ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.185
Committed: Thu Sep 3 19:48:27 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.184: +76 -30 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 elmex 1.2 );
20    
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.159 filehandles.
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 elmex 1.1 =head1 METHODS
81    
82     =over 4
83    
84 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
85 elmex 1.1
86 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
87 elmex 1.1
88     =over 4
89    
90 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
91 root 1.158
92 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
93 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
94     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95     that mode.
96 root 1.8
97 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98    
99     Try to connect to the specified host and service (port), using
100     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101     default C<peername>.
102    
103     You have to specify either this parameter, or C<fh>, above.
104    
105 root 1.160 It is possible to push requests on the read and write queues, and modify
106     properties of the stream, even while AnyEvent::Handle is connecting.
107    
108 root 1.159 When this parameter is specified, then the C<on_prepare>,
109     C<on_connect_error> and C<on_connect> callbacks will be called under the
110     appropriate circumstances:
111    
112     =over 4
113    
114     =item on_prepare => $cb->($handle)
115    
116     This (rarely used) callback is called before a new connection is
117     attempted, but after the file handle has been created. It could be used to
118     prepare the file handle with parameters required for the actual connect
119     (as opposed to settings that can be changed when the connection is already
120     established).
121    
122 root 1.161 The return value of this callback should be the connect timeout value in
123     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
124     timeout is to be used).
125    
126 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
127    
128     This callback is called when a connection has been successfully established.
129    
130     The actual numeric host and port (the socket peername) are passed as
131     parameters, together with a retry callback.
132    
133     When, for some reason, the handle is not acceptable, then calling
134     C<$retry> will continue with the next conenction target (in case of
135     multi-homed hosts or SRV records there can be multiple connection
136     endpoints). When it is called then the read and write queues, eof status,
137     tls status and similar properties of the handle are being reset.
138    
139     In most cases, ignoring the C<$retry> parameter is the way to go.
140 root 1.158
141 root 1.159 =item on_connect_error => $cb->($handle, $message)
142 root 1.10
143 root 1.159 This callback is called when the conenction could not be
144     established. C<$!> will contain the relevant error code, and C<$message> a
145     message describing it (usually the same as C<"$!">).
146 root 1.8
147 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
148     fatal error instead.
149 root 1.82
150 root 1.159 =back
151 root 1.80
152 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
153 root 1.10
154 root 1.52 This is the error callback, which is called when, well, some error
155     occured, such as not being able to resolve the hostname, failure to
156     connect or a read error.
157    
158     Some errors are fatal (which is indicated by C<$fatal> being true). On
159 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
160     destroy >>) after invoking the error callback (which means you are free to
161     examine the handle object). Examples of fatal errors are an EOF condition
162 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
163     cases where the other side can close the connection at their will it is
164     often easiest to not report C<EPIPE> errors in this callback.
165 root 1.82
166 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
167     against, but in some cases (TLS errors), this does not work well. It is
168     recommended to always output the C<$message> argument in human-readable
169     error messages (it's usually the same as C<"$!">).
170    
171 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
172     to simply ignore this parameter and instead abondon the handle object
173     when this callback is invoked. Examples of non-fatal errors are timeouts
174     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
175 root 1.8
176 root 1.10 On callback entrance, the value of C<$!> contains the operating system
177 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
178     C<EPROTO>).
179 root 1.8
180 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
181     you will not be notified of errors otherwise. The default simply calls
182 root 1.52 C<croak>.
183 root 1.8
184 root 1.40 =item on_read => $cb->($handle)
185 root 1.8
186     This sets the default read callback, which is called when data arrives
187 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
188     callback will only be called when at least one octet of data is in the
189     read buffer).
190 root 1.8
191     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
192 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
193 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
194     the beginning from it.
195 root 1.8
196     When an EOF condition is detected then AnyEvent::Handle will first try to
197     feed all the remaining data to the queued callbacks and C<on_read> before
198     calling the C<on_eof> callback. If no progress can be made, then a fatal
199     error will be raised (with C<$!> set to C<EPIPE>).
200 elmex 1.1
201 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
202     doesn't mean you I<require> some data: if there is an EOF and there
203     are outstanding read requests then an error will be flagged. With an
204     C<on_read> callback, the C<on_eof> callback will be invoked.
205    
206 root 1.159 =item on_eof => $cb->($handle)
207    
208     Set the callback to be called when an end-of-file condition is detected,
209     i.e. in the case of a socket, when the other side has closed the
210     connection cleanly, and there are no outstanding read requests in the
211     queue (if there are read requests, then an EOF counts as an unexpected
212     connection close and will be flagged as an error).
213    
214     For sockets, this just means that the other side has stopped sending data,
215     you can still try to write data, and, in fact, one can return from the EOF
216     callback and continue writing data, as only the read part has been shut
217     down.
218    
219     If an EOF condition has been detected but no C<on_eof> callback has been
220     set, then a fatal error will be raised with C<$!> set to <0>.
221    
222 root 1.40 =item on_drain => $cb->($handle)
223 elmex 1.1
224 root 1.8 This sets the callback that is called when the write buffer becomes empty
225     (or when the callback is set and the buffer is empty already).
226 elmex 1.1
227 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
228 elmex 1.2
229 root 1.69 This callback is useful when you don't want to put all of your write data
230     into the queue at once, for example, when you want to write the contents
231     of some file to the socket you might not want to read the whole file into
232     memory and push it into the queue, but instead only read more data from
233     the file when the write queue becomes empty.
234    
235 root 1.43 =item timeout => $fractional_seconds
236    
237 root 1.176 =item rtimeout => $fractional_seconds
238    
239     =item wtimeout => $fractional_seconds
240    
241     If non-zero, then these enables an "inactivity" timeout: whenever this
242     many seconds pass without a successful read or write on the underlying
243     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
244     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
245     error will be raised).
246    
247     There are three variants of the timeouts that work fully independent
248     of each other, for both read and write, just read, and just write:
249     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
250     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
251     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
252 root 1.43
253     Note that timeout processing is also active when you currently do not have
254     any outstanding read or write requests: If you plan to keep the connection
255     idle then you should disable the timout temporarily or ignore the timeout
256 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
257     restart the timeout.
258 root 1.43
259     Zero (the default) disables this timeout.
260    
261     =item on_timeout => $cb->($handle)
262    
263     Called whenever the inactivity timeout passes. If you return from this
264     callback, then the timeout will be reset as if some activity had happened,
265     so this condition is not fatal in any way.
266    
267 root 1.8 =item rbuf_max => <bytes>
268 elmex 1.2
269 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
270     when the read buffer ever (strictly) exceeds this size. This is useful to
271 root 1.88 avoid some forms of denial-of-service attacks.
272 elmex 1.2
273 root 1.8 For example, a server accepting connections from untrusted sources should
274     be configured to accept only so-and-so much data that it cannot act on
275     (for example, when expecting a line, an attacker could send an unlimited
276     amount of data without a callback ever being called as long as the line
277     isn't finished).
278 elmex 1.2
279 root 1.70 =item autocork => <boolean>
280    
281     When disabled (the default), then C<push_write> will try to immediately
282 root 1.88 write the data to the handle, if possible. This avoids having to register
283     a write watcher and wait for the next event loop iteration, but can
284     be inefficient if you write multiple small chunks (on the wire, this
285     disadvantage is usually avoided by your kernel's nagle algorithm, see
286     C<no_delay>, but this option can save costly syscalls).
287 root 1.70
288     When enabled, then writes will always be queued till the next event loop
289     iteration. This is efficient when you do many small writes per iteration,
290 root 1.88 but less efficient when you do a single write only per iteration (or when
291     the write buffer often is full). It also increases write latency.
292 root 1.70
293     =item no_delay => <boolean>
294    
295     When doing small writes on sockets, your operating system kernel might
296     wait a bit for more data before actually sending it out. This is called
297     the Nagle algorithm, and usually it is beneficial.
298    
299 root 1.88 In some situations you want as low a delay as possible, which can be
300     accomplishd by setting this option to a true value.
301 root 1.70
302 root 1.88 The default is your opertaing system's default behaviour (most likely
303     enabled), this option explicitly enables or disables it, if possible.
