     one end of a handle and read them at the other end without using any
803     additional framing.
804    
805 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
806     this module doesn't need delimiters after or between JSON texts to be
807     able to read them, many other languages depend on that.
808    
809     A simple RPC protocol that interoperates easily with others is to send
810     JSON arrays (or objects, although arrays are usually the better choice as
811     they mimic how function argument passing works) and a newline after each
812     JSON text:
813    
814     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
815     $handle->push_write ("\012");
816    
817     An AnyEvent::Handle receiver would simply use the C<json> read type and
818     rely on the fact that the newline will be skipped as leading whitespace:
819    
820     $handle->push_read (json => sub { my $array = $_[1]; ... });
821    
822     Other languages could read single lines terminated by a newline and pass
823     this line into their JSON decoder of choice.
824    
825 root 1.40 =cut
826    
827     register_write_type json => sub {
828     my ($self, $ref) = @_;
829    
830     require JSON;
831    
832     $self->{json} ? $self->{json}->encode ($ref)
833     : JSON::encode_json ($ref)
834     };
835    
836 root 1.63 =item storable => $reference
837    
838     Freezes the given reference using L<Storable> and writes it to the
839     handle. Uses the C<nfreeze> format.
840    
841     =cut
842    
843     register_write_type storable => sub {
844     my ($self, $ref) = @_;
845    
846     require Storable;
847    
848 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
849 root 1.63 };
850    
851 root 1.53 =back
852    
853 root 1.133 =item $handle->push_shutdown
854    
855     Sometimes you know you want to close the socket after writing your data
856     before it was actually written. One way to do that is to replace your
857 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
858     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
859     replaces the C<on_drain> callback with:
860 root 1.133
861     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
862    
863     This simply shuts down the write side and signals an EOF condition to the
864     the peer.
865    
866     You can rely on the normal read queue and C<on_eof> handling
867     afterwards. This is the cleanest way to close a connection.
868    
869     =cut
870    
871     sub push_shutdown {
872 root 1.142 my ($self) = @_;
873    
874     delete $self->{low_water_mark};
875     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
876 root 1.133 }
877    
878 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
879 root 1.30
880     This function (not method) lets you add your own types to C<push_write>.
881     Whenever the given C<type> is used, C<push_write> will invoke the code
882     reference with the handle object and the remaining arguments.
883 root 1.29
884 root 1.30 The code reference is supposed to return a single octet string that will
885     be appended to the write buffer.
886 root 1.29
887 root 1.30 Note that this is a function, and all types registered this way will be
888     global, so try to use unique names.
889 root 1.29
890 root 1.30 =cut
891 root 1.29
892 root 1.8 #############################################################################
893    
894 root 1.9 =back
895    
896     =head2 READ QUEUE
897    
898     AnyEvent::Handle manages two queues per handle, one for writing and one
899     for reading.
900    
901     The read queue is more complex than the write queue. It can be used in two
902     ways, the "simple" way, using only C<on_read> and the "complex" way, using
903     a queue.
904    
905     In the simple case, you just install an C<on_read> callback and whenever
906     new data arrives, it will be called. You can then remove some data (if
907 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
908     leave the data there if you want to accumulate more (e.g. when only a
909     partial message has been received so far).
910 root 1.9
911     In the more complex case, you want to queue multiple callbacks. In this
912     case, AnyEvent::Handle will call the first queued callback each time new
913 root 1.61 data arrives (also the first time it is queued) and removes it when it has
914     done its job (see C<push_read>, below).
915 root 1.9
916     This way you can, for example, push three line-reads, followed by reading
917     a chunk of data, and AnyEvent::Handle will execute them in order.
918    
919     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
920     the specified number of bytes which give an XML datagram.
921    
922     # in the default state, expect some header bytes
923     $handle->on_read (sub {
924     # some data is here, now queue the length-header-read (4 octets)
925 root 1.52 shift->unshift_read (chunk => 4, sub {
926 root 1.9 # header arrived, decode
927     my $len = unpack "N", $_[1];
928    
929     # now read the payload
930 root 1.52 shift->unshift_read (chunk => $len, sub {
931 root 1.9 my $xml = $_[1];
932     # handle xml
933     });
934     });
935     });
936    
937 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
938     and another line or "ERROR" for the first request that is sent, and 64
939     bytes for the second request. Due to the availability of a queue, we can
940     just pipeline sending both requests and manipulate the queue as necessary
941     in the callbacks.
942    
943     When the first callback is called and sees an "OK" response, it will
944     C<unshift> another line-read. This line-read will be queued I<before> the
945     64-byte chunk callback.
