ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.182
Committed: Thu Sep 3 12:35:01 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.181: +86 -8 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 elmex 1.2 );
20    
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.159 filehandles.
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 elmex 1.1 =head1 METHODS
66    
67     =over 4
68    
69 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
70 elmex 1.1
71 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
72 elmex 1.1
73     =over 4
74    
75 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
76 root 1.158
77 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83    
84     Try to connect to the specified host and service (port), using
85     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86     default C<peername>.
87    
88     You have to specify either this parameter, or C<fh>, above.
89    
90 root 1.160 It is possible to push requests on the read and write queues, and modify
91     properties of the stream, even while AnyEvent::Handle is connecting.
92    
93 root 1.159 When this parameter is specified, then the C<on_prepare>,
94     C<on_connect_error> and C<on_connect> callbacks will be called under the
95     appropriate circumstances:
96    
97     =over 4
98    
99     =item on_prepare => $cb->($handle)
100    
101     This (rarely used) callback is called before a new connection is
102     attempted, but after the file handle has been created. It could be used to
103     prepare the file handle with parameters required for the actual connect
104     (as opposed to settings that can be changed when the connection is already
105     established).
106    
107 root 1.161 The return value of this callback should be the connect timeout value in
108     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
109     timeout is to be used).
110    
111 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
112    
113     This callback is called when a connection has been successfully established.
114    
115     The actual numeric host and port (the socket peername) are passed as
116     parameters, together with a retry callback.
117    
118     When, for some reason, the handle is not acceptable, then calling
119     C<$retry> will continue with the next conenction target (in case of
120     multi-homed hosts or SRV records there can be multiple connection
121     endpoints). When it is called then the read and write queues, eof status,
122     tls status and similar properties of the handle are being reset.
123    
124     In most cases, ignoring the C<$retry> parameter is the way to go.
125 root 1.158
126 root 1.159 =item on_connect_error => $cb->($handle, $message)
127 root 1.10
128 root 1.159 This callback is called when the conenction could not be
129     established. C<$!> will contain the relevant error code, and C<$message> a
130     message describing it (usually the same as C<"$!">).
131 root 1.8
132 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
133     fatal error instead.
134 root 1.82
135 root 1.159 =back
136 root 1.80
137 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
138 root 1.10
139 root 1.52 This is the error callback, which is called when, well, some error
140     occured, such as not being able to resolve the hostname, failure to
141     connect or a read error.
142    
143     Some errors are fatal (which is indicated by C<$fatal> being true). On
144 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
145     destroy >>) after invoking the error callback (which means you are free to
146     examine the handle object). Examples of fatal errors are an EOF condition
147 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148     cases where the other side can close the connection at their will it is
149     often easiest to not report C<EPIPE> errors in this callback.
150 root 1.82
151 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
152     against, but in some cases (TLS errors), this does not work well. It is
153     recommended to always output the C<$message> argument in human-readable
154     error messages (it's usually the same as C<"$!">).
155    
156 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
157     to simply ignore this parameter and instead abondon the handle object
158     when this callback is invoked. Examples of non-fatal errors are timeouts
159     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
160 root 1.8
161 root 1.10 On callback entrance, the value of C<$!> contains the operating system
162 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163     C<EPROTO>).
164 root 1.8
165 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
166     you will not be notified of errors otherwise. The default simply calls
167 root 1.52 C<croak>.
168 root 1.8
169 root 1.40 =item on_read => $cb->($handle)
170 root 1.8
171     This sets the default read callback, which is called when data arrives
172 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
173     callback will only be called when at least one octet of data is in the
174     read buffer).
175 root 1.8
176     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
177 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
178 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
179     the beginning from it.
180 root 1.8
181     When an EOF condition is detected then AnyEvent::Handle will first try to
182     feed all the remaining data to the queued callbacks and C<on_read> before
183     calling the C<on_eof> callback. If no progress can be made, then a fatal
184     error will be raised (with C<$!> set to C<EPIPE>).
185 elmex 1.1
186 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
187     doesn't mean you I<require> some data: if there is an EOF and there
188     are outstanding read requests then an error will be flagged. With an
189     C<on_read> callback, the C<on_eof> callback will be invoked.
190    
191 root 1.159 =item on_eof => $cb->($handle)
192    
193     Set the callback to be called when an end-of-file condition is detected,
194     i.e. in the case of a socket, when the other side has closed the
195     connection cleanly, and there are no outstanding read requests in the
196     queue (if there are read requests, then an EOF counts as an unexpected
197     connection close and will be flagged as an error).
198    
199     For sockets, this just means that the other side has stopped sending data,
200     you can still try to write data, and, in fact, one can return from the EOF
201     callback and continue writing data, as only the read part has been shut
202     down.
203    
204     If an EOF condition has been detected but no C<on_eof> callback has been
205     set, then a fatal error will be raised with C<$!> set to <0>.
206    
207 root 1.40 =item on_drain => $cb->($handle)
208 elmex 1.1
209 root 1.8 This sets the callback that is called when the write buffer becomes empty
210     (or when the callback is set and the buffer is empty already).
211 elmex 1.1
212 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
213 elmex 1.2
214 root 1.69 This callback is useful when you don't want to put all of your write data
215     into the queue at once, for example, when you want to write the contents
216     of some file to the socket you might not want to read the whole file into
217     memory and push it into the queue, but instead only read more data from
218     the file when the write queue becomes empty.
219    
220 root 1.43 =item timeout => $fractional_seconds
221    
222 root 1.176 =item rtimeout => $fractional_seconds
223    
224     =item wtimeout => $fractional_seconds
225    
226     If non-zero, then these enables an "inactivity" timeout: whenever this
227     many seconds pass without a successful read or write on the underlying
228     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
229     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230     error will be raised).
231    
232     There are three variants of the timeouts that work fully independent
233     of each other, for both read and write, just read, and just write:
234     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
237 root 1.43
238     Note that timeout processing is also active when you currently do not have
239     any outstanding read or write requests: If you plan to keep the connection
240     idle then you should disable the timout temporarily or ignore the timeout
241 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242     restart the timeout.
243 root 1.43
244     Zero (the default) disables this timeout.
245    
246     =item on_timeout => $cb->($handle)
247    
248     Called whenever the inactivity timeout passes. If you return from this
249     callback, then the timeout will be reset as if some activity had happened,
250     so this condition is not fatal in any way.
251    
252 root 1.8 =item rbuf_max => <bytes>
253 elmex 1.2
254 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
255     when the read buffer ever (strictly) exceeds this size. This is useful to
256 root 1.88 avoid some forms of denial-of-service attacks.
257 elmex 1.2
258 root 1.8 For example, a server accepting connections from untrusted sources should
259     be configured to accept only so-and-so much data that it cannot act on
260     (for example, when expecting a line, an attacker could send an unlimited
261     amount of data without a callback ever being called as long as the line
262     isn't finished).
263 elmex 1.2
264 root 1.70 =item autocork => <boolean>
265    
266     When disabled (the default), then C<push_write> will try to immediately
267 root 1.88 write the data to the handle, if possible. This avoids having to register
268     a write watcher and wait for the next event loop iteration, but can
269     be inefficient if you write multiple small chunks (on the wire, this
270     disadvantage is usually avoided by your kernel's nagle algorithm, see
271     C<no_delay>, but this option can save costly syscalls).
272 root 1.70
273     When enabled, then writes will always be queued till the next event loop
274     iteration. This is efficient when you do many small writes per iteration,
275 root 1.88 but less efficient when you do a single write only per iteration (or when
276     the write buffer often is full). It also increases write latency.
277 root 1.70
278     =item no_delay => <boolean>
279    
280     When doing small writes on sockets, your operating system kernel might
281     wait a bit for more data before actually sending it out. This is called
282     the Nagle algorithm, and usually it is beneficial.
283    
284 root 1.88 In some situations you want as low a delay as possible, which can be
285     accomplishd by setting this option to a true value.
286 root 1.70
287 root 1.88 The default is your opertaing system's default behaviour (most likely
288     enabled), this option explicitly enables or disables it, if possible.