304 root 1.70
305 root 1.182 =item keepalive => <boolean>
306    
307     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
308     normally, TCP connections have no time-out once established, so TCP
309     conenctions, once established, can stay alive forever even when the other
310     side has long gone. TCP keepalives are a cheap way to take down long-lived
311     TCP connections whent he other side becomes unreachable. While the default
312     is OS-dependent, TCP keepalives usually kick in after around two hours,
313     and, if the other side doesn't reply, take down the TCP connection some 10
314     to 15 minutes later.
315    
316     It is harmless to specify this option for file handles that do not support
317     keepalives, and enabling it on connections that are potentially long-lived
318     is usually a good idea.
319    
320     =item oobinline => <boolean>
321    
322     BSD majorly fucked up the implementation of TCP urgent data. The result
323     is that almost no OS implements TCP according to the specs, and every OS
324     implements it slightly differently.
325    
326 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
327     is enabled) gives you the most portable way of getting urgent data, by
328     putting it into the stream.
329    
330     Since BSD emulation of OOB data on top of TCP's urgent data can have
331     security implications, AnyEvent::Handle sets this flag automatically
332 root 1.184 unless explicitly specified. Note that setting this flag after
333     establishing a connection I<may> be a bit too late (data loss could
334     already have occured on BSD systems), but at least it will protect you
335     from most attacks.
336 root 1.182
337 root 1.8 =item read_size => <bytes>
338 elmex 1.2
339 root 1.88 The default read block size (the amount of bytes this module will
340     try to read during each loop iteration, which affects memory
341     requirements). Default: C<8192>.
342 root 1.8
343     =item low_water_mark => <bytes>
344    
345     Sets the amount of bytes (default: C<0>) that make up an "empty" write
346     buffer: If the write reaches this size or gets even samller it is
347     considered empty.
348 elmex 1.2
349 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
350     the write buffer before it is fully drained, but this is a rare case, as
351     the operating system kernel usually buffers data as well, so the default
352     is good in almost all cases.
353    
354 root 1.62 =item linger => <seconds>
355    
356     If non-zero (default: C<3600>), then the destructor of the
357 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
358     write data and will install a watcher that will write this data to the
359     socket. No errors will be reported (this mostly matches how the operating
360     system treats outstanding data at socket close time).
361 root 1.62
362 root 1.88 This will not work for partial TLS data that could not be encoded
363 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
364     help.
365 root 1.62
366 root 1.133 =item peername => $string
367    
368 root 1.134 A string used to identify the remote site - usually the DNS hostname
369     (I<not> IDN!) used to create the connection, rarely the IP address.
370 root 1.131
371 root 1.133 Apart from being useful in error messages, this string is also used in TLS
372 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
373     verification will be skipped when C<peername> is not specified or
374     C<undef>.
375 root 1.131
376 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
377    
378 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
379 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
380     established and will transparently encrypt/decrypt data afterwards.
381 root 1.19
382 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
383     appropriate error message.
384    
385 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
386 root 1.88 automatically when you try to create a TLS handle): this module doesn't
387     have a dependency on that module, so if your module requires it, you have
388     to add the dependency yourself.
389 root 1.26
390 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
391     C<accept>, and for the TLS client side of a connection, use C<connect>
392     mode.
393 root 1.19
394     You can also provide your own TLS connection object, but you have
395     to make sure that you call either C<Net::SSLeay::set_connect_state>
396     or C<Net::SSLeay::set_accept_state> on it before you pass it to
397 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
398     object.
399    
400     At some future point, AnyEvent::Handle might switch to another TLS
401     implementation, then the option to use your own session object will go
402     away.
403 root 1.19
404 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
405     passing in the wrong integer will lead to certain crash. This most often
406     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
407     segmentation fault.
408    
409 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
410 root 1.26
411 root 1.131 =item tls_ctx => $anyevent_tls
412 root 1.19
413 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
414 root 1.19 (unless a connection object was specified directly). If this parameter is
415     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
416    
417 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
418     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
419     new TLS context object.
420    
421 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
422 root 1.142
423     This callback will be invoked when the TLS/SSL handshake has finished. If
424     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
425     (C<on_stoptls> will not be called in this case).
426    
427     The session in C<< $handle->{tls} >> can still be examined in this
428     callback, even when the handshake was not successful.
429    
430 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
431     callback is in effect, instead, the error message will be passed to C<on_starttls>.
432    
433     Without this callback, handshake failures lead to C<on_error> being
434     called, as normal.
435    
436     Note that you cannot call C<starttls> right again in this callback. If you
437     need to do that, start an zero-second timer instead whose callback can
438     then call C<< ->starttls >> again.
439    
440 root 1.142 =item on_stoptls => $cb->($handle)
441    
442     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
443     set, then it will be invoked after freeing the TLS session. If it is not,
444     then a TLS shutdown condition will be treated like a normal EOF condition
445     on the handle.
446    
447     The session in C<< $handle->{tls} >> can still be examined in this
448     callback.
449    
450     This callback will only be called on TLS shutdowns, not when the
451     underlying handle signals EOF.
452    
453 root 1.40 =item json => JSON or JSON::XS object
454    
455     This is the json coder object used by the C<json> read and write types.
456    
457 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
458 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
459     texts.
460 root 1.40
461     Note that you are responsible to depend on the JSON module if you want to
462     use this functionality, as AnyEvent does not have a dependency itself.
463    
464 elmex 1.1 =back
465    
466     =cut
467    
468     sub new {
469 root 1.8 my $class = shift;
470     my $self = bless { @_ }, $class;
471    
472 root 1.159 if ($self->{fh}) {
473     $self->_start;
474     return unless $self->{fh}; # could be gone by now
475    
476     } elsif ($self->{connect}) {
477     require AnyEvent::Socket;
478    
479     $self->{peername} = $self->{connect}[0]
480     unless exists $self->{peername};
481    
482     $self->{_skip_drain_rbuf} = 1;
483    
484     {
485     Scalar::Util::weaken (my $self = $self);
486    
487     $self->{_connect} =
488     AnyEvent::Socket::tcp_connect (
489     $self->{connect}[0],
490     $self->{connect}[1],
491     sub {
492     my ($fh, $host, $port, $retry) = @_;
493    
494     if ($fh) {
495     $self->{fh} = $fh;
496    
497     delete $self->{_skip_drain_rbuf};
498     $self->_start;
499    
500     $self->{on_connect}
501     and $self->{on_connect}($self, $host, $port, sub {
502 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
503 root 1.159 $self->{_skip_drain_rbuf} = 1;
504     &$retry;
505     });
506    
507     } else {
508     if ($self->{on_connect_error}) {
509     $self->{on_connect_error}($self, "$!");
510     $self->destroy;
511     } else {
512 root 1.161 $self->_error ($!, 1);
513 root 1.159 }
514     }
515     },
516     sub {
517     local $self->{fh} = $_[0];
518    
519 root 1.161 $self->{on_prepare}
520     ? $self->{on_prepare}->($self)
521     : ()
522 root 1.159 }
523     );
524     }
525    
526     } else {
527     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
528     }
529    
530     $self
531     }
532    
533     sub _start {
534     my ($self) = @_;
535 root 1.8
536     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
537 elmex 1.1
538 root 1.176 $self->{_activity} =
539     $self->{_ractivity} =
540     $self->{_wactivity} = AE::now;
541    
542 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
543     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
544     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
545    
546 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
547     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
548    
549     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
550 root 1.131
551 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
552 root 1.94 if $self->{tls};
553 root 1.19
554 root 1.182 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
555 root 1.10
556 root 1.66 $self->start_read
557 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
558 root 1.160
559     $self->_drain_wbuf;
560 root 1.8 }
561 elmex 1.2
562 root 1.52 sub _error {
563 root 1.133 my ($self, $errno, $fatal, $message) = @_;
564 root 1.8
565 root 1.52 $! = $errno;
566 root 1.133 $message ||= "$!";
567 root 1.37
568 root 1.52 if ($self->{on_error}) {
569 root 1.133 $self->{on_error}($self, $fatal, $message);
570 root 1.151 $self->destroy if $fatal;
571 root 1.100 } elsif ($self->{fh}) {
572 root 1.149 $self->destroy;
573 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
574 root 1.52 }
575 elmex 1.1 }
576    
577 root 1.8 =item $fh = $handle->fh
578 elmex 1.1
579 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
580 elmex 1.1
581     =cut
582    
583 root 1.38 sub fh { $_[0]{fh} }
584 elmex 1.1
585 root 1.8 =item $handle->on_error ($cb)
586 elmex 1.1
587 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
588 elmex 1.1
589 root 1.8 =cut
590    
591     sub on_error {
592     $_[0]{on_error} = $_[1];
593     }
594    
595     =item $handle->on_eof ($cb)
596    
597     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
598 elmex 1.1
599     =cut
600    
601 root 1.8 sub on_eof {
602     $_[0]{on_eof} = $_[1];
603     }
604    
605 root 1.43 =item $handle->on_timeout ($cb)
606    
607 root 1.176 =item $handle->on_rtimeout ($cb)
608    
609     =item $handle->on_wtimeout ($cb)
