ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.184
Committed: Thu Sep 3 13:14:38 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.183: +4 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 elmex 1.2 );
20    
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.159 filehandles.
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 elmex 1.1 =head1 METHODS
66    
67     =over 4
68    
69 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
70 elmex 1.1
71 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
72 elmex 1.1
73     =over 4
74    
75 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
76 root 1.158
77 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83    
84     Try to connect to the specified host and service (port), using
85     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86     default C<peername>.
87    
88     You have to specify either this parameter, or C<fh>, above.
89    
90 root 1.160 It is possible to push requests on the read and write queues, and modify
91     properties of the stream, even while AnyEvent::Handle is connecting.
92    
93 root 1.159 When this parameter is specified, then the C<on_prepare>,
94     C<on_connect_error> and C<on_connect> callbacks will be called under the
95     appropriate circumstances:
96    
97     =over 4
98    
99     =item on_prepare => $cb->($handle)
100    
101     This (rarely used) callback is called before a new connection is
102     attempted, but after the file handle has been created. It could be used to
103     prepare the file handle with parameters required for the actual connect
104     (as opposed to settings that can be changed when the connection is already
105     established).
106    
107 root 1.161 The return value of this callback should be the connect timeout value in
108     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
109     timeout is to be used).
110    
111 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
112    
113     This callback is called when a connection has been successfully established.
114    
115     The actual numeric host and port (the socket peername) are passed as
116     parameters, together with a retry callback.
117    
118     When, for some reason, the handle is not acceptable, then calling
119     C<$retry> will continue with the next conenction target (in case of
120     multi-homed hosts or SRV records there can be multiple connection
121     endpoints). When it is called then the read and write queues, eof status,
122     tls status and similar properties of the handle are being reset.
123    
124     In most cases, ignoring the C<$retry> parameter is the way to go.
125 root 1.158
126 root 1.159 =item on_connect_error => $cb->($handle, $message)
127 root 1.10
128 root 1.159 This callback is called when the conenction could not be
129     established. C<$!> will contain the relevant error code, and C<$message> a
130     message describing it (usually the same as C<"$!">).
131 root 1.8
132 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
133     fatal error instead.
134 root 1.82
135 root 1.159 =back
136 root 1.80
137 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
138 root 1.10
139 root 1.52 This is the error callback, which is called when, well, some error
140     occured, such as not being able to resolve the hostname, failure to
141     connect or a read error.
142    
143     Some errors are fatal (which is indicated by C<$fatal> being true). On
144 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
145     destroy >>) after invoking the error callback (which means you are free to
146     examine the handle object). Examples of fatal errors are an EOF condition
147 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148     cases where the other side can close the connection at their will it is
149     often easiest to not report C<EPIPE> errors in this callback.
150 root 1.82
151 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
152     against, but in some cases (TLS errors), this does not work well. It is
153     recommended to always output the C<$message> argument in human-readable
154     error messages (it's usually the same as C<"$!">).
155    
156 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
157     to simply ignore this parameter and instead abondon the handle object
158     when this callback is invoked. Examples of non-fatal errors are timeouts
159     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
160 root 1.8
161 root 1.10 On callback entrance, the value of C<$!> contains the operating system
162 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163     C<EPROTO>).
164 root 1.8
165 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
166     you will not be notified of errors otherwise. The default simply calls
167 root 1.52 C<croak>.
168 root 1.8
169 root 1.40 =item on_read => $cb->($handle)
170 root 1.8
171     This sets the default read callback, which is called when data arrives
172 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
173     callback will only be called when at least one octet of data is in the
174     read buffer).
175 root 1.8
176     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
177 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
178 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
179     the beginning from it.
180 root 1.8
181     When an EOF condition is detected then AnyEvent::Handle will first try to
182     feed all the remaining data to the queued callbacks and C<on_read> before
183     calling the C<on_eof> callback. If no progress can be made, then a fatal
184     error will be raised (with C<$!> set to C<EPIPE>).
185 elmex 1.1
186 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
187     doesn't mean you I<require> some data: if there is an EOF and there
188     are outstanding read requests then an error will be flagged. With an
189     C<on_read> callback, the C<on_eof> callback will be invoked.
190    
191 root 1.159 =item on_eof => $cb->($handle)
192    
193     Set the callback to be called when an end-of-file condition is detected,
194     i.e. in the case of a socket, when the other side has closed the
195     connection cleanly, and there are no outstanding read requests in the
196     queue (if there are read requests, then an EOF counts as an unexpected
197     connection close and will be flagged as an error).
198    
199     For sockets, this just means that the other side has stopped sending data,
200     you can still try to write data, and, in fact, one can return from the EOF
201     callback and continue writing data, as only the read part has been shut
202     down.
203    
204     If an EOF condition has been detected but no C<on_eof> callback has been
205     set, then a fatal error will be raised with C<$!> set to <0>.
206    
207 root 1.40 =item on_drain => $cb->($handle)
208 elmex 1.1
209 root 1.8 This sets the callback that is called when the write buffer becomes empty
210     (or when the callback is set and the buffer is empty already).
211 elmex 1.1
212 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
213 elmex 1.2
214 root 1.69 This callback is useful when you don't want to put all of your write data
215     into the queue at once, for example, when you want to write the contents
216     of some file to the socket you might not want to read the whole file into
217     memory and push it into the queue, but instead only read more data from
218     the file when the write queue becomes empty.
219    
220 root 1.43 =item timeout => $fractional_seconds
221    
222 root 1.176 =item rtimeout => $fractional_seconds
223    
224     =item wtimeout => $fractional_seconds
225    
226     If non-zero, then these enables an "inactivity" timeout: whenever this
227     many seconds pass without a successful read or write on the underlying
228     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
229     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230     error will be raised).
231    
232     There are three variants of the timeouts that work fully independent
233     of each other, for both read and write, just read, and just write:
234     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
237 root 1.43
238     Note that timeout processing is also active when you currently do not have
239     any outstanding read or write requests: If you plan to keep the connection
240     idle then you should disable the timout temporarily or ignore the timeout
241 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242     restart the timeout.
243 root 1.43
244     Zero (the default) disables this timeout.
245    
246     =item on_timeout => $cb->($handle)
247    
248     Called whenever the inactivity timeout passes. If you return from this
249     callback, then the timeout will be reset as if some activity had happened,
250     so this condition is not fatal in any way.
251    
252 root 1.8 =item rbuf_max => <bytes>
253 elmex 1.2
254 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
255     when the read buffer ever (strictly) exceeds this size. This is useful to
256 root 1.88 avoid some forms of denial-of-service attacks.
257 elmex 1.2
258 root 1.8 For example, a server accepting connections from untrusted sources should
259     be configured to accept only so-and-so much data that it cannot act on
260     (for example, when expecting a line, an attacker could send an unlimited
261     amount of data without a callback ever being called as long as the line
262     isn't finished).
263 elmex 1.2
264 root 1.70 =item autocork => <boolean>
265    
266     When disabled (the default), then C<push_write> will try to immediately
267 root 1.88 write the data to the handle, if possible. This avoids having to register
268     a write watcher and wait for the next event loop iteration, but can
269     be inefficient if you write multiple small chunks (on the wire, this
270     disadvantage is usually avoided by your kernel's nagle algorithm, see
271     C<no_delay>, but this option can save costly syscalls).
272 root 1.70
273     When enabled, then writes will always be queued till the next event loop
274     iteration. This is efficient when you do many small writes per iteration,
275 root 1.88 but less efficient when you do a single write only per iteration (or when
276     the write buffer often is full). It also increases write latency.
277 root 1.70
278     =item no_delay => <boolean>
279    
280     When doing small writes on sockets, your operating system kernel might
281     wait a bit for more data before actually sending it out. This is called
282     the Nagle algorithm, and usually it is beneficial.
283    
284 root 1.88 In some situations you want as low a delay as possible, which can be
285     accomplishd by setting this option to a true value.
286 root 1.70
287 root 1.88 The default is your opertaing system's default behaviour (most likely
288     enabled), this option explicitly enables or disables it, if possible.