946 root 1.9
947 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
948 root 1.9 $handle->push_write ("request 1\015\012");
949    
950     # we expect "ERROR" or "OK" as response, so push a line read
951 root 1.52 $handle->push_read (line => sub {
952 root 1.9 # if we got an "OK", we have to _prepend_ another line,
953     # so it will be read before the second request reads its 64 bytes
954     # which are already in the queue when this callback is called
955     # we don't do this in case we got an error
956     if ($_[1] eq "OK") {
957 root 1.52 $_[0]->unshift_read (line => sub {
958 root 1.9 my $response = $_[1];
959     ...
960     });
961     }
962     });
963    
964 root 1.69 # request two, simply returns 64 octets
965 root 1.9 $handle->push_write ("request 2\015\012");
966    
967     # simply read 64 bytes, always
968 root 1.52 $handle->push_read (chunk => 64, sub {
969 root 1.9 my $response = $_[1];
970     ...
971     });
972    
973     =over 4
974    
975 root 1.10 =cut
976    
977 root 1.8 sub _drain_rbuf {
978     my ($self) = @_;
979 elmex 1.1
980 root 1.159 # avoid recursion
981     return if exists $self->{_skip_drain_rbuf};
982     local $self->{_skip_drain_rbuf} = 1;
983 root 1.59
984 root 1.17 if (
985     defined $self->{rbuf_max}
986     && $self->{rbuf_max} < length $self->{rbuf}
987     ) {
988 root 1.150 $self->_error (Errno::ENOSPC, 1), return;
989 root 1.17 }
990    
991 root 1.59 while () {
992 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
993     # we are draining the buffer, and this can only happen with TLS.
994 root 1.116 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
995 root 1.115
996 root 1.59 my $len = length $self->{rbuf};
997 elmex 1.1
998 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
999 root 1.29 unless ($cb->($self)) {
1000 root 1.38 if ($self->{_eof}) {
1001 root 1.10 # no progress can be made (not enough data and no data forthcoming)
1002 root 1.150 $self->_error (Errno::EPIPE, 1), return;
1003 root 1.10 }
1004    
1005 root 1.38 unshift @{ $self->{_queue} }, $cb;
1006 root 1.55 last;
1007 root 1.8 }
1008     } elsif ($self->{on_read}) {
1009 root 1.61 last unless $len;
1010    
1011 root 1.8 $self->{on_read}($self);
1012    
1013     if (
1014 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1015     && !@{ $self->{_queue} } # and the queue is still empty
1016     && $self->{on_read} # but we still have on_read
1017 root 1.8 ) {
1018 root 1.55 # no further data will arrive
1019     # so no progress can be made
1020 root 1.150 $self->_error (Errno::EPIPE, 1), return
1021 root 1.55 if $self->{_eof};
1022    
1023     last; # more data might arrive
1024 elmex 1.1 }
1025 root 1.8 } else {
1026     # read side becomes idle
1027 root 1.93 delete $self->{_rw} unless $self->{tls};
1028 root 1.55 last;
1029 root 1.8 }
1030     }
1031    
1032 root 1.80 if ($self->{_eof}) {
1033     if ($self->{on_eof}) {
1034     $self->{on_eof}($self)
1035     } else {
1036 root 1.140 $self->_error (0, 1, "Unexpected end-of-file");
1037 root 1.80 }
1038     }
1039 root 1.55
1040     # may need to restart read watcher
1041     unless ($self->{_rw}) {
1042     $self->start_read
1043     if $self->{on_read} || @{ $self->{_queue} };
1044     }
1045 elmex 1.1 }
1046    
1047 root 1.8 =item $handle->on_read ($cb)
1048 elmex 1.1
1049 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1050     the new callback is C<undef>). See the description of C<on_read> in the
1051     constructor.
1052 elmex 1.1
1053 root 1.8 =cut
1054    
1055     sub on_read {
1056     my ($self, $cb) = @_;
1057 elmex 1.1
1058 root 1.8 $self->{on_read} = $cb;
1059 root 1.159 $self->_drain_rbuf if $cb;
1060 elmex 1.1 }
1061    
1062 root 1.8 =item $handle->rbuf
1063    
1064     Returns the read buffer (as a modifiable lvalue).
1065 elmex 1.1
1066 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1067     member, if you want. However, the only operation allowed on the
1068     read buffer (apart from looking at it) is removing data from its
1069     beginning. Otherwise modifying or appending to it is not allowed and will
1070     lead to hard-to-track-down bugs.
1071 elmex 1.1
1072 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1073     C<push_read> or C<unshift_read> methods are used. The other read methods
1074     automatically manage the read buffer.
1075 elmex 1.1
1076     =cut
1077    
1078 elmex 1.2 sub rbuf : lvalue {
1079 root 1.8 $_[0]{rbuf}
1080 elmex 1.2 }
1081 elmex 1.1
1082 root 1.8 =item $handle->push_read ($cb)
1083    
1084     =item $handle->unshift_read ($cb)
1085    
1086     Append the given callback to the end of the queue (C<push_read>) or
1087     prepend it (C<unshift_read>).