610    
611     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
612     callback, or disables the callback (but not the timeout) if C<$cb> =
613     C<undef>. See the C<timeout> constructor argument and method.
614 root 1.43
615     =cut
616    
617 root 1.176 # see below
618 root 1.43
619 root 1.70 =item $handle->autocork ($boolean)
620    
621     Enables or disables the current autocork behaviour (see C<autocork>
622 root 1.105 constructor argument). Changes will only take effect on the next write.
623 root 1.70
624     =cut
625    
626 root 1.105 sub autocork {
627     $_[0]{autocork} = $_[1];
628     }
629    
630 root 1.70 =item $handle->no_delay ($boolean)
631    
632     Enables or disables the C<no_delay> setting (see constructor argument of
633     the same name for details).
634    
635     =cut
636    
637     sub no_delay {
638     $_[0]{no_delay} = $_[1];
639    
640     eval {
641     local $SIG{__DIE__};
642 root 1.182 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
643     if $_[0]{fh};
644     };
645     }
646    
647     =item $handle->keepalive ($boolean)
648    
649     Enables or disables the C<keepalive> setting (see constructor argument of
650     the same name for details).
651    
652     =cut
653    
654     sub keepalive {
655     $_[0]{keepalive} = $_[1];
656    
657     eval {
658     local $SIG{__DIE__};
659     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
660     if $_[0]{fh};
661     };
662     }
663    
664     =item $handle->oobinline ($boolean)
665    
666     Enables or disables the C<oobinline> setting (see constructor argument of
667     the same name for details).
668    
669     =cut
670    
671     sub oobinline {
672     $_[0]{oobinline} = $_[1];
673    
674     eval {
675     local $SIG{__DIE__};
676     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
677     if $_[0]{fh};
678     };
679     }
680    
681     =item $handle->keepalive ($boolean)
682    
683     Enables or disables the C<keepalive> setting (see constructor argument of
684     the same name for details).
685    
686     =cut
687    
688     sub keepalive {
689     $_[0]{keepalive} = $_[1];
690    
691     eval {
692     local $SIG{__DIE__};
693     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
694 root 1.159 if $_[0]{fh};
695 root 1.70 };
696     }
697    
698 root 1.142 =item $handle->on_starttls ($cb)
699    
700     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
701    
702     =cut
703    
704     sub on_starttls {
705     $_[0]{on_starttls} = $_[1];
706     }
707    
708     =item $handle->on_stoptls ($cb)
709    
710     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
711    
712     =cut
713    
714     sub on_starttls {
715     $_[0]{on_stoptls} = $_[1];
716     }
717    
718 root 1.168 =item $handle->rbuf_max ($max_octets)
719    
720     Configures the C<rbuf_max> setting (C<undef> disables it).
721    
722     =cut
723    
724     sub rbuf_max {
725     $_[0]{rbuf_max} = $_[1];
726     }
727    
728 root 1.43 #############################################################################
729    
730     =item $handle->timeout ($seconds)
731    
732 root 1.176 =item $handle->rtimeout ($seconds)
733    
734     =item $handle->wtimeout ($seconds)
735    
736 root 1.43 Configures (or disables) the inactivity timeout.
737    
738 root 1.176 =item $handle->timeout_reset
739    
740     =item $handle->rtimeout_reset
741    
742     =item $handle->wtimeout_reset
743    
744     Reset the activity timeout, as if data was received or sent.
745    
746     These methods are cheap to call.
747    
748 root 1.43 =cut
749    
750 root 1.176 for my $dir ("", "r", "w") {
751     my $timeout = "${dir}timeout";
752     my $tw = "_${dir}tw";
753     my $on_timeout = "on_${dir}timeout";
754     my $activity = "_${dir}activity";
755     my $cb;
756    
757     *$on_timeout = sub {
758     $_[0]{$on_timeout} = $_[1];
759     };
760    
761     *$timeout = sub {
762     my ($self, $new_value) = @_;
763 root 1.43
764 root 1.176 $self->{$timeout} = $new_value;
765     delete $self->{$tw}; &$cb;
766     };
767 root 1.43
768 root 1.176 *{"${dir}timeout_reset"} = sub {
769     $_[0]{$activity} = AE::now;
770     };
771 root 1.43
772 root 1.176 # main workhorse:
773     # reset the timeout watcher, as neccessary
774     # also check for time-outs
775     $cb = sub {
776     my ($self) = @_;
777    
778     if ($self->{$timeout} && $self->{fh}) {
779     my $NOW = AE::now;
780    
781     # when would the timeout trigger?
782     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
783    
784     # now or in the past already?
785     if ($after <= 0) {
786     $self->{$activity} = $NOW;
787 root 1.43
788 root 1.176 if ($self->{$on_timeout}) {
789     $self->{$on_timeout}($self);
790     } else {
791     $self->_error (Errno::ETIMEDOUT);
792     }
793 root 1.43
794 root 1.176 # callback could have changed timeout value, optimise
795     return unless $self->{$timeout};
796 root 1.43
797 root 1.176 # calculate new after
798     $after = $self->{$timeout};
799 root 1.43 }
800    
801 root 1.176 Scalar::Util::weaken $self;
802     return unless $self; # ->error could have destroyed $self
803 root 1.43
804 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
805     delete $self->{$tw};
806     $cb->($self);
807     };
808     } else {
809     delete $self->{$tw};
810 root 1.43 }
811     }
812     }
813    
814 root 1.9 #############################################################################
815    
816     =back
817    
818     =head2 WRITE QUEUE
819    
820     AnyEvent::Handle manages two queues per handle, one for writing and one
821     for reading.
822    
823     The write queue is very simple: you can add data to its end, and
824     AnyEvent::Handle will automatically try to get rid of it for you.
825    
826 elmex 1.20 When data could be written and the write buffer is shorter then the low
827 root 1.9 water mark, the C<on_drain> callback will be invoked.
828    
829     =over 4
830    
831 root 1.8 =item $handle->on_drain ($cb)
832    
833     Sets the C<on_drain> callback or clears it (see the description of
834     C<on_drain> in the constructor).
835    
836     =cut
837    
838     sub on_drain {
839 elmex 1.1 my ($self, $cb) = @_;
840    
841 root 1.8 $self->{on_drain} = $cb;
842    
843     $cb->($self)
844 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
845 root 1.8 }
846    
847     =item $handle->push_write ($data)
848    
849     Queues the given scalar to be written. You can push as much data as you
850     want (only limited by the available memory), as C<AnyEvent::Handle>
851     buffers it independently of the kernel.
