ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.181
Committed: Tue Sep 1 10:40:05 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
CVS Tags: rel-5_12
Changes since 1.180: +0 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 elmex 1.2 );
20    
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.159 filehandles.
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 elmex 1.1 =head1 METHODS
66    
67     =over 4
68    
69 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
70 elmex 1.1
71 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
72 elmex 1.1
73     =over 4
74    
75 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
76 root 1.158
77 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83    
84     Try to connect to the specified host and service (port), using
85     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86     default C<peername>.
87    
88     You have to specify either this parameter, or C<fh>, above.
89    
90 root 1.160 It is possible to push requests on the read and write queues, and modify
91     properties of the stream, even while AnyEvent::Handle is connecting.
92    
93 root 1.159 When this parameter is specified, then the C<on_prepare>,
94     C<on_connect_error> and C<on_connect> callbacks will be called under the
95     appropriate circumstances:
96    
97     =over 4
98    
99     =item on_prepare => $cb->($handle)
100    
101     This (rarely used) callback is called before a new connection is
102     attempted, but after the file handle has been created. It could be used to
103     prepare the file handle with parameters required for the actual connect
104     (as opposed to settings that can be changed when the connection is already
105     established).
106    
107 root 1.161 The return value of this callback should be the connect timeout value in
108     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
109     timeout is to be used).
110    
111 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
112    
113     This callback is called when a connection has been successfully established.
114    
115     The actual numeric host and port (the socket peername) are passed as
116     parameters, together with a retry callback.
117    
118     When, for some reason, the handle is not acceptable, then calling
119     C<$retry> will continue with the next conenction target (in case of
120     multi-homed hosts or SRV records there can be multiple connection
121     endpoints). When it is called then the read and write queues, eof status,
122     tls status and similar properties of the handle are being reset.
123    
124     In most cases, ignoring the C<$retry> parameter is the way to go.
125 root 1.158
126 root 1.159 =item on_connect_error => $cb->($handle, $message)
127 root 1.10
128 root 1.159 This callback is called when the conenction could not be
129     established. C<$!> will contain the relevant error code, and C<$message> a
130     message describing it (usually the same as C<"$!">).
131 root 1.8
132 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
133     fatal error instead.
134 root 1.82
135 root 1.159 =back
136 root 1.80
137 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
138 root 1.10
139 root 1.52 This is the error callback, which is called when, well, some error
140     occured, such as not being able to resolve the hostname, failure to
141     connect or a read error.
142    
143     Some errors are fatal (which is indicated by C<$fatal> being true). On
144 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
145     destroy >>) after invoking the error callback (which means you are free to
146     examine the handle object). Examples of fatal errors are an EOF condition
147 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148     cases where the other side can close the connection at their will it is
149     often easiest to not report C<EPIPE> errors in this callback.
150 root 1.82
151 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
152     against, but in some cases (TLS errors), this does not work well. It is
153     recommended to always output the C<$message> argument in human-readable
154     error messages (it's usually the same as C<"$!">).
155    
156 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
157     to simply ignore this parameter and instead abondon the handle object
158     when this callback is invoked. Examples of non-fatal errors are timeouts
159     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
160 root 1.8
161 root 1.10 On callback entrance, the value of C<$!> contains the operating system
162 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163     C<EPROTO>).
164 root 1.8
165 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
166     you will not be notified of errors otherwise. The default simply calls
167 root 1.52 C<croak>.
168 root 1.8
169 root 1.40 =item on_read => $cb->($handle)
170 root 1.8
171     This sets the default read callback, which is called when data arrives
172 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
173     callback will only be called when at least one octet of data is in the
174     read buffer).
175 root 1.8
176     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
177 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
178 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
179     the beginning from it.
180 root 1.8
181     When an EOF condition is detected then AnyEvent::Handle will first try to
182     feed all the remaining data to the queued callbacks and C<on_read> before
183     calling the C<on_eof> callback. If no progress can be made, then a fatal
184     error will be raised (with C<$!> set to C<EPIPE>).
185 elmex 1.1
186 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
187     doesn't mean you I<require> some data: if there is an EOF and there
188     are outstanding read requests then an error will be flagged. With an
189     C<on_read> callback, the C<on_eof> callback will be invoked.
190    
191 root 1.159 =item on_eof => $cb->($handle)
192    
193     Set the callback to be called when an end-of-file condition is detected,
194     i.e. in the case of a socket, when the other side has closed the
195     connection cleanly, and there are no outstanding read requests in the
196     queue (if there are read requests, then an EOF counts as an unexpected
197     connection close and will be flagged as an error).
198    
199     For sockets, this just means that the other side has stopped sending data,
200     you can still try to write data, and, in fact, one can return from the EOF
201     callback and continue writing data, as only the read part has been shut
202     down.
203    
204     If an EOF condition has been detected but no C<on_eof> callback has been
205     set, then a fatal error will be raised with C<$!> set to <0>.
206    
207 root 1.40 =item on_drain => $cb->($handle)
208 elmex 1.1
209 root 1.8 This sets the callback that is called when the write buffer becomes empty
210     (or when the callback is set and the buffer is empty already).
211 elmex 1.1
212 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
213 elmex 1.2
214 root 1.69 This callback is useful when you don't want to put all of your write data
215     into the queue at once, for example, when you want to write the contents
216     of some file to the socket you might not want to read the whole file into
217     memory and push it into the queue, but instead only read more data from
218     the file when the write queue becomes empty.
219    
220 root 1.43 =item timeout => $fractional_seconds
221    
222 root 1.176 =item rtimeout => $fractional_seconds
223    
224     =item wtimeout => $fractional_seconds
225    
226     If non-zero, then these enables an "inactivity" timeout: whenever this
227     many seconds pass without a successful read or write on the underlying
228     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
229     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230     error will be raised).
231    
232     There are three variants of the timeouts that work fully independent
233     of each other, for both read and write, just read, and just write:
234     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
237 root 1.43
238     Note that timeout processing is also active when you currently do not have
239     any outstanding read or write requests: If you plan to keep the connection
240     idle then you should disable the timout temporarily or ignore the timeout
241 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242     restart the timeout.
243 root 1.43
244     Zero (the default) disables this timeout.
245    
246     =item on_timeout => $cb->($handle)
247    
248     Called whenever the inactivity timeout passes. If you return from this
249     callback, then the timeout will be reset as if some activity had happened,
250     so this condition is not fatal in any way.
251    
252 root 1.8 =item rbuf_max => <bytes>
253 elmex 1.2
254 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
255     when the read buffer ever (strictly) exceeds this size. This is useful to
256 root 1.88 avoid some forms of denial-of-service attacks.
257 elmex 1.2
258 root 1.8 For example, a server accepting connections from untrusted sources should
259     be configured to accept only so-and-so much data that it cannot act on
260     (for example, when expecting a line, an attacker could send an unlimited
261     amount of data without a callback ever being called as long as the line
262     isn't finished).
263 elmex 1.2
264 root 1.70 =item autocork => <boolean>
265    
266     When disabled (the default), then C<push_write> will try to immediately
267 root 1.88 write the data to the handle, if possible. This avoids having to register
268     a write watcher and wait for the next event loop iteration, but can
269     be inefficient if you write multiple small chunks (on the wire, this
270     disadvantage is usually avoided by your kernel's nagle algorithm, see
271     C<no_delay>, but this option can save costly syscalls).
272 root 1.70
273     When enabled, then writes will always be queued till the next event loop
274     iteration. This is efficient when you do many small writes per iteration,
275 root 1.88 but less efficient when you do a single write only per iteration (or when
276     the write buffer often is full). It also increases write latency.
277 root 1.70
278     =item no_delay => <boolean>
279    
280     When doing small writes on sockets, your operating system kernel might
281     wait a bit for more data before actually sending it out. This is called
282     the Nagle algorithm, and usually it is beneficial.