289 root 1.70
290 root 1.182 =item keepalive => <boolean>
291    
292     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293     normally, TCP connections have no time-out once established, so TCP
294     conenctions, once established, can stay alive forever even when the other
295     side has long gone. TCP keepalives are a cheap way to take down long-lived
296     TCP connections whent he other side becomes unreachable. While the default
297     is OS-dependent, TCP keepalives usually kick in after around two hours,
298     and, if the other side doesn't reply, take down the TCP connection some 10
299     to 15 minutes later.
300    
301     It is harmless to specify this option for file handles that do not support
302     keepalives, and enabling it on connections that are potentially long-lived
303     is usually a good idea.
304    
305     =item oobinline => <boolean>
306    
307     BSD majorly fucked up the implementation of TCP urgent data. The result
308     is that almost no OS implements TCP according to the specs, and every OS
309     implements it slightly differently.
310    
311     If you want to handle TCP urgent data, then setting this flag gives you
312     the most portable way of getting urgent data, by putting it into the
313     stream.
314    
315 root 1.8 =item read_size => <bytes>
316 elmex 1.2
317 root 1.88 The default read block size (the amount of bytes this module will
318     try to read during each loop iteration, which affects memory
319     requirements). Default: C<8192>.
320 root 1.8
321     =item low_water_mark => <bytes>
322    
323     Sets the amount of bytes (default: C<0>) that make up an "empty" write
324     buffer: If the write reaches this size or gets even samller it is
325     considered empty.
326 elmex 1.2
327 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
328     the write buffer before it is fully drained, but this is a rare case, as
329     the operating system kernel usually buffers data as well, so the default
330     is good in almost all cases.
331    
332 root 1.62 =item linger => <seconds>
333    
334     If non-zero (default: C<3600>), then the destructor of the
335 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
336     write data and will install a watcher that will write this data to the
337     socket. No errors will be reported (this mostly matches how the operating
338     system treats outstanding data at socket close time).
339 root 1.62
340 root 1.88 This will not work for partial TLS data that could not be encoded
341 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
342     help.
343 root 1.62
344 root 1.133 =item peername => $string
345    
346 root 1.134 A string used to identify the remote site - usually the DNS hostname
347     (I<not> IDN!) used to create the connection, rarely the IP address.
348 root 1.131
349 root 1.133 Apart from being useful in error messages, this string is also used in TLS
350 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
351     verification will be skipped when C<peername> is not specified or
352     C<undef>.
353 root 1.131
354 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
355    
356 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
357 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
358     established and will transparently encrypt/decrypt data afterwards.
359 root 1.19
360 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
361     appropriate error message.
362    
363 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
364 root 1.88 automatically when you try to create a TLS handle): this module doesn't
365     have a dependency on that module, so if your module requires it, you have
366     to add the dependency yourself.
367 root 1.26
368 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
369     C<accept>, and for the TLS client side of a connection, use C<connect>
370     mode.
371 root 1.19
372     You can also provide your own TLS connection object, but you have
373     to make sure that you call either C<Net::SSLeay::set_connect_state>
374     or C<Net::SSLeay::set_accept_state> on it before you pass it to
375 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
376     object.
377    
378     At some future point, AnyEvent::Handle might switch to another TLS
379     implementation, then the option to use your own session object will go
380     away.
381 root 1.19
382 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
383     passing in the wrong integer will lead to certain crash. This most often
384     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
385     segmentation fault.
386    
387 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
388 root 1.26
389 root 1.131 =item tls_ctx => $anyevent_tls
390 root 1.19
391 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
392 root 1.19 (unless a connection object was specified directly). If this parameter is
393     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
394    
395 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
396     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
397     new TLS context object.
398    
399 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
400 root 1.142
401     This callback will be invoked when the TLS/SSL handshake has finished. If
402     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
403     (C<on_stoptls> will not be called in this case).
404    
405     The session in C<< $handle->{tls} >> can still be examined in this
406     callback, even when the handshake was not successful.
407    
408 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
409     callback is in effect, instead, the error message will be passed to C<on_starttls>.
410    
411     Without this callback, handshake failures lead to C<on_error> being
412     called, as normal.
413    
414     Note that you cannot call C<starttls> right again in this callback. If you
415     need to do that, start an zero-second timer instead whose callback can
416     then call C<< ->starttls >> again.
417    
418 root 1.142 =item on_stoptls => $cb->($handle)
419    
420     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
421     set, then it will be invoked after freeing the TLS session. If it is not,
422     then a TLS shutdown condition will be treated like a normal EOF condition
423     on the handle.
424    
425     The session in C<< $handle->{tls} >> can still be examined in this
426     callback.
427    
428     This callback will only be called on TLS shutdowns, not when the
429     underlying handle signals EOF.
430    
431 root 1.40 =item json => JSON or JSON::XS object
432    
433     This is the json coder object used by the C<json> read and write types.
434    
435 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
436 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
437     texts.
438 root 1.40
439     Note that you are responsible to depend on the JSON module if you want to
440     use this functionality, as AnyEvent does not have a dependency itself.
441    
442 elmex 1.1 =back
443    
444     =cut
445    
446     sub new {
447 root 1.8 my $class = shift;
448     my $self = bless { @_ }, $class;
449    
450 root 1.159 if ($self->{fh}) {
451     $self->_start;
452     return unless $self->{fh}; # could be gone by now
453    
454     } elsif ($self->{connect}) {
455     require AnyEvent::Socket;
456    
457     $self->{peername} = $self->{connect}[0]
458     unless exists $self->{peername};
459    
460     $self->{_skip_drain_rbuf} = 1;
461    
462     {
463     Scalar::Util::weaken (my $self = $self);
464    
465     $self->{_connect} =
466     AnyEvent::Socket::tcp_connect (
467     $self->{connect}[0],
468     $self->{connect}[1],
469     sub {
470     my ($fh, $host, $port, $retry) = @_;
471    
472     if ($fh) {
473     $self->{fh} = $fh;
474    
475     delete $self->{_skip_drain_rbuf};
476     $self->_start;
477    
478     $self->{on_connect}
479     and $self->{on_connect}($self, $host, $port, sub {
480 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
481 root 1.159 $self->{_skip_drain_rbuf} = 1;
482     &$retry;
483     });
484    
485     } else {
486     if ($self->{on_connect_error}) {
487     $self->{on_connect_error}($self, "$!");
488     $self->destroy;
489     } else {
490 root 1.161 $self->_error ($!, 1);
491 root 1.159 }
492     }
493     },
494     sub {
495     local $self->{fh} = $_[0];
496    
497 root 1.161 $self->{on_prepare}
498     ? $self->{on_prepare}->($self)
499     : ()
500 root 1.159 }
501     );
502     }
503    
504     } else {
505     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
506     }
507    
508     $self
509     }
510    
511     sub _start {
512     my ($self) = @_;
513 root 1.8
514     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
515 elmex 1.1
516 root 1.176 $self->{_activity} =
517     $self->{_ractivity} =
518     $self->{_wactivity} = AE::now;
519    
520 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
521     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
522     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
523    
524     $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay};
525     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive};
526     $self->oobinline (delete $self->{oobinline}) if exists $self->{oobinline};
527 root 1.131
528 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
529 root 1.94 if $self->{tls};
530 root 1.19
531 root 1.182 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
532 root 1.10
533 root 1.66 $self->start_read
534 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
535 root 1.160
536     $self->_drain_wbuf;
537 root 1.8 }
538 elmex 1.2
539 root 1.52 sub _error {
540 root 1.133 my ($self, $errno, $fatal, $message) = @_;
541 root 1.8
542 root 1.52 $! = $errno;
543 root 1.133 $message ||= "$!";
544 root 1.37
545 root 1.52 if ($self->{on_error}) {
546 root 1.133 $self->{on_error}($self, $fatal, $message);
547 root 1.151 $self->destroy if $fatal;
548 root 1.100 } elsif ($self->{fh}) {
549 root 1.149 $self->destroy;
550 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
551 root 1.52 }
552 elmex 1.1 }
553    
554 root 1.8 =item $fh = $handle->fh
555 elmex 1.1
556 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
557 elmex 1.1
558     =cut
559    
560 root 1.38 sub fh { $_[0]{fh} }
561 elmex 1.1
562 root 1.8 =item $handle->on_error ($cb)
563 elmex 1.1
564 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
565 elmex 1.1
566 root 1.8 =cut
567    
568     sub on_error {
569     $_[0]{on_error} = $_[1];
570     }
571    
572     =item $handle->on_eof ($cb)
573    
574     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
575 elmex 1.1
576     =cut
577    
578 root 1.8 sub on_eof {
579     $_[0]{on_eof} = $_[1];
580     }
581    
582 root 1.43 =item $handle->on_timeout ($cb)
583    
584 root 1.176 =item $handle->on_rtimeout ($cb)
585    
586     =item $handle->on_wtimeout ($cb)
587    
588     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
589     callback, or disables the callback (but not the timeout) if C<$cb> =
590     C<undef>. See the C<timeout> constructor argument and method.
591 root 1.43
592     =cut
593    
594 root 1.176 # see below
595 root 1.43
596 root 1.70 =item $handle->autocork ($boolean)
597    
598     Enables or disables the current autocork behaviour (see C<autocork>
599 root 1.105 constructor argument). Changes will only take effect on the next write.