852    
853     =cut
854    
855 root 1.17 sub _drain_wbuf {
856     my ($self) = @_;
857 root 1.8
858 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
859 root 1.35
860 root 1.8 Scalar::Util::weaken $self;
861 root 1.35
862 root 1.8 my $cb = sub {
863     my $len = syswrite $self->{fh}, $self->{wbuf};
864    
865 root 1.146 if (defined $len) {
866 root 1.8 substr $self->{wbuf}, 0, $len, "";
867    
868 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
869 root 1.43
870 root 1.8 $self->{on_drain}($self)
871 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
872 root 1.8 && $self->{on_drain};
873    
874 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
875 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
876 root 1.52 $self->_error ($!, 1);
877 elmex 1.1 }
878 root 1.8 };
879    
880 root 1.35 # try to write data immediately
881 root 1.70 $cb->() unless $self->{autocork};
882 root 1.8
883 root 1.35 # if still data left in wbuf, we need to poll
884 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
885 root 1.35 if length $self->{wbuf};
886 root 1.8 };
887     }
888    
889 root 1.30 our %WH;
890    
891 root 1.185 # deprecated
892 root 1.30 sub register_write_type($$) {
893     $WH{$_[0]} = $_[1];
894     }
895    
896 root 1.17 sub push_write {
897     my $self = shift;
898    
899 root 1.29 if (@_ > 1) {
900     my $type = shift;
901    
902 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
903     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
904 root 1.29 ->($self, @_);
905     }
906    
907 root 1.93 if ($self->{tls}) {
908     $self->{_tls_wbuf} .= $_[0];
909 root 1.160 &_dotls ($self) if $self->{fh};
910 root 1.17 } else {
911 root 1.160 $self->{wbuf} .= $_[0];
912 root 1.159 $self->_drain_wbuf if $self->{fh};
913 root 1.17 }
914     }
915    
916 root 1.29 =item $handle->push_write (type => @args)
917    
918 root 1.185 Instead of formatting your data yourself, you can also let this module
919     do the job by specifying a type and type-specific arguments. You
920     can also specify the (fully qualified) name of a package, in which
921     case AnyEvent tries to load the package and then expects to find the
922     C<anyevent_read_type> function inside (see "custom write types", below).
923 root 1.29
924 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
925     drop by and tell us):
926 root 1.29
927     =over 4
928    
929     =item netstring => $string
930    
931     Formats the given value as netstring
932     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
933    
934     =cut
935    
936     register_write_type netstring => sub {
937     my ($self, $string) = @_;
938    
939 root 1.96 (length $string) . ":$string,"
940 root 1.29 };
941    
942 root 1.61 =item packstring => $format, $data
943    
944     An octet string prefixed with an encoded length. The encoding C<$format>
945     uses the same format as a Perl C<pack> format, but must specify a single
946     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
947     optional C<!>, C<< < >> or C<< > >> modifier).
948    
949     =cut
950    
951     register_write_type packstring => sub {
952     my ($self, $format, $string) = @_;
953    
954 root 1.65 pack "$format/a*", $string
955 root 1.61 };
956    
957 root 1.39 =item json => $array_or_hashref
958    
959 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
960     provide your own JSON object, this means it will be encoded to JSON text
961     in UTF-8.
962    
963     JSON objects (and arrays) are self-delimiting, so you can write JSON at
964     one end of a handle and read them at the other end without using any
965     additional framing.
966    
967 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
968     this module doesn't need delimiters after or between JSON texts to be
969     able to read them, many other languages depend on that.
970    
971     A simple RPC protocol that interoperates easily with others is to send
972     JSON arrays (or objects, although arrays are usually the better choice as
973     they mimic how function argument passing works) and a newline after each
974     JSON text:
975    
976     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
977     $handle->push_write ("\012");
978    
979     An AnyEvent::Handle receiver would simply use the C<json> read type and
980     rely on the fact that the newline will be skipped as leading whitespace:
981    
982     $handle->push_read (json => sub { my $array = $_[1]; ... });
983    
984     Other languages could read single lines terminated by a newline and pass
985     this line into their JSON decoder of choice.
986    
987 root 1.40 =cut
988    
989 root 1.179 sub json_coder() {
990     eval { require JSON::XS; JSON::XS->new->utf8 }
991     || do { require JSON; JSON->new->utf8 }
992     }
993    
994 root 1.40 register_write_type json => sub {
995     my ($self, $ref) = @_;
996    
997 root 1.179 my $json = $self->{json} ||= json_coder;
998 root 1.40
999 root 1.179 $json->encode ($ref)
1000 root 1.40 };
1001    
1002 root 1.63 =item storable => $reference
1003    
1004     Freezes the given reference using L<Storable> and writes it to the
1005     handle. Uses the C<nfreeze> format.
1006    
1007     =cut
1008    
1009     register_write_type storable => sub {
1010     my ($self, $ref) = @_;
1011    
1012     require Storable;
1013    
1014 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1015 root 1.63 };
1016    
1017 root 1.53 =back
1018    
1019 root 1.133 =item $handle->push_shutdown
1020    
1021     Sometimes you know you want to close the socket after writing your data
1022     before it was actually written. One way to do that is to replace your
1023 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1024     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1025     replaces the C<on_drain> callback with:
1026 root 1.133
1027     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1028    
1029     This simply shuts down the write side and signals an EOF condition to the
1030     the peer.
1031    
1032     You can rely on the normal read queue and C<on_eof> handling
1033     afterwards. This is the cleanest way to close a connection.
1034    
1035     =cut
1036    
1037     sub push_shutdown {
1038 root 1.142 my ($self) = @_;
1039    
1040     delete $self->{low_water_mark};
1041     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1042 root 1.133 }
1043    
1044 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1045    
1046     Instead of one of the predefined types, you can also specify the name of
1047     a package. AnyEvent will try to load the package and then expects to find
1048     a function named C<anyevent_write_type> inside. If it isn't found, it
1049     progressively tries to load the parent package until it either finds the
1050     function (good) or runs out of packages (bad).
1051    
1052     Whenever the given C<type> is used, C<push_write> will the function with
1053     the handle object and the remaining arguments.
1054    
1055     The function is supposed to return a single octet string that will be
1056     appended to the write buffer, so you cna mentally treat this function as a
1057     "arguments to on-the-wire-format" converter.
1058 root 1.30
1059 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1060     arguments using the first one.
1061 root 1.29
1062 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1063 root 1.29
1064 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1065     # the "My" modules to be auto-loaded, or just about anywhere when the
1066     # My::Type::anyevent_write_type is defined before invoking it.
1067    
1068     package My::Type;
1069    
1070     sub anyevent_write_type {
1071     my ($handle, $delim, @args) = @_;
1072    
1073     join $delim, @args
1074     }
1075 root 1.29
1076 root 1.30 =cut
1077 root 1.29
1078 root 1.8 #############################################################################
1079    
1080 root 1.9 =back
1081    
1082     =head2 READ QUEUE
1083    
1084     AnyEvent::Handle manages two queues per handle, one for writing and one
1085     for reading.
1086    
1087     The read queue is more complex than the write queue. It can be used in two
1088     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1089     a queue.
1090    
1091     In the simple case, you just install an C<on_read> callback and whenever
1092     new data arrives, it will be called. You can then remove some data (if
1093 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
1094     leave the data there if you want to accumulate more (e.g. when only a
1095     partial message has been received so far).
1096 root 1.9
1097     In the more complex case, you want to queue multiple callbacks. In this
1098     case, AnyEvent::Handle will call the first queued callback each time new
1099 root 1.61 data arrives (also the first time it is queued) and removes it when it has
1100     done its job (see C<push_read>, below).
1101 root 1.9
1102     This way you can, for example, push three line-reads, followed by reading
1103     a chunk of data, and AnyEvent::Handle will execute them in order.
1104    
1105     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1106     the specified number of bytes which give an XML datagram.
1107    
1108     # in the default state, expect some header bytes
1109     $handle->on_read (sub {
1110     # some data is here, now queue the length-header-read (4 octets)
1111 root 1.52 shift->unshift_read (chunk => 4, sub {
1112 root 1.9 # header arrived, decode
1113     my $len = unpack "N", $_[1];
1114    
1115     # now read the payload
1116 root 1.52 shift->unshift_read (chunk => $len, sub {
1117 root 1.9 my $xml = $_[1];
1118     # handle xml
1119     });
1120     });
1121     });
1122    
1123 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1124     and another line or "ERROR" for the first request that is sent, and 64
1125     bytes for the second request. Due to the availability of a queue, we can
1126     just pipeline sending both requests and manipulate the queue as necessary
1127     in the callbacks.
1128    
1129     When the first callback is called and sees an "OK" response, it will
1130     C<unshift> another line-read. This line-read will be queued I<before> the
1131     64-byte chunk callback.