289 root 1.70
290 root 1.182 =item keepalive => <boolean>
291    
292     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293     normally, TCP connections have no time-out once established, so TCP
294     conenctions, once established, can stay alive forever even when the other
295     side has long gone. TCP keepalives are a cheap way to take down long-lived
296     TCP connections whent he other side becomes unreachable. While the default
297     is OS-dependent, TCP keepalives usually kick in after around two hours,
298     and, if the other side doesn't reply, take down the TCP connection some 10
299     to 15 minutes later.
300    
301     It is harmless to specify this option for file handles that do not support
302     keepalives, and enabling it on connections that are potentially long-lived
303     is usually a good idea.
304    
305     =item oobinline => <boolean>
306    
307     BSD majorly fucked up the implementation of TCP urgent data. The result
308     is that almost no OS implements TCP according to the specs, and every OS
309     implements it slightly differently.
310    
311 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
312     is enabled) gives you the most portable way of getting urgent data, by
313     putting it into the stream.
314    
315     Since BSD emulation of OOB data on top of TCP's urgent data can have
316     security implications, AnyEvent::Handle sets this flag automatically
317 root 1.184 unless explicitly specified. Note that setting this flag after
318     establishing a connection I<may> be a bit too late (data loss could
319     already have occured on BSD systems), but at least it will protect you
320     from most attacks.
321 root 1.182
322 root 1.8 =item read_size => <bytes>
323 elmex 1.2
324 root 1.88 The default read block size (the amount of bytes this module will
325     try to read during each loop iteration, which affects memory
326     requirements). Default: C<8192>.
327 root 1.8
328     =item low_water_mark => <bytes>
329    
330     Sets the amount of bytes (default: C<0>) that make up an "empty" write
331     buffer: If the write reaches this size or gets even samller it is
332     considered empty.
333 elmex 1.2
334 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
335     the write buffer before it is fully drained, but this is a rare case, as
336     the operating system kernel usually buffers data as well, so the default
337     is good in almost all cases.
338    
339 root 1.62 =item linger => <seconds>
340    
341     If non-zero (default: C<3600>), then the destructor of the
342 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
343     write data and will install a watcher that will write this data to the
344     socket. No errors will be reported (this mostly matches how the operating
345     system treats outstanding data at socket close time).
346 root 1.62
347 root 1.88 This will not work for partial TLS data that could not be encoded
348 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
349     help.
350 root 1.62
351 root 1.133 =item peername => $string
352    
353 root 1.134 A string used to identify the remote site - usually the DNS hostname
354     (I<not> IDN!) used to create the connection, rarely the IP address.
355 root 1.131
356 root 1.133 Apart from being useful in error messages, this string is also used in TLS
357 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
358     verification will be skipped when C<peername> is not specified or
359     C<undef>.
360 root 1.131
361 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
362    
363 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
364 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
365     established and will transparently encrypt/decrypt data afterwards.
366 root 1.19
367 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
368     appropriate error message.
369    
370 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
371 root 1.88 automatically when you try to create a TLS handle): this module doesn't
372     have a dependency on that module, so if your module requires it, you have
373     to add the dependency yourself.
374 root 1.26
375 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
376     C<accept>, and for the TLS client side of a connection, use C<connect>
377     mode.
378 root 1.19
379     You can also provide your own TLS connection object, but you have
380     to make sure that you call either C<Net::SSLeay::set_connect_state>
381     or C<Net::SSLeay::set_accept_state> on it before you pass it to
382 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
383     object.
384    
385     At some future point, AnyEvent::Handle might switch to another TLS
386     implementation, then the option to use your own session object will go
387     away.
388 root 1.19
389 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
390     passing in the wrong integer will lead to certain crash. This most often
391     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
392     segmentation fault.
393    
394 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
395 root 1.26
396 root 1.131 =item tls_ctx => $anyevent_tls
397 root 1.19
398 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
399 root 1.19 (unless a connection object was specified directly). If this parameter is
400     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
401    
402 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
403     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
404     new TLS context object.
405    
406 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
407 root 1.142
408     This callback will be invoked when the TLS/SSL handshake has finished. If
409     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
410     (C<on_stoptls> will not be called in this case).
411    
412     The session in C<< $handle->{tls} >> can still be examined in this
413     callback, even when the handshake was not successful.
414    
415 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
416     callback is in effect, instead, the error message will be passed to C<on_starttls>.
417    
418     Without this callback, handshake failures lead to C<on_error> being
419     called, as normal.
420    
421     Note that you cannot call C<starttls> right again in this callback. If you
422     need to do that, start an zero-second timer instead whose callback can
423     then call C<< ->starttls >> again.
424    
425 root 1.142 =item on_stoptls => $cb->($handle)
426    
427     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
428     set, then it will be invoked after freeing the TLS session. If it is not,
429     then a TLS shutdown condition will be treated like a normal EOF condition
430     on the handle.
431    
432     The session in C<< $handle->{tls} >> can still be examined in this
433     callback.
434    
435     This callback will only be called on TLS shutdowns, not when the
436     underlying handle signals EOF.
437    
438 root 1.40 =item json => JSON or JSON::XS object
439    
440     This is the json coder object used by the C<json> read and write types.
441    
442 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
443 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
444     texts.
445 root 1.40
446     Note that you are responsible to depend on the JSON module if you want to
447     use this functionality, as AnyEvent does not have a dependency itself.
448    
449 elmex 1.1 =back
450    
451     =cut
452    
453     sub new {
454 root 1.8 my $class = shift;
455     my $self = bless { @_ }, $class;
456    
457 root 1.159 if ($self->{fh}) {
458     $self->_start;
459     return unless $self->{fh}; # could be gone by now
460    
461     } elsif ($self->{connect}) {
462     require AnyEvent::Socket;
463    
464     $self->{peername} = $self->{connect}[0]
465     unless exists $self->{peername};
466    
467     $self->{_skip_drain_rbuf} = 1;
468    
469     {
470     Scalar::Util::weaken (my $self = $self);
471    
472     $self->{_connect} =
473     AnyEvent::Socket::tcp_connect (
474     $self->{connect}[0],
475     $self->{connect}[1],
476     sub {
477     my ($fh, $host, $port, $retry) = @_;
478    
479     if ($fh) {
480     $self->{fh} = $fh;
481    
482     delete $self->{_skip_drain_rbuf};
483     $self->_start;
484    
485     $self->{on_connect}
486     and $self->{on_connect}($self, $host, $port, sub {
487 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
488 root 1.159 $self->{_skip_drain_rbuf} = 1;
489     &$retry;
490     });
491    
492     } else {
493     if ($self->{on_connect_error}) {
494     $self->{on_connect_error}($self, "$!");
495     $self->destroy;
496     } else {
497 root 1.161 $self->_error ($!, 1);
498 root 1.159 }
499     }
500     },
501     sub {
502     local $self->{fh} = $_[0];
503    
504 root 1.161 $self->{on_prepare}
505     ? $self->{on_prepare}->($self)
506     : ()
507 root 1.159 }
508     );
509     }
510    
511     } else {
512     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
513     }
514    
515     $self
516     }
517    
518     sub _start {
519     my ($self) = @_;
520 root 1.8
521     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
522 elmex 1.1
523 root 1.176 $self->{_activity} =
524     $self->{_ractivity} =
525     $self->{_wactivity} = AE::now;
526    
527 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
528     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
529     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
530    
531 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
532     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
533    
534     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
535 root 1.131
536 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
537 root 1.94 if $self->{tls};
538 root 1.19
539 root 1.182 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
540 root 1.10
541 root 1.66 $self->start_read
542 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
543 root 1.160
544     $self->_drain_wbuf;
545 root 1.8 }
546 elmex 1.2
547 root 1.52 sub _error {
548 root 1.133 my ($self, $errno, $fatal, $message) = @_;
549 root 1.8
550 root 1.52 $! = $errno;
551 root 1.133 $message ||= "$!";
552 root 1.37
553 root 1.52 if ($self->{on_error}) {
554 root 1.133 $self->{on_error}($self, $fatal, $message);
555 root 1.151 $self->destroy if $fatal;
556 root 1.100 } elsif ($self->{fh}) {
557 root 1.149 $self->destroy;
558 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
559 root 1.52 }
560 elmex 1.1 }
561    
562 root 1.8 =item $fh = $handle->fh
563 elmex 1.1
564 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
565 elmex 1.1
566     =cut
567    
568 root 1.38 sub fh { $_[0]{fh} }
569 elmex 1.1
570 root 1.8 =item $handle->on_error ($cb)
571 elmex 1.1
572 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
573 elmex 1.1
574 root 1.8 =cut
575    
576     sub on_error {
577     $_[0]{on_error} = $_[1];
578     }
579    
580     =item $handle->on_eof ($cb)
581    
582     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
583 elmex 1.1
584     =cut
585    
586 root 1.8 sub on_eof {
587     $_[0]{on_eof} = $_[1];
588     }
589    
590 root 1.43 =item $handle->on_timeout ($cb)
591    
592 root 1.176 =item $handle->on_rtimeout ($cb)
593    
594     =item $handle->on_wtimeout ($cb)
595    
596     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
597     callback, or disables the callback (but not the timeout) if C<$cb> =
598     C<undef>. See the C<timeout> constructor argument and method.
599 root 1.43
600     =cut
601    
602 root 1.176 # see below
603 root 1.43
604 root 1.70 =item $handle->autocork ($boolean)
605    
606     Enables or disables the current autocork behaviour (see C<autocork>
607 root 1.105 constructor argument). Changes will only take effect on the next write.