600 root 1.70
601     =cut
602    
603 root 1.105 sub autocork {
604     $_[0]{autocork} = $_[1];
605     }
606    
607 root 1.70 =item $handle->no_delay ($boolean)
608    
609     Enables or disables the C<no_delay> setting (see constructor argument of
610     the same name for details).
611    
612     =cut
613    
614     sub no_delay {
615     $_[0]{no_delay} = $_[1];
616    
617     eval {
618     local $SIG{__DIE__};
619 root 1.182 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
620     if $_[0]{fh};
621     };
622     }
623    
624     =item $handle->keepalive ($boolean)
625    
626     Enables or disables the C<keepalive> setting (see constructor argument of
627     the same name for details).
628    
629     =cut
630    
631     sub keepalive {
632     $_[0]{keepalive} = $_[1];
633    
634     eval {
635     local $SIG{__DIE__};
636     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
637     if $_[0]{fh};
638     };
639     }
640    
641     =item $handle->oobinline ($boolean)
642    
643     Enables or disables the C<oobinline> setting (see constructor argument of
644     the same name for details).
645    
646     =cut
647    
648     sub oobinline {
649     $_[0]{oobinline} = $_[1];
650    
651     eval {
652     local $SIG{__DIE__};
653     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
654     if $_[0]{fh};
655     };
656     }
657    
658     =item $handle->keepalive ($boolean)
659    
660     Enables or disables the C<keepalive> setting (see constructor argument of
661     the same name for details).
662    
663     =cut
664    
665     sub keepalive {
666     $_[0]{keepalive} = $_[1];
667    
668     eval {
669     local $SIG{__DIE__};
670     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
671 root 1.159 if $_[0]{fh};
672 root 1.70 };
673     }
674    
675 root 1.142 =item $handle->on_starttls ($cb)
676    
677     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
678    
679     =cut
680    
681     sub on_starttls {
682     $_[0]{on_starttls} = $_[1];
683     }
684    
685     =item $handle->on_stoptls ($cb)
686    
687     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
688    
689     =cut
690    
691     sub on_starttls {
692     $_[0]{on_stoptls} = $_[1];
693     }
694    
695 root 1.168 =item $handle->rbuf_max ($max_octets)
696    
697     Configures the C<rbuf_max> setting (C<undef> disables it).
698    
699     =cut
700    
701     sub rbuf_max {
702     $_[0]{rbuf_max} = $_[1];
703     }
704    
705 root 1.43 #############################################################################
706    
707     =item $handle->timeout ($seconds)
708    
709 root 1.176 =item $handle->rtimeout ($seconds)
710    
711     =item $handle->wtimeout ($seconds)
712    
713 root 1.43 Configures (or disables) the inactivity timeout.
714    
715 root 1.176 =item $handle->timeout_reset
716    
717     =item $handle->rtimeout_reset
718    
719     =item $handle->wtimeout_reset
720    
721     Reset the activity timeout, as if data was received or sent.
722    
723     These methods are cheap to call.
724    
725 root 1.43 =cut
726    
727 root 1.176 for my $dir ("", "r", "w") {
728     my $timeout = "${dir}timeout";
729     my $tw = "_${dir}tw";
730     my $on_timeout = "on_${dir}timeout";
731     my $activity = "_${dir}activity";
732     my $cb;
733    
734     *$on_timeout = sub {
735     $_[0]{$on_timeout} = $_[1];
736     };
737    
738     *$timeout = sub {
739     my ($self, $new_value) = @_;
740 root 1.43
741 root 1.176 $self->{$timeout} = $new_value;
742     delete $self->{$tw}; &$cb;
743     };
744 root 1.43
745 root 1.176 *{"${dir}timeout_reset"} = sub {
746     $_[0]{$activity} = AE::now;
747     };
748 root 1.43
749 root 1.176 # main workhorse:
750     # reset the timeout watcher, as neccessary
751     # also check for time-outs
752     $cb = sub {
753     my ($self) = @_;
754    
755     if ($self->{$timeout} && $self->{fh}) {
756     my $NOW = AE::now;
757    
758     # when would the timeout trigger?
759     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
760    
761     # now or in the past already?
762     if ($after <= 0) {
763     $self->{$activity} = $NOW;
764 root 1.43
765 root 1.176 if ($self->{$on_timeout}) {
766     $self->{$on_timeout}($self);
767     } else {
768     $self->_error (Errno::ETIMEDOUT);
769     }
770 root 1.43
771 root 1.176 # callback could have changed timeout value, optimise
772     return unless $self->{$timeout};
773 root 1.43
774 root 1.176 # calculate new after
775     $after = $self->{$timeout};
776 root 1.43 }
777    
778 root 1.176 Scalar::Util::weaken $self;
779     return unless $self; # ->error could have destroyed $self
780 root 1.43
781 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
782     delete $self->{$tw};
783     $cb->($self);
784     };
785     } else {
786     delete $self->{$tw};
787 root 1.43 }
788     }
789     }
790    
791 root 1.9 #############################################################################
792    
793     =back
794    
795     =head2 WRITE QUEUE
796    
797     AnyEvent::Handle manages two queues per handle, one for writing and one
798     for reading.
799    
800     The write queue is very simple: you can add data to its end, and
801     AnyEvent::Handle will automatically try to get rid of it for you.
802    
803 elmex 1.20 When data could be written and the write buffer is shorter then the low
804 root 1.9 water mark, the C<on_drain> callback will be invoked.
805    
806     =over 4
807    
808 root 1.8 =item $handle->on_drain ($cb)
809    
810     Sets the C<on_drain> callback or clears it (see the description of
811     C<on_drain> in the constructor).
812    
813     =cut
814    
815     sub on_drain {
816 elmex 1.1 my ($self, $cb) = @_;
817    
818 root 1.8 $self->{on_drain} = $cb;
819    
820     $cb->($self)
821 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
822 root 1.8 }
823    
824     =item $handle->push_write ($data)
825    
826     Queues the given scalar to be written. You can push as much data as you
827     want (only limited by the available memory), as C<AnyEvent::Handle>
828     buffers it independently of the kernel.
829    
830     =cut
831    
832 root 1.17 sub _drain_wbuf {
833     my ($self) = @_;
834 root 1.8
835 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
836 root 1.35
837 root 1.8 Scalar::Util::weaken $self;
838 root 1.35
839 root 1.8 my $cb = sub {
840     my $len = syswrite $self->{fh}, $self->{wbuf};
841    
842 root 1.146 if (defined $len) {
843 root 1.8 substr $self->{wbuf}, 0, $len, "";
844    
845 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
846 root 1.43
847 root 1.8 $self->{on_drain}($self)
848 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
849 root 1.8 && $self->{on_drain};
850    
851 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
852 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
853 root 1.52 $self->_error ($!, 1);
854 elmex 1.1 }
855 root 1.8 };
856    
857 root 1.35 # try to write data immediately
858 root 1.70 $cb->() unless $self->{autocork};
859 root 1.8
860 root 1.35 # if still data left in wbuf, we need to poll
861 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
862 root 1.35 if length $self->{wbuf};
863 root 1.8 };
864     }
865    
866 root 1.30 our %WH;
867    
868     sub register_write_type($$) {
869     $WH{$_[0]} = $_[1];
870     }
871    
872 root 1.17 sub push_write {
873     my $self = shift;
874    
875 root 1.29 if (@_ > 1) {
876     my $type = shift;
877    
878     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
879     ->($self, @_);
880     }
881    
882 root 1.93 if ($self->{tls}) {
883     $self->{_tls_wbuf} .= $_[0];
884 root 1.160 &_dotls ($self) if $self->{fh};
885 root 1.17 } else {
886 root 1.160 $self->{wbuf} .= $_[0];
887 root 1.159 $self->_drain_wbuf if $self->{fh};
888 root 1.17 }
889     }
890    
891 root 1.29 =item $handle->push_write (type => @args)
892    
893     Instead of formatting your data yourself, you can also let this module do
894     the job by specifying a type and type-specific arguments.