1088    
1089     The callback is called each time some additional read data arrives.
1090 elmex 1.1
1091 elmex 1.20 It must check whether enough data is in the read buffer already.
1092 elmex 1.1
1093 root 1.8 If not enough data is available, it must return the empty list or a false
1094     value, in which case it will be called repeatedly until enough data is
1095     available (or an error condition is detected).
1096    
1097     If enough data was available, then the callback must remove all data it is
1098     interested in (which can be none at all) and return a true value. After returning
1099     true, it will be removed from the queue.
1100 elmex 1.1
1101     =cut
1102    
1103 root 1.30 our %RH;
1104    
1105     sub register_read_type($$) {
1106     $RH{$_[0]} = $_[1];
1107     }
1108    
1109 root 1.8 sub push_read {
1110 root 1.28 my $self = shift;
1111     my $cb = pop;
1112    
1113     if (@_) {
1114     my $type = shift;
1115    
1116     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1117     ->($self, $cb, @_);
1118     }
1119 elmex 1.1
1120 root 1.38 push @{ $self->{_queue} }, $cb;
1121 root 1.159 $self->_drain_rbuf;
1122 elmex 1.1 }
1123    
1124 root 1.8 sub unshift_read {
1125 root 1.28 my $self = shift;
1126     my $cb = pop;
1127    
1128     if (@_) {
1129     my $type = shift;
1130    
1131     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1132     ->($self, $cb, @_);
1133     }
1134    
1135 root 1.8
1136 root 1.38 unshift @{ $self->{_queue} }, $cb;
1137 root 1.159 $self->_drain_rbuf;
1138 root 1.8 }
1139 elmex 1.1
1140 root 1.28 =item $handle->push_read (type => @args, $cb)
1141 elmex 1.1
1142 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1143 elmex 1.1
1144 root 1.28 Instead of providing a callback that parses the data itself you can chose
1145     between a number of predefined parsing formats, for chunks of data, lines
1146     etc.
1147 elmex 1.1
1148 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1149     drop by and tell us):
1150 root 1.28
1151     =over 4
1152    
1153 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1154 root 1.28
1155     Invoke the callback only once C<$octets> bytes have been read. Pass the
1156     data read to the callback. The callback will never be called with less
1157     data.
1158    
1159     Example: read 2 bytes.
1160    
1161     $handle->push_read (chunk => 2, sub {
1162     warn "yay ", unpack "H*", $_[1];
1163     });
1164 elmex 1.1
1165     =cut
1166    
1167 root 1.28 register_read_type chunk => sub {
1168     my ($self, $cb, $len) = @_;
1169 elmex 1.1
1170 root 1.8 sub {
1171     $len <= length $_[0]{rbuf} or return;
1172 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1173 root 1.8 1
1174     }
1175 root 1.28 };
1176 root 1.8
1177 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1178 elmex 1.1
1179 root 1.8 The callback will be called only once a full line (including the end of
1180     line marker, C<$eol>) has been read. This line (excluding the end of line
1181     marker) will be passed to the callback as second argument (C<$line>), and
1182     the end of line marker as the third argument (C<$eol>).
1183 elmex 1.1
1184 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1185     will be interpreted as a fixed record end marker, or it can be a regex
1186     object (e.g. created by C<qr>), in which case it is interpreted as a
1187     regular expression.
1188 elmex 1.1
1189 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1190     undef), then C<qr|\015?\012|> is used (which is good for most internet
1191     protocols).
1192 elmex 1.1
1193 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1194     not marked by the end of line marker.
1195 elmex 1.1
1196 root 1.8 =cut
1197 elmex 1.1
1198 root 1.28 register_read_type line => sub {
1199     my ($self, $cb, $eol) = @_;
1200 elmex 1.1
1201 root 1.76 if (@_ < 3) {
1202     # this is more than twice as fast as the generic code below
1203     sub {
1204     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1205 elmex 1.1
1206 root 1.76 $cb->($_[0], $1, $2);
1207     1
1208     }
1209     } else {
1210     $eol = quotemeta $eol unless ref $eol;
1211     $eol = qr|^(.*?)($eol)|s;
1212    
1213     sub {
1214     $_[0]{rbuf} =~ s/$eol// or return;
1215 elmex 1.1
1216 root 1.76 $cb->($_[0], $1, $2);
1217     1
1218     }
1219 root 1.8 }
1220 root 1.28 };
1221 elmex 1.1
1222 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1223 root 1.36
1224     Makes a regex match against the regex object C<$accept> and returns
1225     everything up to and including the match.
1226    
1227     Example: read a single line terminated by '\n'.
1228    
1229     $handle->push_read (regex => qr<\n>, sub { ... });
1230    
1231     If C<$reject> is given and not undef, then it determines when the data is
1232     to be rejected: it is matched against the data when the C<$accept> regex
1233     does not match and generates an C<EBADMSG> error when it matches. This is
1234     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1235     receive buffer overflow).