608 root 1.70
609     =cut
610    
611 root 1.105 sub autocork {
612     $_[0]{autocork} = $_[1];
613     }
614    
615 root 1.70 =item $handle->no_delay ($boolean)
616    
617     Enables or disables the C<no_delay> setting (see constructor argument of
618     the same name for details).
619    
620     =cut
621    
622     sub no_delay {
623     $_[0]{no_delay} = $_[1];
624    
625     eval {
626     local $SIG{__DIE__};
627 root 1.182 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
628     if $_[0]{fh};
629     };
630     }
631    
632     =item $handle->keepalive ($boolean)
633    
634     Enables or disables the C<keepalive> setting (see constructor argument of
635     the same name for details).
636    
637     =cut
638    
639     sub keepalive {
640     $_[0]{keepalive} = $_[1];
641    
642     eval {
643     local $SIG{__DIE__};
644     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
645     if $_[0]{fh};
646     };
647     }
648    
649     =item $handle->oobinline ($boolean)
650    
651     Enables or disables the C<oobinline> setting (see constructor argument of
652     the same name for details).
653    
654     =cut
655    
656     sub oobinline {
657     $_[0]{oobinline} = $_[1];
658    
659     eval {
660     local $SIG{__DIE__};
661     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
662     if $_[0]{fh};
663     };
664     }
665    
666     =item $handle->keepalive ($boolean)
667    
668     Enables or disables the C<keepalive> setting (see constructor argument of
669     the same name for details).
670    
671     =cut
672    
673     sub keepalive {
674     $_[0]{keepalive} = $_[1];
675    
676     eval {
677     local $SIG{__DIE__};
678     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
679 root 1.159 if $_[0]{fh};
680 root 1.70 };
681     }
682    
683 root 1.142 =item $handle->on_starttls ($cb)
684    
685     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
686    
687     =cut
688    
689     sub on_starttls {
690     $_[0]{on_starttls} = $_[1];
691     }
692    
693     =item $handle->on_stoptls ($cb)
694    
695     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
696    
697     =cut
698    
699     sub on_starttls {
700     $_[0]{on_stoptls} = $_[1];
701     }
702    
703 root 1.168 =item $handle->rbuf_max ($max_octets)
704    
705     Configures the C<rbuf_max> setting (C<undef> disables it).
706    
707     =cut
708    
709     sub rbuf_max {
710     $_[0]{rbuf_max} = $_[1];
711     }
712    
713 root 1.43 #############################################################################
714    
715     =item $handle->timeout ($seconds)
716    
717 root 1.176 =item $handle->rtimeout ($seconds)
718    
719     =item $handle->wtimeout ($seconds)
720    
721 root 1.43 Configures (or disables) the inactivity timeout.
722    
723 root 1.176 =item $handle->timeout_reset
724    
725     =item $handle->rtimeout_reset
726    
727     =item $handle->wtimeout_reset
728    
729     Reset the activity timeout, as if data was received or sent.
730    
731     These methods are cheap to call.
732    
733 root 1.43 =cut
734    
735 root 1.176 for my $dir ("", "r", "w") {
736     my $timeout = "${dir}timeout";
737     my $tw = "_${dir}tw";
738     my $on_timeout = "on_${dir}timeout";
739     my $activity = "_${dir}activity";
740     my $cb;
741    
742     *$on_timeout = sub {
743     $_[0]{$on_timeout} = $_[1];
744     };
745    
746     *$timeout = sub {
747     my ($self, $new_value) = @_;
748 root 1.43
749 root 1.176 $self->{$timeout} = $new_value;
750     delete $self->{$tw}; &$cb;
751     };
752 root 1.43
753 root 1.176 *{"${dir}timeout_reset"} = sub {
754     $_[0]{$activity} = AE::now;
755     };
756 root 1.43
757 root 1.176 # main workhorse:
758     # reset the timeout watcher, as neccessary
759     # also check for time-outs
760     $cb = sub {
761     my ($self) = @_;
762    
763     if ($self->{$timeout} && $self->{fh}) {
764     my $NOW = AE::now;
765    
766     # when would the timeout trigger?
767     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
768    
769     # now or in the past already?
770     if ($after <= 0) {
771     $self->{$activity} = $NOW;
772 root 1.43
773 root 1.176 if ($self->{$on_timeout}) {
774     $self->{$on_timeout}($self);
775     } else {
776     $self->_error (Errno::ETIMEDOUT);
777     }
778 root 1.43
779 root 1.176 # callback could have changed timeout value, optimise
780     return unless $self->{$timeout};
781 root 1.43
782 root 1.176 # calculate new after
783     $after = $self->{$timeout};
784 root 1.43 }
785    
786 root 1.176 Scalar::Util::weaken $self;
787     return unless $self; # ->error could have destroyed $self
788 root 1.43
789 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
790     delete $self->{$tw};
791     $cb->($self);
792     };
793     } else {
794     delete $self->{$tw};
795 root 1.43 }
796     }
797     }
798    
799 root 1.9 #############################################################################
800    
801     =back
802    
803     =head2 WRITE QUEUE
804    
805     AnyEvent::Handle manages two queues per handle, one for writing and one
806     for reading.
807    
808     The write queue is very simple: you can add data to its end, and
809     AnyEvent::Handle will automatically try to get rid of it for you.
810    
811 elmex 1.20 When data could be written and the write buffer is shorter then the low
812 root 1.9 water mark, the C<on_drain> callback will be invoked.
813    
814     =over 4
815    
816 root 1.8 =item $handle->on_drain ($cb)
817    
818     Sets the C<on_drain> callback or clears it (see the description of
819     C<on_drain> in the constructor).
820    
821     =cut
822    
823     sub on_drain {
824 elmex 1.1 my ($self, $cb) = @_;
825    
826 root 1.8 $self->{on_drain} = $cb;
827    
828     $cb->($self)
829 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
830 root 1.8 }
831    
832     =item $handle->push_write ($data)
833    
834     Queues the given scalar to be written. You can push as much data as you
835     want (only limited by the available memory), as C<AnyEvent::Handle>
836     buffers it independently of the kernel.
837    
838     =cut
839    
840 root 1.17 sub _drain_wbuf {
841     my ($self) = @_;
842 root 1.8
843 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
844 root 1.35
845 root 1.8 Scalar::Util::weaken $self;
846 root 1.35
847 root 1.8 my $cb = sub {
848     my $len = syswrite $self->{fh}, $self->{wbuf};
849    
850 root 1.146 if (defined $len) {
851 root 1.8 substr $self->{wbuf}, 0, $len, "";
852    
853 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
854 root 1.43
855 root 1.8 $self->{on_drain}($self)
856 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
857 root 1.8 && $self->{on_drain};
858    
859 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
860 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
861 root 1.52 $self->_error ($!, 1);
862 elmex 1.1 }
863 root 1.8 };
864    
865 root 1.35 # try to write data immediately
866 root 1.70 $cb->() unless $self->{autocork};
867 root 1.8
868 root 1.35 # if still data left in wbuf, we need to poll
869 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
870 root 1.35 if length $self->{wbuf};
871 root 1.8 };
872     }
873    
874 root 1.30 our %WH;
875    
876     sub register_write_type($$) {
877     $WH{$_[0]} = $_[1];
878     }
879    
880 root 1.17 sub push_write {
881     my $self = shift;
882    
883 root 1.29 if (@_ > 1) {
884     my $type = shift;
885    
886     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
887     ->($self, @_);
888     }
889    
890 root 1.93 if ($self->{tls}) {
891     $self->{_tls_wbuf} .= $_[0];
892 root 1.160 &_dotls ($self) if $self->{fh};
893 root 1.17 } else {
894 root 1.160 $self->{wbuf} .= $_[0];
895 root 1.159 $self->_drain_wbuf if $self->{fh};
896 root 1.17 }
897     }
898    
899 root 1.29 =item $handle->push_write (type => @args)
900    
901     Instead of formatting your data yourself, you can also let this module do
902     the job by specifying a type and type-specific arguments.