895    
896 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
897     drop by and tell us):
898 root 1.29
899     =over 4
900    
901     =item netstring => $string
902    
903     Formats the given value as netstring
904     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
905    
906     =cut
907    
908     register_write_type netstring => sub {
909     my ($self, $string) = @_;
910    
911 root 1.96 (length $string) . ":$string,"
912 root 1.29 };
913    
914 root 1.61 =item packstring => $format, $data
915    
916     An octet string prefixed with an encoded length. The encoding C<$format>
917     uses the same format as a Perl C<pack> format, but must specify a single
918     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
919     optional C<!>, C<< < >> or C<< > >> modifier).
920    
921     =cut
922    
923     register_write_type packstring => sub {
924     my ($self, $format, $string) = @_;
925    
926 root 1.65 pack "$format/a*", $string
927 root 1.61 };
928    
929 root 1.39 =item json => $array_or_hashref
930    
931 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
932     provide your own JSON object, this means it will be encoded to JSON text
933     in UTF-8.
934    
935     JSON objects (and arrays) are self-delimiting, so you can write JSON at
936     one end of a handle and read them at the other end without using any
937     additional framing.
938    
939 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
940     this module doesn't need delimiters after or between JSON texts to be
941     able to read them, many other languages depend on that.
942    
943     A simple RPC protocol that interoperates easily with others is to send
944     JSON arrays (or objects, although arrays are usually the better choice as
945     they mimic how function argument passing works) and a newline after each
946     JSON text:
947    
948     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
949     $handle->push_write ("\012");
950    
951     An AnyEvent::Handle receiver would simply use the C<json> read type and
952     rely on the fact that the newline will be skipped as leading whitespace:
953    
954     $handle->push_read (json => sub { my $array = $_[1]; ... });
955    
956     Other languages could read single lines terminated by a newline and pass
957     this line into their JSON decoder of choice.
958    
959 root 1.40 =cut
960    
961 root 1.179 sub json_coder() {
962     eval { require JSON::XS; JSON::XS->new->utf8 }
963     || do { require JSON; JSON->new->utf8 }
964     }
965    
966 root 1.40 register_write_type json => sub {
967     my ($self, $ref) = @_;
968    
969 root 1.179 my $json = $self->{json} ||= json_coder;
970 root 1.40
971 root 1.179 $json->encode ($ref)
972 root 1.40 };
973    
974 root 1.63 =item storable => $reference
975    
976     Freezes the given reference using L<Storable> and writes it to the
977     handle. Uses the C<nfreeze> format.
978    
979     =cut
980    
981     register_write_type storable => sub {
982     my ($self, $ref) = @_;
983    
984     require Storable;
985    
986 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
987 root 1.63 };
988    
989 root 1.53 =back
990    
991 root 1.133 =item $handle->push_shutdown
992    
993     Sometimes you know you want to close the socket after writing your data
994     before it was actually written. One way to do that is to replace your
995 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
996     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
997     replaces the C<on_drain> callback with:
998 root 1.133
999     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1000    
1001     This simply shuts down the write side and signals an EOF condition to the
1002     the peer.
1003    
1004     You can rely on the normal read queue and C<on_eof> handling
1005     afterwards. This is the cleanest way to close a connection.
1006    
1007     =cut
1008    
1009     sub push_shutdown {
1010 root 1.142 my ($self) = @_;
1011    
1012     delete $self->{low_water_mark};
1013     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1014 root 1.133 }
1015    
1016 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
1017 root 1.30
1018     This function (not method) lets you add your own types to C<push_write>.
1019     Whenever the given C<type> is used, C<push_write> will invoke the code
1020     reference with the handle object and the remaining arguments.
1021 root 1.29
1022 root 1.30 The code reference is supposed to return a single octet string that will
1023     be appended to the write buffer.
1024 root 1.29
1025 root 1.30 Note that this is a function, and all types registered this way will be
1026     global, so try to use unique names.
1027 root 1.29
1028 root 1.30 =cut
1029 root 1.29
1030 root 1.8 #############################################################################
1031    
1032 root 1.9 =back
1033    
1034     =head2 READ QUEUE
1035    
1036     AnyEvent::Handle manages two queues per handle, one for writing and one
1037     for reading.
1038    
1039     The read queue is more complex than the write queue. It can be used in two
1040     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1041     a queue.
1042    
1043     In the simple case, you just install an C<on_read> callback and whenever
1044     new data arrives, it will be called. You can then remove some data (if
1045 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
1046     leave the data there if you want to accumulate more (e.g. when only a
1047     partial message has been received so far).
1048 root 1.9
1049     In the more complex case, you want to queue multiple callbacks. In this
1050     case, AnyEvent::Handle will call the first queued callback each time new
1051 root 1.61 data arrives (also the first time it is queued) and removes it when it has
1052     done its job (see C<push_read>, below).
1053 root 1.9
1054     This way you can, for example, push three line-reads, followed by reading
1055     a chunk of data, and AnyEvent::Handle will execute them in order.
1056    
1057     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1058     the specified number of bytes which give an XML datagram.
1059    
1060     # in the default state, expect some header bytes
1061     $handle->on_read (sub {
1062     # some data is here, now queue the length-header-read (4 octets)
1063 root 1.52 shift->unshift_read (chunk => 4, sub {
1064 root 1.9 # header arrived, decode
1065     my $len = unpack "N", $_[1];
1066    
1067     # now read the payload
1068 root 1.52 shift->unshift_read (chunk => $len, sub {
1069 root 1.9 my $xml = $_[1];
1070     # handle xml
1071     });
1072     });
1073     });
1074    
1075 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1076     and another line or "ERROR" for the first request that is sent, and 64
1077     bytes for the second request. Due to the availability of a queue, we can
1078     just pipeline sending both requests and manipulate the queue as necessary
1079     in the callbacks.
1080    
1081     When the first callback is called and sees an "OK" response, it will
1082     C<unshift> another line-read. This line-read will be queued I<before> the
1083     64-byte chunk callback.
1084 root 1.9
1085 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1086 root 1.9 $handle->push_write ("request 1\015\012");
1087    
1088     # we expect "ERROR" or "OK" as response, so push a line read
1089 root 1.52 $handle->push_read (line => sub {
1090 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1091     # so it will be read before the second request reads its 64 bytes
1092     # which are already in the queue when this callback is called
1093     # we don't do this in case we got an error
1094     if ($_[1] eq "OK") {
1095 root 1.52 $_[0]->unshift_read (line => sub {
1096 root 1.9 my $response = $_[1];
1097     ...
1098     });
1099     }
1100     });
1101    
1102 root 1.69 # request two, simply returns 64 octets
1103 root 1.9 $handle->push_write ("request 2\015\012");
1104    
1105     # simply read 64 bytes, always
1106 root 1.52 $handle->push_read (chunk => 64, sub {
1107 root 1.9 my $response = $_[1];
1108     ...
1109     });
1110    
1111     =over 4
1112    
1113 root 1.10 =cut
1114    
1115 root 1.8 sub _drain_rbuf {
1116     my ($self) = @_;
1117 elmex 1.1
1118 root 1.159 # avoid recursion
1119 root 1.167 return if $self->{_skip_drain_rbuf};
1120 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1121 root 1.59
1122     while () {
1123 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1124     # we are draining the buffer, and this can only happen with TLS.