283    
284 root 1.88 In some situations you want as low a delay as possible, which can be
285     accomplishd by setting this option to a true value.
286 root 1.70
287 root 1.88 The default is your opertaing system's default behaviour (most likely
288     enabled), this option explicitly enables or disables it, if possible.
289 root 1.70
290 root 1.8 =item read_size => <bytes>
291 elmex 1.2
292 root 1.88 The default read block size (the amount of bytes this module will
293     try to read during each loop iteration, which affects memory
294     requirements). Default: C<8192>.
295 root 1.8
296     =item low_water_mark => <bytes>
297    
298     Sets the amount of bytes (default: C<0>) that make up an "empty" write
299     buffer: If the write reaches this size or gets even samller it is
300     considered empty.
301 elmex 1.2
302 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
303     the write buffer before it is fully drained, but this is a rare case, as
304     the operating system kernel usually buffers data as well, so the default
305     is good in almost all cases.
306    
307 root 1.62 =item linger => <seconds>
308    
309     If non-zero (default: C<3600>), then the destructor of the
310 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
311     write data and will install a watcher that will write this data to the
312     socket. No errors will be reported (this mostly matches how the operating
313     system treats outstanding data at socket close time).
314 root 1.62
315 root 1.88 This will not work for partial TLS data that could not be encoded
316 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
317     help.
318 root 1.62
319 root 1.133 =item peername => $string
320    
321 root 1.134 A string used to identify the remote site - usually the DNS hostname
322     (I<not> IDN!) used to create the connection, rarely the IP address.
323 root 1.131
324 root 1.133 Apart from being useful in error messages, this string is also used in TLS
325 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326     verification will be skipped when C<peername> is not specified or
327     C<undef>.
328 root 1.131
329 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
330    
331 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
332 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
333     established and will transparently encrypt/decrypt data afterwards.
334 root 1.19
335 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
336     appropriate error message.
337    
338 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
339 root 1.88 automatically when you try to create a TLS handle): this module doesn't
340     have a dependency on that module, so if your module requires it, you have
341     to add the dependency yourself.
342 root 1.26
343 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
344     C<accept>, and for the TLS client side of a connection, use C<connect>
345     mode.
346 root 1.19
347     You can also provide your own TLS connection object, but you have
348     to make sure that you call either C<Net::SSLeay::set_connect_state>
349     or C<Net::SSLeay::set_accept_state> on it before you pass it to
350 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
351     object.
352    
353     At some future point, AnyEvent::Handle might switch to another TLS
354     implementation, then the option to use your own session object will go
355     away.
356 root 1.19
357 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358     passing in the wrong integer will lead to certain crash. This most often
359     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360     segmentation fault.
361    
362 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
363 root 1.26
364 root 1.131 =item tls_ctx => $anyevent_tls
365 root 1.19
366 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
367 root 1.19 (unless a connection object was specified directly). If this parameter is
368     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
369    
370 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
371     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372     new TLS context object.
373    
374 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
375 root 1.142
376     This callback will be invoked when the TLS/SSL handshake has finished. If
377     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378     (C<on_stoptls> will not be called in this case).
379    
380     The session in C<< $handle->{tls} >> can still be examined in this
381     callback, even when the handshake was not successful.
382    
383 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
384     callback is in effect, instead, the error message will be passed to C<on_starttls>.
385    
386     Without this callback, handshake failures lead to C<on_error> being
387     called, as normal.
388    
389     Note that you cannot call C<starttls> right again in this callback. If you
390     need to do that, start an zero-second timer instead whose callback can
391     then call C<< ->starttls >> again.
392    
393 root 1.142 =item on_stoptls => $cb->($handle)
394    
395     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396     set, then it will be invoked after freeing the TLS session. If it is not,
397     then a TLS shutdown condition will be treated like a normal EOF condition
398     on the handle.
399    
400     The session in C<< $handle->{tls} >> can still be examined in this
401     callback.
402    
403     This callback will only be called on TLS shutdowns, not when the
404     underlying handle signals EOF.
405    
406 root 1.40 =item json => JSON or JSON::XS object
407    
408     This is the json coder object used by the C<json> read and write types.
409    
410 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
411 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
412     texts.
413 root 1.40
414     Note that you are responsible to depend on the JSON module if you want to
415     use this functionality, as AnyEvent does not have a dependency itself.
416    
417 elmex 1.1 =back
418    
419     =cut
420    
421     sub new {
422 root 1.8 my $class = shift;
423     my $self = bless { @_ }, $class;
424    
425 root 1.159 if ($self->{fh}) {
426     $self->_start;
427     return unless $self->{fh}; # could be gone by now
428    
429     } elsif ($self->{connect}) {
430     require AnyEvent::Socket;
431    
432     $self->{peername} = $self->{connect}[0]
433     unless exists $self->{peername};
434    
435     $self->{_skip_drain_rbuf} = 1;
436    
437     {
438     Scalar::Util::weaken (my $self = $self);
439    
440     $self->{_connect} =
441     AnyEvent::Socket::tcp_connect (
442     $self->{connect}[0],
443     $self->{connect}[1],
444     sub {
445     my ($fh, $host, $port, $retry) = @_;
446    
447     if ($fh) {
448     $self->{fh} = $fh;
449    
450     delete $self->{_skip_drain_rbuf};
451     $self->_start;
452    
453     $self->{on_connect}
454     and $self->{on_connect}($self, $host, $port, sub {
455 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 root 1.159 $self->{_skip_drain_rbuf} = 1;
457     &$retry;
458     });
459    
460     } else {
461     if ($self->{on_connect_error}) {
462     $self->{on_connect_error}($self, "$!");
463     $self->destroy;
464     } else {
465 root 1.161 $self->_error ($!, 1);
466 root 1.159 }
467     }
468     },
469     sub {
470     local $self->{fh} = $_[0];
471    
472 root 1.161 $self->{on_prepare}
473     ? $self->{on_prepare}->($self)
474     : ()
475 root 1.159 }
476     );
477     }
478    
479     } else {
480     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481     }
482    
483     $self
484     }
485    
486     sub _start {
487     my ($self) = @_;
488 root 1.8
489     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
490 elmex 1.1
491 root 1.176 $self->{_activity} =
492     $self->{_ractivity} =
493     $self->{_wactivity} = AE::now;
494    
495     $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496     $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497     $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498 root 1.131
499     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500    
501 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502     if $self->{tls};
503 root 1.19
504 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505 root 1.10
506 root 1.66 $self->start_read
507 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
508 root 1.160
509     $self->_drain_wbuf;
510 root 1.8 }
511 elmex 1.2
512 root 1.52 sub _error {
513 root 1.133 my ($self, $errno, $fatal, $message) = @_;
514 root 1.8
515 root 1.52 $! = $errno;
516 root 1.133 $message ||= "$!";
517 root 1.37
518 root 1.52 if ($self->{on_error}) {
519 root 1.133 $self->{on_error}($self, $fatal, $message);
520 root 1.151 $self->destroy if $fatal;
521 root 1.100 } elsif ($self->{fh}) {
522 root 1.149 $self->destroy;
523 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
524 root 1.52 }
525 elmex 1.1 }
526    
527 root 1.8 =item $fh = $handle->fh
528 elmex 1.1
529 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
530 elmex 1.1
531     =cut
532    
533 root 1.38 sub fh { $_[0]{fh} }
534 elmex 1.1
535 root 1.8 =item $handle->on_error ($cb)
536 elmex 1.1
537 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
538 elmex 1.1
539 root 1.8 =cut
540    
541     sub on_error {
542     $_[0]{on_error} = $_[1];
543     }
544    
545     =item $handle->on_eof ($cb)
546    
547     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
548 elmex 1.1
549     =cut
550    
551 root 1.8 sub on_eof {
552     $_[0]{on_eof} = $_[1];
553     }
554    
555 root 1.43 =item $handle->on_timeout ($cb)
556    
557 root 1.176 =item $handle->on_rtimeout ($cb)
558    
559     =item $handle->on_wtimeout ($cb)
560    
561     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
562     callback, or disables the callback (but not the timeout) if C<$cb> =
563     C<undef>. See the C<timeout> constructor argument and method.
564 root 1.43
565     =cut
566    
567 root 1.176 # see below
568 root 1.43
569 root 1.70 =item $handle->autocork ($boolean)
570    
571     Enables or disables the current autocork behaviour (see C<autocork>
572 root 1.105 constructor argument). Changes will only take effect on the next write.