903    
904 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
905     drop by and tell us):
906 root 1.29
907     =over 4
908    
909     =item netstring => $string
910    
911     Formats the given value as netstring
912     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
913    
914     =cut
915    
916     register_write_type netstring => sub {
917     my ($self, $string) = @_;
918    
919 root 1.96 (length $string) . ":$string,"
920 root 1.29 };
921    
922 root 1.61 =item packstring => $format, $data
923    
924     An octet string prefixed with an encoded length. The encoding C<$format>
925     uses the same format as a Perl C<pack> format, but must specify a single
926     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
927     optional C<!>, C<< < >> or C<< > >> modifier).
928    
929     =cut
930    
931     register_write_type packstring => sub {
932     my ($self, $format, $string) = @_;
933    
934 root 1.65 pack "$format/a*", $string
935 root 1.61 };
936    
937 root 1.39 =item json => $array_or_hashref
938    
939 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
940     provide your own JSON object, this means it will be encoded to JSON text
941     in UTF-8.
942    
943     JSON objects (and arrays) are self-delimiting, so you can write JSON at
944     one end of a handle and read them at the other end without using any
945     additional framing.
946    
947 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
948     this module doesn't need delimiters after or between JSON texts to be
949     able to read them, many other languages depend on that.
950    
951     A simple RPC protocol that interoperates easily with others is to send
952     JSON arrays (or objects, although arrays are usually the better choice as
953     they mimic how function argument passing works) and a newline after each
954     JSON text:
955    
956     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
957     $handle->push_write ("\012");
958    
959     An AnyEvent::Handle receiver would simply use the C<json> read type and
960     rely on the fact that the newline will be skipped as leading whitespace:
961    
962     $handle->push_read (json => sub { my $array = $_[1]; ... });
963    
964     Other languages could read single lines terminated by a newline and pass
965     this line into their JSON decoder of choice.
966    
967 root 1.40 =cut
968    
969 root 1.179 sub json_coder() {
970     eval { require JSON::XS; JSON::XS->new->utf8 }
971     || do { require JSON; JSON->new->utf8 }
972     }
973    
974 root 1.40 register_write_type json => sub {
975     my ($self, $ref) = @_;
976    
977 root 1.179 my $json = $self->{json} ||= json_coder;
978 root 1.40
979 root 1.179 $json->encode ($ref)
980 root 1.40 };
981    
982 root 1.63 =item storable => $reference
983    
984     Freezes the given reference using L<Storable> and writes it to the
985     handle. Uses the C<nfreeze> format.
986    
987     =cut
988    
989     register_write_type storable => sub {
990     my ($self, $ref) = @_;
991    
992     require Storable;
993    
994 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
995 root 1.63 };
996    
997 root 1.53 =back
998    
999 root 1.133 =item $handle->push_shutdown
1000    
1001     Sometimes you know you want to close the socket after writing your data
1002     before it was actually written. One way to do that is to replace your
1003 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1004     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1005     replaces the C<on_drain> callback with:
1006 root 1.133
1007     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1008    
1009     This simply shuts down the write side and signals an EOF condition to the
1010     the peer.
1011    
1012     You can rely on the normal read queue and C<on_eof> handling
1013     afterwards. This is the cleanest way to close a connection.
1014    
1015     =cut
1016    
1017     sub push_shutdown {
1018 root 1.142 my ($self) = @_;
1019    
1020     delete $self->{low_water_mark};
1021     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1022 root 1.133 }
1023    
1024 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
1025 root 1.30
1026     This function (not method) lets you add your own types to C<push_write>.
1027     Whenever the given C<type> is used, C<push_write> will invoke the code
1028     reference with the handle object and the remaining arguments.
1029 root 1.29
1030 root 1.30 The code reference is supposed to return a single octet string that will
1031     be appended to the write buffer.
1032 root 1.29
1033 root 1.30 Note that this is a function, and all types registered this way will be
1034     global, so try to use unique names.
1035 root 1.29
1036 root 1.30 =cut
1037 root 1.29
1038 root 1.8 #############################################################################
1039    
1040 root 1.9 =back
1041    
1042     =head2 READ QUEUE
1043    
1044     AnyEvent::Handle manages two queues per handle, one for writing and one
1045     for reading.
1046    
1047     The read queue is more complex than the write queue. It can be used in two
1048     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1049     a queue.
1050    
1051     In the simple case, you just install an C<on_read> callback and whenever
1052     new data arrives, it will be called. You can then remove some data (if
1053 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
1054     leave the data there if you want to accumulate more (e.g. when only a
1055     partial message has been received so far).
1056 root 1.9
1057     In the more complex case, you want to queue multiple callbacks. In this
1058     case, AnyEvent::Handle will call the first queued callback each time new
1059 root 1.61 data arrives (also the first time it is queued) and removes it when it has
1060     done its job (see C<push_read>, below).
1061 root 1.9
1062     This way you can, for example, push three line-reads, followed by reading
1063     a chunk of data, and AnyEvent::Handle will execute them in order.
1064    
1065     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1066     the specified number of bytes which give an XML datagram.
1067    
1068     # in the default state, expect some header bytes
1069     $handle->on_read (sub {
1070     # some data is here, now queue the length-header-read (4 octets)
1071 root 1.52 shift->unshift_read (chunk => 4, sub {
1072 root 1.9 # header arrived, decode
1073     my $len = unpack "N", $_[1];
1074    
1075     # now read the payload
1076 root 1.52 shift->unshift_read (chunk => $len, sub {
1077 root 1.9 my $xml = $_[1];
1078     # handle xml
1079     });
1080     });
1081     });
1082    
1083 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1084     and another line or "ERROR" for the first request that is sent, and 64
1085     bytes for the second request. Due to the availability of a queue, we can
1086     just pipeline sending both requests and manipulate the queue as necessary
1087     in the callbacks.
1088    
1089     When the first callback is called and sees an "OK" response, it will
1090     C<unshift> another line-read. This line-read will be queued I<before> the
1091     64-byte chunk callback.
1092 root 1.9
1093 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1094 root 1.9 $handle->push_write ("request 1\015\012");
1095    
1096     # we expect "ERROR" or "OK" as response, so push a line read
1097 root 1.52 $handle->push_read (line => sub {
1098 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1099     # so it will be read before the second request reads its 64 bytes
1100     # which are already in the queue when this callback is called
1101     # we don't do this in case we got an error
1102     if ($_[1] eq "OK") {
1103 root 1.52 $_[0]->unshift_read (line => sub {
1104 root 1.9 my $response = $_[1];
1105     ...
1106     });
1107     }
1108     });
1109    
1110 root 1.69 # request two, simply returns 64 octets
1111 root 1.9 $handle->push_write ("request 2\015\012");
1112    
1113     # simply read 64 bytes, always
1114 root 1.52 $handle->push_read (chunk => 64, sub {
1115 root 1.9 my $response = $_[1];
1116     ...
1117     });
1118    
1119     =over 4
1120    
1121 root 1.10 =cut
1122    
1123 root 1.8 sub _drain_rbuf {
1124     my ($self) = @_;
1125 elmex 1.1
1126 root 1.159 # avoid recursion
1127 root 1.167 return if $self->{_skip_drain_rbuf};
1128 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1129 root 1.59
1130     while () {
1131 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1132     # we are draining the buffer, and this can only happen with TLS.