1125 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1126     if exists $self->{_tls_rbuf};
1127 root 1.115
1128 root 1.59 my $len = length $self->{rbuf};
1129 elmex 1.1
1130 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1131 root 1.29 unless ($cb->($self)) {
1132 root 1.163 # no progress can be made
1133     # (not enough data and no data forthcoming)
1134     $self->_error (Errno::EPIPE, 1), return
1135     if $self->{_eof};
1136 root 1.10
1137 root 1.38 unshift @{ $self->{_queue} }, $cb;
1138 root 1.55 last;
1139 root 1.8 }
1140     } elsif ($self->{on_read}) {
1141 root 1.61 last unless $len;
1142    
1143 root 1.8 $self->{on_read}($self);
1144    
1145     if (
1146 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1147     && !@{ $self->{_queue} } # and the queue is still empty
1148     && $self->{on_read} # but we still have on_read
1149 root 1.8 ) {
1150 root 1.55 # no further data will arrive
1151     # so no progress can be made
1152 root 1.150 $self->_error (Errno::EPIPE, 1), return
1153 root 1.55 if $self->{_eof};
1154    
1155     last; # more data might arrive
1156 elmex 1.1 }
1157 root 1.8 } else {
1158     # read side becomes idle
1159 root 1.93 delete $self->{_rw} unless $self->{tls};
1160 root 1.55 last;
1161 root 1.8 }
1162     }
1163    
1164 root 1.80 if ($self->{_eof}) {
1165 root 1.163 $self->{on_eof}
1166     ? $self->{on_eof}($self)
1167     : $self->_error (0, 1, "Unexpected end-of-file");
1168    
1169     return;
1170 root 1.80 }
1171 root 1.55
1172 root 1.169 if (
1173     defined $self->{rbuf_max}
1174     && $self->{rbuf_max} < length $self->{rbuf}
1175     ) {
1176     $self->_error (Errno::ENOSPC, 1), return;
1177     }
1178    
1179 root 1.55 # may need to restart read watcher
1180     unless ($self->{_rw}) {
1181     $self->start_read
1182     if $self->{on_read} || @{ $self->{_queue} };
1183     }
1184 elmex 1.1 }
1185    
1186 root 1.8 =item $handle->on_read ($cb)
1187 elmex 1.1
1188 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1189     the new callback is C<undef>). See the description of C<on_read> in the
1190     constructor.
1191 elmex 1.1
1192 root 1.8 =cut
1193    
1194     sub on_read {
1195     my ($self, $cb) = @_;
1196 elmex 1.1
1197 root 1.8 $self->{on_read} = $cb;
1198 root 1.159 $self->_drain_rbuf if $cb;
1199 elmex 1.1 }
1200    
1201 root 1.8 =item $handle->rbuf
1202    
1203     Returns the read buffer (as a modifiable lvalue).
1204 elmex 1.1
1205 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1206     member, if you want. However, the only operation allowed on the
1207     read buffer (apart from looking at it) is removing data from its
1208     beginning. Otherwise modifying or appending to it is not allowed and will
1209     lead to hard-to-track-down bugs.
1210 elmex 1.1
1211 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1212     C<push_read> or C<unshift_read> methods are used. The other read methods
1213     automatically manage the read buffer.
1214 elmex 1.1
1215     =cut
1216    
1217 elmex 1.2 sub rbuf : lvalue {
1218 root 1.8 $_[0]{rbuf}
1219 elmex 1.2 }
1220 elmex 1.1
1221 root 1.8 =item $handle->push_read ($cb)
1222    
1223     =item $handle->unshift_read ($cb)
1224    
1225     Append the given callback to the end of the queue (C<push_read>) or
1226     prepend it (C<unshift_read>).
1227    
1228     The callback is called each time some additional read data arrives.
1229 elmex 1.1
1230 elmex 1.20 It must check whether enough data is in the read buffer already.
1231 elmex 1.1
1232 root 1.8 If not enough data is available, it must return the empty list or a false
1233     value, in which case it will be called repeatedly until enough data is
1234     available (or an error condition is detected).
1235    
1236     If enough data was available, then the callback must remove all data it is
1237     interested in (which can be none at all) and return a true value. After returning
1238     true, it will be removed from the queue.
1239 elmex 1.1
1240     =cut
1241    
1242 root 1.30 our %RH;
1243    
1244     sub register_read_type($$) {
1245     $RH{$_[0]} = $_[1];
1246     }
1247    
1248 root 1.8 sub push_read {
1249 root 1.28 my $self = shift;
1250     my $cb = pop;
1251    
1252     if (@_) {
1253     my $type = shift;
1254    
1255     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1256     ->($self, $cb, @_);
1257     }
1258 elmex 1.1
1259 root 1.38 push @{ $self->{_queue} }, $cb;
1260 root 1.159 $self->_drain_rbuf;
1261 elmex 1.1 }
1262    
1263 root 1.8 sub unshift_read {
1264 root 1.28 my $self = shift;
1265     my $cb = pop;
1266    
1267     if (@_) {
1268     my $type = shift;
1269    
1270     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1271     ->($self, $cb, @_);
1272     }
1273    
1274 root 1.38 unshift @{ $self->{_queue} }, $cb;
1275 root 1.159 $self->_drain_rbuf;
1276 root 1.8 }
1277 elmex 1.1
1278 root 1.28 =item $handle->push_read (type => @args, $cb)
1279 elmex 1.1
1280 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1281 elmex 1.1
1282 root 1.28 Instead of providing a callback that parses the data itself you can chose
1283     between a number of predefined parsing formats, for chunks of data, lines
1284     etc.
1285 elmex 1.1
1286 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1287     drop by and tell us):
1288 root 1.28
1289     =over 4
1290    
1291 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1292 root 1.28
1293     Invoke the callback only once C<$octets> bytes have been read. Pass the
1294     data read to the callback. The callback will never be called with less
1295     data.
1296    
1297     Example: read 2 bytes.
1298    
1299     $handle->push_read (chunk => 2, sub {
1300     warn "yay ", unpack "H*", $_[1];
1301     });
1302 elmex 1.1
1303     =cut
1304    
1305 root 1.28 register_read_type chunk => sub {
1306     my ($self, $cb, $len) = @_;
1307 elmex 1.1
1308 root 1.8 sub {
1309     $len <= length $_[0]{rbuf} or return;
1310 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1311 root 1.8 1
1312     }
1313 root 1.28 };
1314 root 1.8
1315 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1316 elmex 1.1
1317 root 1.8 The callback will be called only once a full line (including the end of
1318     line marker, C<$eol>) has been read. This line (excluding the end of line
1319     marker) will be passed to the callback as second argument (C<$line>), and
1320     the end of line marker as the third argument (C<$eol>).
1321 elmex 1.1
1322 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1323     will be interpreted as a fixed record end marker, or it can be a regex
1324     object (e.g. created by C<qr>), in which case it is interpreted as a
1325     regular expression.
1326 elmex 1.1
1327 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1328     undef), then C<qr|\015?\012|> is used (which is good for most internet
1329     protocols).
1330 elmex 1.1
1331 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1332     not marked by the end of line marker.
1333 elmex 1.1
1334 root 1.8 =cut
1335 elmex 1.1
1336 root 1.28 register_read_type line => sub {
1337     my ($self, $cb, $eol) = @_;
1338 elmex 1.1
1339 root 1.76 if (@_ < 3) {
1340     # this is more than twice as fast as the generic code below
1341     sub {
1342     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1343 elmex 1.1
1344 root 1.76 $cb->($_[0], $1, $2);
1345     1
1346     }
1347     } else {
1348     $eol = quotemeta $eol unless ref $eol;
1349     $eol = qr|^(.*?)($eol)|s;
1350    
1351     sub {
1352     $_[0]{rbuf} =~ s/$eol// or return;
1353 elmex 1.1
1354 root 1.76 $cb->($_[0], $1, $2);
1355     1
1356     }
1357 root 1.8 }
1358 root 1.28 };
1359 elmex 1.1
1360 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1361 root 1.36
1362     Makes a regex match against the regex object C<$accept> and returns
1363     everything up to and including the match.