573 root 1.70
574     =cut
575    
576 root 1.105 sub autocork {
577     $_[0]{autocork} = $_[1];
578     }
579    
580 root 1.70 =item $handle->no_delay ($boolean)
581    
582     Enables or disables the C<no_delay> setting (see constructor argument of
583     the same name for details).
584    
585     =cut
586    
587     sub no_delay {
588     $_[0]{no_delay} = $_[1];
589    
590     eval {
591     local $SIG{__DIE__};
592 root 1.159 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593     if $_[0]{fh};
594 root 1.70 };
595     }
596    
597 root 1.142 =item $handle->on_starttls ($cb)
598    
599     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600    
601     =cut
602    
603     sub on_starttls {
604     $_[0]{on_starttls} = $_[1];
605     }
606    
607     =item $handle->on_stoptls ($cb)
608    
609     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610    
611     =cut
612    
613     sub on_starttls {
614     $_[0]{on_stoptls} = $_[1];
615     }
616    
617 root 1.168 =item $handle->rbuf_max ($max_octets)
618    
619     Configures the C<rbuf_max> setting (C<undef> disables it).
620    
621     =cut
622    
623     sub rbuf_max {
624     $_[0]{rbuf_max} = $_[1];
625     }
626    
627 root 1.43 #############################################################################
628    
629     =item $handle->timeout ($seconds)
630    
631 root 1.176 =item $handle->rtimeout ($seconds)
632    
633     =item $handle->wtimeout ($seconds)
634    
635 root 1.43 Configures (or disables) the inactivity timeout.
636    
637 root 1.176 =item $handle->timeout_reset
638    
639     =item $handle->rtimeout_reset
640    
641     =item $handle->wtimeout_reset
642    
643     Reset the activity timeout, as if data was received or sent.
644    
645     These methods are cheap to call.
646    
647 root 1.43 =cut
648    
649 root 1.176 for my $dir ("", "r", "w") {
650     my $timeout = "${dir}timeout";
651     my $tw = "_${dir}tw";
652     my $on_timeout = "on_${dir}timeout";
653     my $activity = "_${dir}activity";
654     my $cb;
655    
656     *$on_timeout = sub {
657     $_[0]{$on_timeout} = $_[1];
658     };
659    
660     *$timeout = sub {
661     my ($self, $new_value) = @_;
662 root 1.43
663 root 1.176 $self->{$timeout} = $new_value;
664     delete $self->{$tw}; &$cb;
665     };
666 root 1.43
667 root 1.176 *{"${dir}timeout_reset"} = sub {
668     $_[0]{$activity} = AE::now;
669     };
670 root 1.43
671 root 1.176 # main workhorse:
672     # reset the timeout watcher, as neccessary
673     # also check for time-outs
674     $cb = sub {
675     my ($self) = @_;
676    
677     if ($self->{$timeout} && $self->{fh}) {
678     my $NOW = AE::now;
679    
680     # when would the timeout trigger?
681     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
682    
683     # now or in the past already?
684     if ($after <= 0) {
685     $self->{$activity} = $NOW;
686 root 1.43
687 root 1.176 if ($self->{$on_timeout}) {
688     $self->{$on_timeout}($self);
689     } else {
690     $self->_error (Errno::ETIMEDOUT);
691     }
692 root 1.43
693 root 1.176 # callback could have changed timeout value, optimise
694     return unless $self->{$timeout};
695 root 1.43
696 root 1.176 # calculate new after
697     $after = $self->{$timeout};
698 root 1.43 }
699    
700 root 1.176 Scalar::Util::weaken $self;
701     return unless $self; # ->error could have destroyed $self
702 root 1.43
703 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
704     delete $self->{$tw};
705     $cb->($self);
706     };
707     } else {
708     delete $self->{$tw};
709 root 1.43 }
710     }
711     }
712    
713 root 1.9 #############################################################################
714    
715     =back
716    
717     =head2 WRITE QUEUE
718    
719     AnyEvent::Handle manages two queues per handle, one for writing and one
720     for reading.
721    
722     The write queue is very simple: you can add data to its end, and
723     AnyEvent::Handle will automatically try to get rid of it for you.
724    
725 elmex 1.20 When data could be written and the write buffer is shorter then the low
726 root 1.9 water mark, the C<on_drain> callback will be invoked.
727    
728     =over 4
729    
730 root 1.8 =item $handle->on_drain ($cb)
731    
732     Sets the C<on_drain> callback or clears it (see the description of
733     C<on_drain> in the constructor).
734    
735     =cut
736    
737     sub on_drain {
738 elmex 1.1 my ($self, $cb) = @_;
739    
740 root 1.8 $self->{on_drain} = $cb;
741    
742     $cb->($self)
743 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
744 root 1.8 }
745    
746     =item $handle->push_write ($data)
747    
748     Queues the given scalar to be written. You can push as much data as you
749     want (only limited by the available memory), as C<AnyEvent::Handle>
750     buffers it independently of the kernel.
751    
752     =cut
753    
754 root 1.17 sub _drain_wbuf {
755     my ($self) = @_;
756 root 1.8
757 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
758 root 1.35
759 root 1.8 Scalar::Util::weaken $self;
760 root 1.35
761 root 1.8 my $cb = sub {
762     my $len = syswrite $self->{fh}, $self->{wbuf};
763    
764 root 1.146 if (defined $len) {
765 root 1.8 substr $self->{wbuf}, 0, $len, "";
766    
767 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
768 root 1.43
769 root 1.8 $self->{on_drain}($self)
770 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
771 root 1.8 && $self->{on_drain};
772    
773 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
774 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
775 root 1.52 $self->_error ($!, 1);
776 elmex 1.1 }
777 root 1.8 };
778    
779 root 1.35 # try to write data immediately
780 root 1.70 $cb->() unless $self->{autocork};
781 root 1.8
782 root 1.35 # if still data left in wbuf, we need to poll
783 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
784 root 1.35 if length $self->{wbuf};
785 root 1.8 };
786     }
787    
788 root 1.30 our %WH;
789    
790     sub register_write_type($$) {
791     $WH{$_[0]} = $_[1];
792     }
793    
794 root 1.17 sub push_write {
795     my $self = shift;
796    
797 root 1.29 if (@_ > 1) {
798     my $type = shift;
799    
800     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
801     ->($self, @_);
802     }
803    
804 root 1.93 if ($self->{tls}) {
805     $self->{_tls_wbuf} .= $_[0];
806 root 1.160 &_dotls ($self) if $self->{fh};
807 root 1.17 } else {
808 root 1.160 $self->{wbuf} .= $_[0];
809 root 1.159 $self->_drain_wbuf if $self->{fh};
810 root 1.17 }
811     }
812    
813 root 1.29 =item $handle->push_write (type => @args)
814    
815     Instead of formatting your data yourself, you can also let this module do
816     the job by specifying a type and type-specific arguments.
817    
818 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
819     drop by and tell us):
820 root 1.29
821     =over 4
822    
823     =item netstring => $string
824    
825     Formats the given value as netstring
826     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
827    
828     =cut
829    
830     register_write_type netstring => sub {
831     my ($self, $string) = @_;
832    
833 root 1.96 (length $string) . ":$string,"
834 root 1.29 };
835    
836 root 1.61 =item packstring => $format, $data
837    
838     An octet string prefixed with an encoded length. The encoding C<$format>
839     uses the same format as a Perl C<pack> format, but must specify a single
840     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
841     optional C<!>, C<< < >> or C<< > >> modifier).
