ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.177
Committed: Sun Aug 9 00:24:35 2009 UTC (14 years, 10 months ago) by root
Branch: MAIN
CVS Tags: rel-5_0, rel-5_01
Changes since 1.176: +2 -4 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 elmex 1.2 );
20    
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.159 filehandles.
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 elmex 1.1 =head1 METHODS
66    
67     =over 4
68    
69 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
70 elmex 1.1
71 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
72 elmex 1.1
73     =over 4
74    
75 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
76 root 1.158
77 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83    
84     Try to connect to the specified host and service (port), using
85     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86     default C<peername>.
87    
88     You have to specify either this parameter, or C<fh>, above.
89    
90 root 1.160 It is possible to push requests on the read and write queues, and modify
91     properties of the stream, even while AnyEvent::Handle is connecting.
92    
93 root 1.159 When this parameter is specified, then the C<on_prepare>,
94     C<on_connect_error> and C<on_connect> callbacks will be called under the
95     appropriate circumstances:
96    
97     =over 4
98    
99     =item on_prepare => $cb->($handle)
100    
101     This (rarely used) callback is called before a new connection is
102     attempted, but after the file handle has been created. It could be used to
103     prepare the file handle with parameters required for the actual connect
104     (as opposed to settings that can be changed when the connection is already
105     established).
106    
107 root 1.161 The return value of this callback should be the connect timeout value in
108     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
109     timeout is to be used).
110    
111 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
112    
113     This callback is called when a connection has been successfully established.
114    
115     The actual numeric host and port (the socket peername) are passed as
116     parameters, together with a retry callback.
117    
118     When, for some reason, the handle is not acceptable, then calling
119     C<$retry> will continue with the next conenction target (in case of
120     multi-homed hosts or SRV records there can be multiple connection
121     endpoints). When it is called then the read and write queues, eof status,
122     tls status and similar properties of the handle are being reset.
123    
124     In most cases, ignoring the C<$retry> parameter is the way to go.
125 root 1.158
126 root 1.159 =item on_connect_error => $cb->($handle, $message)
127 root 1.10
128 root 1.159 This callback is called when the conenction could not be
129     established. C<$!> will contain the relevant error code, and C<$message> a
130     message describing it (usually the same as C<"$!">).
131 root 1.8
132 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
133     fatal error instead.
134 root 1.82
135 root 1.159 =back
136 root 1.80
137 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
138 root 1.10
139 root 1.52 This is the error callback, which is called when, well, some error
140     occured, such as not being able to resolve the hostname, failure to
141     connect or a read error.
142    
143     Some errors are fatal (which is indicated by C<$fatal> being true). On
144 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
145     destroy >>) after invoking the error callback (which means you are free to
146     examine the handle object). Examples of fatal errors are an EOF condition
147 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148     cases where the other side can close the connection at their will it is
149     often easiest to not report C<EPIPE> errors in this callback.
150 root 1.82
151 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
152     against, but in some cases (TLS errors), this does not work well. It is
153     recommended to always output the C<$message> argument in human-readable
154     error messages (it's usually the same as C<"$!">).
155    
156 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
157     to simply ignore this parameter and instead abondon the handle object
158     when this callback is invoked. Examples of non-fatal errors are timeouts
159     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
160 root 1.8
161 root 1.10 On callback entrance, the value of C<$!> contains the operating system
162 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163     C<EPROTO>).
164 root 1.8
165 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
166     you will not be notified of errors otherwise. The default simply calls
167 root 1.52 C<croak>.
168 root 1.8
169 root 1.40 =item on_read => $cb->($handle)
170 root 1.8
171     This sets the default read callback, which is called when data arrives
172 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
173     callback will only be called when at least one octet of data is in the
174     read buffer).
175 root 1.8
176     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
177 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
178 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
179     the beginning from it.
180 root 1.8
181     When an EOF condition is detected then AnyEvent::Handle will first try to
182     feed all the remaining data to the queued callbacks and C<on_read> before
183     calling the C<on_eof> callback. If no progress can be made, then a fatal
184     error will be raised (with C<$!> set to C<EPIPE>).
185 elmex 1.1
186 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
187     doesn't mean you I<require> some data: if there is an EOF and there
188     are outstanding read requests then an error will be flagged. With an
189     C<on_read> callback, the C<on_eof> callback will be invoked.
190    
191 root 1.159 =item on_eof => $cb->($handle)
192    
193     Set the callback to be called when an end-of-file condition is detected,
194     i.e. in the case of a socket, when the other side has closed the
195     connection cleanly, and there are no outstanding read requests in the
196     queue (if there are read requests, then an EOF counts as an unexpected
197     connection close and will be flagged as an error).
198    
199     For sockets, this just means that the other side has stopped sending data,
200     you can still try to write data, and, in fact, one can return from the EOF
201     callback and continue writing data, as only the read part has been shut
202     down.
203    
204     If an EOF condition has been detected but no C<on_eof> callback has been
205     set, then a fatal error will be raised with C<$!> set to <0>.
206    
207 root 1.40 =item on_drain => $cb->($handle)
208 elmex 1.1
209 root 1.8 This sets the callback that is called when the write buffer becomes empty
210     (or when the callback is set and the buffer is empty already).
211 elmex 1.1
212 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
213 elmex 1.2
214 root 1.69 This callback is useful when you don't want to put all of your write data
215     into the queue at once, for example, when you want to write the contents
216     of some file to the socket you might not want to read the whole file into
217     memory and push it into the queue, but instead only read more data from
218     the file when the write queue becomes empty.
219    
220 root 1.43 =item timeout => $fractional_seconds
221    
222 root 1.176 =item rtimeout => $fractional_seconds
223    
224     =item wtimeout => $fractional_seconds
225    
226     If non-zero, then these enables an "inactivity" timeout: whenever this
227     many seconds pass without a successful read or write on the underlying
228     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
229     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230     error will be raised).
231    
232     There are three variants of the timeouts that work fully independent
233     of each other, for both read and write, just read, and just write:
234     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
237 root 1.43
238     Note that timeout processing is also active when you currently do not have
239     any outstanding read or write requests: If you plan to keep the connection
240     idle then you should disable the timout temporarily or ignore the timeout
241 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242     restart the timeout.
243 root 1.43
244     Zero (the default) disables this timeout.
245    
246     =item on_timeout => $cb->($handle)
247    
248     Called whenever the inactivity timeout passes. If you return from this
249     callback, then the timeout will be reset as if some activity had happened,
250     so this condition is not fatal in any way.
251    
252 root 1.8 =item rbuf_max => <bytes>
253 elmex 1.2
254 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
255     when the read buffer ever (strictly) exceeds this size. This is useful to
256 root 1.88 avoid some forms of denial-of-service attacks.
257 elmex 1.2
258 root 1.8 For example, a server accepting connections from untrusted sources should
259     be configured to accept only so-and-so much data that it cannot act on
260     (for example, when expecting a line, an attacker could send an unlimited
261     amount of data without a callback ever being called as long as the line
262     isn't finished).
263 elmex 1.2
264 root 1.70 =item autocork => <boolean>
265    
266     When disabled (the default), then C<push_write> will try to immediately
267 root 1.88 write the data to the handle, if possible. This avoids having to register
268     a write watcher and wait for the next event loop iteration, but can
269     be inefficient if you write multiple small chunks (on the wire, this
270     disadvantage is usually avoided by your kernel's nagle algorithm, see
271     C<no_delay>, but this option can save costly syscalls).
272 root 1.70
273     When enabled, then writes will always be queued till the next event loop
274     iteration. This is efficient when you do many small writes per iteration,
275 root 1.88 but less efficient when you do a single write only per iteration (or when
276     the write buffer often is full). It also increases write latency.
277 root 1.70
278     =item no_delay => <boolean>
279    
280     When doing small writes on sockets, your operating system kernel might
281     wait a bit for more data before actually sending it out. This is called
282     the Nagle algorithm, and usually it is beneficial.