1236    
1237     Example: expect a single decimal number followed by whitespace, reject
1238     anything else (not the use of an anchor).
1239    
1240     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1241    
1242     If C<$skip> is given and not C<undef>, then it will be matched against
1243     the receive buffer when neither C<$accept> nor C<$reject> match,
1244     and everything preceding and including the match will be accepted
1245     unconditionally. This is useful to skip large amounts of data that you
1246     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1247     have to start matching from the beginning. This is purely an optimisation
1248     and is usually worth only when you expect more than a few kilobytes.
1249    
1250     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1251     expect the header to be very large (it isn't in practise, but...), we use
1252     a skip regex to skip initial portions. The skip regex is tricky in that
1253     it only accepts something not ending in either \015 or \012, as these are
1254     required for the accept regex.
1255    
1256     $handle->push_read (regex =>
1257     qr<\015\012\015\012>,
1258     undef, # no reject
1259     qr<^.*[^\015\012]>,
1260     sub { ... });
1261    
1262     =cut
1263    
1264     register_read_type regex => sub {
1265     my ($self, $cb, $accept, $reject, $skip) = @_;
1266    
1267     my $data;
1268     my $rbuf = \$self->{rbuf};
1269    
1270     sub {
1271     # accept
1272     if ($$rbuf =~ $accept) {
1273     $data .= substr $$rbuf, 0, $+[0], "";
1274     $cb->($self, $data);
1275     return 1;
1276     }
1277    
1278     # reject
1279     if ($reject && $$rbuf =~ $reject) {
1280 root 1.150 $self->_error (Errno::EBADMSG);
1281 root 1.36 }
1282    
1283     # skip
1284     if ($skip && $$rbuf =~ $skip) {
1285     $data .= substr $$rbuf, 0, $+[0], "";
1286     }
1287    
1288     ()
1289     }
1290     };
1291    
1292 root 1.61 =item netstring => $cb->($handle, $string)
1293    
1294     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1295    
1296     Throws an error with C<$!> set to EBADMSG on format violations.
1297    
1298     =cut
1299    
1300     register_read_type netstring => sub {
1301     my ($self, $cb) = @_;
1302    
1303     sub {
1304     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1305     if ($_[0]{rbuf} =~ /[^0-9]/) {
1306 root 1.150 $self->_error (Errno::EBADMSG);
1307 root 1.61 }
1308     return;
1309     }
1310    
1311     my $len = $1;
1312    
1313     $self->unshift_read (chunk => $len, sub {
1314     my $string = $_[1];
1315     $_[0]->unshift_read (chunk => 1, sub {
1316     if ($_[1] eq ",") {
1317     $cb->($_[0], $string);
1318     } else {
1319 root 1.150 $self->_error (Errno::EBADMSG);
1320 root 1.61 }
1321     });
1322     });
1323    
1324     1
1325     }
1326     };
1327    
1328     =item packstring => $format, $cb->($handle, $string)
1329    
1330     An octet string prefixed with an encoded length. The encoding C<$format>
1331     uses the same format as a Perl C<pack> format, but must specify a single
1332     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1333     optional C<!>, C<< < >> or C<< > >> modifier).
1334    
1335 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1336     EPP uses a prefix of C<N> (4 octtes).
1337 root 1.61
1338     Example: read a block of data prefixed by its length in BER-encoded
1339     format (very efficient).
1340    
1341     $handle->push_read (packstring => "w", sub {
1342     my ($handle, $data) = @_;
1343     });
1344    
1345     =cut
1346    
1347     register_read_type packstring => sub {
1348     my ($self, $cb, $format) = @_;
1349    
1350     sub {
1351     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1352 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1353 root 1.61 or return;
1354    
1355 root 1.77 $format = length pack $format, $len;
1356 root 1.61
1357 root 1.77 # bypass unshift if we already have the remaining chunk
1358     if ($format + $len <= length $_[0]{rbuf}) {
1359     my $data = substr $_[0]{rbuf}, $format, $len;
1360     substr $_[0]{rbuf}, 0, $format + $len, "";
1361     $cb->($_[0], $data);
1362     } else {
1363     # remove prefix
1364     substr $_[0]{rbuf}, 0, $format, "";
1365    
1366     # read remaining chunk
1367     $_[0]->unshift_read (chunk => $len, $cb);
1368     }
1369 root 1.61
1370     1
1371     }
1372     };
1373    
1374 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1375    
1376 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1377     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1378 root 1.40
1379     If a C<json> object was passed to the constructor, then that will be used
1380     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1381    
1382     This read type uses the incremental parser available with JSON version
1383     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1384     dependency on your own: this module will load the JSON module, but
1385     AnyEvent does not depend on it itself.
1386    
1387     Since JSON texts are fully self-delimiting, the C<json> read and write
1388 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1389     the C<json> write type description, above, for an actual example.