842    
843     =cut
844    
845     register_write_type packstring => sub {
846     my ($self, $format, $string) = @_;
847    
848 root 1.65 pack "$format/a*", $string
849 root 1.61 };
850    
851 root 1.39 =item json => $array_or_hashref
852    
853 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
854     provide your own JSON object, this means it will be encoded to JSON text
855     in UTF-8.
856    
857     JSON objects (and arrays) are self-delimiting, so you can write JSON at
858     one end of a handle and read them at the other end without using any
859     additional framing.
860    
861 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
862     this module doesn't need delimiters after or between JSON texts to be
863     able to read them, many other languages depend on that.
864    
865     A simple RPC protocol that interoperates easily with others is to send
866     JSON arrays (or objects, although arrays are usually the better choice as
867     they mimic how function argument passing works) and a newline after each
868     JSON text:
869    
870     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
871     $handle->push_write ("\012");
872    
873     An AnyEvent::Handle receiver would simply use the C<json> read type and
874     rely on the fact that the newline will be skipped as leading whitespace:
875    
876     $handle->push_read (json => sub { my $array = $_[1]; ... });
877    
878     Other languages could read single lines terminated by a newline and pass
879     this line into their JSON decoder of choice.
880    
881 root 1.40 =cut
882    
883 root 1.179 sub json_coder() {
884     eval { require JSON::XS; JSON::XS->new->utf8 }
885     || do { require JSON; JSON->new->utf8 }
886     }
887    
888 root 1.40 register_write_type json => sub {
889     my ($self, $ref) = @_;
890    
891 root 1.179 my $json = $self->{json} ||= json_coder;
892 root 1.40
893 root 1.179 $json->encode ($ref)
894 root 1.40 };
895    
896 root 1.63 =item storable => $reference
897    
898     Freezes the given reference using L<Storable> and writes it to the
899     handle. Uses the C<nfreeze> format.
900    
901     =cut
902    
903     register_write_type storable => sub {
904     my ($self, $ref) = @_;
905    
906     require Storable;
907    
908 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
909 root 1.63 };
910    
911 root 1.53 =back
912    
913 root 1.133 =item $handle->push_shutdown
914    
915     Sometimes you know you want to close the socket after writing your data
916     before it was actually written. One way to do that is to replace your
917 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
918     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919     replaces the C<on_drain> callback with:
920 root 1.133
921     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922    
923     This simply shuts down the write side and signals an EOF condition to the
924     the peer.
925    
926     You can rely on the normal read queue and C<on_eof> handling
927     afterwards. This is the cleanest way to close a connection.
928    
929     =cut
930    
931     sub push_shutdown {
932 root 1.142 my ($self) = @_;
933    
934     delete $self->{low_water_mark};
935     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936 root 1.133 }
937    
938 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
939 root 1.30
940     This function (not method) lets you add your own types to C<push_write>.
941     Whenever the given C<type> is used, C<push_write> will invoke the code
942     reference with the handle object and the remaining arguments.
943 root 1.29
944 root 1.30 The code reference is supposed to return a single octet string that will
945     be appended to the write buffer.
946 root 1.29
947 root 1.30 Note that this is a function, and all types registered this way will be
948     global, so try to use unique names.
949 root 1.29
950 root 1.30 =cut
951 root 1.29
952 root 1.8 #############################################################################
953    
954 root 1.9 =back
955    
956     =head2 READ QUEUE
957    
958     AnyEvent::Handle manages two queues per handle, one for writing and one
959     for reading.
960    
961     The read queue is more complex than the write queue. It can be used in two
962     ways, the "simple" way, using only C<on_read> and the "complex" way, using
963     a queue.
964    
965     In the simple case, you just install an C<on_read> callback and whenever
966     new data arrives, it will be called. You can then remove some data (if
967 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
968     leave the data there if you want to accumulate more (e.g. when only a
969     partial message has been received so far).
970 root 1.9
971     In the more complex case, you want to queue multiple callbacks. In this
972     case, AnyEvent::Handle will call the first queued callback each time new
973 root 1.61 data arrives (also the first time it is queued) and removes it when it has
974     done its job (see C<push_read>, below).
975 root 1.9
976     This way you can, for example, push three line-reads, followed by reading
977     a chunk of data, and AnyEvent::Handle will execute them in order.
978    
979     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
980     the specified number of bytes which give an XML datagram.
981    
982     # in the default state, expect some header bytes
983     $handle->on_read (sub {
984     # some data is here, now queue the length-header-read (4 octets)
985 root 1.52 shift->unshift_read (chunk => 4, sub {
986 root 1.9 # header arrived, decode
987     my $len = unpack "N", $_[1];
988    
989     # now read the payload
990 root 1.52 shift->unshift_read (chunk => $len, sub {
991 root 1.9 my $xml = $_[1];
992     # handle xml
993     });
994     });
995     });
996    
997 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
998     and another line or "ERROR" for the first request that is sent, and 64
999     bytes for the second request. Due to the availability of a queue, we can
1000     just pipeline sending both requests and manipulate the queue as necessary
1001     in the callbacks.
1002    
1003     When the first callback is called and sees an "OK" response, it will
1004     C<unshift> another line-read. This line-read will be queued I<before> the
1005     64-byte chunk callback.
1006 root 1.9
1007 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1008 root 1.9 $handle->push_write ("request 1\015\012");
1009    
1010     # we expect "ERROR" or "OK" as response, so push a line read
1011 root 1.52 $handle->push_read (line => sub {
1012 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1013     # so it will be read before the second request reads its 64 bytes
1014     # which are already in the queue when this callback is called
1015     # we don't do this in case we got an error
1016     if ($_[1] eq "OK") {
1017 root 1.52 $_[0]->unshift_read (line => sub {
1018 root 1.9 my $response = $_[1];
1019     ...
1020     });
1021     }
1022     });
1023    
1024 root 1.69 # request two, simply returns 64 octets
1025 root 1.9 $handle->push_write ("request 2\015\012");
1026    
1027     # simply read 64 bytes, always
1028 root 1.52 $handle->push_read (chunk => 64, sub {
1029 root 1.9 my $response = $_[1];
1030     ...
1031     });
1032    
1033     =over 4
1034    
1035 root 1.10 =cut
1036    
1037 root 1.8 sub _drain_rbuf {
1038     my ($self) = @_;
1039 elmex 1.1
1040 root 1.159 # avoid recursion
1041 root 1.167 return if $self->{_skip_drain_rbuf};
1042 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1043 root 1.59
1044     while () {
1045 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1046     # we are draining the buffer, and this can only happen with TLS.
1047 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048     if exists $self->{_tls_rbuf};
1049 root 1.115
1050 root 1.59 my $len = length $self->{rbuf};
1051 elmex 1.1
1052 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1053 root 1.29 unless ($cb->($self)) {
1054 root 1.163 # no progress can be made
1055     # (not enough data and no data forthcoming)
1056     $self->_error (Errno::EPIPE, 1), return
1057     if $self->{_eof};
1058 root 1.10
1059 root 1.38 unshift @{ $self->{_queue} }, $cb;
1060 root 1.55 last;
1061 root 1.8 }
1062     } elsif ($self->{on_read}) {
1063 root 1.61 last unless $len;
1064    
1065 root 1.8 $self->{on_read}($self);
1066    
1067     if (
1068 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1069     && !@{ $self->{_queue} } # and the queue is still empty
1070     && $self->{on_read} # but we still have on_read
1071 root 1.8 ) {
1072 root 1.55 # no further data will arrive
1073     # so no progress can be made
1074 root 1.150 $self->_error (Errno::EPIPE, 1), return
1075 root 1.55 if $self->{_eof};
1076    
1077     last; # more data might arrive
1078 elmex 1.1 }
1079 root 1.8 } else {
1080     # read side becomes idle
1081 root 1.93 delete $self->{_rw} unless $self->{tls};
1082 root 1.55 last;
1083 root 1.8 }
1084     }
1085    
1086 root 1.80 if ($self->{_eof}) {
1087 root 1.163 $self->{on_eof}
1088     ? $self->{on_eof}($self)
1089     : $self->_error (0, 1, "Unexpected end-of-file");
1090    
1091     return;
1092 root 1.80 }
1093 root 1.55
1094 root 1.169 if (
1095     defined $self->{rbuf_max}
1096     && $self->{rbuf_max} < length $self->{rbuf}
1097     ) {
1098     $self->_error (Errno::ENOSPC, 1), return;
1099     }
1100    
1101 root 1.55 # may need to restart read watcher
1102     unless ($self->{_rw}) {
1103     $self->start_read
1104     if $self->{on_read} || @{ $self->{_queue} };
1105     }
1106 elmex 1.1 }
1107    
1108 root 1.8 =item $handle->on_read ($cb)
1109 elmex 1.1
1110 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1111     the new callback is C<undef>). See the description of C<on_read> in the
1112     constructor.