283    
284 root 1.88 In some situations you want as low a delay as possible, which can be
285     accomplishd by setting this option to a true value.
286 root 1.70
287 root 1.88 The default is your opertaing system's default behaviour (most likely
288     enabled), this option explicitly enables or disables it, if possible.
289 root 1.70
290 root 1.8 =item read_size => <bytes>
291 elmex 1.2
292 root 1.88 The default read block size (the amount of bytes this module will
293     try to read during each loop iteration, which affects memory
294     requirements). Default: C<8192>.
295 root 1.8
296     =item low_water_mark => <bytes>
297    
298     Sets the amount of bytes (default: C<0>) that make up an "empty" write
299     buffer: If the write reaches this size or gets even samller it is
300     considered empty.
301 elmex 1.2
302 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
303     the write buffer before it is fully drained, but this is a rare case, as
304     the operating system kernel usually buffers data as well, so the default
305     is good in almost all cases.
306    
307 root 1.62 =item linger => <seconds>
308    
309     If non-zero (default: C<3600>), then the destructor of the
310 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
311     write data and will install a watcher that will write this data to the
312     socket. No errors will be reported (this mostly matches how the operating
313     system treats outstanding data at socket close time).
314 root 1.62
315 root 1.88 This will not work for partial TLS data that could not be encoded
316 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
317     help.
318 root 1.62
319 root 1.133 =item peername => $string
320    
321 root 1.134 A string used to identify the remote site - usually the DNS hostname
322     (I<not> IDN!) used to create the connection, rarely the IP address.
323 root 1.131
324 root 1.133 Apart from being useful in error messages, this string is also used in TLS
325 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326     verification will be skipped when C<peername> is not specified or
327     C<undef>.
328 root 1.131
329 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
330    
331 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
332 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
333     established and will transparently encrypt/decrypt data afterwards.
334 root 1.19
335 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
336     appropriate error message.
337    
338 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
339 root 1.88 automatically when you try to create a TLS handle): this module doesn't
340     have a dependency on that module, so if your module requires it, you have
341     to add the dependency yourself.
342 root 1.26
343 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
344     C<accept>, and for the TLS client side of a connection, use C<connect>
345     mode.
346 root 1.19
347     You can also provide your own TLS connection object, but you have
348     to make sure that you call either C<Net::SSLeay::set_connect_state>
349     or C<Net::SSLeay::set_accept_state> on it before you pass it to
350 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
351     object.
352    
353     At some future point, AnyEvent::Handle might switch to another TLS
354     implementation, then the option to use your own session object will go
355     away.
356 root 1.19
357 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358     passing in the wrong integer will lead to certain crash. This most often
359     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360     segmentation fault.
361    
362 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
363 root 1.26
364 root 1.131 =item tls_ctx => $anyevent_tls
365 root 1.19
366 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
367 root 1.19 (unless a connection object was specified directly). If this parameter is
368     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
369    
370 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
371     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372     new TLS context object.
373    
374 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
375 root 1.142
376     This callback will be invoked when the TLS/SSL handshake has finished. If
377     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378     (C<on_stoptls> will not be called in this case).
379    
380     The session in C<< $handle->{tls} >> can still be examined in this
381     callback, even when the handshake was not successful.
382    
383 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
384     callback is in effect, instead, the error message will be passed to C<on_starttls>.
385    
386     Without this callback, handshake failures lead to C<on_error> being
387     called, as normal.
388    
389     Note that you cannot call C<starttls> right again in this callback. If you
390     need to do that, start an zero-second timer instead whose callback can
391     then call C<< ->starttls >> again.
392    
393 root 1.142 =item on_stoptls => $cb->($handle)
394    
395     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396     set, then it will be invoked after freeing the TLS session. If it is not,
397     then a TLS shutdown condition will be treated like a normal EOF condition
398     on the handle.
399    
400     The session in C<< $handle->{tls} >> can still be examined in this
401     callback.
402    
403     This callback will only be called on TLS shutdowns, not when the
404     underlying handle signals EOF.
405    
406 root 1.40 =item json => JSON or JSON::XS object
407    
408     This is the json coder object used by the C<json> read and write types.
409    
410 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
411 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
412     texts.
413 root 1.40
414     Note that you are responsible to depend on the JSON module if you want to
415     use this functionality, as AnyEvent does not have a dependency itself.
416    
417 elmex 1.1 =back
418    
419     =cut
420    
421     sub new {
422 root 1.8 my $class = shift;
423     my $self = bless { @_ }, $class;
424    
425 root 1.159 if ($self->{fh}) {
426     $self->_start;
427     return unless $self->{fh}; # could be gone by now
428    
429     } elsif ($self->{connect}) {
430     require AnyEvent::Socket;
431    
432     $self->{peername} = $self->{connect}[0]
433     unless exists $self->{peername};
434    
435     $self->{_skip_drain_rbuf} = 1;
436    
437     {
438     Scalar::Util::weaken (my $self = $self);
439    
440     $self->{_connect} =
441     AnyEvent::Socket::tcp_connect (
442     $self->{connect}[0],
443     $self->{connect}[1],
444     sub {
445     my ($fh, $host, $port, $retry) = @_;
446    
447     if ($fh) {
448     $self->{fh} = $fh;
449    
450     delete $self->{_skip_drain_rbuf};
451     $self->_start;
452    
453     $self->{on_connect}
454     and $self->{on_connect}($self, $host, $port, sub {
455     delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456     $self->{_skip_drain_rbuf} = 1;
457     &$retry;
458     });
459    
460     } else {
461     if ($self->{on_connect_error}) {
462     $self->{on_connect_error}($self, "$!");
463     $self->destroy;
464     } else {
465 root 1.161 $self->_error ($!, 1);
466 root 1.159 }
467     }
468     },
469     sub {
470     local $self->{fh} = $_[0];
471    
472 root 1.161 $self->{on_prepare}
473     ? $self->{on_prepare}->($self)
474     : ()
475 root 1.159 }
476     );
477     }
478    
479     } else {
480     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481     }
482    
483     $self
484     }
485    
486     sub _start {
487     my ($self) = @_;
488 root 1.8
489     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
490 elmex 1.1
491 root 1.176 $self->{_activity} =
492     $self->{_ractivity} =
493     $self->{_wactivity} = AE::now;
494    
495     $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496     $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497     $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498 root 1.131
499     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500    
501 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502     if $self->{tls};
503 root 1.19
504 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505 root 1.10
506 root 1.66 $self->start_read
507 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
508 root 1.160
509     $self->_drain_wbuf;
510 root 1.8 }
511 elmex 1.2
512 root 1.149 #sub _shutdown {
513     # my ($self) = @_;
514     #
515     # delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
516     # $self->{_eof} = 1; # tell starttls et. al to stop trying
517     #
518     # &_freetls;
519     #}
520 root 1.8
521 root 1.52 sub _error {
522 root 1.133 my ($self, $errno, $fatal, $message) = @_;
523 root 1.8
524 root 1.52 $! = $errno;
525 root 1.133 $message ||= "$!";
526 root 1.37
527 root 1.52 if ($self->{on_error}) {
528 root 1.133 $self->{on_error}($self, $fatal, $message);
529 root 1.151 $self->destroy if $fatal;
530 root 1.100 } elsif ($self->{fh}) {
531 root 1.149 $self->destroy;
532 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
533 root 1.52 }
534 elmex 1.1 }
535    
536 root 1.8 =item $fh = $handle->fh
537 elmex 1.1
538 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
539 elmex 1.1
540     =cut
541    
542 root 1.38 sub fh { $_[0]{fh} }
543 elmex 1.1
544 root 1.8 =item $handle->on_error ($cb)
545 elmex 1.1
546 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
547 elmex 1.1
548 root 1.8 =cut
549    
550     sub on_error {
551     $_[0]{on_error} = $_[1];
552     }
553    
554     =item $handle->on_eof ($cb)
555    
556     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
557 elmex 1.1
558     =cut
559    
560 root 1.8 sub on_eof {
561     $_[0]{on_eof} = $_[1];
562     }
563    
564 root 1.43 =item $handle->on_timeout ($cb)
565    
566 root 1.176 =item $handle->on_rtimeout ($cb)
567    
568     =item $handle->on_wtimeout ($cb)
569    
570     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
571     callback, or disables the callback (but not the timeout) if C<$cb> =
572     C<undef>. See the C<timeout> constructor argument and method.
573 root 1.43
574     =cut
575    
576 root 1.176 # see below
577 root 1.43
578 root 1.70 =item $handle->autocork ($boolean)
579    
580     Enables or disables the current autocork behaviour (see C<autocork>
581 root 1.105 constructor argument). Changes will only take effect on the next write.