1132 root 1.9
1133 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1134 root 1.9 $handle->push_write ("request 1\015\012");
1135    
1136     # we expect "ERROR" or "OK" as response, so push a line read
1137 root 1.52 $handle->push_read (line => sub {
1138 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1139     # so it will be read before the second request reads its 64 bytes
1140     # which are already in the queue when this callback is called
1141     # we don't do this in case we got an error
1142     if ($_[1] eq "OK") {
1143 root 1.52 $_[0]->unshift_read (line => sub {
1144 root 1.9 my $response = $_[1];
1145     ...
1146     });
1147     }
1148     });
1149    
1150 root 1.69 # request two, simply returns 64 octets
1151 root 1.9 $handle->push_write ("request 2\015\012");
1152    
1153     # simply read 64 bytes, always
1154 root 1.52 $handle->push_read (chunk => 64, sub {
1155 root 1.9 my $response = $_[1];
1156     ...
1157     });
1158    
1159     =over 4
1160    
1161 root 1.10 =cut
1162    
1163 root 1.8 sub _drain_rbuf {
1164     my ($self) = @_;
1165 elmex 1.1
1166 root 1.159 # avoid recursion
1167 root 1.167 return if $self->{_skip_drain_rbuf};
1168 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1169 root 1.59
1170     while () {
1171 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1172     # we are draining the buffer, and this can only happen with TLS.
1173 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1174     if exists $self->{_tls_rbuf};
1175 root 1.115
1176 root 1.59 my $len = length $self->{rbuf};
1177 elmex 1.1
1178 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1179 root 1.29 unless ($cb->($self)) {
1180 root 1.163 # no progress can be made
1181     # (not enough data and no data forthcoming)
1182     $self->_error (Errno::EPIPE, 1), return
1183     if $self->{_eof};
1184 root 1.10
1185 root 1.38 unshift @{ $self->{_queue} }, $cb;
1186 root 1.55 last;
1187 root 1.8 }
1188     } elsif ($self->{on_read}) {
1189 root 1.61 last unless $len;
1190    
1191 root 1.8 $self->{on_read}($self);
1192    
1193     if (
1194 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1195     && !@{ $self->{_queue} } # and the queue is still empty
1196     && $self->{on_read} # but we still have on_read
1197 root 1.8 ) {
1198 root 1.55 # no further data will arrive
1199     # so no progress can be made
1200 root 1.150 $self->_error (Errno::EPIPE, 1), return
1201 root 1.55 if $self->{_eof};
1202    
1203     last; # more data might arrive
1204 elmex 1.1 }
1205 root 1.8 } else {
1206     # read side becomes idle
1207 root 1.93 delete $self->{_rw} unless $self->{tls};
1208 root 1.55 last;
1209 root 1.8 }
1210     }
1211    
1212 root 1.80 if ($self->{_eof}) {
1213 root 1.163 $self->{on_eof}
1214     ? $self->{on_eof}($self)
1215     : $self->_error (0, 1, "Unexpected end-of-file");
1216    
1217     return;
1218 root 1.80 }
1219 root 1.55
1220 root 1.169 if (
1221     defined $self->{rbuf_max}
1222     && $self->{rbuf_max} < length $self->{rbuf}
1223     ) {
1224     $self->_error (Errno::ENOSPC, 1), return;
1225     }
1226    
1227 root 1.55 # may need to restart read watcher
1228     unless ($self->{_rw}) {
1229     $self->start_read
1230     if $self->{on_read} || @{ $self->{_queue} };
1231     }
1232 elmex 1.1 }
1233    
1234 root 1.8 =item $handle->on_read ($cb)
1235 elmex 1.1
1236 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1237     the new callback is C<undef>). See the description of C<on_read> in the
1238     constructor.
1239 elmex 1.1
1240 root 1.8 =cut
1241    
1242     sub on_read {
1243     my ($self, $cb) = @_;
1244 elmex 1.1
1245 root 1.8 $self->{on_read} = $cb;
1246 root 1.159 $self->_drain_rbuf if $cb;
1247 elmex 1.1 }
1248    
1249 root 1.8 =item $handle->rbuf
1250    
1251     Returns the read buffer (as a modifiable lvalue).
1252 elmex 1.1
1253 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1254     member, if you want. However, the only operation allowed on the
1255     read buffer (apart from looking at it) is removing data from its
1256     beginning. Otherwise modifying or appending to it is not allowed and will
1257     lead to hard-to-track-down bugs.
1258 elmex 1.1
1259 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1260     C<push_read> or C<unshift_read> methods are used. The other read methods
1261     automatically manage the read buffer.
1262 elmex 1.1
1263     =cut
1264    
1265 elmex 1.2 sub rbuf : lvalue {
1266 root 1.8 $_[0]{rbuf}
1267 elmex 1.2 }
1268 elmex 1.1
1269 root 1.8 =item $handle->push_read ($cb)
1270    
1271     =item $handle->unshift_read ($cb)
1272    
1273     Append the given callback to the end of the queue (C<push_read>) or
1274     prepend it (C<unshift_read>).
1275    
1276     The callback is called each time some additional read data arrives.
1277 elmex 1.1
1278 elmex 1.20 It must check whether enough data is in the read buffer already.
1279 elmex 1.1
1280 root 1.8 If not enough data is available, it must return the empty list or a false
1281     value, in which case it will be called repeatedly until enough data is
1282     available (or an error condition is detected).
1283    
1284     If enough data was available, then the callback must remove all data it is
1285     interested in (which can be none at all) and return a true value. After returning
1286     true, it will be removed from the queue.
1287 elmex 1.1
1288     =cut
1289    
1290 root 1.30 our %RH;
1291    
1292     sub register_read_type($$) {
1293     $RH{$_[0]} = $_[1];
1294     }
1295    
1296 root 1.8 sub push_read {
1297 root 1.28 my $self = shift;
1298     my $cb = pop;
1299    
1300     if (@_) {
1301     my $type = shift;
1302    
1303 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1304     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1305 root 1.28 ->($self, $cb, @_);
1306     }
1307 elmex 1.1
1308 root 1.38 push @{ $self->{_queue} }, $cb;
1309 root 1.159 $self->_drain_rbuf;
1310 elmex 1.1 }
1311    
1312 root 1.8 sub unshift_read {
1313 root 1.28 my $self = shift;
1314     my $cb = pop;
1315    
1316     if (@_) {
1317     my $type = shift;
1318    
1319     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1320     ->($self, $cb, @_);
1321     }
1322    
1323 root 1.38 unshift @{ $self->{_queue} }, $cb;
1324 root 1.159 $self->_drain_rbuf;
1325 root 1.8 }
1326 elmex 1.1
1327 root 1.28 =item $handle->push_read (type => @args, $cb)
1328 elmex 1.1
1329 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1330 elmex 1.1
1331 root 1.28 Instead of providing a callback that parses the data itself you can chose
1332     between a number of predefined parsing formats, for chunks of data, lines
1333 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1334     which case AnyEvent tries to load the package and then expects to find the
1335     C<anyevent_read_type> function inside (see "custom read types", below).
1336 elmex 1.1
1337 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1338     drop by and tell us):
1339 root 1.28
1340     =over 4
1341    
1342 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1343 root 1.28
1344     Invoke the callback only once C<$octets> bytes have been read. Pass the
1345     data read to the callback. The callback will never be called with less
1346     data.
1347    
1348     Example: read 2 bytes.
1349    
1350     $handle->push_read (chunk => 2, sub {
1351     warn "yay ", unpack "H*", $_[1];
1352     });
1353 elmex 1.1
1354     =cut
1355    
1356 root 1.28 register_read_type chunk => sub {
1357     my ($self, $cb, $len) = @_;
1358 elmex 1.1
1359 root 1.8 sub {
1360     $len <= length $_[0]{rbuf} or return;
1361 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1362 root 1.8 1
1363     }
1364 root 1.28 };
1365 root 1.8
1366 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1367 elmex 1.1
1368 root 1.8 The callback will be called only once a full line (including the end of
1369     line marker, C<$eol>) has been read. This line (excluding the end of line
1370     marker) will be passed to the callback as second argument (C<$line>), and
1371     the end of line marker as the third argument (C<$eol>).