1133 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1134     if exists $self->{_tls_rbuf};
1135 root 1.115
1136 root 1.59 my $len = length $self->{rbuf};
1137 elmex 1.1
1138 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1139 root 1.29 unless ($cb->($self)) {
1140 root 1.163 # no progress can be made
1141     # (not enough data and no data forthcoming)
1142     $self->_error (Errno::EPIPE, 1), return
1143     if $self->{_eof};
1144 root 1.10
1145 root 1.38 unshift @{ $self->{_queue} }, $cb;
1146 root 1.55 last;
1147 root 1.8 }
1148     } elsif ($self->{on_read}) {
1149 root 1.61 last unless $len;
1150    
1151 root 1.8 $self->{on_read}($self);
1152    
1153     if (
1154 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1155     && !@{ $self->{_queue} } # and the queue is still empty
1156     && $self->{on_read} # but we still have on_read
1157 root 1.8 ) {
1158 root 1.55 # no further data will arrive
1159     # so no progress can be made
1160 root 1.150 $self->_error (Errno::EPIPE, 1), return
1161 root 1.55 if $self->{_eof};
1162    
1163     last; # more data might arrive
1164 elmex 1.1 }
1165 root 1.8 } else {
1166     # read side becomes idle
1167 root 1.93 delete $self->{_rw} unless $self->{tls};
1168 root 1.55 last;
1169 root 1.8 }
1170     }
1171    
1172 root 1.80 if ($self->{_eof}) {
1173 root 1.163 $self->{on_eof}
1174     ? $self->{on_eof}($self)
1175     : $self->_error (0, 1, "Unexpected end-of-file");
1176    
1177     return;
1178 root 1.80 }
1179 root 1.55
1180 root 1.169 if (
1181     defined $self->{rbuf_max}
1182     && $self->{rbuf_max} < length $self->{rbuf}
1183     ) {
1184     $self->_error (Errno::ENOSPC, 1), return;
1185     }
1186    
1187 root 1.55 # may need to restart read watcher
1188     unless ($self->{_rw}) {
1189     $self->start_read
1190     if $self->{on_read} || @{ $self->{_queue} };
1191     }
1192 elmex 1.1 }
1193    
1194 root 1.8 =item $handle->on_read ($cb)
1195 elmex 1.1
1196 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1197     the new callback is C<undef>). See the description of C<on_read> in the
1198     constructor.
1199 elmex 1.1
1200 root 1.8 =cut
1201    
1202     sub on_read {
1203     my ($self, $cb) = @_;
1204 elmex 1.1
1205 root 1.8 $self->{on_read} = $cb;
1206 root 1.159 $self->_drain_rbuf if $cb;
1207 elmex 1.1 }
1208    
1209 root 1.8 =item $handle->rbuf
1210    
1211     Returns the read buffer (as a modifiable lvalue).
1212 elmex 1.1
1213 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1214     member, if you want. However, the only operation allowed on the
1215     read buffer (apart from looking at it) is removing data from its
1216     beginning. Otherwise modifying or appending to it is not allowed and will
1217     lead to hard-to-track-down bugs.
1218 elmex 1.1
1219 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1220     C<push_read> or C<unshift_read> methods are used. The other read methods
1221     automatically manage the read buffer.
1222 elmex 1.1
1223     =cut
1224    
1225 elmex 1.2 sub rbuf : lvalue {
1226 root 1.8 $_[0]{rbuf}
1227 elmex 1.2 }
1228 elmex 1.1
1229 root 1.8 =item $handle->push_read ($cb)
1230    
1231     =item $handle->unshift_read ($cb)
1232    
1233     Append the given callback to the end of the queue (C<push_read>) or
1234     prepend it (C<unshift_read>).
1235    
1236     The callback is called each time some additional read data arrives.
1237 elmex 1.1
1238 elmex 1.20 It must check whether enough data is in the read buffer already.
1239 elmex 1.1
1240 root 1.8 If not enough data is available, it must return the empty list or a false
1241     value, in which case it will be called repeatedly until enough data is
1242     available (or an error condition is detected).
1243    
1244     If enough data was available, then the callback must remove all data it is
1245     interested in (which can be none at all) and return a true value. After returning
1246     true, it will be removed from the queue.
1247 elmex 1.1
1248     =cut
1249    
1250 root 1.30 our %RH;
1251    
1252     sub register_read_type($$) {
1253     $RH{$_[0]} = $_[1];
1254     }
1255    
1256 root 1.8 sub push_read {
1257 root 1.28 my $self = shift;
1258     my $cb = pop;
1259    
1260     if (@_) {
1261     my $type = shift;
1262    
1263     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1264     ->($self, $cb, @_);
1265     }
1266 elmex 1.1
1267 root 1.38 push @{ $self->{_queue} }, $cb;
1268 root 1.159 $self->_drain_rbuf;
1269 elmex 1.1 }
1270    
1271 root 1.8 sub unshift_read {
1272 root 1.28 my $self = shift;
1273     my $cb = pop;
1274    
1275     if (@_) {
1276     my $type = shift;
1277    
1278     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1279     ->($self, $cb, @_);
1280     }
1281    
1282 root 1.38 unshift @{ $self->{_queue} }, $cb;
1283 root 1.159 $self->_drain_rbuf;
1284 root 1.8 }
1285 elmex 1.1
1286 root 1.28 =item $handle->push_read (type => @args, $cb)
1287 elmex 1.1
1288 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1289 elmex 1.1
1290 root 1.28 Instead of providing a callback that parses the data itself you can chose
1291     between a number of predefined parsing formats, for chunks of data, lines
1292     etc.
1293 elmex 1.1
1294 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1295     drop by and tell us):
1296 root 1.28
1297     =over 4
1298    
1299 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1300 root 1.28
1301     Invoke the callback only once C<$octets> bytes have been read. Pass the
1302     data read to the callback. The callback will never be called with less
1303     data.
1304    
1305     Example: read 2 bytes.
1306    
1307     $handle->push_read (chunk => 2, sub {
1308     warn "yay ", unpack "H*", $_[1];
1309     });
1310 elmex 1.1
1311     =cut
1312    
1313 root 1.28 register_read_type chunk => sub {
1314     my ($self, $cb, $len) = @_;
1315 elmex 1.1
1316 root 1.8 sub {
1317     $len <= length $_[0]{rbuf} or return;
1318 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1319 root 1.8 1
1320     }
1321 root 1.28 };
1322 root 1.8
1323 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1324 elmex 1.1
1325 root 1.8 The callback will be called only once a full line (including the end of
1326     line marker, C<$eol>) has been read. This line (excluding the end of line
1327     marker) will be passed to the callback as second argument (C<$line>), and
1328     the end of line marker as the third argument (C<$eol>).
1329 elmex 1.1
1330 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1331     will be interpreted as a fixed record end marker, or it can be a regex
1332     object (e.g. created by C<qr>), in which case it is interpreted as a
1333     regular expression.
1334 elmex 1.1
1335 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1336     undef), then C<qr|\015?\012|> is used (which is good for most internet
1337     protocols).
1338 elmex 1.1
1339 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1340     not marked by the end of line marker.
1341 elmex 1.1
1342 root 1.8 =cut
1343 elmex 1.1
1344 root 1.28 register_read_type line => sub {
1345     my ($self, $cb, $eol) = @_;
1346 elmex 1.1
1347 root 1.76 if (@_ < 3) {
1348     # this is more than twice as fast as the generic code below
1349     sub {
1350     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1351 elmex 1.1
1352 root 1.76 $cb->($_[0], $1, $2);
1353     1
1354     }
1355     } else {
1356     $eol = quotemeta $eol unless ref $eol;
1357     $eol = qr|^(.*?)($eol)|s;
1358    
1359     sub {
1360     $_[0]{rbuf} =~ s/$eol// or return;
1361 elmex 1.1
1362 root 1.76 $cb->($_[0], $1, $2);
1363     1
1364     }
1365 root 1.8 }
1366 root 1.28 };
1367 elmex 1.1
1368 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1369 root 1.36
1370     Makes a regex match against the regex object C<$accept> and returns
1371     everything up to and including the match.