582 root 1.70
583     =cut
584    
585 root 1.105 sub autocork {
586     $_[0]{autocork} = $_[1];
587     }
588    
589 root 1.70 =item $handle->no_delay ($boolean)
590    
591     Enables or disables the C<no_delay> setting (see constructor argument of
592     the same name for details).
593    
594     =cut
595    
596     sub no_delay {
597     $_[0]{no_delay} = $_[1];
598    
599     eval {
600     local $SIG{__DIE__};
601 root 1.159 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
602     if $_[0]{fh};
603 root 1.70 };
604     }
605    
606 root 1.142 =item $handle->on_starttls ($cb)
607    
608     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
609    
610     =cut
611    
612     sub on_starttls {
613     $_[0]{on_starttls} = $_[1];
614     }
615    
616     =item $handle->on_stoptls ($cb)
617    
618     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
619    
620     =cut
621    
622     sub on_starttls {
623     $_[0]{on_stoptls} = $_[1];
624     }
625    
626 root 1.168 =item $handle->rbuf_max ($max_octets)
627    
628     Configures the C<rbuf_max> setting (C<undef> disables it).
629    
630     =cut
631    
632     sub rbuf_max {
633     $_[0]{rbuf_max} = $_[1];
634     }
635    
636 root 1.43 #############################################################################
637    
638     =item $handle->timeout ($seconds)
639    
640 root 1.176 =item $handle->rtimeout ($seconds)
641    
642     =item $handle->wtimeout ($seconds)
643    
644 root 1.43 Configures (or disables) the inactivity timeout.
645    
646 root 1.176 =item $handle->timeout_reset
647    
648     =item $handle->rtimeout_reset
649    
650     =item $handle->wtimeout_reset
651    
652     Reset the activity timeout, as if data was received or sent.
653    
654     These methods are cheap to call.
655    
656 root 1.43 =cut
657    
658 root 1.176 for my $dir ("", "r", "w") {
659     my $timeout = "${dir}timeout";
660     my $tw = "_${dir}tw";
661     my $on_timeout = "on_${dir}timeout";
662     my $activity = "_${dir}activity";
663     my $cb;
664    
665     *$on_timeout = sub {
666     $_[0]{$on_timeout} = $_[1];
667     };
668    
669     *$timeout = sub {
670     my ($self, $new_value) = @_;
671 root 1.43
672 root 1.176 $self->{$timeout} = $new_value;
673     delete $self->{$tw}; &$cb;
674     };
675 root 1.43
676 root 1.176 *{"${dir}timeout_reset"} = sub {
677     $_[0]{$activity} = AE::now;
678     };
679 root 1.43
680 root 1.176 # main workhorse:
681     # reset the timeout watcher, as neccessary
682     # also check for time-outs
683     $cb = sub {
684     my ($self) = @_;
685    
686     if ($self->{$timeout} && $self->{fh}) {
687     my $NOW = AE::now;
688    
689     # when would the timeout trigger?
690     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
691    
692     # now or in the past already?
693     if ($after <= 0) {
694     $self->{$activity} = $NOW;
695 root 1.43
696 root 1.176 if ($self->{$on_timeout}) {
697     $self->{$on_timeout}($self);
698     } else {
699     $self->_error (Errno::ETIMEDOUT);
700     }
701 root 1.43
702 root 1.176 # callback could have changed timeout value, optimise
703     return unless $self->{$timeout};
704 root 1.43
705 root 1.176 # calculate new after
706     $after = $self->{$timeout};
707 root 1.43 }
708    
709 root 1.176 Scalar::Util::weaken $self;
710     return unless $self; # ->error could have destroyed $self
711 root 1.43
712 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
713     delete $self->{$tw};
714     $cb->($self);
715     };
716     } else {
717     delete $self->{$tw};
718 root 1.43 }
719     }
720     }
721    
722 root 1.9 #############################################################################
723    
724     =back
725    
726     =head2 WRITE QUEUE
727    
728     AnyEvent::Handle manages two queues per handle, one for writing and one
729     for reading.
730    
731     The write queue is very simple: you can add data to its end, and
732     AnyEvent::Handle will automatically try to get rid of it for you.
733    
734 elmex 1.20 When data could be written and the write buffer is shorter then the low
735 root 1.9 water mark, the C<on_drain> callback will be invoked.
736    
737     =over 4
738    
739 root 1.8 =item $handle->on_drain ($cb)
740    
741     Sets the C<on_drain> callback or clears it (see the description of
742     C<on_drain> in the constructor).
743    
744     =cut
745    
746     sub on_drain {
747 elmex 1.1 my ($self, $cb) = @_;
748    
749 root 1.8 $self->{on_drain} = $cb;
750    
751     $cb->($self)
752 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
753 root 1.8 }
754    
755     =item $handle->push_write ($data)
756    
757     Queues the given scalar to be written. You can push as much data as you
758     want (only limited by the available memory), as C<AnyEvent::Handle>
759     buffers it independently of the kernel.
760    
761     =cut
762    
763 root 1.17 sub _drain_wbuf {
764     my ($self) = @_;
765 root 1.8
766 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
767 root 1.35
768 root 1.8 Scalar::Util::weaken $self;
769 root 1.35
770 root 1.8 my $cb = sub {
771     my $len = syswrite $self->{fh}, $self->{wbuf};
772    
773 root 1.146 if (defined $len) {
774 root 1.8 substr $self->{wbuf}, 0, $len, "";
775    
776 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
777 root 1.43
778 root 1.8 $self->{on_drain}($self)
779 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
780 root 1.8 && $self->{on_drain};
781    
782 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
783 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
784 root 1.52 $self->_error ($!, 1);
785 elmex 1.1 }
786 root 1.8 };
787    
788 root 1.35 # try to write data immediately
789 root 1.70 $cb->() unless $self->{autocork};
790 root 1.8
791 root 1.35 # if still data left in wbuf, we need to poll
792 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
793 root 1.35 if length $self->{wbuf};
794 root 1.8 };
795     }
796    
797 root 1.30 our %WH;
798    
799     sub register_write_type($$) {
800     $WH{$_[0]} = $_[1];
801     }
802    
803 root 1.17 sub push_write {
804     my $self = shift;
805    
806 root 1.29 if (@_ > 1) {
807     my $type = shift;
808    
809     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
810     ->($self, @_);
811     }
812    
813 root 1.93 if ($self->{tls}) {
814     $self->{_tls_wbuf} .= $_[0];
815 root 1.160 &_dotls ($self) if $self->{fh};
816 root 1.17 } else {
817 root 1.160 $self->{wbuf} .= $_[0];
818 root 1.159 $self->_drain_wbuf if $self->{fh};
819 root 1.17 }
820     }
821    
822 root 1.29 =item $handle->push_write (type => @args)
823    
824     Instead of formatting your data yourself, you can also let this module do
825     the job by specifying a type and type-specific arguments.