1372 elmex 1.1
1373 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1374     will be interpreted as a fixed record end marker, or it can be a regex
1375     object (e.g. created by C<qr>), in which case it is interpreted as a
1376     regular expression.
1377 elmex 1.1
1378 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1379     undef), then C<qr|\015?\012|> is used (which is good for most internet
1380     protocols).
1381 elmex 1.1
1382 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1383     not marked by the end of line marker.
1384 elmex 1.1
1385 root 1.8 =cut
1386 elmex 1.1
1387 root 1.28 register_read_type line => sub {
1388     my ($self, $cb, $eol) = @_;
1389 elmex 1.1
1390 root 1.76 if (@_ < 3) {
1391     # this is more than twice as fast as the generic code below
1392     sub {
1393     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1394 elmex 1.1
1395 root 1.76 $cb->($_[0], $1, $2);
1396     1
1397     }
1398     } else {
1399     $eol = quotemeta $eol unless ref $eol;
1400     $eol = qr|^(.*?)($eol)|s;
1401    
1402     sub {
1403     $_[0]{rbuf} =~ s/$eol// or return;
1404 elmex 1.1
1405 root 1.76 $cb->($_[0], $1, $2);
1406     1
1407     }
1408 root 1.8 }
1409 root 1.28 };
1410 elmex 1.1
1411 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1412 root 1.36
1413     Makes a regex match against the regex object C<$accept> and returns
1414     everything up to and including the match.
1415    
1416     Example: read a single line terminated by '\n'.
1417    
1418     $handle->push_read (regex => qr<\n>, sub { ... });
1419    
1420     If C<$reject> is given and not undef, then it determines when the data is
1421     to be rejected: it is matched against the data when the C<$accept> regex
1422     does not match and generates an C<EBADMSG> error when it matches. This is
1423     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1424     receive buffer overflow).
1425    
1426     Example: expect a single decimal number followed by whitespace, reject
1427     anything else (not the use of an anchor).
1428    
1429     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1430    
1431     If C<$skip> is given and not C<undef>, then it will be matched against
1432     the receive buffer when neither C<$accept> nor C<$reject> match,
1433     and everything preceding and including the match will be accepted
1434     unconditionally. This is useful to skip large amounts of data that you
1435     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1436     have to start matching from the beginning. This is purely an optimisation
1437     and is usually worth only when you expect more than a few kilobytes.
1438    
1439     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1440     expect the header to be very large (it isn't in practise, but...), we use
1441     a skip regex to skip initial portions. The skip regex is tricky in that
1442     it only accepts something not ending in either \015 or \012, as these are
1443     required for the accept regex.
1444    
1445     $handle->push_read (regex =>
1446     qr<\015\012\015\012>,
1447     undef, # no reject
1448     qr<^.*[^\015\012]>,
1449     sub { ... });
1450    
1451     =cut
1452    
1453     register_read_type regex => sub {
1454     my ($self, $cb, $accept, $reject, $skip) = @_;
1455    
1456     my $data;
1457     my $rbuf = \$self->{rbuf};
1458    
1459     sub {
1460     # accept
1461     if ($$rbuf =~ $accept) {
1462     $data .= substr $$rbuf, 0, $+[0], "";
1463     $cb->($self, $data);
1464     return 1;
1465     }
1466    
1467     # reject
1468     if ($reject && $$rbuf =~ $reject) {
1469 root 1.150 $self->_error (Errno::EBADMSG);
1470 root 1.36 }
1471    
1472     # skip
1473     if ($skip && $$rbuf =~ $skip) {
1474     $data .= substr $$rbuf, 0, $+[0], "";
1475     }
1476    
1477     ()
1478     }
1479     };
1480    
1481 root 1.61 =item netstring => $cb->($handle, $string)
1482    
1483     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1484    
1485     Throws an error with C<$!> set to EBADMSG on format violations.
1486    
1487     =cut
1488    
1489     register_read_type netstring => sub {
1490     my ($self, $cb) = @_;
1491    
1492     sub {
1493     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1494     if ($_[0]{rbuf} =~ /[^0-9]/) {
1495 root 1.150 $self->_error (Errno::EBADMSG);
1496 root 1.61 }
1497     return;
1498     }
1499    
1500     my $len = $1;
1501    
1502     $self->unshift_read (chunk => $len, sub {
1503     my $string = $_[1];
1504     $_[0]->unshift_read (chunk => 1, sub {
1505     if ($_[1] eq ",") {
1506     $cb->($_[0], $string);
1507     } else {
1508 root 1.150 $self->_error (Errno::EBADMSG);
1509 root 1.61 }
1510     });
1511     });
1512    
1513     1
1514     }
1515     };
1516    
1517     =item packstring => $format, $cb->($handle, $string)
1518    
1519     An octet string prefixed with an encoded length. The encoding C<$format>
1520     uses the same format as a Perl C<pack> format, but must specify a single
1521     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1522     optional C<!>, C<< < >> or C<< > >> modifier).
1523    
1524 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1525     EPP uses a prefix of C<N> (4 octtes).
1526 root 1.61
1527     Example: read a block of data prefixed by its length in BER-encoded
1528     format (very efficient).
1529    
1530     $handle->push_read (packstring => "w", sub {
1531     my ($handle, $data) = @_;
1532     });
1533    
1534     =cut
1535    
1536     register_read_type packstring => sub {
1537     my ($self, $cb, $format) = @_;
1538    
1539     sub {
1540     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1541 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1542 root 1.61 or return;
1543    
1544 root 1.77 $format = length pack $format, $len;
1545 root 1.61
1546 root 1.77 # bypass unshift if we already have the remaining chunk
1547     if ($format + $len <= length $_[0]{rbuf}) {
1548     my $data = substr $_[0]{rbuf}, $format, $len;
1549     substr $_[0]{rbuf}, 0, $format + $len, "";
1550     $cb->($_[0], $data);
1551     } else {
1552     # remove prefix
1553     substr $_[0]{rbuf}, 0, $format, "";
1554    
1555     # read remaining chunk
1556     $_[0]->unshift_read (chunk => $len, $cb);
1557     }
1558 root 1.61
1559     1
1560     }
1561     };
1562    
1563 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1564    
1565 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1566     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1567 root 1.40
1568     If a C<json> object was passed to the constructor, then that will be used
1569     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1570    
1571     This read type uses the incremental parser available with JSON version
1572     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1573     dependency on your own: this module will load the JSON module, but
1574     AnyEvent does not depend on it itself.
1575    
1576     Since JSON texts are fully self-delimiting, the C<json> read and write
1577 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1578     the C<json> write type description, above, for an actual example.
1579 root 1.40
1580     =cut
1581    
1582     register_read_type json => sub {
1583 root 1.63 my ($self, $cb) = @_;
1584 root 1.40
1585 root 1.179 my $json = $self->{json} ||= json_coder;
1586 root 1.40
1587     my $data;
1588     my $rbuf = \$self->{rbuf};
1589    
1590     sub {
1591 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1592 root 1.110
1593 root 1.113 if ($ref) {
1594     $self->{rbuf} = $json->incr_text;
1595     $json->incr_text = "";
1596     $cb->($self, $ref);
1597 root 1.110
1598     1
1599 root 1.113 } elsif ($@) {
1600 root 1.111 # error case
1601 root 1.110 $json->incr_skip;
1602 root 1.40
1603     $self->{rbuf} = $json->incr_text;
1604     $json->incr_text = "";
1605    
1606 root 1.150 $self->_error (Errno::EBADMSG);
1607 root 1.114
1608 root 1.113 ()
1609     } else {
1610     $self->{rbuf} = "";
1611 root 1.114
1612 root 1.113 ()
1613     }
1614 root 1.40 }
1615     };
1616    
1617 root 1.63 =item storable => $cb->($handle, $ref)
1618    
1619     Deserialises a L<Storable> frozen representation as written by the
1620     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1621     data).