1372    
1373     Example: read a single line terminated by '\n'.
1374    
1375     $handle->push_read (regex => qr<\n>, sub { ... });
1376    
1377     If C<$reject> is given and not undef, then it determines when the data is
1378     to be rejected: it is matched against the data when the C<$accept> regex
1379     does not match and generates an C<EBADMSG> error when it matches. This is
1380     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1381     receive buffer overflow).
1382    
1383     Example: expect a single decimal number followed by whitespace, reject
1384     anything else (not the use of an anchor).
1385    
1386     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1387    
1388     If C<$skip> is given and not C<undef>, then it will be matched against
1389     the receive buffer when neither C<$accept> nor C<$reject> match,
1390     and everything preceding and including the match will be accepted
1391     unconditionally. This is useful to skip large amounts of data that you
1392     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1393     have to start matching from the beginning. This is purely an optimisation
1394     and is usually worth only when you expect more than a few kilobytes.
1395    
1396     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1397     expect the header to be very large (it isn't in practise, but...), we use
1398     a skip regex to skip initial portions. The skip regex is tricky in that
1399     it only accepts something not ending in either \015 or \012, as these are
1400     required for the accept regex.
1401    
1402     $handle->push_read (regex =>
1403     qr<\015\012\015\012>,
1404     undef, # no reject
1405     qr<^.*[^\015\012]>,
1406     sub { ... });
1407    
1408     =cut
1409    
1410     register_read_type regex => sub {
1411     my ($self, $cb, $accept, $reject, $skip) = @_;
1412    
1413     my $data;
1414     my $rbuf = \$self->{rbuf};
1415    
1416     sub {
1417     # accept
1418     if ($$rbuf =~ $accept) {
1419     $data .= substr $$rbuf, 0, $+[0], "";
1420     $cb->($self, $data);
1421     return 1;
1422     }
1423    
1424     # reject
1425     if ($reject && $$rbuf =~ $reject) {
1426 root 1.150 $self->_error (Errno::EBADMSG);
1427 root 1.36 }
1428    
1429     # skip
1430     if ($skip && $$rbuf =~ $skip) {
1431     $data .= substr $$rbuf, 0, $+[0], "";
1432     }
1433    
1434     ()
1435     }
1436     };
1437    
1438 root 1.61 =item netstring => $cb->($handle, $string)
1439    
1440     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1441    
1442     Throws an error with C<$!> set to EBADMSG on format violations.
1443    
1444     =cut
1445    
1446     register_read_type netstring => sub {
1447     my ($self, $cb) = @_;
1448    
1449     sub {
1450     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1451     if ($_[0]{rbuf} =~ /[^0-9]/) {
1452 root 1.150 $self->_error (Errno::EBADMSG);
1453 root 1.61 }
1454     return;
1455     }
1456    
1457     my $len = $1;
1458    
1459     $self->unshift_read (chunk => $len, sub {
1460     my $string = $_[1];
1461     $_[0]->unshift_read (chunk => 1, sub {
1462     if ($_[1] eq ",") {
1463     $cb->($_[0], $string);
1464     } else {
1465 root 1.150 $self->_error (Errno::EBADMSG);
1466 root 1.61 }
1467     });
1468     });
1469    
1470     1
1471     }
1472     };
1473    
1474     =item packstring => $format, $cb->($handle, $string)
1475    
1476     An octet string prefixed with an encoded length. The encoding C<$format>
1477     uses the same format as a Perl C<pack> format, but must specify a single
1478     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1479     optional C<!>, C<< < >> or C<< > >> modifier).
1480    
1481 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1482     EPP uses a prefix of C<N> (4 octtes).
1483 root 1.61
1484     Example: read a block of data prefixed by its length in BER-encoded
1485     format (very efficient).
1486    
1487     $handle->push_read (packstring => "w", sub {
1488     my ($handle, $data) = @_;
1489     });
1490    
1491     =cut
1492    
1493     register_read_type packstring => sub {
1494     my ($self, $cb, $format) = @_;
1495    
1496     sub {
1497     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1498 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1499 root 1.61 or return;
1500    
1501 root 1.77 $format = length pack $format, $len;
1502 root 1.61
1503 root 1.77 # bypass unshift if we already have the remaining chunk
1504     if ($format + $len <= length $_[0]{rbuf}) {
1505     my $data = substr $_[0]{rbuf}, $format, $len;
1506     substr $_[0]{rbuf}, 0, $format + $len, "";
1507     $cb->($_[0], $data);
1508     } else {
1509     # remove prefix
1510     substr $_[0]{rbuf}, 0, $format, "";
1511    
1512     # read remaining chunk
1513     $_[0]->unshift_read (chunk => $len, $cb);
1514     }
1515 root 1.61
1516     1
1517     }
1518     };
1519    
1520 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1521    
1522 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1523     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1524 root 1.40
1525     If a C<json> object was passed to the constructor, then that will be used
1526     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1527    
1528     This read type uses the incremental parser available with JSON version
1529     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1530     dependency on your own: this module will load the JSON module, but
1531     AnyEvent does not depend on it itself.
1532    
1533     Since JSON texts are fully self-delimiting, the C<json> read and write
1534 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1535     the C<json> write type description, above, for an actual example.
1536 root 1.40
1537     =cut
1538    
1539     register_read_type json => sub {
1540 root 1.63 my ($self, $cb) = @_;
1541 root 1.40
1542 root 1.179 my $json = $self->{json} ||= json_coder;
1543 root 1.40
1544     my $data;
1545     my $rbuf = \$self->{rbuf};
1546    
1547     sub {
1548 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1549 root 1.110
1550 root 1.113 if ($ref) {
1551     $self->{rbuf} = $json->incr_text;
1552     $json->incr_text = "";
1553     $cb->($self, $ref);
1554 root 1.110
1555     1
1556 root 1.113 } elsif ($@) {
1557 root 1.111 # error case
1558 root 1.110 $json->incr_skip;
1559 root 1.40
1560     $self->{rbuf} = $json->incr_text;
1561     $json->incr_text = "";
1562    
1563 root 1.150 $self->_error (Errno::EBADMSG);
1564 root 1.114
1565 root 1.113 ()
1566     } else {
1567     $self->{rbuf} = "";
1568 root 1.114
1569 root 1.113 ()
1570     }
1571 root 1.40 }
1572     };
1573    
1574 root 1.63 =item storable => $cb->($handle, $ref)
1575    
1576     Deserialises a L<Storable> frozen representation as written by the
1577     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1578     data).
1579    
1580     Raises C<EBADMSG> error if the data could not be decoded.
1581    
1582     =cut
1583    
1584     register_read_type storable => sub {
1585     my ($self, $cb) = @_;
1586    
1587     require Storable;
1588    
1589     sub {
1590     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1591 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1592 root 1.63 or return;
1593    
1594 root 1.77 my $format = length pack "w", $len;
1595 root 1.63
1596 root 1.77 # bypass unshift if we already have the remaining chunk
1597     if ($format + $len <= length $_[0]{rbuf}) {
1598     my $data = substr $_[0]{rbuf}, $format, $len;
1599     substr $_[0]{rbuf}, 0, $format + $len, "";
1600     $cb->($_[0], Storable::thaw ($data));
1601     } else {
1602     # remove prefix
1603     substr $_[0]{rbuf}, 0, $format, "";
1604    
1605     # read remaining chunk
1606     $_[0]->unshift_read (chunk => $len, sub {
1607     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1608     $cb->($_[0], $ref);
1609     } else {
1610 root 1.150 $self->_error (Errno::EBADMSG);
1611 root 1.77 }
1612     });
1613     }
1614    
1615     1
1616 root 1.63 }
1617     };
1618    
1619 root 1.28 =back
1620    
1621 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1622 root 1.30
1623     This function (not method) lets you add your own types to C<push_read>.
1624    
1625     Whenever the given C<type> is used, C<push_read> will invoke the code
1626     reference with the handle object, the callback and the remaining
1627     arguments.
1628    
1629     The code reference is supposed to return a callback (usually a closure)
1630     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1631    
1632     It should invoke the passed callback when it is done reading (remember to
1633 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1634 root 1.30
1635     Note that this is a function, and all types registered this way will be
1636     global, so try to use unique names.
1637    
1638     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1639     search for C<register_read_type>)).