826    
827 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
828     drop by and tell us):
829 root 1.29
830     =over 4
831    
832     =item netstring => $string
833    
834     Formats the given value as netstring
835     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
836    
837     =cut
838    
839     register_write_type netstring => sub {
840     my ($self, $string) = @_;
841    
842 root 1.96 (length $string) . ":$string,"
843 root 1.29 };
844    
845 root 1.61 =item packstring => $format, $data
846    
847     An octet string prefixed with an encoded length. The encoding C<$format>
848     uses the same format as a Perl C<pack> format, but must specify a single
849     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
850     optional C<!>, C<< < >> or C<< > >> modifier).
851    
852     =cut
853    
854     register_write_type packstring => sub {
855     my ($self, $format, $string) = @_;
856    
857 root 1.65 pack "$format/a*", $string
858 root 1.61 };
859    
860 root 1.39 =item json => $array_or_hashref
861    
862 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
863     provide your own JSON object, this means it will be encoded to JSON text
864     in UTF-8.
865    
866     JSON objects (and arrays) are self-delimiting, so you can write JSON at
867     one end of a handle and read them at the other end without using any
868     additional framing.
869    
870 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
871     this module doesn't need delimiters after or between JSON texts to be
872     able to read them, many other languages depend on that.
873    
874     A simple RPC protocol that interoperates easily with others is to send
875     JSON arrays (or objects, although arrays are usually the better choice as
876     they mimic how function argument passing works) and a newline after each
877     JSON text:
878    
879     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
880     $handle->push_write ("\012");
881    
882     An AnyEvent::Handle receiver would simply use the C<json> read type and
883     rely on the fact that the newline will be skipped as leading whitespace:
884    
885     $handle->push_read (json => sub { my $array = $_[1]; ... });
886    
887     Other languages could read single lines terminated by a newline and pass
888     this line into their JSON decoder of choice.
889    
890 root 1.40 =cut
891    
892     register_write_type json => sub {
893     my ($self, $ref) = @_;
894    
895     require JSON;
896    
897     $self->{json} ? $self->{json}->encode ($ref)
898     : JSON::encode_json ($ref)
899     };
900    
901 root 1.63 =item storable => $reference
902    
903     Freezes the given reference using L<Storable> and writes it to the
904     handle. Uses the C<nfreeze> format.
905    
906     =cut
907    
908     register_write_type storable => sub {
909     my ($self, $ref) = @_;
910    
911     require Storable;
912    
913 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
914 root 1.63 };
915    
916 root 1.53 =back
917    
918 root 1.133 =item $handle->push_shutdown
919    
920     Sometimes you know you want to close the socket after writing your data
921     before it was actually written. One way to do that is to replace your
922 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
923     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
924     replaces the C<on_drain> callback with:
925 root 1.133
926     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
927    
928     This simply shuts down the write side and signals an EOF condition to the
929     the peer.
930    
931     You can rely on the normal read queue and C<on_eof> handling
932     afterwards. This is the cleanest way to close a connection.
933    
934     =cut
935    
936     sub push_shutdown {
937 root 1.142 my ($self) = @_;
938    
939     delete $self->{low_water_mark};
940     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
941 root 1.133 }
942    
943 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
944 root 1.30
945     This function (not method) lets you add your own types to C<push_write>.
946     Whenever the given C<type> is used, C<push_write> will invoke the code
947     reference with the handle object and the remaining arguments.
948 root 1.29
949 root 1.30 The code reference is supposed to return a single octet string that will
950     be appended to the write buffer.
951 root 1.29
952 root 1.30 Note that this is a function, and all types registered this way will be
953     global, so try to use unique names.
954 root 1.29
955 root 1.30 =cut
956 root 1.29
957 root 1.8 #############################################################################
958    
959 root 1.9 =back
960    
961     =head2 READ QUEUE
962    
963     AnyEvent::Handle manages two queues per handle, one for writing and one
964     for reading.
965    
966     The read queue is more complex than the write queue. It can be used in two
967     ways, the "simple" way, using only C<on_read> and the "complex" way, using
968     a queue.
969    
970     In the simple case, you just install an C<on_read> callback and whenever
971     new data arrives, it will be called. You can then remove some data (if
972 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
973     leave the data there if you want to accumulate more (e.g. when only a
974     partial message has been received so far).
975 root 1.9
976     In the more complex case, you want to queue multiple callbacks. In this
977     case, AnyEvent::Handle will call the first queued callback each time new
978 root 1.61 data arrives (also the first time it is queued) and removes it when it has
979     done its job (see C<push_read>, below).
980 root 1.9
981     This way you can, for example, push three line-reads, followed by reading
982     a chunk of data, and AnyEvent::Handle will execute them in order.
983    
984     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
985     the specified number of bytes which give an XML datagram.
986    
987     # in the default state, expect some header bytes
988     $handle->on_read (sub {
989     # some data is here, now queue the length-header-read (4 octets)
990 root 1.52 shift->unshift_read (chunk => 4, sub {
991 root 1.9 # header arrived, decode
992     my $len = unpack "N", $_[1];
993    
994     # now read the payload
995 root 1.52 shift->unshift_read (chunk => $len, sub {
996 root 1.9 my $xml = $_[1];
997     # handle xml
998     });
999     });
1000     });
1001    
1002 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1003     and another line or "ERROR" for the first request that is sent, and 64
1004     bytes for the second request. Due to the availability of a queue, we can
1005     just pipeline sending both requests and manipulate the queue as necessary
1006     in the callbacks.
1007    
1008     When the first callback is called and sees an "OK" response, it will
1009     C<unshift> another line-read. This line-read will be queued I<before> the
1010     64-byte chunk callback.
1011 root 1.9
1012 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1013 root 1.9 $handle->push_write ("request 1\015\012");
1014    
1015     # we expect "ERROR" or "OK" as response, so push a line read
1016 root 1.52 $handle->push_read (line => sub {
1017 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1018     # so it will be read before the second request reads its 64 bytes
1019     # which are already in the queue when this callback is called
1020     # we don't do this in case we got an error
1021     if ($_[1] eq "OK") {
1022 root 1.52 $_[0]->unshift_read (line => sub {
1023 root 1.9 my $response = $_[1];
1024     ...
1025     });
1026     }
1027     });
1028    
1029 root 1.69 # request two, simply returns 64 octets
1030 root 1.9 $handle->push_write ("request 2\015\012");
1031    
1032     # simply read 64 bytes, always
1033 root 1.52 $handle->push_read (chunk => 64, sub {
1034 root 1.9 my $response = $_[1];
1035     ...
1036     });
1037    
1038     =over 4
1039    
1040 root 1.10 =cut
1041    
1042 root 1.8 sub _drain_rbuf {
1043     my ($self) = @_;
1044 elmex 1.1
1045 root 1.159 # avoid recursion
1046 root 1.167 return if $self->{_skip_drain_rbuf};
1047 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1048 root 1.59
1049     while () {
1050 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1051     # we are draining the buffer, and this can only happen with TLS.
1052 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1053     if exists $self->{_tls_rbuf};
1054 root 1.115
1055 root 1.59 my $len = length $self->{rbuf};
1056 elmex 1.1
1057 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1058 root 1.29 unless ($cb->($self)) {
1059 root 1.163 # no progress can be made
1060     # (not enough data and no data forthcoming)
1061     $self->_error (Errno::EPIPE, 1), return
1062     if $self->{_eof};
1063 root 1.10
1064 root 1.38 unshift @{ $self->{_queue} }, $cb;
1065 root 1.55 last;
1066 root 1.8 }
1067     } elsif ($self->{on_read}) {
1068 root 1.61 last unless $len;
1069    
1070 root 1.8 $self->{on_read}($self);
1071    
1072     if (
1073 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1074     && !@{ $self->{_queue} } # and the queue is still empty
1075     && $self->{on_read} # but we still have on_read
1076 root 1.8 ) {
1077 root 1.55 # no further data will arrive
1078     # so no progress can be made
1079 root 1.150 $self->_error (Errno::EPIPE, 1), return
1080 root 1.55 if $self->{_eof};
1081    
1082     last; # more data might arrive
1083 elmex 1.1 }
1084 root 1.8 } else {
1085     # read side becomes idle
1086 root 1.93 delete $self->{_rw} unless $self->{tls};
1087 root 1.55 last;
1088 root 1.8 }
1089     }
1090    
1091 root 1.80 if ($self->{_eof}) {
1092 root 1.163 $self->{on_eof}
1093     ? $self->{on_eof}($self)
1094     : $self->_error (0, 1, "Unexpected end-of-file");
1095    
1096     return;
1097 root 1.80 }
1098 root 1.55
1099 root 1.169 if (
1100     defined $self->{rbuf_max}
1101     && $self->{rbuf_max} < length $self->{rbuf}
1102     ) {
1103     $self->_error (Errno::ENOSPC, 1), return;
1104     }
1105    
1106 root 1.55 # may need to restart read watcher
1107     unless ($self->{_rw}) {
1108     $self->start_read
1109     if $self->{on_read} || @{ $self->{_queue} };
1110     }
1111 elmex 1.1 }
1112    
1113 root 1.8 =item $handle->on_read ($cb)
1114 elmex 1.1
1115 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1116     the new callback is C<undef>). See the description of C<on_read> in the
1117     constructor.