1390 root 1.40
1391     =cut
1392    
1393     register_read_type json => sub {
1394 root 1.63 my ($self, $cb) = @_;
1395 root 1.40
1396 root 1.135 my $json = $self->{json} ||=
1397     eval { require JSON::XS; JSON::XS->new->utf8 }
1398     || do { require JSON; JSON->new->utf8 };
1399 root 1.40
1400     my $data;
1401     my $rbuf = \$self->{rbuf};
1402    
1403     sub {
1404 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1405 root 1.110
1406 root 1.113 if ($ref) {
1407     $self->{rbuf} = $json->incr_text;
1408     $json->incr_text = "";
1409     $cb->($self, $ref);
1410 root 1.110
1411     1
1412 root 1.113 } elsif ($@) {
1413 root 1.111 # error case
1414 root 1.110 $json->incr_skip;
1415 root 1.40
1416     $self->{rbuf} = $json->incr_text;
1417     $json->incr_text = "";
1418    
1419 root 1.150 $self->_error (Errno::EBADMSG);
1420 root 1.114
1421 root 1.113 ()
1422     } else {
1423     $self->{rbuf} = "";
1424 root 1.114
1425 root 1.113 ()
1426     }
1427 root 1.40 }
1428     };
1429    
1430 root 1.63 =item storable => $cb->($handle, $ref)
1431    
1432     Deserialises a L<Storable> frozen representation as written by the
1433     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1434     data).
1435    
1436     Raises C<EBADMSG> error if the data could not be decoded.
1437    
1438     =cut
1439    
1440     register_read_type storable => sub {
1441     my ($self, $cb) = @_;
1442    
1443     require Storable;
1444    
1445     sub {
1446     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1447 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1448 root 1.63 or return;
1449    
1450 root 1.77 my $format = length pack "w", $len;
1451 root 1.63
1452 root 1.77 # bypass unshift if we already have the remaining chunk
1453     if ($format + $len <= length $_[0]{rbuf}) {
1454     my $data = substr $_[0]{rbuf}, $format, $len;
1455     substr $_[0]{rbuf}, 0, $format + $len, "";
1456     $cb->($_[0], Storable::thaw ($data));
1457     } else {
1458     # remove prefix
1459     substr $_[0]{rbuf}, 0, $format, "";
1460    
1461     # read remaining chunk
1462     $_[0]->unshift_read (chunk => $len, sub {
1463     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1464     $cb->($_[0], $ref);
1465     } else {
1466 root 1.150 $self->_error (Errno::EBADMSG);
1467 root 1.77 }
1468     });
1469     }
1470    
1471     1
1472 root 1.63 }
1473     };
1474    
1475 root 1.28 =back
1476    
1477 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1478 root 1.30
1479     This function (not method) lets you add your own types to C<push_read>.
1480    
1481     Whenever the given C<type> is used, C<push_read> will invoke the code
1482     reference with the handle object, the callback and the remaining
1483     arguments.
1484    
1485     The code reference is supposed to return a callback (usually a closure)
1486     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1487    
1488     It should invoke the passed callback when it is done reading (remember to
1489 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1490 root 1.30
1491     Note that this is a function, and all types registered this way will be
1492     global, so try to use unique names.
1493    
1494     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1495     search for C<register_read_type>)).
1496    
1497 root 1.10 =item $handle->stop_read
1498    
1499     =item $handle->start_read
1500    
1501 root 1.18 In rare cases you actually do not want to read anything from the
1502 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1503 root 1.22 any queued callbacks will be executed then. To start reading again, call
1504 root 1.10 C<start_read>.
1505    
1506 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1507     you change the C<on_read> callback or push/unshift a read callback, and it
1508     will automatically C<stop_read> for you when neither C<on_read> is set nor
1509     there are any read requests in the queue.
1510    
1511 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1512     half-duplex connections).
1513    
1514 root 1.10 =cut
1515    
1516     sub stop_read {
1517     my ($self) = @_;
1518 elmex 1.1
1519 root 1.93 delete $self->{_rw} unless $self->{tls};
1520 root 1.8 }
1521 elmex 1.1
1522 root 1.10 sub start_read {
1523     my ($self) = @_;
1524    
1525 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1526 root 1.10 Scalar::Util::weaken $self;
1527    
1528 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1529 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1530 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1531 root 1.10
1532     if ($len > 0) {
1533 root 1.44 $self->{_activity} = AnyEvent->now;
1534 root 1.43
1535 root 1.93 if ($self->{tls}) {
1536     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1537 root 1.97
1538 root 1.93 &_dotls ($self);
1539     } else {
1540 root 1.159 $self->_drain_rbuf;
1541 root 1.93 }
1542 root 1.10
1543     } elsif (defined $len) {
1544 root 1.38 delete $self->{_rw};
1545     $self->{_eof} = 1;
1546 root 1.159 $self->_drain_rbuf;
1547 root 1.10
1548 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1549 root 1.52 return $self->_error ($!, 1);
1550 root 1.10 }
1551     });
1552     }
1553 elmex 1.1 }
1554    
1555 root 1.133 our $ERROR_SYSCALL;
1556     our $ERROR_WANT_READ;
1557    
1558     sub _tls_error {
1559     my ($self, $err) = @_;
1560    
1561     return $self->_error ($!, 1)
1562     if $err == Net::SSLeay::ERROR_SYSCALL ();
1563    
1564 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1565    
1566     # reduce error string to look less scary
1567     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1568    
1569 root 1.143 if ($self->{_on_starttls}) {
1570     (delete $self->{_on_starttls})->($self, undef, $err);
1571     &_freetls;
1572     } else {
1573     &_freetls;
1574 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1575 root 1.143 }
1576 root 1.133 }
1577    
1578 root 1.97 # poll the write BIO and send the data if applicable
1579 root 1.133 # also decode read data if possible
1580     # this is basiclaly our TLS state machine
1581     # more efficient implementations are possible with openssl,
1582     # but not with the buggy and incomplete Net::SSLeay.
