ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.178
Committed: Tue Aug 11 01:15:17 2009 UTC (14 years, 10 months ago) by root
Branch: MAIN
CVS Tags: rel-5_1
Changes since 1.177: +1 -10 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 elmex 1.2 );
20    
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.159 filehandles.
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 elmex 1.1 =head1 METHODS
66    
67     =over 4
68    
69 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
70 elmex 1.1
71 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
72 elmex 1.1
73     =over 4
74    
75 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
76 root 1.158
77 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83    
84     Try to connect to the specified host and service (port), using
85     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86     default C<peername>.
87    
88     You have to specify either this parameter, or C<fh>, above.
89    
90 root 1.160 It is possible to push requests on the read and write queues, and modify
91     properties of the stream, even while AnyEvent::Handle is connecting.
92    
93 root 1.159 When this parameter is specified, then the C<on_prepare>,
94     C<on_connect_error> and C<on_connect> callbacks will be called under the
95     appropriate circumstances:
96    
97     =over 4
98    
99     =item on_prepare => $cb->($handle)
100    
101     This (rarely used) callback is called before a new connection is
102     attempted, but after the file handle has been created. It could be used to
103     prepare the file handle with parameters required for the actual connect
104     (as opposed to settings that can be changed when the connection is already
105     established).
106    
107 root 1.161 The return value of this callback should be the connect timeout value in
108     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
109     timeout is to be used).
110    
111 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
112    
113     This callback is called when a connection has been successfully established.
114    
115     The actual numeric host and port (the socket peername) are passed as
116     parameters, together with a retry callback.
117    
118     When, for some reason, the handle is not acceptable, then calling
119     C<$retry> will continue with the next conenction target (in case of
120     multi-homed hosts or SRV records there can be multiple connection
121     endpoints). When it is called then the read and write queues, eof status,
122     tls status and similar properties of the handle are being reset.
123    
124     In most cases, ignoring the C<$retry> parameter is the way to go.
125 root 1.158
126 root 1.159 =item on_connect_error => $cb->($handle, $message)
127 root 1.10
128 root 1.159 This callback is called when the conenction could not be
129     established. C<$!> will contain the relevant error code, and C<$message> a
130     message describing it (usually the same as C<"$!">).
131 root 1.8
132 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
133     fatal error instead.
134 root 1.82
135 root 1.159 =back
136 root 1.80
137 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
138 root 1.10
139 root 1.52 This is the error callback, which is called when, well, some error
140     occured, such as not being able to resolve the hostname, failure to
141     connect or a read error.
142    
143     Some errors are fatal (which is indicated by C<$fatal> being true). On
144 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
145     destroy >>) after invoking the error callback (which means you are free to
146     examine the handle object). Examples of fatal errors are an EOF condition
147 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148     cases where the other side can close the connection at their will it is
149     often easiest to not report C<EPIPE> errors in this callback.
150 root 1.82
151 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
152     against, but in some cases (TLS errors), this does not work well. It is
153     recommended to always output the C<$message> argument in human-readable
154     error messages (it's usually the same as C<"$!">).
155    
156 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
157     to simply ignore this parameter and instead abondon the handle object
158     when this callback is invoked. Examples of non-fatal errors are timeouts
159     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
160 root 1.8
161 root 1.10 On callback entrance, the value of C<$!> contains the operating system
162 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163     C<EPROTO>).
164 root 1.8
165 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
166     you will not be notified of errors otherwise. The default simply calls
167 root 1.52 C<croak>.
168 root 1.8
169 root 1.40 =item on_read => $cb->($handle)
170 root 1.8
171     This sets the default read callback, which is called when data arrives
172 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
173     callback will only be called when at least one octet of data is in the
174     read buffer).
175 root 1.8
176     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
177 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
178 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
179     the beginning from it.
180 root 1.8
181     When an EOF condition is detected then AnyEvent::Handle will first try to
182     feed all the remaining data to the queued callbacks and C<on_read> before
183     calling the C<on_eof> callback. If no progress can be made, then a fatal
184     error will be raised (with C<$!> set to C<EPIPE>).
185 elmex 1.1
186 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
187     doesn't mean you I<require> some data: if there is an EOF and there
188     are outstanding read requests then an error will be flagged. With an
189     C<on_read> callback, the C<on_eof> callback will be invoked.
190    
191 root 1.159 =item on_eof => $cb->($handle)
192    
193     Set the callback to be called when an end-of-file condition is detected,
194     i.e. in the case of a socket, when the other side has closed the
195     connection cleanly, and there are no outstanding read requests in the
196     queue (if there are read requests, then an EOF counts as an unexpected
197     connection close and will be flagged as an error).
198    
199     For sockets, this just means that the other side has stopped sending data,
200     you can still try to write data, and, in fact, one can return from the EOF
201     callback and continue writing data, as only the read part has been shut
202     down.
203    
204     If an EOF condition has been detected but no C<on_eof> callback has been
205     set, then a fatal error will be raised with C<$!> set to <0>.
206    
207 root 1.40 =item on_drain => $cb->($handle)
208 elmex 1.1
209 root 1.8 This sets the callback that is called when the write buffer becomes empty
210     (or when the callback is set and the buffer is empty already).
211 elmex 1.1
212 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
213 elmex 1.2
214 root 1.69 This callback is useful when you don't want to put all of your write data
215     into the queue at once, for example, when you want to write the contents
216     of some file to the socket you might not want to read the whole file into
217     memory and push it into the queue, but instead only read more data from
218     the file when the write queue becomes empty.
219    
220 root 1.43 =item timeout => $fractional_seconds
221    
222 root 1.176 =item rtimeout => $fractional_seconds
223    
224     =item wtimeout => $fractional_seconds
225    
226     If non-zero, then these enables an "inactivity" timeout: whenever this
227     many seconds pass without a successful read or write on the underlying
228     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
229     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230     error will be raised).
231    
232     There are three variants of the timeouts that work fully independent
233     of each other, for both read and write, just read, and just write:
234     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
237 root 1.43
238     Note that timeout processing is also active when you currently do not have
239     any outstanding read or write requests: If you plan to keep the connection
240     idle then you should disable the timout temporarily or ignore the timeout
241 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242     restart the timeout.
243 root 1.43
244     Zero (the default) disables this timeout.
245    
246     =item on_timeout => $cb->($handle)
247    
248     Called whenever the inactivity timeout passes. If you return from this
249     callback, then the timeout will be reset as if some activity had happened,
250     so this condition is not fatal in any way.
251    
252 root 1.8 =item rbuf_max => <bytes>
253 elmex 1.2
254 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
255     when the read buffer ever (strictly) exceeds this size. This is useful to
256 root 1.88 avoid some forms of denial-of-service attacks.
257 elmex 1.2
258 root 1.8 For example, a server accepting connections from untrusted sources should
259     be configured to accept only so-and-so much data that it cannot act on
260     (for example, when expecting a line, an attacker could send an unlimited
261     amount of data without a callback ever being called as long as the line
262     isn't finished).
263 elmex 1.2
264 root 1.70 =item autocork => <boolean>
265    
266     When disabled (the default), then C<push_write> will try to immediately
267 root 1.88 write the data to the handle, if possible. This avoids having to register
268     a write watcher and wait for the next event loop iteration, but can
269     be inefficient if you write multiple small chunks (on the wire, this
270     disadvantage is usually avoided by your kernel's nagle algorithm, see
271     C<no_delay>, but this option can save costly syscalls).
272 root 1.70
273     When enabled, then writes will always be queued till the next event loop
274     iteration. This is efficient when you do many small writes per iteration,
275 root 1.88 but less efficient when you do a single write only per iteration (or when
276     the write buffer often is full). It also increases write latency.
277 root 1.70
278     =item no_delay => <boolean>
279    
280     When doing small writes on sockets, your operating system kernel might
281     wait a bit for more data before actually sending it out. This is called
282     the Nagle algorithm, and usually it is beneficial.