1118 elmex 1.1
1119 root 1.8 =cut
1120    
1121     sub on_read {
1122     my ($self, $cb) = @_;
1123 elmex 1.1
1124 root 1.8 $self->{on_read} = $cb;
1125 root 1.159 $self->_drain_rbuf if $cb;
1126 elmex 1.1 }
1127    
1128 root 1.8 =item $handle->rbuf
1129    
1130     Returns the read buffer (as a modifiable lvalue).
1131 elmex 1.1
1132 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1133     member, if you want. However, the only operation allowed on the
1134     read buffer (apart from looking at it) is removing data from its
1135     beginning. Otherwise modifying or appending to it is not allowed and will
1136     lead to hard-to-track-down bugs.
1137 elmex 1.1
1138 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1139     C<push_read> or C<unshift_read> methods are used. The other read methods
1140     automatically manage the read buffer.
1141 elmex 1.1
1142     =cut
1143    
1144 elmex 1.2 sub rbuf : lvalue {
1145 root 1.8 $_[0]{rbuf}
1146 elmex 1.2 }
1147 elmex 1.1
1148 root 1.8 =item $handle->push_read ($cb)
1149    
1150     =item $handle->unshift_read ($cb)
1151    
1152     Append the given callback to the end of the queue (C<push_read>) or
1153     prepend it (C<unshift_read>).
1154    
1155     The callback is called each time some additional read data arrives.
1156 elmex 1.1
1157 elmex 1.20 It must check whether enough data is in the read buffer already.
1158 elmex 1.1
1159 root 1.8 If not enough data is available, it must return the empty list or a false
1160     value, in which case it will be called repeatedly until enough data is
1161     available (or an error condition is detected).
1162    
1163     If enough data was available, then the callback must remove all data it is
1164     interested in (which can be none at all) and return a true value. After returning
1165     true, it will be removed from the queue.
1166 elmex 1.1
1167     =cut
1168    
1169 root 1.30 our %RH;
1170    
1171     sub register_read_type($$) {
1172     $RH{$_[0]} = $_[1];
1173     }
1174    
1175 root 1.8 sub push_read {
1176 root 1.28 my $self = shift;
1177     my $cb = pop;
1178    
1179     if (@_) {
1180     my $type = shift;
1181    
1182     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1183     ->($self, $cb, @_);
1184     }
1185 elmex 1.1
1186 root 1.38 push @{ $self->{_queue} }, $cb;
1187 root 1.159 $self->_drain_rbuf;
1188 elmex 1.1 }
1189    
1190 root 1.8 sub unshift_read {
1191 root 1.28 my $self = shift;
1192     my $cb = pop;
1193    
1194     if (@_) {
1195     my $type = shift;
1196    
1197     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1198     ->($self, $cb, @_);
1199     }
1200    
1201 root 1.8
1202 root 1.38 unshift @{ $self->{_queue} }, $cb;
1203 root 1.159 $self->_drain_rbuf;
1204 root 1.8 }
1205 elmex 1.1
1206 root 1.28 =item $handle->push_read (type => @args, $cb)
1207 elmex 1.1
1208 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1209 elmex 1.1
1210 root 1.28 Instead of providing a callback that parses the data itself you can chose
1211     between a number of predefined parsing formats, for chunks of data, lines
1212     etc.
1213 elmex 1.1
1214 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1215     drop by and tell us):
1216 root 1.28
1217     =over 4
1218    
1219 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1220 root 1.28
1221     Invoke the callback only once C<$octets> bytes have been read. Pass the
1222     data read to the callback. The callback will never be called with less
1223     data.
1224    
1225     Example: read 2 bytes.
1226    
1227     $handle->push_read (chunk => 2, sub {
1228     warn "yay ", unpack "H*", $_[1];
1229     });
1230 elmex 1.1
1231     =cut
1232    
1233 root 1.28 register_read_type chunk => sub {
1234     my ($self, $cb, $len) = @_;
1235 elmex 1.1
1236 root 1.8 sub {
1237     $len <= length $_[0]{rbuf} or return;
1238 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1239 root 1.8 1
1240     }
1241 root 1.28 };
1242 root 1.8
1243 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1244 elmex 1.1
1245 root 1.8 The callback will be called only once a full line (including the end of
1246     line marker, C<$eol>) has been read. This line (excluding the end of line
1247     marker) will be passed to the callback as second argument (C<$line>), and
1248     the end of line marker as the third argument (C<$eol>).
1249 elmex 1.1
1250 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1251     will be interpreted as a fixed record end marker, or it can be a regex
1252     object (e.g. created by C<qr>), in which case it is interpreted as a
1253     regular expression.
1254 elmex 1.1
1255 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1256     undef), then C<qr|\015?\012|> is used (which is good for most internet
1257     protocols).
1258 elmex 1.1
1259 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1260     not marked by the end of line marker.
1261 elmex 1.1
1262 root 1.8 =cut
1263 elmex 1.1
1264 root 1.28 register_read_type line => sub {
1265     my ($self, $cb, $eol) = @_;
1266 elmex 1.1
1267 root 1.76 if (@_ < 3) {
1268     # this is more than twice as fast as the generic code below
1269     sub {
1270     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1271 elmex 1.1
1272 root 1.76 $cb->($_[0], $1, $2);
1273     1
1274     }
1275     } else {
1276     $eol = quotemeta $eol unless ref $eol;
1277     $eol = qr|^(.*?)($eol)|s;
1278    
1279     sub {
1280     $_[0]{rbuf} =~ s/$eol// or return;
1281 elmex 1.1
1282 root 1.76 $cb->($_[0], $1, $2);
1283     1
1284     }
1285 root 1.8 }
1286 root 1.28 };
1287 elmex 1.1
1288 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1289 root 1.36
1290     Makes a regex match against the regex object C<$accept> and returns
1291     everything up to and including the match.
1292    
1293     Example: read a single line terminated by '\n'.
1294    
1295     $handle->push_read (regex => qr<\n>, sub { ... });
1296    
1297     If C<$reject> is given and not undef, then it determines when the data is
1298     to be rejected: it is matched against the data when the C<$accept> regex
1299     does not match and generates an C<EBADMSG> error when it matches. This is
1300     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1301     receive buffer overflow).
1302    
1303     Example: expect a single decimal number followed by whitespace, reject
1304     anything else (not the use of an anchor).
1305    
1306     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1307    
1308     If C<$skip> is given and not C<undef>, then it will be matched against
1309     the receive buffer when neither C<$accept> nor C<$reject> match,
1310     and everything preceding and including the match will be accepted
1311     unconditionally. This is useful to skip large amounts of data that you
1312     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1313     have to start matching from the beginning. This is purely an optimisation
1314     and is usually worth only when you expect more than a few kilobytes.
1315    
1316     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1317     expect the header to be very large (it isn't in practise, but...), we use
1318     a skip regex to skip initial portions. The skip regex is tricky in that
1319     it only accepts something not ending in either \015 or \012, as these are
1320     required for the accept regex.