1583 root 1.19 sub _dotls {
1584     my ($self) = @_;
1585    
1586 root 1.97 my $tmp;
1587 root 1.56
1588 root 1.38 if (length $self->{_tls_wbuf}) {
1589 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1590     substr $self->{_tls_wbuf}, 0, $tmp, "";
1591 root 1.22 }
1592 root 1.133
1593     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1594     return $self->_tls_error ($tmp)
1595     if $tmp != $ERROR_WANT_READ
1596 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1597 root 1.19 }
1598    
1599 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1600     unless (length $tmp) {
1601 root 1.143 $self->{_on_starttls}
1602     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1603 root 1.92 &_freetls;
1604 root 1.143
1605 root 1.142 if ($self->{on_stoptls}) {
1606     $self->{on_stoptls}($self);
1607     return;
1608     } else {
1609     # let's treat SSL-eof as we treat normal EOF
1610     delete $self->{_rw};
1611     $self->{_eof} = 1;
1612     }
1613 root 1.56 }
1614 root 1.91
1615 root 1.116 $self->{_tls_rbuf} .= $tmp;
1616 root 1.159 $self->_drain_rbuf;
1617 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1618 root 1.23 }
1619    
1620 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1621 root 1.133 return $self->_tls_error ($tmp)
1622     if $tmp != $ERROR_WANT_READ
1623 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1624 root 1.91
1625 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1626     $self->{wbuf} .= $tmp;
1627 root 1.91 $self->_drain_wbuf;
1628     }
1629 root 1.142
1630     $self->{_on_starttls}
1631     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1632 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1633 root 1.19 }
1634    
1635 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1636    
1637     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1638     object is created, you can also do that at a later time by calling
1639     C<starttls>.
1640    
1641 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1642     write data and then call C<< ->starttls >> then TLS negotiation will start
1643     immediately, after which the queued write data is then sent.
1644    
1645 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1646     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1647    
1648 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1649     when AnyEvent::Handle has to create its own TLS connection object, or
1650     a hash reference with C<< key => value >> pairs that will be used to
1651     construct a new context.
1652    
1653     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1654     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1655     changed to your liking. Note that the handshake might have already started
1656     when this function returns.
1657 root 1.38
1658 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1659     handshakes on the same stream. Best do not attempt to use the stream after
1660     stopping TLS.
1661 root 1.92
1662 root 1.25 =cut
1663    
1664 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1665    
1666 root 1.19 sub starttls {
1667 root 1.160 my ($self, $tls, $ctx) = @_;
1668    
1669     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1670     if $self->{tls};
1671    
1672     $self->{tls} = $tls;
1673     $self->{tls_ctx} = $ctx if @_ > 2;
1674    
1675     return unless $self->{fh};
1676 root 1.19
1677 root 1.94 require Net::SSLeay;
1678    
1679 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1680     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1681 root 1.133
1682 root 1.160 $tls = $self->{tls};
1683     $ctx = $self->{tls_ctx};
1684 root 1.131
1685 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1686    
1687 root 1.131 if ("HASH" eq ref $ctx) {
1688     require AnyEvent::TLS;
1689    
1690 root 1.137 if ($ctx->{cache}) {
1691     my $key = $ctx+0;
1692     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1693     } else {
1694     $ctx = new AnyEvent::TLS %$ctx;
1695     }
1696 root 1.131 }
1697 root 1.92
1698 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1699 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1700 root 1.19
1701 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1702     # but the openssl maintainers basically said: "trust us, it just works".
1703     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1704     # and mismaintained ssleay-module doesn't even offer them).
1705 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1706 root 1.87 #
1707     # in short: this is a mess.
1708     #
1709 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1710 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1711 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1712     # have identity issues in that area.