1113 elmex 1.1
1114 root 1.8 =cut
1115    
1116     sub on_read {
1117     my ($self, $cb) = @_;
1118 elmex 1.1
1119 root 1.8 $self->{on_read} = $cb;
1120 root 1.159 $self->_drain_rbuf if $cb;
1121 elmex 1.1 }
1122    
1123 root 1.8 =item $handle->rbuf
1124    
1125     Returns the read buffer (as a modifiable lvalue).
1126 elmex 1.1
1127 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1128     member, if you want. However, the only operation allowed on the
1129     read buffer (apart from looking at it) is removing data from its
1130     beginning. Otherwise modifying or appending to it is not allowed and will
1131     lead to hard-to-track-down bugs.
1132 elmex 1.1
1133 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1134     C<push_read> or C<unshift_read> methods are used. The other read methods
1135     automatically manage the read buffer.
1136 elmex 1.1
1137     =cut
1138    
1139 elmex 1.2 sub rbuf : lvalue {
1140 root 1.8 $_[0]{rbuf}
1141 elmex 1.2 }
1142 elmex 1.1
1143 root 1.8 =item $handle->push_read ($cb)
1144    
1145     =item $handle->unshift_read ($cb)
1146    
1147     Append the given callback to the end of the queue (C<push_read>) or
1148     prepend it (C<unshift_read>).
1149    
1150     The callback is called each time some additional read data arrives.
1151 elmex 1.1
1152 elmex 1.20 It must check whether enough data is in the read buffer already.
1153 elmex 1.1
1154 root 1.8 If not enough data is available, it must return the empty list or a false
1155     value, in which case it will be called repeatedly until enough data is
1156     available (or an error condition is detected).
1157    
1158     If enough data was available, then the callback must remove all data it is
1159     interested in (which can be none at all) and return a true value. After returning
1160     true, it will be removed from the queue.
1161 elmex 1.1
1162     =cut
1163    
1164 root 1.30 our %RH;
1165    
1166     sub register_read_type($$) {
1167     $RH{$_[0]} = $_[1];
1168     }
1169    
1170 root 1.8 sub push_read {
1171 root 1.28 my $self = shift;
1172     my $cb = pop;
1173    
1174     if (@_) {
1175     my $type = shift;
1176    
1177     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1178     ->($self, $cb, @_);
1179     }
1180 elmex 1.1
1181 root 1.38 push @{ $self->{_queue} }, $cb;
1182 root 1.159 $self->_drain_rbuf;
1183 elmex 1.1 }
1184    
1185 root 1.8 sub unshift_read {
1186 root 1.28 my $self = shift;
1187     my $cb = pop;
1188    
1189     if (@_) {
1190     my $type = shift;
1191    
1192     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1193     ->($self, $cb, @_);
1194     }
1195    
1196 root 1.38 unshift @{ $self->{_queue} }, $cb;
1197 root 1.159 $self->_drain_rbuf;
1198 root 1.8 }
1199 elmex 1.1
1200 root 1.28 =item $handle->push_read (type => @args, $cb)
1201 elmex 1.1
1202 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1203 elmex 1.1
1204 root 1.28 Instead of providing a callback that parses the data itself you can chose
1205     between a number of predefined parsing formats, for chunks of data, lines
1206     etc.
1207 elmex 1.1
1208 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1209     drop by and tell us):
1210 root 1.28
1211     =over 4
1212    
1213 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1214 root 1.28
1215     Invoke the callback only once C<$octets> bytes have been read. Pass the
1216     data read to the callback. The callback will never be called with less
1217     data.
1218    
1219     Example: read 2 bytes.
1220    
1221     $handle->push_read (chunk => 2, sub {
1222     warn "yay ", unpack "H*", $_[1];
1223     });
1224 elmex 1.1
1225     =cut
1226    
1227 root 1.28 register_read_type chunk => sub {
1228     my ($self, $cb, $len) = @_;
1229 elmex 1.1
1230 root 1.8 sub {
1231     $len <= length $_[0]{rbuf} or return;
1232 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1233 root 1.8 1
1234     }
1235 root 1.28 };
1236 root 1.8
1237 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1238 elmex 1.1
1239 root 1.8 The callback will be called only once a full line (including the end of
1240     line marker, C<$eol>) has been read. This line (excluding the end of line
1241     marker) will be passed to the callback as second argument (C<$line>), and
1242     the end of line marker as the third argument (C<$eol>).
1243 elmex 1.1
1244 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1245     will be interpreted as a fixed record end marker, or it can be a regex
1246     object (e.g. created by C<qr>), in which case it is interpreted as a
1247     regular expression.
1248 elmex 1.1
1249 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1250     undef), then C<qr|\015?\012|> is used (which is good for most internet
1251     protocols).
1252 elmex 1.1
1253 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1254     not marked by the end of line marker.
1255 elmex 1.1
1256 root 1.8 =cut
1257 elmex 1.1
1258 root 1.28 register_read_type line => sub {
1259     my ($self, $cb, $eol) = @_;
1260 elmex 1.1
1261 root 1.76 if (@_ < 3) {
1262     # this is more than twice as fast as the generic code below
1263     sub {
1264     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1265 elmex 1.1
1266 root 1.76 $cb->($_[0], $1, $2);
1267     1
1268     }
1269     } else {
1270     $eol = quotemeta $eol unless ref $eol;
1271     $eol = qr|^(.*?)($eol)|s;
1272    
1273     sub {
1274     $_[0]{rbuf} =~ s/$eol// or return;
1275 elmex 1.1
1276 root 1.76 $cb->($_[0], $1, $2);
1277     1
1278     }
1279 root 1.8 }
1280 root 1.28 };
1281 elmex 1.1
1282 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1283 root 1.36
1284     Makes a regex match against the regex object C<$accept> and returns
1285     everything up to and including the match.
1286    
1287     Example: read a single line terminated by '\n'.
1288    
1289     $handle->push_read (regex => qr<\n>, sub { ... });
1290    
1291     If C<$reject> is given and not undef, then it determines when the data is
1292     to be rejected: it is matched against the data when the C<$accept> regex
1293     does not match and generates an C<EBADMSG> error when it matches. This is
1294     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1295     receive buffer overflow).
1296    
1297     Example: expect a single decimal number followed by whitespace, reject
1298     anything else (not the use of an anchor).
1299    
1300     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1301    
1302     If C<$skip> is given and not C<undef>, then it will be matched against
1303     the receive buffer when neither C<$accept> nor C<$reject> match,
1304     and everything preceding and including the match will be accepted
1305     unconditionally. This is useful to skip large amounts of data that you
1306     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1307     have to start matching from the beginning. This is purely an optimisation
1308     and is usually worth only when you expect more than a few kilobytes.
1309    
1310     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1311     expect the header to be very large (it isn't in practise, but...), we use
1312     a skip regex to skip initial portions. The skip regex is tricky in that
1313     it only accepts something not ending in either \015 or \012, as these are
1314     required for the accept regex.