283    
284 root 1.88 In some situations you want as low a delay as possible, which can be
285     accomplishd by setting this option to a true value.
286 root 1.70
287 root 1.88 The default is your opertaing system's default behaviour (most likely
288     enabled), this option explicitly enables or disables it, if possible.
289 root 1.70
290 root 1.8 =item read_size => <bytes>
291 elmex 1.2
292 root 1.88 The default read block size (the amount of bytes this module will
293     try to read during each loop iteration, which affects memory
294     requirements). Default: C<8192>.
295 root 1.8
296     =item low_water_mark => <bytes>
297    
298     Sets the amount of bytes (default: C<0>) that make up an "empty" write
299     buffer: If the write reaches this size or gets even samller it is
300     considered empty.
301 elmex 1.2
302 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
303     the write buffer before it is fully drained, but this is a rare case, as
304     the operating system kernel usually buffers data as well, so the default
305     is good in almost all cases.
306    
307 root 1.62 =item linger => <seconds>
308    
309     If non-zero (default: C<3600>), then the destructor of the
310 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
311     write data and will install a watcher that will write this data to the
312     socket. No errors will be reported (this mostly matches how the operating
313     system treats outstanding data at socket close time).
314 root 1.62
315 root 1.88 This will not work for partial TLS data that could not be encoded
316 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
317     help.
318 root 1.62
319 root 1.133 =item peername => $string
320    
321 root 1.134 A string used to identify the remote site - usually the DNS hostname
322     (I<not> IDN!) used to create the connection, rarely the IP address.
323 root 1.131
324 root 1.133 Apart from being useful in error messages, this string is also used in TLS
325 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326     verification will be skipped when C<peername> is not specified or
327     C<undef>.
328 root 1.131
329 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
330    
331 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
332 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
333     established and will transparently encrypt/decrypt data afterwards.
334 root 1.19
335 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
336     appropriate error message.
337    
338 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
339 root 1.88 automatically when you try to create a TLS handle): this module doesn't
340     have a dependency on that module, so if your module requires it, you have
341     to add the dependency yourself.
342 root 1.26
343 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
344     C<accept>, and for the TLS client side of a connection, use C<connect>
345     mode.
346 root 1.19
347     You can also provide your own TLS connection object, but you have
348     to make sure that you call either C<Net::SSLeay::set_connect_state>
349     or C<Net::SSLeay::set_accept_state> on it before you pass it to
350 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
351     object.
352    
353     At some future point, AnyEvent::Handle might switch to another TLS
354     implementation, then the option to use your own session object will go
355     away.
356 root 1.19
357 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358     passing in the wrong integer will lead to certain crash. This most often
359     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360     segmentation fault.
361    
362 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
363 root 1.26
364 root 1.131 =item tls_ctx => $anyevent_tls
365 root 1.19
366 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
367 root 1.19 (unless a connection object was specified directly). If this parameter is
368     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
369    
370 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
371     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372     new TLS context object.
373    
374 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
375 root 1.142
376     This callback will be invoked when the TLS/SSL handshake has finished. If
377     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378     (C<on_stoptls> will not be called in this case).
379    
380     The session in C<< $handle->{tls} >> can still be examined in this
381     callback, even when the handshake was not successful.
382    
383 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
384     callback is in effect, instead, the error message will be passed to C<on_starttls>.
385    
386     Without this callback, handshake failures lead to C<on_error> being
387     called, as normal.
388    
389     Note that you cannot call C<starttls> right again in this callback. If you
390     need to do that, start an zero-second timer instead whose callback can
391     then call C<< ->starttls >> again.
392    
393 root 1.142 =item on_stoptls => $cb->($handle)
394    
395     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396     set, then it will be invoked after freeing the TLS session. If it is not,
397     then a TLS shutdown condition will be treated like a normal EOF condition
398     on the handle.
399    
400     The session in C<< $handle->{tls} >> can still be examined in this
401     callback.
402    
403     This callback will only be called on TLS shutdowns, not when the
404     underlying handle signals EOF.
405    
406 root 1.40 =item json => JSON or JSON::XS object
407    
408     This is the json coder object used by the C<json> read and write types.
409    
410 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
411 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
412     texts.
413 root 1.40
414     Note that you are responsible to depend on the JSON module if you want to
415     use this functionality, as AnyEvent does not have a dependency itself.
416    
417 elmex 1.1 =back
418    
419     =cut
420    
421     sub new {
422 root 1.8 my $class = shift;
423     my $self = bless { @_ }, $class;
424    
425 root 1.159 if ($self->{fh}) {
426     $self->_start;
427     return unless $self->{fh}; # could be gone by now
428    
429     } elsif ($self->{connect}) {
430     require AnyEvent::Socket;
431    
432     $self->{peername} = $self->{connect}[0]
433     unless exists $self->{peername};
434    
435     $self->{_skip_drain_rbuf} = 1;
436    
437     {
438     Scalar::Util::weaken (my $self = $self);
439    
440     $self->{_connect} =
441     AnyEvent::Socket::tcp_connect (
442     $self->{connect}[0],
443     $self->{connect}[1],
444     sub {
445     my ($fh, $host, $port, $retry) = @_;
446    
447     if ($fh) {
448     $self->{fh} = $fh;
449    
450     delete $self->{_skip_drain_rbuf};
451     $self->_start;
452    
453     $self->{on_connect}
454     and $self->{on_connect}($self, $host, $port, sub {
455 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 root 1.159 $self->{_skip_drain_rbuf} = 1;
457     &$retry;
458     });
459    
460     } else {
461     if ($self->{on_connect_error}) {
462     $self->{on_connect_error}($self, "$!");
463     $self->destroy;
464     } else {
465 root 1.161 $self->_error ($!, 1);
466 root 1.159 }
467     }
468     },
469     sub {
470     local $self->{fh} = $_[0];
471    
472 root 1.161 $self->{on_prepare}
473     ? $self->{on_prepare}->($self)
474     : ()
475 root 1.159 }
476     );
477     }
478    
479     } else {
480     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481     }
482    
483     $self
484     }
485    
486     sub _start {
487     my ($self) = @_;
488 root 1.8
489     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
490 elmex 1.1
491 root 1.176 $self->{_activity} =
492     $self->{_ractivity} =
493     $self->{_wactivity} = AE::now;
494    
495     $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496     $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497     $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498 root 1.131
499     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500    
501 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502     if $self->{tls};
503 root 1.19
504 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505 root 1.10
506 root 1.66 $self->start_read
507 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
508 root 1.160
509     $self->_drain_wbuf;
510 root 1.8 }
511 elmex 1.2
512 root 1.52 sub _error {
513 root 1.133 my ($self, $errno, $fatal, $message) = @_;
514 root 1.8
515 root 1.52 $! = $errno;
516 root 1.133 $message ||= "$!";
517 root 1.37
518 root 1.52 if ($self->{on_error}) {
519 root 1.133 $self->{on_error}($self, $fatal, $message);
520 root 1.151 $self->destroy if $fatal;
521 root 1.100 } elsif ($self->{fh}) {
522 root 1.149 $self->destroy;
523 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
524 root 1.52 }
525 elmex 1.1 }
526    
527 root 1.8 =item $fh = $handle->fh
528 elmex 1.1
529 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
530 elmex 1.1
531     =cut
532    
533 root 1.38 sub fh { $_[0]{fh} }
534 elmex 1.1
535 root 1.8 =item $handle->on_error ($cb)
536 elmex 1.1
537 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
538 elmex 1.1
539 root 1.8 =cut
540    
541     sub on_error {
542     $_[0]{on_error} = $_[1];
543     }
544    
545     =item $handle->on_eof ($cb)
546    
547     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
548 elmex 1.1
549     =cut
550    
551 root 1.8 sub on_eof {
552     $_[0]{on_eof} = $_[1];
553     }
554    
555 root 1.43 =item $handle->on_timeout ($cb)
556    
557 root 1.176 =item $handle->on_rtimeout ($cb)
558    
559     =item $handle->on_wtimeout ($cb)
560    
561     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
562     callback, or disables the callback (but not the timeout) if C<$cb> =
563     C<undef>. See the C<timeout> constructor argument and method.
564 root 1.43
565     =cut
566    
567 root 1.176 # see below
568 root 1.43
569 root 1.70 =item $handle->autocork ($boolean)
570    
571     Enables or disables the current autocork behaviour (see C<autocork>
572 root 1.105 constructor argument). Changes will only take effect on the next write.