1640    
1641 root 1.10 =item $handle->stop_read
1642    
1643     =item $handle->start_read
1644    
1645 root 1.18 In rare cases you actually do not want to read anything from the
1646 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1647 root 1.22 any queued callbacks will be executed then. To start reading again, call
1648 root 1.10 C<start_read>.
1649    
1650 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1651     you change the C<on_read> callback or push/unshift a read callback, and it
1652     will automatically C<stop_read> for you when neither C<on_read> is set nor
1653     there are any read requests in the queue.
1654    
1655 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1656     half-duplex connections).
1657    
1658 root 1.10 =cut
1659    
1660     sub stop_read {
1661     my ($self) = @_;
1662 elmex 1.1
1663 root 1.93 delete $self->{_rw} unless $self->{tls};
1664 root 1.8 }
1665 elmex 1.1
1666 root 1.10 sub start_read {
1667     my ($self) = @_;
1668    
1669 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1670 root 1.10 Scalar::Util::weaken $self;
1671    
1672 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1673 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1674 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1675 root 1.10
1676     if ($len > 0) {
1677 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1678 root 1.43
1679 root 1.93 if ($self->{tls}) {
1680     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1681 root 1.97
1682 root 1.93 &_dotls ($self);
1683     } else {
1684 root 1.159 $self->_drain_rbuf;
1685 root 1.93 }
1686 root 1.10
1687     } elsif (defined $len) {
1688 root 1.38 delete $self->{_rw};
1689     $self->{_eof} = 1;
1690 root 1.159 $self->_drain_rbuf;
1691 root 1.10
1692 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1693 root 1.52 return $self->_error ($!, 1);
1694 root 1.10 }
1695 root 1.175 };
1696 root 1.10 }
1697 elmex 1.1 }
1698    
1699 root 1.133 our $ERROR_SYSCALL;
1700     our $ERROR_WANT_READ;
1701    
1702     sub _tls_error {
1703     my ($self, $err) = @_;
1704    
1705     return $self->_error ($!, 1)
1706     if $err == Net::SSLeay::ERROR_SYSCALL ();
1707    
1708 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1709    
1710     # reduce error string to look less scary
1711     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1712    
1713 root 1.143 if ($self->{_on_starttls}) {
1714     (delete $self->{_on_starttls})->($self, undef, $err);
1715     &_freetls;
1716     } else {
1717     &_freetls;
1718 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1719 root 1.143 }
1720 root 1.133 }
1721    
1722 root 1.97 # poll the write BIO and send the data if applicable
1723 root 1.133 # also decode read data if possible
1724     # this is basiclaly our TLS state machine
1725     # more efficient implementations are possible with openssl,
1726     # but not with the buggy and incomplete Net::SSLeay.
1727 root 1.19 sub _dotls {
1728     my ($self) = @_;
1729    
1730 root 1.97 my $tmp;
1731 root 1.56
1732 root 1.38 if (length $self->{_tls_wbuf}) {
1733 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1734     substr $self->{_tls_wbuf}, 0, $tmp, "";
1735 root 1.22 }
1736 root 1.133
1737     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1738     return $self->_tls_error ($tmp)
1739     if $tmp != $ERROR_WANT_READ
1740 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1741 root 1.19 }
1742    
1743 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1744     unless (length $tmp) {
1745 root 1.143 $self->{_on_starttls}
1746     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1747 root 1.92 &_freetls;
1748 root 1.143
1749 root 1.142 if ($self->{on_stoptls}) {
1750     $self->{on_stoptls}($self);
1751     return;
1752     } else {
1753     # let's treat SSL-eof as we treat normal EOF
1754     delete $self->{_rw};
1755     $self->{_eof} = 1;
1756     }
1757 root 1.56 }
1758 root 1.91
1759 root 1.116 $self->{_tls_rbuf} .= $tmp;
1760 root 1.159 $self->_drain_rbuf;
1761 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1762 root 1.23 }
1763    
1764 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1765 root 1.133 return $self->_tls_error ($tmp)
1766     if $tmp != $ERROR_WANT_READ
1767 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1768 root 1.91
1769 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1770     $self->{wbuf} .= $tmp;
1771 root 1.91 $self->_drain_wbuf;
1772     }
1773 root 1.142
1774     $self->{_on_starttls}
1775     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1776 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1777 root 1.19 }
1778    
1779 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1780    
1781     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1782     object is created, you can also do that at a later time by calling
1783     C<starttls>.
1784    
1785 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1786     write data and then call C<< ->starttls >> then TLS negotiation will start
1787     immediately, after which the queued write data is then sent.
1788    
1789 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1790     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1791    
1792 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1793     when AnyEvent::Handle has to create its own TLS connection object, or
1794     a hash reference with C<< key => value >> pairs that will be used to
1795     construct a new context.
1796    
1797     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1798     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1799     changed to your liking. Note that the handshake might have already started
1800     when this function returns.
1801 root 1.38
1802 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1803     handshakes on the same stream. Best do not attempt to use the stream after
1804     stopping TLS.
1805 root 1.92
1806 root 1.25 =cut
1807    
1808 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1809    
1810 root 1.19 sub starttls {
1811 root 1.160 my ($self, $tls, $ctx) = @_;
1812    
1813     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1814     if $self->{tls};
1815    
1816     $self->{tls} = $tls;
1817     $self->{tls_ctx} = $ctx if @_ > 2;
1818    
1819     return unless $self->{fh};
1820 root 1.19
1821 root 1.94 require Net::SSLeay;
1822    
1823 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1824     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1825 root 1.133
1826 root 1.180 $tls = delete $self->{tls};
1827 root 1.160 $ctx = $self->{tls_ctx};
1828 root 1.131
1829 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1830    
1831 root 1.131 if ("HASH" eq ref $ctx) {
1832     require AnyEvent::TLS;
1833    
1834 root 1.137 if ($ctx->{cache}) {
1835     my $key = $ctx+0;
1836     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1837     } else {
1838     $ctx = new AnyEvent::TLS %$ctx;
1839     }
1840 root 1.131 }
1841 root 1.92
1842 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1843 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1844 root 1.19
1845 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1846     # but the openssl maintainers basically said: "trust us, it just works".
1847     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1848     # and mismaintained ssleay-module doesn't even offer them).
1849 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1850 root 1.87 #
1851     # in short: this is a mess.
1852     #
1853 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1854 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1855 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1856     # have identity issues in that area.
1857 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1858     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1859     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1860 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1861 root 1.21
1862 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1863     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1864 root 1.19
1865 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1866    
1867 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1868 root 1.19
1869 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1870 root 1.143 if $self->{on_starttls};
1871 root 1.142
1872 root 1.93 &_dotls; # need to trigger the initial handshake
1873     $self->start_read; # make sure we actually do read
1874 root 1.19 }
1875    
1876 root 1.25 =item $handle->stoptls
1877    
1878 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1879     sending a close notify to the other side, but since OpenSSL doesn't
1880 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1881     the stream afterwards.
1882 root 1.25
1883     =cut
1884    
1885     sub stoptls {
1886     my ($self) = @_;
1887    
1888 root 1.92 if ($self->{tls}) {
1889 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1890 root 1.92
1891     &_dotls;
1892    
1893 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1894     # # we, we... have to use openssl :/#d#
1895     # &_freetls;#d#
1896 root 1.92 }
1897     }
1898    
1899     sub _freetls {
1900     my ($self) = @_;
1901    
1902     return unless $self->{tls};
1903 root 1.38
1904 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1905 root 1.171 if $self->{tls} > 0;
1906 root 1.92
1907 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1908 root 1.25 }
1909    
1910 root 1.19 sub DESTROY {
1911 root 1.120 my ($self) = @_;
1912 root 1.19
1913 root 1.92 &_freetls;
1914 root 1.62
1915     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1916    
1917 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1918 root 1.62 my $fh = delete $self->{fh};
1919     my $wbuf = delete $self->{wbuf};
1920    
1921     my @linger;
1922    
1923 root 1.175 push @linger, AE::io $fh, 1, sub {
1924 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1925    
1926     if ($len > 0) {
1927     substr $wbuf, 0, $len, "";
1928     } else {
1929     @linger = (); # end
1930     }
1931 root 1.175 };
1932     push @linger, AE::timer $linger, 0, sub {
1933 root 1.62 @linger = ();
1934 root 1.175 };
1935 root 1.62 }
1936 root 1.19 }
1937    
1938 root 1.99 =item $handle->destroy
1939    
1940 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1941 root 1.141 no further callbacks will be invoked and as many resources as possible
1942 root 1.165 will be freed. Any method you will call on the handle object after
1943     destroying it in this way will be silently ignored (and it will return the
1944     empty list).