1315    
1316     $handle->push_read (regex =>
1317     qr<\015\012\015\012>,
1318     undef, # no reject
1319     qr<^.*[^\015\012]>,
1320     sub { ... });
1321    
1322     =cut
1323    
1324     register_read_type regex => sub {
1325     my ($self, $cb, $accept, $reject, $skip) = @_;
1326    
1327     my $data;
1328     my $rbuf = \$self->{rbuf};
1329    
1330     sub {
1331     # accept
1332     if ($$rbuf =~ $accept) {
1333     $data .= substr $$rbuf, 0, $+[0], "";
1334     $cb->($self, $data);
1335     return 1;
1336     }
1337    
1338     # reject
1339     if ($reject && $$rbuf =~ $reject) {
1340 root 1.150 $self->_error (Errno::EBADMSG);
1341 root 1.36 }
1342    
1343     # skip
1344     if ($skip && $$rbuf =~ $skip) {
1345     $data .= substr $$rbuf, 0, $+[0], "";
1346     }
1347    
1348     ()
1349     }
1350     };
1351    
1352 root 1.61 =item netstring => $cb->($handle, $string)
1353    
1354     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1355    
1356     Throws an error with C<$!> set to EBADMSG on format violations.
1357    
1358     =cut
1359    
1360     register_read_type netstring => sub {
1361     my ($self, $cb) = @_;
1362    
1363     sub {
1364     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1365     if ($_[0]{rbuf} =~ /[^0-9]/) {
1366 root 1.150 $self->_error (Errno::EBADMSG);
1367 root 1.61 }
1368     return;
1369     }
1370    
1371     my $len = $1;
1372    
1373     $self->unshift_read (chunk => $len, sub {
1374     my $string = $_[1];
1375     $_[0]->unshift_read (chunk => 1, sub {
1376     if ($_[1] eq ",") {
1377     $cb->($_[0], $string);
1378     } else {
1379 root 1.150 $self->_error (Errno::EBADMSG);
1380 root 1.61 }
1381     });
1382     });
1383    
1384     1
1385     }
1386     };
1387    
1388     =item packstring => $format, $cb->($handle, $string)
1389    
1390     An octet string prefixed with an encoded length. The encoding C<$format>
1391     uses the same format as a Perl C<pack> format, but must specify a single
1392     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1393     optional C<!>, C<< < >> or C<< > >> modifier).
1394    
1395 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1396     EPP uses a prefix of C<N> (4 octtes).
1397 root 1.61
1398     Example: read a block of data prefixed by its length in BER-encoded
1399     format (very efficient).
1400    
1401     $handle->push_read (packstring => "w", sub {
1402     my ($handle, $data) = @_;
1403     });
1404    
1405     =cut
1406    
1407     register_read_type packstring => sub {
1408     my ($self, $cb, $format) = @_;
1409    
1410     sub {
1411     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1412 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1413 root 1.61 or return;
1414    
1415 root 1.77 $format = length pack $format, $len;
1416 root 1.61
1417 root 1.77 # bypass unshift if we already have the remaining chunk
1418     if ($format + $len <= length $_[0]{rbuf}) {
1419     my $data = substr $_[0]{rbuf}, $format, $len;
1420     substr $_[0]{rbuf}, 0, $format + $len, "";
1421     $cb->($_[0], $data);
1422     } else {
1423     # remove prefix
1424     substr $_[0]{rbuf}, 0, $format, "";
1425    
1426     # read remaining chunk
1427     $_[0]->unshift_read (chunk => $len, $cb);
1428     }
1429 root 1.61
1430     1
1431     }
1432     };
1433    
1434 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1435    
1436 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1437     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1438 root 1.40
1439     If a C<json> object was passed to the constructor, then that will be used
1440     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1441    
1442     This read type uses the incremental parser available with JSON version
1443     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1444     dependency on your own: this module will load the JSON module, but
1445     AnyEvent does not depend on it itself.
1446    
1447     Since JSON texts are fully self-delimiting, the C<json> read and write
1448 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1449     the C<json> write type description, above, for an actual example.
1450 root 1.40
1451     =cut
1452    
1453     register_read_type json => sub {
1454 root 1.63 my ($self, $cb) = @_;
1455 root 1.40
1456 root 1.179 my $json = $self->{json} ||= json_coder;
1457 root 1.40
1458     my $data;
1459     my $rbuf = \$self->{rbuf};
1460    
1461     sub {
1462 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1463 root 1.110
1464 root 1.113 if ($ref) {
1465     $self->{rbuf} = $json->incr_text;
1466     $json->incr_text = "";
1467     $cb->($self, $ref);
1468 root 1.110
1469     1
1470 root 1.113 } elsif ($@) {
1471 root 1.111 # error case
1472 root 1.110 $json->incr_skip;
1473 root 1.40
1474     $self->{rbuf} = $json->incr_text;
1475     $json->incr_text = "";
1476    
1477 root 1.150 $self->_error (Errno::EBADMSG);
1478 root 1.114
1479 root 1.113 ()
1480     } else {
1481     $self->{rbuf} = "";
1482 root 1.114
1483 root 1.113 ()
1484     }
1485 root 1.40 }
1486     };
1487    
1488 root 1.63 =item storable => $cb->($handle, $ref)
1489    
1490     Deserialises a L<Storable> frozen representation as written by the
1491     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1492     data).
1493    
1494     Raises C<EBADMSG> error if the data could not be decoded.
1495    
1496     =cut
1497    
1498     register_read_type storable => sub {
1499     my ($self, $cb) = @_;
1500    
1501     require Storable;
1502    
1503     sub {
1504     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1505 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1506 root 1.63 or return;
1507    
1508 root 1.77 my $format = length pack "w", $len;
1509 root 1.63
1510 root 1.77 # bypass unshift if we already have the remaining chunk
1511     if ($format + $len <= length $_[0]{rbuf}) {
1512     my $data = substr $_[0]{rbuf}, $format, $len;
1513     substr $_[0]{rbuf}, 0, $format + $len, "";
1514     $cb->($_[0], Storable::thaw ($data));
1515     } else {
1516     # remove prefix
1517     substr $_[0]{rbuf}, 0, $format, "";
1518    
1519     # read remaining chunk
1520     $_[0]->unshift_read (chunk => $len, sub {
1521     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1522     $cb->($_[0], $ref);
1523     } else {
1524 root 1.150 $self->_error (Errno::EBADMSG);
1525 root 1.77 }
1526     });
1527     }
1528    
1529     1
1530 root 1.63 }
1531     };
1532    
1533 root 1.28 =back
1534    
1535 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1536 root 1.30
1537     This function (not method) lets you add your own types to C<push_read>.
1538    
1539     Whenever the given C<type> is used, C<push_read> will invoke the code
1540     reference with the handle object, the callback and the remaining
1541     arguments.
1542    
1543     The code reference is supposed to return a callback (usually a closure)
1544     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1545    
1546     It should invoke the passed callback when it is done reading (remember to
1547 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1548 root 1.30
1549     Note that this is a function, and all types registered this way will be
1550     global, so try to use unique names.
1551    
1552     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1553     search for C<register_read_type>)).
1554    
1555 root 1.10 =item $handle->stop_read
1556    
1557     =item $handle->start_read
1558    
1559 root 1.18 In rare cases you actually do not want to read anything from the
1560 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1561 root 1.22 any queued callbacks will be executed then. To start reading again, call
1562 root 1.10 C<start_read>.
1563    
1564 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1565     you change the C<on_read> callback or push/unshift a read callback, and it
1566     will automatically C<stop_read> for you when neither C<on_read> is set nor
1567     there are any read requests in the queue.
1568    
1569 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1570     half-duplex connections).