573 root 1.70
574     =cut
575    
576 root 1.105 sub autocork {
577     $_[0]{autocork} = $_[1];
578     }
579    
580 root 1.70 =item $handle->no_delay ($boolean)
581    
582     Enables or disables the C<no_delay> setting (see constructor argument of
583     the same name for details).
584    
585     =cut
586    
587     sub no_delay {
588     $_[0]{no_delay} = $_[1];
589    
590     eval {
591     local $SIG{__DIE__};
592 root 1.159 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593     if $_[0]{fh};
594 root 1.70 };
595     }
596    
597 root 1.142 =item $handle->on_starttls ($cb)
598    
599     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600    
601     =cut
602    
603     sub on_starttls {
604     $_[0]{on_starttls} = $_[1];
605     }
606    
607     =item $handle->on_stoptls ($cb)
608    
609     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610    
611     =cut
612    
613     sub on_starttls {
614     $_[0]{on_stoptls} = $_[1];
615     }
616    
617 root 1.168 =item $handle->rbuf_max ($max_octets)
618    
619     Configures the C<rbuf_max> setting (C<undef> disables it).
620    
621     =cut
622    
623     sub rbuf_max {
624     $_[0]{rbuf_max} = $_[1];
625     }
626    
627 root 1.43 #############################################################################
628    
629     =item $handle->timeout ($seconds)
630    
631 root 1.176 =item $handle->rtimeout ($seconds)
632    
633     =item $handle->wtimeout ($seconds)
634    
635 root 1.43 Configures (or disables) the inactivity timeout.
636    
637 root 1.176 =item $handle->timeout_reset
638    
639     =item $handle->rtimeout_reset
640    
641     =item $handle->wtimeout_reset
642    
643     Reset the activity timeout, as if data was received or sent.
644    
645     These methods are cheap to call.
646    
647 root 1.43 =cut
648    
649 root 1.176 for my $dir ("", "r", "w") {
650     my $timeout = "${dir}timeout";
651     my $tw = "_${dir}tw";
652     my $on_timeout = "on_${dir}timeout";
653     my $activity = "_${dir}activity";
654     my $cb;
655    
656     *$on_timeout = sub {
657     $_[0]{$on_timeout} = $_[1];
658     };
659    
660     *$timeout = sub {
661     my ($self, $new_value) = @_;
662 root 1.43
663 root 1.176 $self->{$timeout} = $new_value;
664     delete $self->{$tw}; &$cb;
665     };
666 root 1.43
667 root 1.176 *{"${dir}timeout_reset"} = sub {
668     $_[0]{$activity} = AE::now;
669     };
670 root 1.43
671 root 1.176 # main workhorse:
672     # reset the timeout watcher, as neccessary
673     # also check for time-outs
674     $cb = sub {
675     my ($self) = @_;
676    
677     if ($self->{$timeout} && $self->{fh}) {
678     my $NOW = AE::now;
679    
680     # when would the timeout trigger?
681     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
682    
683     # now or in the past already?
684     if ($after <= 0) {
685     $self->{$activity} = $NOW;
686 root 1.43
687 root 1.176 if ($self->{$on_timeout}) {
688     $self->{$on_timeout}($self);
689     } else {
690     $self->_error (Errno::ETIMEDOUT);
691     }
692 root 1.43
693 root 1.176 # callback could have changed timeout value, optimise
694     return unless $self->{$timeout};
695 root 1.43
696 root 1.176 # calculate new after
697     $after = $self->{$timeout};
698 root 1.43 }
699    
700 root 1.176 Scalar::Util::weaken $self;
701     return unless $self; # ->error could have destroyed $self
702 root 1.43
703 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
704     delete $self->{$tw};
705     $cb->($self);
706     };
707     } else {
708     delete $self->{$tw};
709 root 1.43 }
710     }
711     }
712    
713 root 1.9 #############################################################################
714    
715     =back
716    
717     =head2 WRITE QUEUE
718    
719     AnyEvent::Handle manages two queues per handle, one for writing and one
720     for reading.
721    
722     The write queue is very simple: you can add data to its end, and
723     AnyEvent::Handle will automatically try to get rid of it for you.
724    
725 elmex 1.20 When data could be written and the write buffer is shorter then the low
726 root 1.9 water mark, the C<on_drain> callback will be invoked.
727    
728     =over 4
729    
730 root 1.8 =item $handle->on_drain ($cb)
731    
732     Sets the C<on_drain> callback or clears it (see the description of
733     C<on_drain> in the constructor).
734    
735     =cut
736    
737     sub on_drain {
738 elmex 1.1 my ($self, $cb) = @_;
739    
740 root 1.8 $self->{on_drain} = $cb;
741    
742     $cb->($self)
743 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
744 root 1.8 }
745    
746     =item $handle->push_write ($data)
747    
748     Queues the given scalar to be written. You can push as much data as you
749     want (only limited by the available memory), as C<AnyEvent::Handle>
750     buffers it independently of the kernel.
751    
752     =cut
753    
754 root 1.17 sub _drain_wbuf {
755     my ($self) = @_;
756 root 1.8
757 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
758 root 1.35
759 root 1.8 Scalar::Util::weaken $self;
760 root 1.35
761 root 1.8 my $cb = sub {
762     my $len = syswrite $self->{fh}, $self->{wbuf};
763    
764 root 1.146 if (defined $len) {
765 root 1.8 substr $self->{wbuf}, 0, $len, "";
766    
767 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
768 root 1.43
769 root 1.8 $self->{on_drain}($self)
770 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
771 root 1.8 && $self->{on_drain};
772    
773 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
774 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
775 root 1.52 $self->_error ($!, 1);
776 elmex 1.1 }
777 root 1.8 };
778    
779 root 1.35 # try to write data immediately
780 root 1.70 $cb->() unless $self->{autocork};
781 root 1.8
782 root 1.35 # if still data left in wbuf, we need to poll
783 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
784 root 1.35 if length $self->{wbuf};
785 root 1.8 };
786     }
787    
788 root 1.30 our %WH;
789    
790     sub register_write_type($$) {
791     $WH{$_[0]} = $_[1];
792     }
793    
794 root 1.17 sub push_write {
795     my $self = shift;
796    
797 root 1.29 if (@_ > 1) {
798     my $type = shift;
799    
800     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
801     ->($self, @_);
802     }
803    
804 root 1.93 if ($self->{tls}) {
805     $self->{_tls_wbuf} .= $_[0];
806 root 1.160 &_dotls ($self) if $self->{fh};
807 root 1.17 } else {
808 root 1.160 $self->{wbuf} .= $_[0];
809 root 1.159 $self->_drain_wbuf if $self->{fh};
810 root 1.17 }
811     }
812    
813 root 1.29 =item $handle->push_write (type => @args)
814    
815     Instead of formatting your data yourself, you can also let this module do
816     the job by specifying a type and type-specific arguments.
817    
818 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
819     drop by and tell us):
820 root 1.29
821     =over 4
822    
823     =item netstring => $string
824    
825     Formats the given value as netstring
826     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
827    
828     =cut
829    
830     register_write_type netstring => sub {
831     my ($self, $string) = @_;
832    
833 root 1.96 (length $string) . ":$string,"
834 root 1.29 };
835    
836 root 1.61 =item packstring => $format, $data
837    
838     An octet string prefixed with an encoded length. The encoding C<$format>
839     uses the same format as a Perl C<pack> format, but must specify a single
840     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
841     optional C<!>, C<< < >> or C<< > >> modifier).