1364    
1365     Example: read a single line terminated by '\n'.
1366    
1367     $handle->push_read (regex => qr<\n>, sub { ... });
1368    
1369     If C<$reject> is given and not undef, then it determines when the data is
1370     to be rejected: it is matched against the data when the C<$accept> regex
1371     does not match and generates an C<EBADMSG> error when it matches. This is
1372     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1373     receive buffer overflow).
1374    
1375     Example: expect a single decimal number followed by whitespace, reject
1376     anything else (not the use of an anchor).
1377    
1378     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1379    
1380     If C<$skip> is given and not C<undef>, then it will be matched against
1381     the receive buffer when neither C<$accept> nor C<$reject> match,
1382     and everything preceding and including the match will be accepted
1383     unconditionally. This is useful to skip large amounts of data that you
1384     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1385     have to start matching from the beginning. This is purely an optimisation
1386     and is usually worth only when you expect more than a few kilobytes.
1387    
1388     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1389     expect the header to be very large (it isn't in practise, but...), we use
1390     a skip regex to skip initial portions. The skip regex is tricky in that
1391     it only accepts something not ending in either \015 or \012, as these are
1392     required for the accept regex.
1393    
1394     $handle->push_read (regex =>
1395     qr<\015\012\015\012>,
1396     undef, # no reject
1397     qr<^.*[^\015\012]>,
1398     sub { ... });
1399    
1400     =cut
1401    
1402     register_read_type regex => sub {
1403     my ($self, $cb, $accept, $reject, $skip) = @_;
1404    
1405     my $data;
1406     my $rbuf = \$self->{rbuf};
1407    
1408     sub {
1409     # accept
1410     if ($$rbuf =~ $accept) {
1411     $data .= substr $$rbuf, 0, $+[0], "";
1412     $cb->($self, $data);
1413     return 1;
1414     }
1415    
1416     # reject
1417     if ($reject && $$rbuf =~ $reject) {
1418 root 1.150 $self->_error (Errno::EBADMSG);
1419 root 1.36 }
1420    
1421     # skip
1422     if ($skip && $$rbuf =~ $skip) {
1423     $data .= substr $$rbuf, 0, $+[0], "";
1424     }
1425    
1426     ()
1427     }
1428     };
1429    
1430 root 1.61 =item netstring => $cb->($handle, $string)
1431    
1432     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1433    
1434     Throws an error with C<$!> set to EBADMSG on format violations.
1435    
1436     =cut
1437    
1438     register_read_type netstring => sub {
1439     my ($self, $cb) = @_;
1440    
1441     sub {
1442     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1443     if ($_[0]{rbuf} =~ /[^0-9]/) {
1444 root 1.150 $self->_error (Errno::EBADMSG);
1445 root 1.61 }
1446     return;
1447     }
1448    
1449     my $len = $1;
1450    
1451     $self->unshift_read (chunk => $len, sub {
1452     my $string = $_[1];
1453     $_[0]->unshift_read (chunk => 1, sub {
1454     if ($_[1] eq ",") {
1455     $cb->($_[0], $string);
1456     } else {
1457 root 1.150 $self->_error (Errno::EBADMSG);
1458 root 1.61 }
1459     });
1460     });
1461    
1462     1
1463     }
1464     };
1465    
1466     =item packstring => $format, $cb->($handle, $string)
1467    
1468     An octet string prefixed with an encoded length. The encoding C<$format>
1469     uses the same format as a Perl C<pack> format, but must specify a single
1470     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1471     optional C<!>, C<< < >> or C<< > >> modifier).
1472    
1473 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1474     EPP uses a prefix of C<N> (4 octtes).
1475 root 1.61
1476     Example: read a block of data prefixed by its length in BER-encoded
1477     format (very efficient).
1478    
1479     $handle->push_read (packstring => "w", sub {
1480     my ($handle, $data) = @_;
1481     });
1482    
1483     =cut
1484    
1485     register_read_type packstring => sub {
1486     my ($self, $cb, $format) = @_;
1487    
1488     sub {
1489     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1490 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1491 root 1.61 or return;
1492    
1493 root 1.77 $format = length pack $format, $len;
1494 root 1.61
1495 root 1.77 # bypass unshift if we already have the remaining chunk
1496     if ($format + $len <= length $_[0]{rbuf}) {
1497     my $data = substr $_[0]{rbuf}, $format, $len;
1498     substr $_[0]{rbuf}, 0, $format + $len, "";
1499     $cb->($_[0], $data);
1500     } else {
1501     # remove prefix
1502     substr $_[0]{rbuf}, 0, $format, "";
1503    
1504     # read remaining chunk
1505     $_[0]->unshift_read (chunk => $len, $cb);
1506     }
1507 root 1.61
1508     1
1509     }
1510     };
1511    
1512 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1513    
1514 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1515     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1516 root 1.40
1517     If a C<json> object was passed to the constructor, then that will be used
1518     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1519    
1520     This read type uses the incremental parser available with JSON version
1521     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1522     dependency on your own: this module will load the JSON module, but
1523     AnyEvent does not depend on it itself.
1524    
1525     Since JSON texts are fully self-delimiting, the C<json> read and write
1526 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1527     the C<json> write type description, above, for an actual example.
1528 root 1.40
1529     =cut
1530    
1531     register_read_type json => sub {
1532 root 1.63 my ($self, $cb) = @_;
1533 root 1.40
1534 root 1.179 my $json = $self->{json} ||= json_coder;
1535 root 1.40
1536     my $data;
1537     my $rbuf = \$self->{rbuf};
1538    
1539     sub {
1540 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1541 root 1.110
1542 root 1.113 if ($ref) {
1543     $self->{rbuf} = $json->incr_text;
1544     $json->incr_text = "";
1545     $cb->($self, $ref);
1546 root 1.110
1547     1
1548 root 1.113 } elsif ($@) {
1549 root 1.111 # error case
1550 root 1.110 $json->incr_skip;
1551 root 1.40
1552     $self->{rbuf} = $json->incr_text;
1553     $json->incr_text = "";
1554    
1555 root 1.150 $self->_error (Errno::EBADMSG);
1556 root 1.114
1557 root 1.113 ()
1558     } else {
1559     $self->{rbuf} = "";
1560 root 1.114
1561 root 1.113 ()
1562     }
1563 root 1.40 }
1564     };
1565    
1566 root 1.63 =item storable => $cb->($handle, $ref)
1567    
1568     Deserialises a L<Storable> frozen representation as written by the
1569     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1570     data).
1571    
1572     Raises C<EBADMSG> error if the data could not be decoded.
1573    
1574     =cut
1575    
1576     register_read_type storable => sub {
1577     my ($self, $cb) = @_;
1578    
1579     require Storable;
1580    
1581     sub {
1582     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1583 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1584 root 1.63 or return;
1585    
1586 root 1.77 my $format = length pack "w", $len;
1587 root 1.63
1588 root 1.77 # bypass unshift if we already have the remaining chunk
1589     if ($format + $len <= length $_[0]{rbuf}) {
1590     my $data = substr $_[0]{rbuf}, $format, $len;
1591     substr $_[0]{rbuf}, 0, $format + $len, "";
1592     $cb->($_[0], Storable::thaw ($data));
1593     } else {
1594     # remove prefix
1595     substr $_[0]{rbuf}, 0, $format, "";
1596    
1597     # read remaining chunk
1598     $_[0]->unshift_read (chunk => $len, sub {
1599     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1600     $cb->($_[0], $ref);
1601     } else {
1602 root 1.150 $self->_error (Errno::EBADMSG);
1603 root 1.77 }
1604     });
1605     }
1606    
1607     1
1608 root 1.63 }
1609     };
1610    
1611 root 1.28 =back
1612    
1613 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1614 root 1.30
1615     This function (not method) lets you add your own types to C<push_read>.
1616    
1617     Whenever the given C<type> is used, C<push_read> will invoke the code
1618     reference with the handle object, the callback and the remaining
1619     arguments.
1620    
1621     The code reference is supposed to return a callback (usually a closure)
1622     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1623    
1624     It should invoke the passed callback when it is done reading (remember to
1625 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1626 root 1.30
1627     Note that this is a function, and all types registered this way will be
1628     global, so try to use unique names.
1629    
1630     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1631     search for C<register_read_type>)).