1571    
1572 root 1.10 =cut
1573    
1574     sub stop_read {
1575     my ($self) = @_;
1576 elmex 1.1
1577 root 1.93 delete $self->{_rw} unless $self->{tls};
1578 root 1.8 }
1579 elmex 1.1
1580 root 1.10 sub start_read {
1581     my ($self) = @_;
1582    
1583 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1584 root 1.10 Scalar::Util::weaken $self;
1585    
1586 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1587 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1588 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1589 root 1.10
1590     if ($len > 0) {
1591 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1592 root 1.43
1593 root 1.93 if ($self->{tls}) {
1594     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1595 root 1.97
1596 root 1.93 &_dotls ($self);
1597     } else {
1598 root 1.159 $self->_drain_rbuf;
1599 root 1.93 }
1600 root 1.10
1601     } elsif (defined $len) {
1602 root 1.38 delete $self->{_rw};
1603     $self->{_eof} = 1;
1604 root 1.159 $self->_drain_rbuf;
1605 root 1.10
1606 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1607 root 1.52 return $self->_error ($!, 1);
1608 root 1.10 }
1609 root 1.175 };
1610 root 1.10 }
1611 elmex 1.1 }
1612    
1613 root 1.133 our $ERROR_SYSCALL;
1614     our $ERROR_WANT_READ;
1615    
1616     sub _tls_error {
1617     my ($self, $err) = @_;
1618    
1619     return $self->_error ($!, 1)
1620     if $err == Net::SSLeay::ERROR_SYSCALL ();
1621    
1622 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1623    
1624     # reduce error string to look less scary
1625     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1626    
1627 root 1.143 if ($self->{_on_starttls}) {
1628     (delete $self->{_on_starttls})->($self, undef, $err);
1629     &_freetls;
1630     } else {
1631     &_freetls;
1632 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1633 root 1.143 }
1634 root 1.133 }
1635    
1636 root 1.97 # poll the write BIO and send the data if applicable
1637 root 1.133 # also decode read data if possible
1638     # this is basiclaly our TLS state machine
1639     # more efficient implementations are possible with openssl,
1640     # but not with the buggy and incomplete Net::SSLeay.
1641 root 1.19 sub _dotls {
1642     my ($self) = @_;
1643    
1644 root 1.97 my $tmp;
1645 root 1.56
1646 root 1.38 if (length $self->{_tls_wbuf}) {
1647 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1648     substr $self->{_tls_wbuf}, 0, $tmp, "";
1649 root 1.22 }
1650 root 1.133
1651     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1652     return $self->_tls_error ($tmp)
1653     if $tmp != $ERROR_WANT_READ
1654 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1655 root 1.19 }
1656    
1657 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1658     unless (length $tmp) {
1659 root 1.143 $self->{_on_starttls}
1660     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1661 root 1.92 &_freetls;
1662 root 1.143
1663 root 1.142 if ($self->{on_stoptls}) {
1664     $self->{on_stoptls}($self);
1665     return;
1666     } else {
1667     # let's treat SSL-eof as we treat normal EOF
1668     delete $self->{_rw};
1669     $self->{_eof} = 1;
1670     }
1671 root 1.56 }
1672 root 1.91
1673 root 1.116 $self->{_tls_rbuf} .= $tmp;
1674 root 1.159 $self->_drain_rbuf;
1675 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1676 root 1.23 }
1677    
1678 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1679 root 1.133 return $self->_tls_error ($tmp)
1680     if $tmp != $ERROR_WANT_READ
1681 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1682 root 1.91
1683 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1684     $self->{wbuf} .= $tmp;
1685 root 1.91 $self->_drain_wbuf;
1686     }
1687 root 1.142
1688     $self->{_on_starttls}
1689     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1690 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1691 root 1.19 }
1692    
1693 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1694    
1695     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1696     object is created, you can also do that at a later time by calling
1697     C<starttls>.
1698    
1699 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1700     write data and then call C<< ->starttls >> then TLS negotiation will start
1701     immediately, after which the queued write data is then sent.
1702    
1703 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1704     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1705    
1706 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1707     when AnyEvent::Handle has to create its own TLS connection object, or
1708     a hash reference with C<< key => value >> pairs that will be used to
1709     construct a new context.
1710    
1711     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1712     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1713     changed to your liking. Note that the handshake might have already started
1714     when this function returns.
1715 root 1.38
1716 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1717     handshakes on the same stream. Best do not attempt to use the stream after
1718     stopping TLS.
1719 root 1.92
1720 root 1.25 =cut
1721    
1722 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1723    
1724 root 1.19 sub starttls {
1725 root 1.160 my ($self, $tls, $ctx) = @_;
1726    
1727     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1728     if $self->{tls};
1729    
1730     $self->{tls} = $tls;
1731     $self->{tls_ctx} = $ctx if @_ > 2;
1732    
1733     return unless $self->{fh};
1734 root 1.19
1735 root 1.94 require Net::SSLeay;
1736    
1737 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1738     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1739 root 1.133
1740 root 1.180 $tls = delete $self->{tls};
1741 root 1.160 $ctx = $self->{tls_ctx};
1742 root 1.131
1743 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1744    
1745 root 1.131 if ("HASH" eq ref $ctx) {
1746     require AnyEvent::TLS;
1747    
1748 root 1.137 if ($ctx->{cache}) {
1749     my $key = $ctx+0;
1750     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1751     } else {
1752     $ctx = new AnyEvent::TLS %$ctx;
1753     }
1754 root 1.131 }
1755 root 1.92
1756 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1757 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1758 root 1.19
1759 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1760     # but the openssl maintainers basically said: "trust us, it just works".
1761     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1762     # and mismaintained ssleay-module doesn't even offer them).
1763 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1764 root 1.87 #
1765     # in short: this is a mess.
1766     #
1767 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1768 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1769 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1770     # have identity issues in that area.
1771 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1772     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1773     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1774 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1775 root 1.21
1776 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1777     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1778 root 1.19
1779 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1780    
1781 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1782 root 1.19
1783 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1784 root 1.143 if $self->{on_starttls};
1785 root 1.142
1786 root 1.93 &_dotls; # need to trigger the initial handshake
1787     $self->start_read; # make sure we actually do read
1788 root 1.19 }
1789    
1790 root 1.25 =item $handle->stoptls
1791    
1792 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1793     sending a close notify to the other side, but since OpenSSL doesn't
1794 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1795     the stream afterwards.
1796 root 1.25
1797     =cut
1798    
1799     sub stoptls {
1800     my ($self) = @_;
1801    
1802 root 1.92 if ($self->{tls}) {
1803 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1804 root 1.92
1805     &_dotls;
1806    
1807 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1808     # # we, we... have to use openssl :/#d#
1809     # &_freetls;#d#
1810 root 1.92 }
1811     }
1812    
1813     sub _freetls {
1814     my ($self) = @_;
1815    
1816     return unless $self->{tls};
1817 root 1.38
1818 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1819 root 1.171 if $self->{tls} > 0;
1820 root 1.92
1821 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1822 root 1.25 }
1823    
1824 root 1.19 sub DESTROY {
1825 root 1.120 my ($self) = @_;
1826 root 1.19
1827 root 1.92 &_freetls;
1828 root 1.62
1829     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1830    
1831 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1832 root 1.62 my $fh = delete $self->{fh};
1833     my $wbuf = delete $self->{wbuf};
1834    
1835     my @linger;
1836    
1837 root 1.175 push @linger, AE::io $fh, 1, sub {
1838 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1839    
1840     if ($len > 0) {
1841     substr $wbuf, 0, $len, "";
1842     } else {
1843     @linger = (); # end
1844     }
1845 root 1.175 };
1846     push @linger, AE::timer $linger, 0, sub {
1847 root 1.62 @linger = ();
1848 root 1.175 };
1849 root 1.62 }
1850 root 1.19 }
1851    
1852 root 1.99 =item $handle->destroy
1853    
1854 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1855 root 1.141 no further callbacks will be invoked and as many resources as possible
1856 root 1.165 will be freed. Any method you will call on the handle object after
1857     destroying it in this way will be silently ignored (and it will return the
1858     empty list).