842    
843     =cut
844    
845     register_write_type packstring => sub {
846     my ($self, $format, $string) = @_;
847    
848 root 1.65 pack "$format/a*", $string
849 root 1.61 };
850    
851 root 1.39 =item json => $array_or_hashref
852    
853 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
854     provide your own JSON object, this means it will be encoded to JSON text
855     in UTF-8.
856    
857     JSON objects (and arrays) are self-delimiting, so you can write JSON at
858     one end of a handle and read them at the other end without using any
859     additional framing.
860    
861 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
862     this module doesn't need delimiters after or between JSON texts to be
863     able to read them, many other languages depend on that.
864    
865     A simple RPC protocol that interoperates easily with others is to send
866     JSON arrays (or objects, although arrays are usually the better choice as
867     they mimic how function argument passing works) and a newline after each
868     JSON text:
869    
870     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
871     $handle->push_write ("\012");
872    
873     An AnyEvent::Handle receiver would simply use the C<json> read type and
874     rely on the fact that the newline will be skipped as leading whitespace:
875    
876     $handle->push_read (json => sub { my $array = $_[1]; ... });
877    
878     Other languages could read single lines terminated by a newline and pass
879     this line into their JSON decoder of choice.
880    
881 root 1.40 =cut
882    
883     register_write_type json => sub {
884     my ($self, $ref) = @_;
885    
886     require JSON;
887    
888     $self->{json} ? $self->{json}->encode ($ref)
889     : JSON::encode_json ($ref)
890     };
891    
892 root 1.63 =item storable => $reference
893    
894     Freezes the given reference using L<Storable> and writes it to the
895     handle. Uses the C<nfreeze> format.
896    
897     =cut
898    
899     register_write_type storable => sub {
900     my ($self, $ref) = @_;
901    
902     require Storable;
903    
904 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
905 root 1.63 };
906    
907 root 1.53 =back
908    
909 root 1.133 =item $handle->push_shutdown
910    
911     Sometimes you know you want to close the socket after writing your data
912     before it was actually written. One way to do that is to replace your
913 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
914     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
915     replaces the C<on_drain> callback with:
916 root 1.133
917     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
918    
919     This simply shuts down the write side and signals an EOF condition to the
920     the peer.
921    
922     You can rely on the normal read queue and C<on_eof> handling
923     afterwards. This is the cleanest way to close a connection.
924    
925     =cut
926    
927     sub push_shutdown {
928 root 1.142 my ($self) = @_;
929    
930     delete $self->{low_water_mark};
931     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
932 root 1.133 }
933    
934 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
935 root 1.30
936     This function (not method) lets you add your own types to C<push_write>.
937     Whenever the given C<type> is used, C<push_write> will invoke the code
938     reference with the handle object and the remaining arguments.
939 root 1.29
940 root 1.30 The code reference is supposed to return a single octet string that will
941     be appended to the write buffer.
942 root 1.29
943 root 1.30 Note that this is a function, and all types registered this way will be
944     global, so try to use unique names.
945 root 1.29
946 root 1.30 =cut
947 root 1.29
948 root 1.8 #############################################################################
949    
950 root 1.9 =back
951    
952     =head2 READ QUEUE
953    
954     AnyEvent::Handle manages two queues per handle, one for writing and one
955     for reading.
956    
957     The read queue is more complex than the write queue. It can be used in two
958     ways, the "simple" way, using only C<on_read> and the "complex" way, using
959     a queue.
960    
961     In the simple case, you just install an C<on_read> callback and whenever
962     new data arrives, it will be called. You can then remove some data (if
963 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
964     leave the data there if you want to accumulate more (e.g. when only a
965     partial message has been received so far).
966 root 1.9
967     In the more complex case, you want to queue multiple callbacks. In this
968     case, AnyEvent::Handle will call the first queued callback each time new
969 root 1.61 data arrives (also the first time it is queued) and removes it when it has
970     done its job (see C<push_read>, below).
971 root 1.9
972     This way you can, for example, push three line-reads, followed by reading
973     a chunk of data, and AnyEvent::Handle will execute them in order.
974    
975     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
976     the specified number of bytes which give an XML datagram.
977    
978     # in the default state, expect some header bytes
979     $handle->on_read (sub {
980     # some data is here, now queue the length-header-read (4 octets)
981 root 1.52 shift->unshift_read (chunk => 4, sub {
982 root 1.9 # header arrived, decode
983     my $len = unpack "N", $_[1];
984    
985     # now read the payload
986 root 1.52 shift->unshift_read (chunk => $len, sub {
987 root 1.9 my $xml = $_[1];
988     # handle xml
989     });
990     });
991     });
992    
993 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
994     and another line or "ERROR" for the first request that is sent, and 64
995     bytes for the second request. Due to the availability of a queue, we can
996     just pipeline sending both requests and manipulate the queue as necessary
997     in the callbacks.
998    
999     When the first callback is called and sees an "OK" response, it will
1000     C<unshift> another line-read. This line-read will be queued I<before> the
1001     64-byte chunk callback.
1002 root 1.9
1003 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1004 root 1.9 $handle->push_write ("request 1\015\012");
1005    
1006     # we expect "ERROR" or "OK" as response, so push a line read
1007 root 1.52 $handle->push_read (line => sub {
1008 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1009     # so it will be read before the second request reads its 64 bytes
1010     # which are already in the queue when this callback is called
1011     # we don't do this in case we got an error
1012     if ($_[1] eq "OK") {
1013 root 1.52 $_[0]->unshift_read (line => sub {
1014 root 1.9 my $response = $_[1];
1015     ...
1016     });
1017     }
1018     });
1019    
1020 root 1.69 # request two, simply returns 64 octets
1021 root 1.9 $handle->push_write ("request 2\015\012");
1022    
1023     # simply read 64 bytes, always
1024 root 1.52 $handle->push_read (chunk => 64, sub {
1025 root 1.9 my $response = $_[1];
1026     ...
1027     });
1028    
1029     =over 4
1030    
1031 root 1.10 =cut
1032    
1033 root 1.8 sub _drain_rbuf {
1034     my ($self) = @_;
1035 elmex 1.1
1036 root 1.159 # avoid recursion
1037 root 1.167 return if $self->{_skip_drain_rbuf};
1038 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1039 root 1.59
1040     while () {
1041 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1042     # we are draining the buffer, and this can only happen with TLS.
1043 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1044     if exists $self->{_tls_rbuf};
1045 root 1.115
1046 root 1.59 my $len = length $self->{rbuf};
1047 elmex 1.1
1048 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1049 root 1.29 unless ($cb->($self)) {
1050 root 1.163 # no progress can be made
1051     # (not enough data and no data forthcoming)
1052     $self->_error (Errno::EPIPE, 1), return
1053     if $self->{_eof};
1054 root 1.10
1055 root 1.38 unshift @{ $self->{_queue} }, $cb;
1056 root 1.55 last;
1057 root 1.8 }
1058     } elsif ($self->{on_read}) {
1059 root 1.61 last unless $len;
1060    
1061 root 1.8 $self->{on_read}($self);
1062    
1063     if (
1064 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1065     && !@{ $self->{_queue} } # and the queue is still empty
1066     && $self->{on_read} # but we still have on_read
1067 root 1.8 ) {
1068 root 1.55 # no further data will arrive
1069     # so no progress can be made
1070 root 1.150 $self->_error (Errno::EPIPE, 1), return
1071 root 1.55 if $self->{_eof};
1072    
1073     last; # more data might arrive
1074 elmex 1.1 }
1075 root 1.8 } else {
1076     # read side becomes idle
1077 root 1.93 delete $self->{_rw} unless $self->{tls};
1078 root 1.55 last;
1079 root 1.8 }
1080     }
1081    
1082 root 1.80 if ($self->{_eof}) {
1083 root 1.163 $self->{on_eof}
1084     ? $self->{on_eof}($self)
1085     : $self->_error (0, 1, "Unexpected end-of-file");
1086    
1087     return;
1088 root 1.80 }
1089 root 1.55
1090 root 1.169 if (
1091     defined $self->{rbuf_max}
1092     && $self->{rbuf_max} < length $self->{rbuf}
1093     ) {
1094     $self->_error (Errno::ENOSPC, 1), return;
1095     }
1096    
1097 root 1.55 # may need to restart read watcher
1098     unless ($self->{_rw}) {
1099     $self->start_read
1100     if $self->{on_read} || @{ $self->{_queue} };
1101     }
1102 elmex 1.1 }
1103    
1104 root 1.8 =item $handle->on_read ($cb)
1105 elmex 1.1
1106 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1107     the new callback is C<undef>). See the description of C<on_read> in the
1108     constructor.