1632    
1633 root 1.10 =item $handle->stop_read
1634    
1635     =item $handle->start_read
1636    
1637 root 1.18 In rare cases you actually do not want to read anything from the
1638 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1639 root 1.22 any queued callbacks will be executed then. To start reading again, call
1640 root 1.10 C<start_read>.
1641    
1642 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1643     you change the C<on_read> callback or push/unshift a read callback, and it
1644     will automatically C<stop_read> for you when neither C<on_read> is set nor
1645     there are any read requests in the queue.
1646    
1647 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1648     half-duplex connections).
1649    
1650 root 1.10 =cut
1651    
1652     sub stop_read {
1653     my ($self) = @_;
1654 elmex 1.1
1655 root 1.93 delete $self->{_rw} unless $self->{tls};
1656 root 1.8 }
1657 elmex 1.1
1658 root 1.10 sub start_read {
1659     my ($self) = @_;
1660    
1661 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1662 root 1.10 Scalar::Util::weaken $self;
1663    
1664 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1665 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1666 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1667 root 1.10
1668     if ($len > 0) {
1669 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1670 root 1.43
1671 root 1.93 if ($self->{tls}) {
1672     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1673 root 1.97
1674 root 1.93 &_dotls ($self);
1675     } else {
1676 root 1.159 $self->_drain_rbuf;
1677 root 1.93 }
1678 root 1.10
1679     } elsif (defined $len) {
1680 root 1.38 delete $self->{_rw};
1681     $self->{_eof} = 1;
1682 root 1.159 $self->_drain_rbuf;
1683 root 1.10
1684 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1685 root 1.52 return $self->_error ($!, 1);
1686 root 1.10 }
1687 root 1.175 };
1688 root 1.10 }
1689 elmex 1.1 }
1690    
1691 root 1.133 our $ERROR_SYSCALL;
1692     our $ERROR_WANT_READ;
1693    
1694     sub _tls_error {
1695     my ($self, $err) = @_;
1696    
1697     return $self->_error ($!, 1)
1698     if $err == Net::SSLeay::ERROR_SYSCALL ();
1699    
1700 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1701    
1702     # reduce error string to look less scary
1703     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1704    
1705 root 1.143 if ($self->{_on_starttls}) {
1706     (delete $self->{_on_starttls})->($self, undef, $err);
1707     &_freetls;
1708     } else {
1709     &_freetls;
1710 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1711 root 1.143 }
1712 root 1.133 }
1713    
1714 root 1.97 # poll the write BIO and send the data if applicable
1715 root 1.133 # also decode read data if possible
1716     # this is basiclaly our TLS state machine
1717     # more efficient implementations are possible with openssl,
1718     # but not with the buggy and incomplete Net::SSLeay.
1719 root 1.19 sub _dotls {
1720     my ($self) = @_;
1721    
1722 root 1.97 my $tmp;
1723 root 1.56
1724 root 1.38 if (length $self->{_tls_wbuf}) {
1725 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1726     substr $self->{_tls_wbuf}, 0, $tmp, "";
1727 root 1.22 }
1728 root 1.133
1729     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1730     return $self->_tls_error ($tmp)
1731     if $tmp != $ERROR_WANT_READ
1732 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1733 root 1.19 }
1734    
1735 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1736     unless (length $tmp) {
1737 root 1.143 $self->{_on_starttls}
1738     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1739 root 1.92 &_freetls;
1740 root 1.143
1741 root 1.142 if ($self->{on_stoptls}) {
1742     $self->{on_stoptls}($self);
1743     return;
1744     } else {
1745     # let's treat SSL-eof as we treat normal EOF
1746     delete $self->{_rw};
1747     $self->{_eof} = 1;
1748     }
1749 root 1.56 }
1750 root 1.91
1751 root 1.116 $self->{_tls_rbuf} .= $tmp;
1752 root 1.159 $self->_drain_rbuf;
1753 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1754 root 1.23 }
1755    
1756 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1757 root 1.133 return $self->_tls_error ($tmp)
1758     if $tmp != $ERROR_WANT_READ
1759 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1760 root 1.91
1761 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1762     $self->{wbuf} .= $tmp;
1763 root 1.91 $self->_drain_wbuf;
1764     }
1765 root 1.142
1766     $self->{_on_starttls}
1767     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1768 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1769 root 1.19 }
1770    
1771 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1772    
1773     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1774     object is created, you can also do that at a later time by calling
1775     C<starttls>.
1776    
1777 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1778     write data and then call C<< ->starttls >> then TLS negotiation will start
1779     immediately, after which the queued write data is then sent.
1780    
1781 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1782     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1783    
1784 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1785     when AnyEvent::Handle has to create its own TLS connection object, or
1786     a hash reference with C<< key => value >> pairs that will be used to
1787     construct a new context.
1788    
1789     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1790     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1791     changed to your liking. Note that the handshake might have already started
1792     when this function returns.
1793 root 1.38
1794 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1795     handshakes on the same stream. Best do not attempt to use the stream after
1796     stopping TLS.
1797 root 1.92
1798 root 1.25 =cut
1799    
1800 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1801    
1802 root 1.19 sub starttls {
1803 root 1.160 my ($self, $tls, $ctx) = @_;
1804    
1805     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1806     if $self->{tls};
1807    
1808     $self->{tls} = $tls;
1809     $self->{tls_ctx} = $ctx if @_ > 2;
1810    
1811     return unless $self->{fh};
1812 root 1.19
1813 root 1.94 require Net::SSLeay;
1814    
1815 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1816     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1817 root 1.133
1818 root 1.180 $tls = delete $self->{tls};
1819 root 1.160 $ctx = $self->{tls_ctx};
1820 root 1.131
1821 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1822    
1823 root 1.131 if ("HASH" eq ref $ctx) {
1824     require AnyEvent::TLS;
1825    
1826 root 1.137 if ($ctx->{cache}) {
1827     my $key = $ctx+0;
1828     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1829     } else {
1830     $ctx = new AnyEvent::TLS %$ctx;
1831     }
1832 root 1.131 }
1833 root 1.92
1834 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1835 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1836 root 1.19
1837 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1838     # but the openssl maintainers basically said: "trust us, it just works".
1839     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1840     # and mismaintained ssleay-module doesn't even offer them).
1841 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1842 root 1.87 #
1843     # in short: this is a mess.
1844     #
1845 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1846 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1847 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1848     # have identity issues in that area.
1849 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1850     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1851     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1852 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1853 root 1.21
1854 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1855     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1856 root 1.19
1857 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1858    
1859 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1860 root 1.19
1861 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1862 root 1.143 if $self->{on_starttls};
1863 root 1.142
1864 root 1.93 &_dotls; # need to trigger the initial handshake
1865     $self->start_read; # make sure we actually do read
1866 root 1.19 }
1867    
1868 root 1.25 =item $handle->stoptls
1869    
1870 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1871     sending a close notify to the other side, but since OpenSSL doesn't
1872 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1873     the stream afterwards.
1874 root 1.25
1875     =cut
1876    
1877     sub stoptls {
1878     my ($self) = @_;
1879    
1880 root 1.92 if ($self->{tls}) {
1881 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1882 root 1.92
1883     &_dotls;
1884    
1885 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1886     # # we, we... have to use openssl :/#d#
1887     # &_freetls;#d#
1888 root 1.92 }
1889     }
1890    
1891     sub _freetls {
1892     my ($self) = @_;
1893    
1894     return unless $self->{tls};
1895 root 1.38
1896 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1897 root 1.171 if $self->{tls} > 0;
1898 root 1.92
1899 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1900 root 1.25 }
1901    
1902 root 1.19 sub DESTROY {
1903 root 1.120 my ($self) = @_;
1904 root 1.19
1905 root 1.92 &_freetls;
1906 root 1.62
1907     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1908    
1909 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1910 root 1.62 my $fh = delete $self->{fh};
1911     my $wbuf = delete $self->{wbuf};
1912    
1913     my @linger;
1914    
1915 root 1.175 push @linger, AE::io $fh, 1, sub {
1916 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1917    
1918     if ($len > 0) {
1919     substr $wbuf, 0, $len, "";
1920     } else {
1921     @linger = (); # end
1922     }
1923 root 1.175 };
1924     push @linger, AE::timer $linger, 0, sub {
1925 root 1.62 @linger = ();
1926 root 1.175 };
1927 root 1.62 }
1928 root 1.19 }
1929    
1930 root 1.99 =item $handle->destroy
1931    
1932 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1933 root 1.141 no further callbacks will be invoked and as many resources as possible
1934 root 1.165 will be freed. Any method you will call on the handle object after
1935     destroying it in this way will be silently ignored (and it will return the
1936     empty list).