1713 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1714     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1715     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1716 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1717 root 1.21
1718 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1719     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1720 root 1.19
1721 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1722 root 1.19
1723 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1724 root 1.143 if $self->{on_starttls};
1725 root 1.142
1726 root 1.93 &_dotls; # need to trigger the initial handshake
1727     $self->start_read; # make sure we actually do read
1728 root 1.19 }
1729    
1730 root 1.25 =item $handle->stoptls
1731    
1732 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1733     sending a close notify to the other side, but since OpenSSL doesn't
1734 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1735     the stream afterwards.
1736 root 1.25
1737     =cut
1738    
1739     sub stoptls {
1740     my ($self) = @_;
1741    
1742 root 1.92 if ($self->{tls}) {
1743 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1744 root 1.92
1745     &_dotls;
1746    
1747 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1748     # # we, we... have to use openssl :/#d#
1749     # &_freetls;#d#
1750 root 1.92 }
1751     }
1752    
1753     sub _freetls {
1754     my ($self) = @_;
1755    
1756     return unless $self->{tls};
1757 root 1.38
1758 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1759     if ref $self->{tls};
1760 root 1.92
1761 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1762 root 1.25 }
1763    
1764 root 1.19 sub DESTROY {
1765 root 1.120 my ($self) = @_;
1766 root 1.19
1767 root 1.92 &_freetls;
1768 root 1.62
1769     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1770    
1771 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1772 root 1.62 my $fh = delete $self->{fh};
1773     my $wbuf = delete $self->{wbuf};
1774    
1775     my @linger;
1776    
1777     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1778     my $len = syswrite $fh, $wbuf, length $wbuf;
1779    
1780     if ($len > 0) {
1781     substr $wbuf, 0, $len, "";
1782     } else {
1783     @linger = (); # end
1784     }
1785     });
1786     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1787     @linger = ();
1788     });
1789     }
1790 root 1.19 }
1791    
1792 root 1.99 =item $handle->destroy
1793    
1794 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1795 root 1.141 no further callbacks will be invoked and as many resources as possible
1796     will be freed. You must not call any methods on the object afterwards.
1797 root 1.99
1798 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1799     object and it will simply shut down. This works in fatal error and EOF
1800     callbacks, as well as code outside. It does I<NOT> work in a read or write
1801     callback, so when you want to destroy the AnyEvent::Handle object from
1802     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1803     that case.
1804    
1805 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1806     will be removed as well, so if those are the only reference holders (as
1807     is common), then one doesn't need to do anything special to break any
1808     reference cycles.
1809    
1810 root 1.99 The handle might still linger in the background and write out remaining
1811     data, as specified by the C<linger> option, however.
1812    
1813     =cut
1814    
1815     sub destroy {
1816     my ($self) = @_;
1817    
1818     $self->DESTROY;
1819     %$self = ();
1820     }
1821    
1822 root 1.19 =item AnyEvent::Handle::TLS_CTX
1823    
1824 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1825     for TLS mode.
1826 root 1.19
1827 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1828 root 1.19
1829     =cut
1830    
1831     our $TLS_CTX;
1832    
1833     sub TLS_CTX() {
1834 root 1.131 $TLS_CTX ||= do {
1835     require AnyEvent::TLS;
1836 root 1.19
1837 root 1.131 new AnyEvent::TLS
1838 root 1.19 }
1839     }
1840    
1841 elmex 1.1 =back
1842    
1843 root 1.95
1844     =head1 NONFREQUENTLY ASKED QUESTIONS
1845    
1846     =over 4
1847    
1848 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1849     still get further invocations!
1850    
1851     That's because AnyEvent::Handle keeps a reference to itself when handling
1852     read or write callbacks.
1853    
1854     It is only safe to "forget" the reference inside EOF or error callbacks,
1855     from within all other callbacks, you need to explicitly call the C<<
1856     ->destroy >> method.
1857    
1858     =item I get different callback invocations in TLS mode/Why can't I pause
1859     reading?
1860    
1861     Unlike, say, TCP, TLS connections do not consist of two independent
1862     communication channels, one for each direction. Or put differently. The
1863     read and write directions are not independent of each other: you cannot
1864     write data unless you are also prepared to read, and vice versa.
1865    
1866     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1867     callback invocations when you are not expecting any read data - the reason
1868     is that AnyEvent::Handle always reads in TLS mode.
1869    
1870     During the connection, you have to make sure that you always have a
1871     non-empty read-queue, or an C<on_read> watcher. At the end of the
1872     connection (or when you no longer want to use it) you can call the
1873     C<destroy> method.
1874    
1875 root 1.95 =item How do I read data until the other side closes the connection?
1876    
1877 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1878     to achieve this is by setting an C<on_read> callback that does nothing,
1879     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1880     will be in C<$_[0]{rbuf}>:
1881 root 1.95
1882     $handle->on_read (sub { });
1883     $handle->on_eof (undef);
1884     $handle->on_error (sub {
1885     my $data = delete $_[0]{rbuf};
1886     });
1887    
1888     The reason to use C<on_error> is that TCP connections, due to latencies
1889     and packets loss, might get closed quite violently with an error, when in
1890     fact, all data has been received.