1109 elmex 1.1
1110 root 1.8 =cut
1111    
1112     sub on_read {
1113     my ($self, $cb) = @_;
1114 elmex 1.1
1115 root 1.8 $self->{on_read} = $cb;
1116 root 1.159 $self->_drain_rbuf if $cb;
1117 elmex 1.1 }
1118    
1119 root 1.8 =item $handle->rbuf
1120    
1121     Returns the read buffer (as a modifiable lvalue).
1122 elmex 1.1
1123 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1124     member, if you want. However, the only operation allowed on the
1125     read buffer (apart from looking at it) is removing data from its
1126     beginning. Otherwise modifying or appending to it is not allowed and will
1127     lead to hard-to-track-down bugs.
1128 elmex 1.1
1129 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1130     C<push_read> or C<unshift_read> methods are used. The other read methods
1131     automatically manage the read buffer.
1132 elmex 1.1
1133     =cut
1134    
1135 elmex 1.2 sub rbuf : lvalue {
1136 root 1.8 $_[0]{rbuf}
1137 elmex 1.2 }
1138 elmex 1.1
1139 root 1.8 =item $handle->push_read ($cb)
1140    
1141     =item $handle->unshift_read ($cb)
1142    
1143     Append the given callback to the end of the queue (C<push_read>) or
1144     prepend it (C<unshift_read>).
1145    
1146     The callback is called each time some additional read data arrives.
1147 elmex 1.1
1148 elmex 1.20 It must check whether enough data is in the read buffer already.
1149 elmex 1.1
1150 root 1.8 If not enough data is available, it must return the empty list or a false
1151     value, in which case it will be called repeatedly until enough data is
1152     available (or an error condition is detected).
1153    
1154     If enough data was available, then the callback must remove all data it is
1155     interested in (which can be none at all) and return a true value. After returning
1156     true, it will be removed from the queue.
1157 elmex 1.1
1158     =cut
1159    
1160 root 1.30 our %RH;
1161    
1162     sub register_read_type($$) {
1163     $RH{$_[0]} = $_[1];
1164     }
1165    
1166 root 1.8 sub push_read {
1167 root 1.28 my $self = shift;
1168     my $cb = pop;
1169    
1170     if (@_) {
1171     my $type = shift;
1172    
1173     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1174     ->($self, $cb, @_);
1175     }
1176 elmex 1.1
1177 root 1.38 push @{ $self->{_queue} }, $cb;
1178 root 1.159 $self->_drain_rbuf;
1179 elmex 1.1 }
1180    
1181 root 1.8 sub unshift_read {
1182 root 1.28 my $self = shift;
1183     my $cb = pop;
1184    
1185     if (@_) {
1186     my $type = shift;
1187    
1188     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1189     ->($self, $cb, @_);
1190     }
1191    
1192 root 1.8
1193 root 1.38 unshift @{ $self->{_queue} }, $cb;
1194 root 1.159 $self->_drain_rbuf;
1195 root 1.8 }
1196 elmex 1.1
1197 root 1.28 =item $handle->push_read (type => @args, $cb)
1198 elmex 1.1
1199 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1200 elmex 1.1
1201 root 1.28 Instead of providing a callback that parses the data itself you can chose
1202     between a number of predefined parsing formats, for chunks of data, lines
1203     etc.
1204 elmex 1.1
1205 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1206     drop by and tell us):
1207 root 1.28
1208     =over 4
1209    
1210 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1211 root 1.28
1212     Invoke the callback only once C<$octets> bytes have been read. Pass the
1213     data read to the callback. The callback will never be called with less
1214     data.
1215    
1216     Example: read 2 bytes.
1217    
1218     $handle->push_read (chunk => 2, sub {
1219     warn "yay ", unpack "H*", $_[1];
1220     });
1221 elmex 1.1
1222     =cut
1223    
1224 root 1.28 register_read_type chunk => sub {
1225     my ($self, $cb, $len) = @_;
1226 elmex 1.1
1227 root 1.8 sub {
1228     $len <= length $_[0]{rbuf} or return;
1229 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1230 root 1.8 1
1231     }
1232 root 1.28 };
1233 root 1.8
1234 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1235 elmex 1.1
1236 root 1.8 The callback will be called only once a full line (including the end of
1237     line marker, C<$eol>) has been read. This line (excluding the end of line
1238     marker) will be passed to the callback as second argument (C<$line>), and
1239     the end of line marker as the third argument (C<$eol>).
1240 elmex 1.1
1241 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1242     will be interpreted as a fixed record end marker, or it can be a regex
1243     object (e.g. created by C<qr>), in which case it is interpreted as a
1244     regular expression.
1245 elmex 1.1
1246 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1247     undef), then C<qr|\015?\012|> is used (which is good for most internet
1248     protocols).
1249 elmex 1.1
1250 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1251     not marked by the end of line marker.
1252 elmex 1.1
1253 root 1.8 =cut
1254 elmex 1.1
1255 root 1.28 register_read_type line => sub {
1256     my ($self, $cb, $eol) = @_;
1257 elmex 1.1
1258 root 1.76 if (@_ < 3) {
1259     # this is more than twice as fast as the generic code below
1260     sub {
1261     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1262 elmex 1.1
1263 root 1.76 $cb->($_[0], $1, $2);
1264     1
1265     }
1266     } else {
1267     $eol = quotemeta $eol unless ref $eol;
1268     $eol = qr|^(.*?)($eol)|s;
1269    
1270     sub {
1271     $_[0]{rbuf} =~ s/$eol// or return;
1272 elmex 1.1
1273 root 1.76 $cb->($_[0], $1, $2);
1274     1
1275     }
1276 root 1.8 }
1277 root 1.28 };
1278 elmex 1.1
1279 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1280 root 1.36
1281     Makes a regex match against the regex object C<$accept> and returns
1282     everything up to and including the match.
1283    
1284     Example: read a single line terminated by '\n'.
1285    
1286     $handle->push_read (regex => qr<\n>, sub { ... });
1287    
1288     If C<$reject> is given and not undef, then it determines when the data is
1289     to be rejected: it is matched against the data when the C<$accept> regex
1290     does not match and generates an C<EBADMSG> error when it matches. This is
1291     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1292     receive buffer overflow).
1293    
1294     Example: expect a single decimal number followed by whitespace, reject
1295     anything else (not the use of an anchor).
1296    
1297     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1298    
1299     If C<$skip> is given and not C<undef>, then it will be matched against
1300     the receive buffer when neither C<$accept> nor C<$reject> match,
1301     and everything preceding and including the match will be accepted
1302     unconditionally. This is useful to skip large amounts of data that you
1303     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1304     have to start matching from the beginning. This is purely an optimisation
1305     and is usually worth only when you expect more than a few kilobytes.
1306    
1307     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1308     expect the header to be very large (it isn't in practise, but...), we use
1309     a skip regex to skip initial portions. The skip regex is tricky in that
1310     it only accepts something not ending in either \015 or \012, as these are
1311     required for the accept regex.