1859 root 1.99
1860 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1861     object and it will simply shut down. This works in fatal error and EOF
1862     callbacks, as well as code outside. It does I<NOT> work in a read or write
1863     callback, so when you want to destroy the AnyEvent::Handle object from
1864     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1865     that case.
1866    
1867 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1868     will be removed as well, so if those are the only reference holders (as
1869     is common), then one doesn't need to do anything special to break any
1870     reference cycles.
1871    
1872 root 1.99 The handle might still linger in the background and write out remaining
1873     data, as specified by the C<linger> option, however.
1874    
1875     =cut
1876    
1877     sub destroy {
1878     my ($self) = @_;
1879    
1880     $self->DESTROY;
1881     %$self = ();
1882 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
1883     }
1884    
1885 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
1886     #nop
1887 root 1.99 }
1888    
1889 root 1.19 =item AnyEvent::Handle::TLS_CTX
1890    
1891 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1892     for TLS mode.
1893 root 1.19
1894 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1895 root 1.19
1896     =cut
1897    
1898     our $TLS_CTX;
1899    
1900     sub TLS_CTX() {
1901 root 1.131 $TLS_CTX ||= do {
1902     require AnyEvent::TLS;
1903 root 1.19
1904 root 1.131 new AnyEvent::TLS
1905 root 1.19 }
1906     }
1907    
1908 elmex 1.1 =back
1909    
1910 root 1.95
1911     =head1 NONFREQUENTLY ASKED QUESTIONS
1912    
1913     =over 4
1914    
1915 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1916     still get further invocations!
1917    
1918     That's because AnyEvent::Handle keeps a reference to itself when handling
1919     read or write callbacks.
1920    
1921     It is only safe to "forget" the reference inside EOF or error callbacks,
1922     from within all other callbacks, you need to explicitly call the C<<
1923     ->destroy >> method.
1924    
1925     =item I get different callback invocations in TLS mode/Why can't I pause
1926     reading?
1927    
1928     Unlike, say, TCP, TLS connections do not consist of two independent
1929     communication channels, one for each direction. Or put differently. The
1930     read and write directions are not independent of each other: you cannot
1931     write data unless you are also prepared to read, and vice versa.
1932    
1933     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1934     callback invocations when you are not expecting any read data - the reason
1935     is that AnyEvent::Handle always reads in TLS mode.
1936    
1937     During the connection, you have to make sure that you always have a
1938     non-empty read-queue, or an C<on_read> watcher. At the end of the
1939     connection (or when you no longer want to use it) you can call the
1940     C<destroy> method.
1941    
1942 root 1.95 =item How do I read data until the other side closes the connection?
1943    
1944 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1945     to achieve this is by setting an C<on_read> callback that does nothing,
1946     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1947     will be in C<$_[0]{rbuf}>:
1948 root 1.95
1949     $handle->on_read (sub { });
1950     $handle->on_eof (undef);
1951     $handle->on_error (sub {
1952     my $data = delete $_[0]{rbuf};
1953     });
1954    
1955     The reason to use C<on_error> is that TCP connections, due to latencies
1956     and packets loss, might get closed quite violently with an error, when in
1957     fact, all data has been received.
1958    
1959 root 1.101 It is usually better to use acknowledgements when transferring data,
1960 root 1.95 to make sure the other side hasn't just died and you got the data
1961     intact. This is also one reason why so many internet protocols have an
1962     explicit QUIT command.
1963    
1964 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1965     all data has been written?
1966 root 1.95
1967     After writing your last bits of data, set the C<on_drain> callback
1968     and destroy the handle in there - with the default setting of
1969     C<low_water_mark> this will be called precisely when all data has been
1970     written to the socket:
1971    
1972     $handle->push_write (...);
1973     $handle->on_drain (sub {
1974     warn "all data submitted to the kernel\n";
1975     undef $handle;
1976     });
1977    
1978 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1979     consider using C<< ->push_shutdown >> instead.
1980    
1981     =item I want to contact a TLS/SSL server, I don't care about security.
1982    
1983     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1984     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1985     parameter:
1986    
1987 root 1.144 tcp_connect $host, $port, sub {
1988     my ($fh) = @_;
1989 root 1.143
1990 root 1.144 my $handle = new AnyEvent::Handle
1991     fh => $fh,
1992     tls => "connect",
1993     on_error => sub { ... };
1994    
1995     $handle->push_write (...);
1996     };
1997 root 1.143
1998     =item I want to contact a TLS/SSL server, I do care about security.
1999    
2000 root 1.144 Then you should additionally enable certificate verification, including
2001     peername verification, if the protocol you use supports it (see
2002     L<AnyEvent::TLS>, C<verify_peername>).
2003    
2004     E.g. for HTTPS:
2005    
2006     tcp_connect $host, $port, sub {
2007     my ($fh) = @_;
2008    
2009     my $handle = new AnyEvent::Handle
2010     fh => $fh,
2011     peername => $host,
2012     tls => "connect",
2013     tls_ctx => { verify => 1, verify_peername => "https" },
2014     ...
2015    
2016     Note that you must specify the hostname you connected to (or whatever
2017     "peername" the protocol needs) as the C<peername> argument, otherwise no
2018     peername verification will be done.
2019    
2020     The above will use the system-dependent default set of trusted CA
2021     certificates. If you want to check against a specific CA, add the
2022     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2023    
2024     tls_ctx => {
2025     verify => 1,
2026     verify_peername => "https",
2027     ca_file => "my-ca-cert.pem",
2028     },
2029    
2030     =item I want to create a TLS/SSL server, how do I do that?
2031    
2032     Well, you first need to get a server certificate and key. You have
2033     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2034     self-signed certificate (cheap. check the search engine of your choice,
2035     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2036     nice program for that purpose).
2037    
2038     Then create a file with your private key (in PEM format, see
2039     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2040     file should then look like this:
2041    
2042     -----BEGIN RSA PRIVATE KEY-----
2043     ...header data
2044     ... lots of base64'y-stuff
2045     -----END RSA PRIVATE KEY-----
2046    
2047     -----BEGIN CERTIFICATE-----
2048     ... lots of base64'y-stuff
2049     -----END CERTIFICATE-----
2050    
2051     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2052     specify this file as C<cert_file>:
2053    
2054     tcp_server undef, $port, sub {
2055     my ($fh) = @_;
2056    
2057     my $handle = new AnyEvent::Handle
2058     fh => $fh,
2059     tls => "accept",
2060     tls_ctx => { cert_file => "my-server-keycert.pem" },
2061     ...
2062 root 1.143
2063 root 1.144 When you have intermediate CA certificates that your clients might not
2064     know about, just append them to the C<cert_file>.
2065 root 1.143
2066 root 1.95 =back
2067    
2068    
2069 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2070    
2071     In many cases, you might want to subclass AnyEvent::Handle.
2072    
2073     To make this easier, a given version of AnyEvent::Handle uses these
2074     conventions:
2075    
2076     =over 4
2077    
2078     =item * all constructor arguments become object members.
2079    
2080     At least initially, when you pass a C<tls>-argument to the constructor it
2081 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2082 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2083    
2084     =item * other object member names are prefixed with an C<_>.
2085    
2086     All object members not explicitly documented (internal use) are prefixed
2087     with an underscore character, so the remaining non-C<_>-namespace is free
2088     for use for subclasses.
2089    
2090     =item * all members not documented here and not prefixed with an underscore
2091     are free to use in subclasses.
2092    
2093     Of course, new versions of AnyEvent::Handle may introduce more "public"
2094     member variables, but thats just life, at least it is documented.
2095    
2096     =back
2097    
2098 elmex 1.1 =head1 AUTHOR
2099    
2100 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2101 elmex 1.1
2102     =cut
2103    
2104     1; # End of AnyEvent::Handle