1622    
1623     Raises C<EBADMSG> error if the data could not be decoded.
1624    
1625     =cut
1626    
1627     register_read_type storable => sub {
1628     my ($self, $cb) = @_;
1629    
1630     require Storable;
1631    
1632     sub {
1633     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1634 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1635 root 1.63 or return;
1636    
1637 root 1.77 my $format = length pack "w", $len;
1638 root 1.63
1639 root 1.77 # bypass unshift if we already have the remaining chunk
1640     if ($format + $len <= length $_[0]{rbuf}) {
1641     my $data = substr $_[0]{rbuf}, $format, $len;
1642     substr $_[0]{rbuf}, 0, $format + $len, "";
1643     $cb->($_[0], Storable::thaw ($data));
1644     } else {
1645     # remove prefix
1646     substr $_[0]{rbuf}, 0, $format, "";
1647    
1648     # read remaining chunk
1649     $_[0]->unshift_read (chunk => $len, sub {
1650     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1651     $cb->($_[0], $ref);
1652     } else {
1653 root 1.150 $self->_error (Errno::EBADMSG);
1654 root 1.77 }
1655     });
1656     }
1657    
1658     1
1659 root 1.63 }
1660     };
1661    
1662 root 1.28 =back
1663    
1664 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1665 root 1.30
1666 root 1.185 Instead of one of the predefined types, you can also specify the name
1667     of a package. AnyEvent will try to load the package and then expects to
1668     find a function named C<anyevent_read_type> inside. If it isn't found, it
1669     progressively tries to load the parent package until it either finds the
1670     function (good) or runs out of packages (bad).
1671    
1672     Whenever this type is used, C<push_read> will invoke the function with the
1673     handle object, the original callback and the remaining arguments.
1674    
1675     The function is supposed to return a callback (usually a closure) that
1676     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1677     mentally treat the function as a "configurable read type to read callback"
1678     converter.
1679    
1680     It should invoke the original callback when it is done reading (remember
1681     to pass C<$handle> as first argument as all other callbacks do that,
1682     although there is no strict requirement on this).
1683 root 1.30
1684 root 1.185 For examples, see the source of this module (F<perldoc -m
1685     AnyEvent::Handle>, search for C<register_read_type>)).
1686 root 1.30
1687 root 1.10 =item $handle->stop_read
1688    
1689     =item $handle->start_read
1690    
1691 root 1.18 In rare cases you actually do not want to read anything from the
1692 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1693 root 1.22 any queued callbacks will be executed then. To start reading again, call
1694 root 1.10 C<start_read>.
1695    
1696 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1697     you change the C<on_read> callback or push/unshift a read callback, and it
1698     will automatically C<stop_read> for you when neither C<on_read> is set nor
1699     there are any read requests in the queue.
1700    
1701 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1702     half-duplex connections).
1703    
1704 root 1.10 =cut
1705    
1706     sub stop_read {
1707     my ($self) = @_;
1708 elmex 1.1
1709 root 1.93 delete $self->{_rw} unless $self->{tls};
1710 root 1.8 }
1711 elmex 1.1
1712 root 1.10 sub start_read {
1713     my ($self) = @_;
1714    
1715 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1716 root 1.10 Scalar::Util::weaken $self;
1717    
1718 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1719 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1720 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1721 root 1.10
1722     if ($len > 0) {
1723 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1724 root 1.43
1725 root 1.93 if ($self->{tls}) {
1726     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1727 root 1.97
1728 root 1.93 &_dotls ($self);
1729     } else {
1730 root 1.159 $self->_drain_rbuf;
1731 root 1.93 }
1732 root 1.10
1733     } elsif (defined $len) {
1734 root 1.38 delete $self->{_rw};
1735     $self->{_eof} = 1;
1736 root 1.159 $self->_drain_rbuf;
1737 root 1.10
1738 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1739 root 1.52 return $self->_error ($!, 1);
1740 root 1.10 }
1741 root 1.175 };
1742 root 1.10 }
1743 elmex 1.1 }
1744    
1745 root 1.133 our $ERROR_SYSCALL;
1746     our $ERROR_WANT_READ;
1747    
1748     sub _tls_error {
1749     my ($self, $err) = @_;
1750    
1751     return $self->_error ($!, 1)
1752     if $err == Net::SSLeay::ERROR_SYSCALL ();
1753    
1754 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1755    
1756     # reduce error string to look less scary
1757     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1758    
1759 root 1.143 if ($self->{_on_starttls}) {
1760     (delete $self->{_on_starttls})->($self, undef, $err);
1761     &_freetls;
1762     } else {
1763     &_freetls;
1764 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1765 root 1.143 }
1766 root 1.133 }
1767    
1768 root 1.97 # poll the write BIO and send the data if applicable
1769 root 1.133 # also decode read data if possible
1770     # this is basiclaly our TLS state machine
1771     # more efficient implementations are possible with openssl,
1772     # but not with the buggy and incomplete Net::SSLeay.
1773 root 1.19 sub _dotls {
1774     my ($self) = @_;
1775    
1776 root 1.97 my $tmp;
1777 root 1.56
1778 root 1.38 if (length $self->{_tls_wbuf}) {
1779 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1780     substr $self->{_tls_wbuf}, 0, $tmp, "";
1781 root 1.22 }
1782 root 1.133
1783     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1784     return $self->_tls_error ($tmp)
1785     if $tmp != $ERROR_WANT_READ
1786 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1787 root 1.19 }
1788    
1789 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1790     unless (length $tmp) {
1791 root 1.143 $self->{_on_starttls}
1792     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1793 root 1.92 &_freetls;
1794 root 1.143
1795 root 1.142 if ($self->{on_stoptls}) {
1796     $self->{on_stoptls}($self);
1797     return;
1798     } else {
1799     # let's treat SSL-eof as we treat normal EOF
1800     delete $self->{_rw};
1801     $self->{_eof} = 1;
1802     }
1803 root 1.56 }
1804 root 1.91
1805 root 1.116 $self->{_tls_rbuf} .= $tmp;
1806 root 1.159 $self->_drain_rbuf;
1807 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1808 root 1.23 }
1809    
1810 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1811 root 1.133 return $self->_tls_error ($tmp)
1812     if $tmp != $ERROR_WANT_READ
1813 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1814 root 1.91
1815 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1816     $self->{wbuf} .= $tmp;
1817 root 1.91 $self->_drain_wbuf;
1818     }
1819 root 1.142
1820     $self->{_on_starttls}
1821     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1822 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1823 root 1.19 }
1824    
1825 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1826    
1827     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1828     object is created, you can also do that at a later time by calling
1829     C<starttls>.
1830    
1831 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1832     write data and then call C<< ->starttls >> then TLS negotiation will start
1833     immediately, after which the queued write data is then sent.
1834    
1835 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1836     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1837    
1838 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1839     when AnyEvent::Handle has to create its own TLS connection object, or
1840     a hash reference with C<< key => value >> pairs that will be used to
1841     construct a new context.
1842    
1843     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1844     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1845     changed to your liking. Note that the handshake might have already started
1846     when this function returns.
1847 root 1.38
1848 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1849     handshakes on the same stream. Best do not attempt to use the stream after
1850     stopping TLS.
1851 root 1.92
1852 root 1.25 =cut
1853    
1854 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1855    
1856 root 1.19 sub starttls {
1857 root 1.160 my ($self, $tls, $ctx) = @_;
1858    
1859     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1860     if $self->{tls};
1861    
1862     $self->{tls} = $tls;
1863     $self->{tls_ctx} = $ctx if @_ > 2;
1864    
1865     return unless $self->{fh};
1866 root 1.19
1867 root 1.94 require Net::SSLeay;
1868    
1869 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1870     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1871 root 1.133
1872 root 1.180 $tls = delete $self->{tls};
1873 root 1.160 $ctx = $self->{tls_ctx};
1874 root 1.131
1875 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1876    
1877 root 1.131 if ("HASH" eq ref $ctx) {
1878     require AnyEvent::TLS;
1879    
1880 root 1.137 if ($ctx->{cache}) {
1881     my $key = $ctx+0;
1882     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1883     } else {
1884     $ctx = new AnyEvent::TLS %$ctx;
1885     }
1886 root 1.131 }
1887 root 1.92
1888 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1889 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1890 root 1.19
1891 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1892     # but the openssl maintainers basically said: "trust us, it just works".