1312    
1313     $handle->push_read (regex =>
1314     qr<\015\012\015\012>,
1315     undef, # no reject
1316     qr<^.*[^\015\012]>,
1317     sub { ... });
1318    
1319     =cut
1320    
1321     register_read_type regex => sub {
1322     my ($self, $cb, $accept, $reject, $skip) = @_;
1323    
1324     my $data;
1325     my $rbuf = \$self->{rbuf};
1326    
1327     sub {
1328     # accept
1329     if ($$rbuf =~ $accept) {
1330     $data .= substr $$rbuf, 0, $+[0], "";
1331     $cb->($self, $data);
1332     return 1;
1333     }
1334    
1335     # reject
1336     if ($reject && $$rbuf =~ $reject) {
1337 root 1.150 $self->_error (Errno::EBADMSG);
1338 root 1.36 }
1339    
1340     # skip
1341     if ($skip && $$rbuf =~ $skip) {
1342     $data .= substr $$rbuf, 0, $+[0], "";
1343     }
1344    
1345     ()
1346     }
1347     };
1348    
1349 root 1.61 =item netstring => $cb->($handle, $string)
1350    
1351     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1352    
1353     Throws an error with C<$!> set to EBADMSG on format violations.
1354    
1355     =cut
1356    
1357     register_read_type netstring => sub {
1358     my ($self, $cb) = @_;
1359    
1360     sub {
1361     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1362     if ($_[0]{rbuf} =~ /[^0-9]/) {
1363 root 1.150 $self->_error (Errno::EBADMSG);
1364 root 1.61 }
1365     return;
1366     }
1367    
1368     my $len = $1;
1369    
1370     $self->unshift_read (chunk => $len, sub {
1371     my $string = $_[1];
1372     $_[0]->unshift_read (chunk => 1, sub {
1373     if ($_[1] eq ",") {
1374     $cb->($_[0], $string);
1375     } else {
1376 root 1.150 $self->_error (Errno::EBADMSG);
1377 root 1.61 }
1378     });
1379     });
1380    
1381     1
1382     }
1383     };
1384    
1385     =item packstring => $format, $cb->($handle, $string)
1386    
1387     An octet string prefixed with an encoded length. The encoding C<$format>
1388     uses the same format as a Perl C<pack> format, but must specify a single
1389     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1390     optional C<!>, C<< < >> or C<< > >> modifier).
1391    
1392 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1393     EPP uses a prefix of C<N> (4 octtes).
1394 root 1.61
1395     Example: read a block of data prefixed by its length in BER-encoded
1396     format (very efficient).
1397    
1398     $handle->push_read (packstring => "w", sub {
1399     my ($handle, $data) = @_;
1400     });
1401    
1402     =cut
1403    
1404     register_read_type packstring => sub {
1405     my ($self, $cb, $format) = @_;
1406    
1407     sub {
1408     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1409 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1410 root 1.61 or return;
1411    
1412 root 1.77 $format = length pack $format, $len;
1413 root 1.61
1414 root 1.77 # bypass unshift if we already have the remaining chunk
1415     if ($format + $len <= length $_[0]{rbuf}) {
1416     my $data = substr $_[0]{rbuf}, $format, $len;
1417     substr $_[0]{rbuf}, 0, $format + $len, "";
1418     $cb->($_[0], $data);
1419     } else {
1420     # remove prefix
1421     substr $_[0]{rbuf}, 0, $format, "";
1422    
1423     # read remaining chunk
1424     $_[0]->unshift_read (chunk => $len, $cb);
1425     }
1426 root 1.61
1427     1
1428     }
1429     };
1430    
1431 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1432    
1433 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1434     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1435 root 1.40
1436     If a C<json> object was passed to the constructor, then that will be used
1437     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1438    
1439     This read type uses the incremental parser available with JSON version
1440     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1441     dependency on your own: this module will load the JSON module, but
1442     AnyEvent does not depend on it itself.
1443    
1444     Since JSON texts are fully self-delimiting, the C<json> read and write
1445 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1446     the C<json> write type description, above, for an actual example.
1447 root 1.40
1448     =cut
1449    
1450     register_read_type json => sub {
1451 root 1.63 my ($self, $cb) = @_;
1452 root 1.40
1453 root 1.135 my $json = $self->{json} ||=
1454     eval { require JSON::XS; JSON::XS->new->utf8 }
1455     || do { require JSON; JSON->new->utf8 };
1456 root 1.40
1457     my $data;
1458     my $rbuf = \$self->{rbuf};
1459    
1460     sub {
1461 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1462 root 1.110
1463 root 1.113 if ($ref) {
1464     $self->{rbuf} = $json->incr_text;
1465     $json->incr_text = "";
1466     $cb->($self, $ref);
1467 root 1.110
1468     1
1469 root 1.113 } elsif ($@) {
1470 root 1.111 # error case
1471 root 1.110 $json->incr_skip;
1472 root 1.40
1473     $self->{rbuf} = $json->incr_text;
1474     $json->incr_text = "";
1475    
1476 root 1.150 $self->_error (Errno::EBADMSG);
1477 root 1.114
1478 root 1.113 ()
1479     } else {
1480     $self->{rbuf} = "";
1481 root 1.114
1482 root 1.113 ()
1483     }
1484 root 1.40 }
1485     };
1486    
1487 root 1.63 =item storable => $cb->($handle, $ref)
1488    
1489     Deserialises a L<Storable> frozen representation as written by the
1490     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1491     data).
1492    
1493     Raises C<EBADMSG> error if the data could not be decoded.
1494    
1495     =cut
1496    
1497     register_read_type storable => sub {
1498     my ($self, $cb) = @_;
1499    
1500     require Storable;
1501    
1502     sub {
1503     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1504 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1505 root 1.63 or return;
1506    
1507 root 1.77 my $format = length pack "w", $len;
1508 root 1.63
1509 root 1.77 # bypass unshift if we already have the remaining chunk
1510     if ($format + $len <= length $_[0]{rbuf}) {
1511     my $data = substr $_[0]{rbuf}, $format, $len;
1512     substr $_[0]{rbuf}, 0, $format + $len, "";
1513     $cb->($_[0], Storable::thaw ($data));
1514     } else {
1515     # remove prefix
1516     substr $_[0]{rbuf}, 0, $format, "";
1517    
1518     # read remaining chunk
1519     $_[0]->unshift_read (chunk => $len, sub {
1520     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1521     $cb->($_[0], $ref);
1522     } else {
1523 root 1.150 $self->_error (Errno::EBADMSG);
1524 root 1.77 }
1525     });
1526     }
1527    
1528     1
1529 root 1.63 }
1530     };
1531    
1532 root 1.28 =back
1533    
1534 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1535 root 1.30
1536     This function (not method) lets you add your own types to C<push_read>.
1537    
1538     Whenever the given C<type> is used, C<push_read> will invoke the code
1539     reference with the handle object, the callback and the remaining
1540     arguments.
1541    
1542     The code reference is supposed to return a callback (usually a closure)
1543     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1544    
1545     It should invoke the passed callback when it is done reading (remember to
1546 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1547 root 1.30
1548     Note that this is a function, and all types registered this way will be
1549     global, so try to use unique names.
1550    
1551     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1552     search for C<register_read_type>)).
1553    
1554 root 1.10 =item $handle->stop_read
1555    
1556     =item $handle->start_read
1557    
1558 root 1.18 In rare cases you actually do not want to read anything from the
1559 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1560 root 1.22 any queued callbacks will be executed then. To start reading again, call
1561 root 1.10 C<start_read>.
1562    
1563 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1564     you change the C<on_read> callback or push/unshift a read callback, and it
1565     will automatically C<stop_read> for you when neither C<on_read> is set nor
1566     there are any read requests in the queue.
1567    
1568 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1569     half-duplex connections).