1945 root 1.99
1946 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1947     object and it will simply shut down. This works in fatal error and EOF
1948     callbacks, as well as code outside. It does I<NOT> work in a read or write
1949     callback, so when you want to destroy the AnyEvent::Handle object from
1950     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1951     that case.
1952    
1953 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1954     will be removed as well, so if those are the only reference holders (as
1955     is common), then one doesn't need to do anything special to break any
1956     reference cycles.
1957    
1958 root 1.99 The handle might still linger in the background and write out remaining
1959     data, as specified by the C<linger> option, however.
1960    
1961     =cut
1962    
1963     sub destroy {
1964     my ($self) = @_;
1965    
1966     $self->DESTROY;
1967     %$self = ();
1968 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
1969     }
1970    
1971 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
1972     #nop
1973 root 1.99 }
1974    
1975 root 1.19 =item AnyEvent::Handle::TLS_CTX
1976    
1977 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1978     for TLS mode.
1979 root 1.19
1980 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1981 root 1.19
1982     =cut
1983    
1984     our $TLS_CTX;
1985    
1986     sub TLS_CTX() {
1987 root 1.131 $TLS_CTX ||= do {
1988     require AnyEvent::TLS;
1989 root 1.19
1990 root 1.131 new AnyEvent::TLS
1991 root 1.19 }
1992     }
1993    
1994 elmex 1.1 =back
1995    
1996 root 1.95
1997     =head1 NONFREQUENTLY ASKED QUESTIONS
1998    
1999     =over 4
2000    
2001 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2002     still get further invocations!
2003    
2004     That's because AnyEvent::Handle keeps a reference to itself when handling
2005     read or write callbacks.
2006    
2007     It is only safe to "forget" the reference inside EOF or error callbacks,
2008     from within all other callbacks, you need to explicitly call the C<<
2009     ->destroy >> method.
2010    
2011     =item I get different callback invocations in TLS mode/Why can't I pause
2012     reading?
2013    
2014     Unlike, say, TCP, TLS connections do not consist of two independent
2015     communication channels, one for each direction. Or put differently. The
2016     read and write directions are not independent of each other: you cannot
2017     write data unless you are also prepared to read, and vice versa.
2018    
2019     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2020     callback invocations when you are not expecting any read data - the reason
2021     is that AnyEvent::Handle always reads in TLS mode.
2022    
2023     During the connection, you have to make sure that you always have a
2024     non-empty read-queue, or an C<on_read> watcher. At the end of the
2025     connection (or when you no longer want to use it) you can call the
2026     C<destroy> method.
2027    
2028 root 1.95 =item How do I read data until the other side closes the connection?
2029    
2030 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2031     to achieve this is by setting an C<on_read> callback that does nothing,
2032     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2033     will be in C<$_[0]{rbuf}>:
2034 root 1.95
2035     $handle->on_read (sub { });
2036     $handle->on_eof (undef);
2037     $handle->on_error (sub {
2038     my $data = delete $_[0]{rbuf};
2039     });
2040    
2041     The reason to use C<on_error> is that TCP connections, due to latencies
2042     and packets loss, might get closed quite violently with an error, when in
2043     fact, all data has been received.
2044    
2045 root 1.101 It is usually better to use acknowledgements when transferring data,
2046 root 1.95 to make sure the other side hasn't just died and you got the data
2047     intact. This is also one reason why so many internet protocols have an
2048     explicit QUIT command.
2049    
2050 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2051     all data has been written?
2052 root 1.95
2053     After writing your last bits of data, set the C<on_drain> callback
2054     and destroy the handle in there - with the default setting of
2055     C<low_water_mark> this will be called precisely when all data has been
2056     written to the socket:
2057    
2058     $handle->push_write (...);
2059     $handle->on_drain (sub {
2060     warn "all data submitted to the kernel\n";
2061     undef $handle;
2062     });
2063    
2064 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2065     consider using C<< ->push_shutdown >> instead.
2066    
2067     =item I want to contact a TLS/SSL server, I don't care about security.
2068    
2069     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2070     simply connect to it and then create the AnyEvent::Handle with the C<tls>
2071     parameter:
2072    
2073 root 1.144 tcp_connect $host, $port, sub {
2074     my ($fh) = @_;
2075 root 1.143
2076 root 1.144 my $handle = new AnyEvent::Handle
2077     fh => $fh,
2078     tls => "connect",
2079     on_error => sub { ... };
2080    
2081     $handle->push_write (...);
2082     };
2083 root 1.143
2084     =item I want to contact a TLS/SSL server, I do care about security.
2085    
2086 root 1.144 Then you should additionally enable certificate verification, including
2087     peername verification, if the protocol you use supports it (see
2088     L<AnyEvent::TLS>, C<verify_peername>).
2089    
2090     E.g. for HTTPS:
2091    
2092     tcp_connect $host, $port, sub {
2093     my ($fh) = @_;
2094    
2095     my $handle = new AnyEvent::Handle
2096     fh => $fh,
2097     peername => $host,
2098     tls => "connect",
2099     tls_ctx => { verify => 1, verify_peername => "https" },
2100     ...
2101    
2102     Note that you must specify the hostname you connected to (or whatever
2103     "peername" the protocol needs) as the C<peername> argument, otherwise no
2104     peername verification will be done.
2105    
2106     The above will use the system-dependent default set of trusted CA
2107     certificates. If you want to check against a specific CA, add the
2108     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2109    
2110     tls_ctx => {
2111     verify => 1,
2112     verify_peername => "https",
2113     ca_file => "my-ca-cert.pem",
2114     },
2115    
2116     =item I want to create a TLS/SSL server, how do I do that?
2117    
2118     Well, you first need to get a server certificate and key. You have
2119     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2120     self-signed certificate (cheap. check the search engine of your choice,
2121     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2122     nice program for that purpose).
2123    
2124     Then create a file with your private key (in PEM format, see
2125     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2126     file should then look like this:
2127    
2128     -----BEGIN RSA PRIVATE KEY-----
2129     ...header data
2130     ... lots of base64'y-stuff
2131     -----END RSA PRIVATE KEY-----
2132    
2133     -----BEGIN CERTIFICATE-----
2134     ... lots of base64'y-stuff
2135     -----END CERTIFICATE-----
2136    
2137     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2138     specify this file as C<cert_file>:
2139    
2140     tcp_server undef, $port, sub {
2141     my ($fh) = @_;
2142    
2143     my $handle = new AnyEvent::Handle
2144     fh => $fh,
2145     tls => "accept",
2146     tls_ctx => { cert_file => "my-server-keycert.pem" },
2147     ...
2148 root 1.143
2149 root 1.144 When you have intermediate CA certificates that your clients might not
2150     know about, just append them to the C<cert_file>.
2151 root 1.143
2152 root 1.95 =back
2153    
2154    
2155 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2156    
2157     In many cases, you might want to subclass AnyEvent::Handle.
2158    
2159     To make this easier, a given version of AnyEvent::Handle uses these
2160     conventions:
2161    
2162     =over 4
2163    
2164     =item * all constructor arguments become object members.
2165    
2166     At least initially, when you pass a C<tls>-argument to the constructor it
2167 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2168 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2169    
2170     =item * other object member names are prefixed with an C<_>.
2171    
2172     All object members not explicitly documented (internal use) are prefixed
2173     with an underscore character, so the remaining non-C<_>-namespace is free
2174     for use for subclasses.
2175    
2176     =item * all members not documented here and not prefixed with an underscore
2177     are free to use in subclasses.
2178    
2179     Of course, new versions of AnyEvent::Handle may introduce more "public"
2180     member variables, but thats just life, at least it is documented.
2181    
2182     =back
2183    
2184 elmex 1.1 =head1 AUTHOR
2185    
2186 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2187 elmex 1.1
2188     =cut
2189    
2190     1; # End of AnyEvent::Handle