1891    
1892 root 1.101 It is usually better to use acknowledgements when transferring data,
1893 root 1.95 to make sure the other side hasn't just died and you got the data
1894     intact. This is also one reason why so many internet protocols have an
1895     explicit QUIT command.
1896    
1897 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1898     all data has been written?
1899 root 1.95
1900     After writing your last bits of data, set the C<on_drain> callback
1901     and destroy the handle in there - with the default setting of
1902     C<low_water_mark> this will be called precisely when all data has been
1903     written to the socket:
1904    
1905     $handle->push_write (...);
1906     $handle->on_drain (sub {
1907     warn "all data submitted to the kernel\n";
1908     undef $handle;
1909     });
1910    
1911 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1912     consider using C<< ->push_shutdown >> instead.
1913    
1914     =item I want to contact a TLS/SSL server, I don't care about security.
1915    
1916     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1917     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1918     parameter:
1919    
1920 root 1.144 tcp_connect $host, $port, sub {
1921     my ($fh) = @_;
1922 root 1.143
1923 root 1.144 my $handle = new AnyEvent::Handle
1924     fh => $fh,
1925     tls => "connect",
1926     on_error => sub { ... };
1927    
1928     $handle->push_write (...);
1929     };
1930 root 1.143
1931     =item I want to contact a TLS/SSL server, I do care about security.
1932    
1933 root 1.144 Then you should additionally enable certificate verification, including
1934     peername verification, if the protocol you use supports it (see
1935     L<AnyEvent::TLS>, C<verify_peername>).
1936    
1937     E.g. for HTTPS:
1938    
1939     tcp_connect $host, $port, sub {
1940     my ($fh) = @_;
1941    
1942     my $handle = new AnyEvent::Handle
1943     fh => $fh,
1944     peername => $host,
1945     tls => "connect",
1946     tls_ctx => { verify => 1, verify_peername => "https" },
1947     ...
1948    
1949     Note that you must specify the hostname you connected to (or whatever
1950     "peername" the protocol needs) as the C<peername> argument, otherwise no
1951     peername verification will be done.
1952    
1953     The above will use the system-dependent default set of trusted CA
1954     certificates. If you want to check against a specific CA, add the
1955     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1956    
1957     tls_ctx => {
1958     verify => 1,
1959     verify_peername => "https",
1960     ca_file => "my-ca-cert.pem",
1961     },
1962    
1963     =item I want to create a TLS/SSL server, how do I do that?
1964    
1965     Well, you first need to get a server certificate and key. You have
1966     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1967     self-signed certificate (cheap. check the search engine of your choice,
1968     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1969     nice program for that purpose).
1970    
1971     Then create a file with your private key (in PEM format, see
1972     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1973     file should then look like this:
1974    
1975     -----BEGIN RSA PRIVATE KEY-----
1976     ...header data
1977     ... lots of base64'y-stuff
1978     -----END RSA PRIVATE KEY-----
1979    
1980     -----BEGIN CERTIFICATE-----
1981     ... lots of base64'y-stuff
1982     -----END CERTIFICATE-----
1983    
1984     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1985     specify this file as C<cert_file>:
1986    
1987     tcp_server undef, $port, sub {
1988     my ($fh) = @_;
1989    
1990     my $handle = new AnyEvent::Handle
1991     fh => $fh,
1992     tls => "accept",
1993     tls_ctx => { cert_file => "my-server-keycert.pem" },
1994     ...
1995 root 1.143
1996 root 1.144 When you have intermediate CA certificates that your clients might not
1997     know about, just append them to the C<cert_file>.
1998 root 1.143
1999 root 1.95 =back
2000    
2001    
2002 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2003    
2004     In many cases, you might want to subclass AnyEvent::Handle.
2005    
2006     To make this easier, a given version of AnyEvent::Handle uses these
2007     conventions:
2008    
2009     =over 4
2010    
2011     =item * all constructor arguments become object members.
2012    
2013     At least initially, when you pass a C<tls>-argument to the constructor it
2014 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2015 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2016    
2017     =item * other object member names are prefixed with an C<_>.
2018    
2019     All object members not explicitly documented (internal use) are prefixed
2020     with an underscore character, so the remaining non-C<_>-namespace is free
2021     for use for subclasses.
2022    
2023     =item * all members not documented here and not prefixed with an underscore
2024     are free to use in subclasses.
2025    
2026     Of course, new versions of AnyEvent::Handle may introduce more "public"
2027     member variables, but thats just life, at least it is documented.
2028    
2029     =back
2030    
2031 elmex 1.1 =head1 AUTHOR
2032    
2033 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2034 elmex 1.1
2035     =cut
2036    
2037     1; # End of AnyEvent::Handle