1937 root 1.99
1938 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1939     object and it will simply shut down. This works in fatal error and EOF
1940     callbacks, as well as code outside. It does I<NOT> work in a read or write
1941     callback, so when you want to destroy the AnyEvent::Handle object from
1942     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1943     that case.
1944    
1945 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1946     will be removed as well, so if those are the only reference holders (as
1947     is common), then one doesn't need to do anything special to break any
1948     reference cycles.
1949    
1950 root 1.99 The handle might still linger in the background and write out remaining
1951     data, as specified by the C<linger> option, however.
1952    
1953     =cut
1954    
1955     sub destroy {
1956     my ($self) = @_;
1957    
1958     $self->DESTROY;
1959     %$self = ();
1960 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
1961     }
1962    
1963 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
1964     #nop
1965 root 1.99 }
1966    
1967 root 1.19 =item AnyEvent::Handle::TLS_CTX
1968    
1969 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1970     for TLS mode.
1971 root 1.19
1972 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1973 root 1.19
1974     =cut
1975    
1976     our $TLS_CTX;
1977    
1978     sub TLS_CTX() {
1979 root 1.131 $TLS_CTX ||= do {
1980     require AnyEvent::TLS;
1981 root 1.19
1982 root 1.131 new AnyEvent::TLS
1983 root 1.19 }
1984     }
1985    
1986 elmex 1.1 =back
1987    
1988 root 1.95
1989     =head1 NONFREQUENTLY ASKED QUESTIONS
1990    
1991     =over 4
1992    
1993 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1994     still get further invocations!
1995    
1996     That's because AnyEvent::Handle keeps a reference to itself when handling
1997     read or write callbacks.
1998    
1999     It is only safe to "forget" the reference inside EOF or error callbacks,
2000     from within all other callbacks, you need to explicitly call the C<<
2001     ->destroy >> method.
2002    
2003     =item I get different callback invocations in TLS mode/Why can't I pause
2004     reading?
2005    
2006     Unlike, say, TCP, TLS connections do not consist of two independent
2007     communication channels, one for each direction. Or put differently. The
2008     read and write directions are not independent of each other: you cannot
2009     write data unless you are also prepared to read, and vice versa.
2010    
2011     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2012     callback invocations when you are not expecting any read data - the reason
2013     is that AnyEvent::Handle always reads in TLS mode.
2014    
2015     During the connection, you have to make sure that you always have a
2016     non-empty read-queue, or an C<on_read> watcher. At the end of the
2017     connection (or when you no longer want to use it) you can call the
2018     C<destroy> method.
2019    
2020 root 1.95 =item How do I read data until the other side closes the connection?
2021    
2022 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2023     to achieve this is by setting an C<on_read> callback that does nothing,
2024     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2025     will be in C<$_[0]{rbuf}>:
2026 root 1.95
2027     $handle->on_read (sub { });
2028     $handle->on_eof (undef);
2029     $handle->on_error (sub {
2030     my $data = delete $_[0]{rbuf};
2031     });
2032    
2033     The reason to use C<on_error> is that TCP connections, due to latencies
2034     and packets loss, might get closed quite violently with an error, when in
2035     fact, all data has been received.
2036    
2037 root 1.101 It is usually better to use acknowledgements when transferring data,
2038 root 1.95 to make sure the other side hasn't just died and you got the data
2039     intact. This is also one reason why so many internet protocols have an
2040     explicit QUIT command.
2041    
2042 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2043     all data has been written?
2044 root 1.95
2045     After writing your last bits of data, set the C<on_drain> callback
2046     and destroy the handle in there - with the default setting of
2047     C<low_water_mark> this will be called precisely when all data has been
2048     written to the socket:
2049    
2050     $handle->push_write (...);
2051     $handle->on_drain (sub {
2052     warn "all data submitted to the kernel\n";
2053     undef $handle;
2054     });
2055    
2056 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2057     consider using C<< ->push_shutdown >> instead.
2058    
2059     =item I want to contact a TLS/SSL server, I don't care about security.
2060    
2061     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2062     simply connect to it and then create the AnyEvent::Handle with the C<tls>
2063     parameter:
2064    
2065 root 1.144 tcp_connect $host, $port, sub {
2066     my ($fh) = @_;
2067 root 1.143
2068 root 1.144 my $handle = new AnyEvent::Handle
2069     fh => $fh,
2070     tls => "connect",
2071     on_error => sub { ... };
2072    
2073     $handle->push_write (...);
2074     };
2075 root 1.143
2076     =item I want to contact a TLS/SSL server, I do care about security.
2077    
2078 root 1.144 Then you should additionally enable certificate verification, including
2079     peername verification, if the protocol you use supports it (see
2080     L<AnyEvent::TLS>, C<verify_peername>).
2081    
2082     E.g. for HTTPS:
2083    
2084     tcp_connect $host, $port, sub {
2085     my ($fh) = @_;
2086    
2087     my $handle = new AnyEvent::Handle
2088     fh => $fh,
2089     peername => $host,
2090     tls => "connect",
2091     tls_ctx => { verify => 1, verify_peername => "https" },
2092     ...
2093    
2094     Note that you must specify the hostname you connected to (or whatever
2095     "peername" the protocol needs) as the C<peername> argument, otherwise no
2096     peername verification will be done.
2097    
2098     The above will use the system-dependent default set of trusted CA
2099     certificates. If you want to check against a specific CA, add the
2100     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2101    
2102     tls_ctx => {
2103     verify => 1,
2104     verify_peername => "https",
2105     ca_file => "my-ca-cert.pem",
2106     },
2107    
2108     =item I want to create a TLS/SSL server, how do I do that?
2109    
2110     Well, you first need to get a server certificate and key. You have
2111     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2112     self-signed certificate (cheap. check the search engine of your choice,
2113     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2114     nice program for that purpose).
2115    
2116     Then create a file with your private key (in PEM format, see
2117     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2118     file should then look like this:
2119    
2120     -----BEGIN RSA PRIVATE KEY-----
2121     ...header data
2122     ... lots of base64'y-stuff
2123     -----END RSA PRIVATE KEY-----
2124    
2125     -----BEGIN CERTIFICATE-----
2126     ... lots of base64'y-stuff
2127     -----END CERTIFICATE-----
2128    
2129     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2130     specify this file as C<cert_file>:
2131    
2132     tcp_server undef, $port, sub {
2133     my ($fh) = @_;
2134    
2135     my $handle = new AnyEvent::Handle
2136     fh => $fh,
2137     tls => "accept",
2138     tls_ctx => { cert_file => "my-server-keycert.pem" },
2139     ...
2140 root 1.143
2141 root 1.144 When you have intermediate CA certificates that your clients might not
2142     know about, just append them to the C<cert_file>.
2143 root 1.143
2144 root 1.95 =back
2145    
2146    
2147 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2148    
2149     In many cases, you might want to subclass AnyEvent::Handle.
2150    
2151     To make this easier, a given version of AnyEvent::Handle uses these
2152     conventions:
2153    
2154     =over 4
2155    
2156     =item * all constructor arguments become object members.
2157    
2158     At least initially, when you pass a C<tls>-argument to the constructor it
2159 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2160 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2161    
2162     =item * other object member names are prefixed with an C<_>.
2163    
2164     All object members not explicitly documented (internal use) are prefixed
2165     with an underscore character, so the remaining non-C<_>-namespace is free
2166     for use for subclasses.
2167    
2168     =item * all members not documented here and not prefixed with an underscore
2169     are free to use in subclasses.
2170    
2171     Of course, new versions of AnyEvent::Handle may introduce more "public"
2172     member variables, but thats just life, at least it is documented.
2173    
2174     =back
2175    
2176 elmex 1.1 =head1 AUTHOR
2177    
2178 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2179 elmex 1.1
2180     =cut
2181    
2182     1; # End of AnyEvent::Handle