1321    
1322     $handle->push_read (regex =>
1323     qr<\015\012\015\012>,
1324     undef, # no reject
1325     qr<^.*[^\015\012]>,
1326     sub { ... });
1327    
1328     =cut
1329    
1330     register_read_type regex => sub {
1331     my ($self, $cb, $accept, $reject, $skip) = @_;
1332    
1333     my $data;
1334     my $rbuf = \$self->{rbuf};
1335    
1336     sub {
1337     # accept
1338     if ($$rbuf =~ $accept) {
1339     $data .= substr $$rbuf, 0, $+[0], "";
1340     $cb->($self, $data);
1341     return 1;
1342     }
1343    
1344     # reject
1345     if ($reject && $$rbuf =~ $reject) {
1346 root 1.150 $self->_error (Errno::EBADMSG);
1347 root 1.36 }
1348    
1349     # skip
1350     if ($skip && $$rbuf =~ $skip) {
1351     $data .= substr $$rbuf, 0, $+[0], "";
1352     }
1353    
1354     ()
1355     }
1356     };
1357    
1358 root 1.61 =item netstring => $cb->($handle, $string)
1359    
1360     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1361    
1362     Throws an error with C<$!> set to EBADMSG on format violations.
1363    
1364     =cut
1365    
1366     register_read_type netstring => sub {
1367     my ($self, $cb) = @_;
1368    
1369     sub {
1370     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1371     if ($_[0]{rbuf} =~ /[^0-9]/) {
1372 root 1.150 $self->_error (Errno::EBADMSG);
1373 root 1.61 }
1374     return;
1375     }
1376    
1377     my $len = $1;
1378    
1379     $self->unshift_read (chunk => $len, sub {
1380     my $string = $_[1];
1381     $_[0]->unshift_read (chunk => 1, sub {
1382     if ($_[1] eq ",") {
1383     $cb->($_[0], $string);
1384     } else {
1385 root 1.150 $self->_error (Errno::EBADMSG);
1386 root 1.61 }
1387     });
1388     });
1389    
1390     1
1391     }
1392     };
1393    
1394     =item packstring => $format, $cb->($handle, $string)
1395    
1396     An octet string prefixed with an encoded length. The encoding C<$format>
1397     uses the same format as a Perl C<pack> format, but must specify a single
1398     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1399     optional C<!>, C<< < >> or C<< > >> modifier).
1400    
1401 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1402     EPP uses a prefix of C<N> (4 octtes).
1403 root 1.61
1404     Example: read a block of data prefixed by its length in BER-encoded
1405     format (very efficient).
1406    
1407     $handle->push_read (packstring => "w", sub {
1408     my ($handle, $data) = @_;
1409     });
1410    
1411     =cut
1412    
1413     register_read_type packstring => sub {
1414     my ($self, $cb, $format) = @_;
1415    
1416     sub {
1417     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1418 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1419 root 1.61 or return;
1420    
1421 root 1.77 $format = length pack $format, $len;
1422 root 1.61
1423 root 1.77 # bypass unshift if we already have the remaining chunk
1424     if ($format + $len <= length $_[0]{rbuf}) {
1425     my $data = substr $_[0]{rbuf}, $format, $len;
1426     substr $_[0]{rbuf}, 0, $format + $len, "";
1427     $cb->($_[0], $data);
1428     } else {
1429     # remove prefix
1430     substr $_[0]{rbuf}, 0, $format, "";
1431    
1432     # read remaining chunk
1433     $_[0]->unshift_read (chunk => $len, $cb);
1434     }
1435 root 1.61
1436     1
1437     }
1438     };
1439    
1440 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1441    
1442 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1443     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1444 root 1.40
1445     If a C<json> object was passed to the constructor, then that will be used
1446     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1447    
1448     This read type uses the incremental parser available with JSON version
1449     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1450     dependency on your own: this module will load the JSON module, but
1451     AnyEvent does not depend on it itself.
1452    
1453     Since JSON texts are fully self-delimiting, the C<json> read and write
1454 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1455     the C<json> write type description, above, for an actual example.
1456 root 1.40
1457     =cut
1458    
1459     register_read_type json => sub {
1460 root 1.63 my ($self, $cb) = @_;
1461 root 1.40
1462 root 1.135 my $json = $self->{json} ||=
1463     eval { require JSON::XS; JSON::XS->new->utf8 }
1464     || do { require JSON; JSON->new->utf8 };
1465 root 1.40
1466     my $data;
1467     my $rbuf = \$self->{rbuf};
1468    
1469     sub {
1470 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1471 root 1.110
1472 root 1.113 if ($ref) {
1473     $self->{rbuf} = $json->incr_text;
1474     $json->incr_text = "";
1475     $cb->($self, $ref);
1476 root 1.110
1477     1
1478 root 1.113 } elsif ($@) {
1479 root 1.111 # error case
1480 root 1.110 $json->incr_skip;
1481 root 1.40
1482     $self->{rbuf} = $json->incr_text;
1483     $json->incr_text = "";
1484    
1485 root 1.150 $self->_error (Errno::EBADMSG);
1486 root 1.114
1487 root 1.113 ()
1488     } else {
1489     $self->{rbuf} = "";
1490 root 1.114
1491 root 1.113 ()
1492     }
1493 root 1.40 }
1494     };
1495    
1496 root 1.63 =item storable => $cb->($handle, $ref)
1497    
1498     Deserialises a L<Storable> frozen representation as written by the
1499     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1500     data).
1501    
1502     Raises C<EBADMSG> error if the data could not be decoded.
1503    
1504     =cut
1505    
1506     register_read_type storable => sub {
1507     my ($self, $cb) = @_;
1508    
1509     require Storable;
1510    
1511     sub {
1512     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1513 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1514 root 1.63 or return;
1515    
1516 root 1.77 my $format = length pack "w", $len;
1517 root 1.63
1518 root 1.77 # bypass unshift if we already have the remaining chunk
1519     if ($format + $len <= length $_[0]{rbuf}) {
1520     my $data = substr $_[0]{rbuf}, $format, $len;
1521     substr $_[0]{rbuf}, 0, $format + $len, "";
1522     $cb->($_[0], Storable::thaw ($data));
1523     } else {
1524     # remove prefix
1525     substr $_[0]{rbuf}, 0, $format, "";
1526    
1527     # read remaining chunk
1528     $_[0]->unshift_read (chunk => $len, sub {
1529     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1530     $cb->($_[0], $ref);
1531     } else {
1532 root 1.150 $self->_error (Errno::EBADMSG);
1533 root 1.77 }
1534     });
1535     }
1536    
1537     1
1538 root 1.63 }
1539     };
1540    
1541 root 1.28 =back
1542    
1543 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1544 root 1.30
1545     This function (not method) lets you add your own types to C<push_read>.
1546    
1547     Whenever the given C<type> is used, C<push_read> will invoke the code
1548     reference with the handle object, the callback and the remaining
1549     arguments.
1550    
1551     The code reference is supposed to return a callback (usually a closure)
1552     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1553    
1554     It should invoke the passed callback when it is done reading (remember to
1555 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1556 root 1.30
1557     Note that this is a function, and all types registered this way will be
1558     global, so try to use unique names.
1559    
1560     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1561     search for C<register_read_type>)).
1562    
1563 root 1.10 =item $handle->stop_read
1564    
1565     =item $handle->start_read
1566    
1567 root 1.18 In rare cases you actually do not want to read anything from the
1568 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1569 root 1.22 any queued callbacks will be executed then. To start reading again, call
1570 root 1.10 C<start_read>.
1571    
1572 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1573     you change the C<on_read> callback or push/unshift a read callback, and it
1574     will automatically C<stop_read> for you when neither C<on_read> is set nor
1575     there are any read requests in the queue.
1576    
1577 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1578     half-duplex connections).