1570    
1571 root 1.10 =cut
1572    
1573     sub stop_read {
1574     my ($self) = @_;
1575 elmex 1.1
1576 root 1.93 delete $self->{_rw} unless $self->{tls};
1577 root 1.8 }
1578 elmex 1.1
1579 root 1.10 sub start_read {
1580     my ($self) = @_;
1581    
1582 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1583 root 1.10 Scalar::Util::weaken $self;
1584    
1585 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1586 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1587 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1588 root 1.10
1589     if ($len > 0) {
1590 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1591 root 1.43
1592 root 1.93 if ($self->{tls}) {
1593     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1594 root 1.97
1595 root 1.93 &_dotls ($self);
1596     } else {
1597 root 1.159 $self->_drain_rbuf;
1598 root 1.93 }
1599 root 1.10
1600     } elsif (defined $len) {
1601 root 1.38 delete $self->{_rw};
1602     $self->{_eof} = 1;
1603 root 1.159 $self->_drain_rbuf;
1604 root 1.10
1605 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1606 root 1.52 return $self->_error ($!, 1);
1607 root 1.10 }
1608 root 1.175 };
1609 root 1.10 }
1610 elmex 1.1 }
1611    
1612 root 1.133 our $ERROR_SYSCALL;
1613     our $ERROR_WANT_READ;
1614    
1615     sub _tls_error {
1616     my ($self, $err) = @_;
1617    
1618     return $self->_error ($!, 1)
1619     if $err == Net::SSLeay::ERROR_SYSCALL ();
1620    
1621 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1622    
1623     # reduce error string to look less scary
1624     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1625    
1626 root 1.143 if ($self->{_on_starttls}) {
1627     (delete $self->{_on_starttls})->($self, undef, $err);
1628     &_freetls;
1629     } else {
1630     &_freetls;
1631 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1632 root 1.143 }
1633 root 1.133 }
1634    
1635 root 1.97 # poll the write BIO and send the data if applicable
1636 root 1.133 # also decode read data if possible
1637     # this is basiclaly our TLS state machine
1638     # more efficient implementations are possible with openssl,
1639     # but not with the buggy and incomplete Net::SSLeay.
1640 root 1.19 sub _dotls {
1641     my ($self) = @_;
1642    
1643 root 1.97 my $tmp;
1644 root 1.56
1645 root 1.38 if (length $self->{_tls_wbuf}) {
1646 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1647     substr $self->{_tls_wbuf}, 0, $tmp, "";
1648 root 1.22 }
1649 root 1.133
1650     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1651     return $self->_tls_error ($tmp)
1652     if $tmp != $ERROR_WANT_READ
1653 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1654 root 1.19 }
1655    
1656 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1657     unless (length $tmp) {
1658 root 1.143 $self->{_on_starttls}
1659     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1660 root 1.92 &_freetls;
1661 root 1.143
1662 root 1.142 if ($self->{on_stoptls}) {
1663     $self->{on_stoptls}($self);
1664     return;
1665     } else {
1666     # let's treat SSL-eof as we treat normal EOF
1667     delete $self->{_rw};
1668     $self->{_eof} = 1;
1669     }
1670 root 1.56 }
1671 root 1.91
1672 root 1.116 $self->{_tls_rbuf} .= $tmp;
1673 root 1.159 $self->_drain_rbuf;
1674 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1675 root 1.23 }
1676    
1677 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1678 root 1.133 return $self->_tls_error ($tmp)
1679     if $tmp != $ERROR_WANT_READ
1680 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1681 root 1.91
1682 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1683     $self->{wbuf} .= $tmp;
1684 root 1.91 $self->_drain_wbuf;
1685     }
1686 root 1.142
1687     $self->{_on_starttls}
1688     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1689 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1690 root 1.19 }
1691    
1692 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1693    
1694     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1695     object is created, you can also do that at a later time by calling
1696     C<starttls>.
1697    
1698 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1699     write data and then call C<< ->starttls >> then TLS negotiation will start
1700     immediately, after which the queued write data is then sent.
1701    
1702 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1703     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1704    
1705 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1706     when AnyEvent::Handle has to create its own TLS connection object, or
1707     a hash reference with C<< key => value >> pairs that will be used to
1708     construct a new context.
1709    
1710     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1711     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1712     changed to your liking. Note that the handshake might have already started
1713     when this function returns.
1714 root 1.38
1715 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1716     handshakes on the same stream. Best do not attempt to use the stream after
1717     stopping TLS.
1718 root 1.92
1719 root 1.25 =cut
1720    
1721 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1722    
1723 root 1.19 sub starttls {
1724 root 1.160 my ($self, $tls, $ctx) = @_;
1725    
1726     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1727     if $self->{tls};
1728    
1729     $self->{tls} = $tls;
1730     $self->{tls_ctx} = $ctx if @_ > 2;
1731    
1732     return unless $self->{fh};
1733 root 1.19
1734 root 1.94 require Net::SSLeay;
1735    
1736 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1737     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1738 root 1.133
1739 root 1.160 $tls = $self->{tls};
1740     $ctx = $self->{tls_ctx};
1741 root 1.131
1742 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1743    
1744 root 1.131 if ("HASH" eq ref $ctx) {
1745     require AnyEvent::TLS;
1746    
1747 root 1.137 if ($ctx->{cache}) {
1748     my $key = $ctx+0;
1749     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1750     } else {
1751     $ctx = new AnyEvent::TLS %$ctx;
1752     }
1753 root 1.131 }
1754 root 1.92
1755 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1756 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1757 root 1.19
1758 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1759     # but the openssl maintainers basically said: "trust us, it just works".
1760     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1761     # and mismaintained ssleay-module doesn't even offer them).
1762 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1763 root 1.87 #
1764     # in short: this is a mess.
1765     #
1766 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1767 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1768 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1769     # have identity issues in that area.
1770 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1771     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1772     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1773 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1774 root 1.21
1775 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1776     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1777 root 1.19
1778 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1779    
1780 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1781 root 1.19
1782 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1783 root 1.143 if $self->{on_starttls};
1784 root 1.142
1785 root 1.93 &_dotls; # need to trigger the initial handshake
1786     $self->start_read; # make sure we actually do read
1787 root 1.19 }
1788    
1789 root 1.25 =item $handle->stoptls
1790    
1791 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1792     sending a close notify to the other side, but since OpenSSL doesn't
1793 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1794     the stream afterwards.
1795 root 1.25
1796     =cut
1797    
1798     sub stoptls {
1799     my ($self) = @_;
1800    
1801 root 1.92 if ($self->{tls}) {
1802 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1803 root 1.92
1804     &_dotls;
1805    
1806 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1807     # # we, we... have to use openssl :/#d#
1808     # &_freetls;#d#
1809 root 1.92 }
1810     }
1811    
1812     sub _freetls {
1813     my ($self) = @_;
1814    
1815     return unless $self->{tls};
1816 root 1.38
1817 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1818 root 1.171 if $self->{tls} > 0;
1819 root 1.92
1820 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1821 root 1.25 }
1822    
1823 root 1.19 sub DESTROY {
1824 root 1.120 my ($self) = @_;
1825 root 1.19
1826 root 1.92 &_freetls;
1827 root 1.62
1828     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1829    
1830 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1831 root 1.62 my $fh = delete $self->{fh};
1832     my $wbuf = delete $self->{wbuf};
1833    
1834     my @linger;
1835    
1836 root 1.175 push @linger, AE::io $fh, 1, sub {
1837 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1838    
1839     if ($len > 0) {
1840     substr $wbuf, 0, $len, "";
1841     } else {
1842     @linger = (); # end
1843     }
1844 root 1.175 };
1845     push @linger, AE::timer $linger, 0, sub {
1846 root 1.62 @linger = ();
1847 root 1.175 };
1848 root 1.62 }
1849 root 1.19 }
1850    
1851 root 1.99 =item $handle->destroy
1852    
1853 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1854 root 1.141 no further callbacks will be invoked and as many resources as possible
1855 root 1.165 will be freed. Any method you will call on the handle object after
1856     destroying it in this way will be silently ignored (and it will return the
1857     empty list).