1579    
1580 root 1.10 =cut
1581    
1582     sub stop_read {
1583     my ($self) = @_;
1584 elmex 1.1
1585 root 1.93 delete $self->{_rw} unless $self->{tls};
1586 root 1.8 }
1587 elmex 1.1
1588 root 1.10 sub start_read {
1589     my ($self) = @_;
1590    
1591 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1592 root 1.10 Scalar::Util::weaken $self;
1593    
1594 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1595 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1596 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1597 root 1.10
1598     if ($len > 0) {
1599 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1600 root 1.43
1601 root 1.93 if ($self->{tls}) {
1602     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1603 root 1.97
1604 root 1.93 &_dotls ($self);
1605     } else {
1606 root 1.159 $self->_drain_rbuf;
1607 root 1.93 }
1608 root 1.10
1609     } elsif (defined $len) {
1610 root 1.38 delete $self->{_rw};
1611     $self->{_eof} = 1;
1612 root 1.159 $self->_drain_rbuf;
1613 root 1.10
1614 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1615 root 1.52 return $self->_error ($!, 1);
1616 root 1.10 }
1617 root 1.175 };
1618 root 1.10 }
1619 elmex 1.1 }
1620    
1621 root 1.133 our $ERROR_SYSCALL;
1622     our $ERROR_WANT_READ;
1623    
1624     sub _tls_error {
1625     my ($self, $err) = @_;
1626    
1627     return $self->_error ($!, 1)
1628     if $err == Net::SSLeay::ERROR_SYSCALL ();
1629    
1630 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1631    
1632     # reduce error string to look less scary
1633     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1634    
1635 root 1.143 if ($self->{_on_starttls}) {
1636     (delete $self->{_on_starttls})->($self, undef, $err);
1637     &_freetls;
1638     } else {
1639     &_freetls;
1640 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1641 root 1.143 }
1642 root 1.133 }
1643    
1644 root 1.97 # poll the write BIO and send the data if applicable
1645 root 1.133 # also decode read data if possible
1646     # this is basiclaly our TLS state machine
1647     # more efficient implementations are possible with openssl,
1648     # but not with the buggy and incomplete Net::SSLeay.
1649 root 1.19 sub _dotls {
1650     my ($self) = @_;
1651    
1652 root 1.97 my $tmp;
1653 root 1.56
1654 root 1.38 if (length $self->{_tls_wbuf}) {
1655 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1656     substr $self->{_tls_wbuf}, 0, $tmp, "";
1657 root 1.22 }
1658 root 1.133
1659     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1660     return $self->_tls_error ($tmp)
1661     if $tmp != $ERROR_WANT_READ
1662 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1663 root 1.19 }
1664    
1665 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1666     unless (length $tmp) {
1667 root 1.143 $self->{_on_starttls}
1668     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1669 root 1.92 &_freetls;
1670 root 1.143
1671 root 1.142 if ($self->{on_stoptls}) {
1672     $self->{on_stoptls}($self);
1673     return;
1674     } else {
1675     # let's treat SSL-eof as we treat normal EOF
1676     delete $self->{_rw};
1677     $self->{_eof} = 1;
1678     }
1679 root 1.56 }
1680 root 1.91
1681 root 1.116 $self->{_tls_rbuf} .= $tmp;
1682 root 1.159 $self->_drain_rbuf;
1683 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1684 root 1.23 }
1685    
1686 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1687 root 1.133 return $self->_tls_error ($tmp)
1688     if $tmp != $ERROR_WANT_READ
1689 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1690 root 1.91
1691 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1692     $self->{wbuf} .= $tmp;
1693 root 1.91 $self->_drain_wbuf;
1694     }
1695 root 1.142
1696     $self->{_on_starttls}
1697     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1698 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1699 root 1.19 }
1700    
1701 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1702    
1703     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1704     object is created, you can also do that at a later time by calling
1705     C<starttls>.
1706    
1707 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1708     write data and then call C<< ->starttls >> then TLS negotiation will start
1709     immediately, after which the queued write data is then sent.
1710    
1711 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1712     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1713    
1714 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1715     when AnyEvent::Handle has to create its own TLS connection object, or
1716     a hash reference with C<< key => value >> pairs that will be used to
1717     construct a new context.
1718    
1719     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1720     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1721     changed to your liking. Note that the handshake might have already started
1722     when this function returns.
1723 root 1.38
1724 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1725     handshakes on the same stream. Best do not attempt to use the stream after
1726     stopping TLS.
1727 root 1.92
1728 root 1.25 =cut
1729    
1730 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1731    
1732 root 1.19 sub starttls {
1733 root 1.160 my ($self, $tls, $ctx) = @_;
1734    
1735     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1736     if $self->{tls};
1737    
1738     $self->{tls} = $tls;
1739     $self->{tls_ctx} = $ctx if @_ > 2;
1740    
1741     return unless $self->{fh};
1742 root 1.19
1743 root 1.94 require Net::SSLeay;
1744    
1745 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1746     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1747 root 1.133
1748 root 1.160 $tls = $self->{tls};
1749     $ctx = $self->{tls_ctx};
1750 root 1.131
1751 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1752    
1753 root 1.131 if ("HASH" eq ref $ctx) {
1754     require AnyEvent::TLS;
1755    
1756 root 1.137 if ($ctx->{cache}) {
1757     my $key = $ctx+0;
1758     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1759     } else {
1760     $ctx = new AnyEvent::TLS %$ctx;
1761     }
1762 root 1.131 }
1763 root 1.92
1764 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1765 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1766 root 1.19
1767 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1768     # but the openssl maintainers basically said: "trust us, it just works".
1769     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1770     # and mismaintained ssleay-module doesn't even offer them).
1771 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1772 root 1.87 #
1773     # in short: this is a mess.
1774     #
1775 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1776 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1777 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1778     # have identity issues in that area.
1779 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1780     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1781     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1782 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1783 root 1.21
1784 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1785     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1786 root 1.19
1787 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1788    
1789 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1790 root 1.19
1791 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1792 root 1.143 if $self->{on_starttls};
1793 root 1.142
1794 root 1.93 &_dotls; # need to trigger the initial handshake
1795     $self->start_read; # make sure we actually do read
1796 root 1.19 }
1797    
1798 root 1.25 =item $handle->stoptls
1799    
1800 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1801     sending a close notify to the other side, but since OpenSSL doesn't
1802 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1803     the stream afterwards.
1804 root 1.25
1805     =cut
1806    
1807     sub stoptls {
1808     my ($self) = @_;
1809    
1810 root 1.92 if ($self->{tls}) {
1811 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1812 root 1.92
1813     &_dotls;
1814    
1815 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1816     # # we, we... have to use openssl :/#d#
1817     # &_freetls;#d#
1818 root 1.92 }
1819     }
1820    
1821     sub _freetls {
1822     my ($self) = @_;
1823    
1824     return unless $self->{tls};
1825 root 1.38
1826 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1827 root 1.171 if $self->{tls} > 0;
1828 root 1.92
1829 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1830 root 1.25 }
1831    
1832 root 1.19 sub DESTROY {
1833 root 1.120 my ($self) = @_;
1834 root 1.19
1835 root 1.92 &_freetls;
1836 root 1.62
1837     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1838    
1839 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1840 root 1.62 my $fh = delete $self->{fh};
1841     my $wbuf = delete $self->{wbuf};
1842    
1843     my @linger;
1844    
1845 root 1.175 push @linger, AE::io $fh, 1, sub {
1846 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1847    
1848     if ($len > 0) {
1849     substr $wbuf, 0, $len, "";
1850     } else {
1851     @linger = (); # end
1852     }
1853 root 1.175 };
1854     push @linger, AE::timer $linger, 0, sub {
1855 root 1.62 @linger = ();
1856 root 1.175 };
1857 root 1.62 }
1858 root 1.19 }
1859    
1860 root 1.99 =item $handle->destroy
1861    
1862 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1863 root 1.141 no further callbacks will be invoked and as many resources as possible
1864 root 1.165 will be freed. Any method you will call on the handle object after
1865     destroying it in this way will be silently ignored (and it will return the
1866     empty list).
1867 root 1.99
1868 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1869     object and it will simply shut down. This works in fatal error and EOF
1870     callbacks, as well as code outside. It does I<NOT> work in a read or write
1871     callback, so when you want to destroy the AnyEvent::Handle object from
1872     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1873     that case.
1874    
1875 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1876     will be removed as well, so if those are the only reference holders (as
1877     is common), then one doesn't need to do anything special to break any
1878     reference cycles.
1879    
1880 root 1.99 The handle might still linger in the background and write out remaining
1881     data, as specified by the C<linger> option, however.
1882    
1883     =cut
1884    
1885     sub destroy {
1886     my ($self) = @_;
1887    
1888     $self->DESTROY;
1889     %$self = ();
1890 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
1891     }
1892    
1893 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
1894     #nop
1895 root 1.99 }
1896    
1897 root 1.19 =item AnyEvent::Handle::TLS_CTX
1898    
1899 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1900     for TLS mode.
1901 root 1.19
1902 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1903 root 1.19
1904     =cut
1905    
1906     our $TLS_CTX;
1907    
1908     sub TLS_CTX() {
1909 root 1.131 $TLS_CTX ||= do {
1910     require AnyEvent::TLS;
1911 root 1.19
1912 root 1.131 new AnyEvent::TLS
1913 root 1.19 }
1914     }
1915    
1916 elmex 1.1 =back
1917    
1918 root 1.95
1919     =head1 NONFREQUENTLY ASKED QUESTIONS
1920    
1921     =over 4
1922    
1923 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1924     still get further invocations!
1925    
1926     That's because AnyEvent::Handle keeps a reference to itself when handling
1927     read or write callbacks.
1928    
1929     It is only safe to "forget" the reference inside EOF or error callbacks,
1930     from within all other callbacks, you need to explicitly call the C<<
1931     ->destroy >> method.
1932    
1933     =item I get different callback invocations in TLS mode/Why can't I pause
1934     reading?
1935    
1936     Unlike, say, TCP, TLS connections do not consist of two independent
1937     communication channels, one for each direction. Or put differently. The
1938     read and write directions are not independent of each other: you cannot
1939     write data unless you are also prepared to read, and vice versa.
1940    
1941     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1942     callback invocations when you are not expecting any read data - the reason
1943     is that AnyEvent::Handle always reads in TLS mode.
1944    
1945     During the connection, you have to make sure that you always have a
1946     non-empty read-queue, or an C<on_read> watcher. At the end of the
1947     connection (or when you no longer want to use it) you can call the
1948     C<destroy> method.
1949    
1950 root 1.95 =item How do I read data until the other side closes the connection?
1951    
1952 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1953     to achieve this is by setting an C<on_read> callback that does nothing,
1954     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1955     will be in C<$_[0]{rbuf}>:
1956 root 1.95
1957     $handle->on_read (sub { });
1958     $handle->on_eof (undef);
1959     $handle->on_error (sub {
1960     my $data = delete $_[0]{rbuf};
1961     });
1962    
1963     The reason to use C<on_error> is that TCP connections, due to latencies
1964     and packets loss, might get closed quite violently with an error, when in
1965     fact, all data has been received.
1966    
1967 root 1.101 It is usually better to use acknowledgements when transferring data,
1968 root 1.95 to make sure the other side hasn't just died and you got the data
1969     intact. This is also one reason why so many internet protocols have an
1970     explicit QUIT command.
1971    
1972 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1973     all data has been written?
1974 root 1.95
1975     After writing your last bits of data, set the C<on_drain> callback
1976     and destroy the handle in there - with the default setting of
1977     C<low_water_mark> this will be called precisely when all data has been
1978     written to the socket:
1979    
1980     $handle->push_write (...);
1981     $handle->on_drain (sub {
1982     warn "all data submitted to the kernel\n";
1983     undef $handle;
1984     });
1985    
1986 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1987     consider using C<< ->push_shutdown >> instead.
1988    
1989     =item I want to contact a TLS/SSL server, I don't care about security.
1990    
1991     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1992     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1993     parameter:
1994    
1995 root 1.144 tcp_connect $host, $port, sub {
1996     my ($fh) = @_;
1997 root 1.143
1998 root 1.144 my $handle = new AnyEvent::Handle
1999     fh => $fh,
2000     tls => "connect",
2001     on_error => sub { ... };
2002    
2003     $handle->push_write (...);
2004     };
2005 root 1.143
2006     =item I want to contact a TLS/SSL server, I do care about security.
2007    
2008 root 1.144 Then you should additionally enable certificate verification, including
2009     peername verification, if the protocol you use supports it (see
2010     L<AnyEvent::TLS>, C<verify_peername>).
2011    
2012     E.g. for HTTPS:
2013    
2014     tcp_connect $host, $port, sub {
2015     my ($fh) = @_;
2016    
2017     my $handle = new AnyEvent::Handle
2018     fh => $fh,
2019     peername => $host,
2020     tls => "connect",
2021     tls_ctx => { verify => 1, verify_peername => "https" },
2022     ...
2023    
2024     Note that you must specify the hostname you connected to (or whatever
2025     "peername" the protocol needs) as the C<peername> argument, otherwise no
2026     peername verification will be done.
2027    
2028     The above will use the system-dependent default set of trusted CA
2029     certificates. If you want to check against a specific CA, add the
2030     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2031    
2032     tls_ctx => {
2033     verify => 1,
2034     verify_peername => "https",
2035     ca_file => "my-ca-cert.pem",
2036     },
2037    
2038     =item I want to create a TLS/SSL server, how do I do that?
2039    
2040     Well, you first need to get a server certificate and key. You have
2041     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2042     self-signed certificate (cheap. check the search engine of your choice,
2043     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2044     nice program for that purpose).
2045    
2046     Then create a file with your private key (in PEM format, see
2047     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2048     file should then look like this:
2049    
2050     -----BEGIN RSA PRIVATE KEY-----
2051     ...header data
2052     ... lots of base64'y-stuff
2053     -----END RSA PRIVATE KEY-----
2054    
2055     -----BEGIN CERTIFICATE-----
2056     ... lots of base64'y-stuff
2057     -----END CERTIFICATE-----
2058    
2059     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2060     specify this file as C<cert_file>:
2061    
2062     tcp_server undef, $port, sub {
2063     my ($fh) = @_;
2064    
2065     my $handle = new AnyEvent::Handle
2066     fh => $fh,
2067     tls => "accept",
2068     tls_ctx => { cert_file => "my-server-keycert.pem" },
2069     ...
2070 root 1.143
2071 root 1.144 When you have intermediate CA certificates that your clients might not
2072     know about, just append them to the C<cert_file>.
2073 root 1.143
2074 root 1.95 =back
2075    
2076    
2077 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2078    
2079     In many cases, you might want to subclass AnyEvent::Handle.
2080    
2081     To make this easier, a given version of AnyEvent::Handle uses these
2082     conventions:
2083    
2084     =over 4
2085    
2086     =item * all constructor arguments become object members.
2087    
2088     At least initially, when you pass a C<tls>-argument to the constructor it
2089 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2090 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2091    
2092     =item * other object member names are prefixed with an C<_>.
2093    
2094     All object members not explicitly documented (internal use) are prefixed
2095     with an underscore character, so the remaining non-C<_>-namespace is free
2096     for use for subclasses.
2097    
2098     =item * all members not documented here and not prefixed with an underscore
2099     are free to use in subclasses.
2100    
2101     Of course, new versions of AnyEvent::Handle may introduce more "public"
2102     member variables, but thats just life, at least it is documented.
2103    
2104     =back
2105    
2106 elmex 1.1 =head1 AUTHOR
2107    
2108 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2109 elmex 1.1
2110     =cut
2111    
2112     1; # End of AnyEvent::Handle