1858 root 1.99
1859 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1860     object and it will simply shut down. This works in fatal error and EOF
1861     callbacks, as well as code outside. It does I<NOT> work in a read or write
1862     callback, so when you want to destroy the AnyEvent::Handle object from
1863     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1864     that case.
1865    
1866 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1867     will be removed as well, so if those are the only reference holders (as
1868     is common), then one doesn't need to do anything special to break any
1869     reference cycles.
1870    
1871 root 1.99 The handle might still linger in the background and write out remaining
1872     data, as specified by the C<linger> option, however.
1873    
1874     =cut
1875    
1876     sub destroy {
1877     my ($self) = @_;
1878    
1879     $self->DESTROY;
1880     %$self = ();
1881 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
1882     }
1883    
1884 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
1885     #nop
1886 root 1.99 }
1887    
1888 root 1.19 =item AnyEvent::Handle::TLS_CTX
1889    
1890 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1891     for TLS mode.
1892 root 1.19
1893 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1894 root 1.19
1895     =cut
1896    
1897     our $TLS_CTX;
1898    
1899     sub TLS_CTX() {
1900 root 1.131 $TLS_CTX ||= do {
1901     require AnyEvent::TLS;
1902 root 1.19
1903 root 1.131 new AnyEvent::TLS
1904 root 1.19 }
1905     }
1906    
1907 elmex 1.1 =back
1908    
1909 root 1.95
1910     =head1 NONFREQUENTLY ASKED QUESTIONS
1911    
1912     =over 4
1913    
1914 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1915     still get further invocations!
1916    
1917     That's because AnyEvent::Handle keeps a reference to itself when handling
1918     read or write callbacks.
1919    
1920     It is only safe to "forget" the reference inside EOF or error callbacks,
1921     from within all other callbacks, you need to explicitly call the C<<
1922     ->destroy >> method.
1923    
1924     =item I get different callback invocations in TLS mode/Why can't I pause
1925     reading?
1926    
1927     Unlike, say, TCP, TLS connections do not consist of two independent
1928     communication channels, one for each direction. Or put differently. The
1929     read and write directions are not independent of each other: you cannot
1930     write data unless you are also prepared to read, and vice versa.
1931    
1932     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1933     callback invocations when you are not expecting any read data - the reason
1934     is that AnyEvent::Handle always reads in TLS mode.
1935    
1936     During the connection, you have to make sure that you always have a
1937     non-empty read-queue, or an C<on_read> watcher. At the end of the
1938     connection (or when you no longer want to use it) you can call the
1939     C<destroy> method.
1940    
1941 root 1.95 =item How do I read data until the other side closes the connection?
1942    
1943 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1944     to achieve this is by setting an C<on_read> callback that does nothing,
1945     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1946     will be in C<$_[0]{rbuf}>:
1947 root 1.95
1948     $handle->on_read (sub { });
1949     $handle->on_eof (undef);
1950     $handle->on_error (sub {
1951     my $data = delete $_[0]{rbuf};
1952     });
1953    
1954     The reason to use C<on_error> is that TCP connections, due to latencies
1955     and packets loss, might get closed quite violently with an error, when in
1956     fact, all data has been received.
1957    
1958 root 1.101 It is usually better to use acknowledgements when transferring data,
1959 root 1.95 to make sure the other side hasn't just died and you got the data
1960     intact. This is also one reason why so many internet protocols have an
1961     explicit QUIT command.
1962    
1963 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1964     all data has been written?
1965 root 1.95
1966     After writing your last bits of data, set the C<on_drain> callback
1967     and destroy the handle in there - with the default setting of
1968     C<low_water_mark> this will be called precisely when all data has been
1969     written to the socket:
1970    
1971     $handle->push_write (...);
1972     $handle->on_drain (sub {
1973     warn "all data submitted to the kernel\n";
1974     undef $handle;
1975     });
1976    
1977 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1978     consider using C<< ->push_shutdown >> instead.
1979    
1980     =item I want to contact a TLS/SSL server, I don't care about security.
1981    
1982     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1983     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1984     parameter:
1985    
1986 root 1.144 tcp_connect $host, $port, sub {
1987     my ($fh) = @_;
1988 root 1.143
1989 root 1.144 my $handle = new AnyEvent::Handle
1990     fh => $fh,
1991     tls => "connect",
1992     on_error => sub { ... };
1993    
1994     $handle->push_write (...);
1995     };
1996 root 1.143
1997     =item I want to contact a TLS/SSL server, I do care about security.
1998    
1999 root 1.144 Then you should additionally enable certificate verification, including
2000     peername verification, if the protocol you use supports it (see
2001     L<AnyEvent::TLS>, C<verify_peername>).
2002    
2003     E.g. for HTTPS:
2004    
2005     tcp_connect $host, $port, sub {
2006     my ($fh) = @_;
2007    
2008     my $handle = new AnyEvent::Handle
2009     fh => $fh,
2010     peername => $host,
2011     tls => "connect",
2012     tls_ctx => { verify => 1, verify_peername => "https" },
2013     ...
2014    
2015     Note that you must specify the hostname you connected to (or whatever
2016     "peername" the protocol needs) as the C<peername> argument, otherwise no
2017     peername verification will be done.
2018    
2019     The above will use the system-dependent default set of trusted CA
2020     certificates. If you want to check against a specific CA, add the
2021     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2022    
2023     tls_ctx => {
2024     verify => 1,
2025     verify_peername => "https",
2026     ca_file => "my-ca-cert.pem",
2027     },
2028    
2029     =item I want to create a TLS/SSL server, how do I do that?
2030    
2031     Well, you first need to get a server certificate and key. You have
2032     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2033     self-signed certificate (cheap. check the search engine of your choice,
2034     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2035     nice program for that purpose).
2036    
2037     Then create a file with your private key (in PEM format, see
2038     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2039     file should then look like this:
2040    
2041     -----BEGIN RSA PRIVATE KEY-----
2042     ...header data
2043     ... lots of base64'y-stuff
2044     -----END RSA PRIVATE KEY-----
2045    
2046     -----BEGIN CERTIFICATE-----
2047     ... lots of base64'y-stuff
2048     -----END CERTIFICATE-----
2049    
2050     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2051     specify this file as C<cert_file>:
2052    
2053     tcp_server undef, $port, sub {
2054     my ($fh) = @_;
2055    
2056     my $handle = new AnyEvent::Handle
2057     fh => $fh,
2058     tls => "accept",
2059     tls_ctx => { cert_file => "my-server-keycert.pem" },
2060     ...
2061 root 1.143
2062 root 1.144 When you have intermediate CA certificates that your clients might not
2063     know about, just append them to the C<cert_file>.
2064 root 1.143
2065 root 1.95 =back
2066    
2067    
2068 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2069    
2070     In many cases, you might want to subclass AnyEvent::Handle.
2071    
2072     To make this easier, a given version of AnyEvent::Handle uses these
2073     conventions:
2074    
2075     =over 4
2076    
2077     =item * all constructor arguments become object members.
2078    
2079     At least initially, when you pass a C<tls>-argument to the constructor it
2080 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2081 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2082    
2083     =item * other object member names are prefixed with an C<_>.
2084    
2085     All object members not explicitly documented (internal use) are prefixed
2086     with an underscore character, so the remaining non-C<_>-namespace is free
2087     for use for subclasses.
2088    
2089     =item * all members not documented here and not prefixed with an underscore
2090     are free to use in subclasses.
2091    
2092     Of course, new versions of AnyEvent::Handle may introduce more "public"
2093     member variables, but thats just life, at least it is documented.
2094    
2095     =back
2096    
2097 elmex 1.1 =head1 AUTHOR
2098    
2099 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2100 elmex 1.1
2101     =cut
2102    
2103     1; # End of AnyEvent::Handle