1893     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1894     # and mismaintained ssleay-module doesn't even offer them).
1895 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1896 root 1.87 #
1897     # in short: this is a mess.
1898     #
1899 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1900 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1901 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1902     # have identity issues in that area.
1903 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1904     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1905     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1906 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1907 root 1.21
1908 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1909     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1910 root 1.19
1911 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1912    
1913 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1914 root 1.19
1915 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1916 root 1.143 if $self->{on_starttls};
1917 root 1.142
1918 root 1.93 &_dotls; # need to trigger the initial handshake
1919     $self->start_read; # make sure we actually do read
1920 root 1.19 }
1921    
1922 root 1.25 =item $handle->stoptls
1923    
1924 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1925     sending a close notify to the other side, but since OpenSSL doesn't
1926 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1927     the stream afterwards.
1928 root 1.25
1929     =cut
1930    
1931     sub stoptls {
1932     my ($self) = @_;
1933    
1934 root 1.92 if ($self->{tls}) {
1935 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1936 root 1.92
1937     &_dotls;
1938    
1939 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1940     # # we, we... have to use openssl :/#d#
1941     # &_freetls;#d#
1942 root 1.92 }
1943     }
1944    
1945     sub _freetls {
1946     my ($self) = @_;
1947    
1948     return unless $self->{tls};
1949 root 1.38
1950 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1951 root 1.171 if $self->{tls} > 0;
1952 root 1.92
1953 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1954 root 1.25 }
1955    
1956 root 1.19 sub DESTROY {
1957 root 1.120 my ($self) = @_;
1958 root 1.19
1959 root 1.92 &_freetls;
1960 root 1.62
1961     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1962    
1963 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1964 root 1.62 my $fh = delete $self->{fh};
1965     my $wbuf = delete $self->{wbuf};
1966    
1967     my @linger;
1968    
1969 root 1.175 push @linger, AE::io $fh, 1, sub {
1970 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1971    
1972     if ($len > 0) {
1973     substr $wbuf, 0, $len, "";
1974     } else {
1975     @linger = (); # end
1976     }
1977 root 1.175 };
1978     push @linger, AE::timer $linger, 0, sub {
1979 root 1.62 @linger = ();
1980 root 1.175 };
1981 root 1.62 }
1982 root 1.19 }
1983    
1984 root 1.99 =item $handle->destroy
1985    
1986 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1987 root 1.141 no further callbacks will be invoked and as many resources as possible
1988 root 1.165 will be freed. Any method you will call on the handle object after
1989     destroying it in this way will be silently ignored (and it will return the
1990     empty list).
1991 root 1.99
1992 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1993     object and it will simply shut down. This works in fatal error and EOF
1994     callbacks, as well as code outside. It does I<NOT> work in a read or write
1995     callback, so when you want to destroy the AnyEvent::Handle object from
1996     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1997     that case.
1998    
1999 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2000     will be removed as well, so if those are the only reference holders (as
2001     is common), then one doesn't need to do anything special to break any
2002     reference cycles.
2003    
2004 root 1.99 The handle might still linger in the background and write out remaining
2005     data, as specified by the C<linger> option, however.
2006    
2007     =cut
2008    
2009     sub destroy {
2010     my ($self) = @_;
2011    
2012     $self->DESTROY;
2013     %$self = ();
2014 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2015     }
2016    
2017 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2018     #nop
2019 root 1.99 }
2020    
2021 root 1.19 =item AnyEvent::Handle::TLS_CTX
2022    
2023 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2024     for TLS mode.
2025 root 1.19
2026 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2027 root 1.19
2028     =cut
2029    
2030     our $TLS_CTX;
2031    
2032     sub TLS_CTX() {
2033 root 1.131 $TLS_CTX ||= do {
2034     require AnyEvent::TLS;
2035 root 1.19
2036 root 1.131 new AnyEvent::TLS
2037 root 1.19 }
2038     }
2039    
2040 elmex 1.1 =back
2041    
2042 root 1.95
2043     =head1 NONFREQUENTLY ASKED QUESTIONS
2044    
2045     =over 4
2046    
2047 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2048     still get further invocations!
2049    
2050     That's because AnyEvent::Handle keeps a reference to itself when handling
2051     read or write callbacks.
2052    
2053     It is only safe to "forget" the reference inside EOF or error callbacks,
2054     from within all other callbacks, you need to explicitly call the C<<
2055     ->destroy >> method.
2056    
2057     =item I get different callback invocations in TLS mode/Why can't I pause
2058     reading?
2059    
2060     Unlike, say, TCP, TLS connections do not consist of two independent
2061     communication channels, one for each direction. Or put differently. The
2062     read and write directions are not independent of each other: you cannot
2063     write data unless you are also prepared to read, and vice versa.
2064    
2065     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2066     callback invocations when you are not expecting any read data - the reason
2067     is that AnyEvent::Handle always reads in TLS mode.
2068    
2069     During the connection, you have to make sure that you always have a
2070     non-empty read-queue, or an C<on_read> watcher. At the end of the
2071     connection (or when you no longer want to use it) you can call the
2072     C<destroy> method.
2073    
2074 root 1.95 =item How do I read data until the other side closes the connection?
2075    
2076 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2077     to achieve this is by setting an C<on_read> callback that does nothing,
2078     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2079     will be in C<$_[0]{rbuf}>:
2080 root 1.95
2081     $handle->on_read (sub { });
2082     $handle->on_eof (undef);
2083     $handle->on_error (sub {
2084     my $data = delete $_[0]{rbuf};
2085     });
2086    
2087     The reason to use C<on_error> is that TCP connections, due to latencies
2088     and packets loss, might get closed quite violently with an error, when in
2089     fact, all data has been received.
2090    
2091 root 1.101 It is usually better to use acknowledgements when transferring data,
2092 root 1.95 to make sure the other side hasn't just died and you got the data
2093     intact. This is also one reason why so many internet protocols have an
2094     explicit QUIT command.
2095    
2096 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2097     all data has been written?
2098 root 1.95
2099     After writing your last bits of data, set the C<on_drain> callback
2100     and destroy the handle in there - with the default setting of
2101     C<low_water_mark> this will be called precisely when all data has been
2102     written to the socket:
2103    
2104     $handle->push_write (...);
2105     $handle->on_drain (sub {
2106     warn "all data submitted to the kernel\n";
2107     undef $handle;
2108     });
2109    
2110 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2111     consider using C<< ->push_shutdown >> instead.
2112    
2113     =item I want to contact a TLS/SSL server, I don't care about security.
2114    
2115     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2116     simply connect to it and then create the AnyEvent::Handle with the C<tls>
2117     parameter:
2118    
2119 root 1.144 tcp_connect $host, $port, sub {
2120     my ($fh) = @_;
2121 root 1.143
2122 root 1.144 my $handle = new AnyEvent::Handle
2123     fh => $fh,
2124     tls => "connect",
2125     on_error => sub { ... };
2126    
2127     $handle->push_write (...);
2128     };
2129 root 1.143
2130     =item I want to contact a TLS/SSL server, I do care about security.
2131    
2132 root 1.144 Then you should additionally enable certificate verification, including
2133     peername verification, if the protocol you use supports it (see
2134     L<AnyEvent::TLS>, C<verify_peername>).
2135    
2136     E.g. for HTTPS:
2137    
2138     tcp_connect $host, $port, sub {
2139     my ($fh) = @_;
2140    
2141     my $handle = new AnyEvent::Handle
2142     fh => $fh,
2143     peername => $host,
2144     tls => "connect",
2145     tls_ctx => { verify => 1, verify_peername => "https" },
2146     ...
2147    
2148     Note that you must specify the hostname you connected to (or whatever
2149     "peername" the protocol needs) as the C<peername> argument, otherwise no
2150     peername verification will be done.
2151    
2152     The above will use the system-dependent default set of trusted CA
2153     certificates. If you want to check against a specific CA, add the
2154     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2155    
2156     tls_ctx => {
2157     verify => 1,
2158     verify_peername => "https",
2159     ca_file => "my-ca-cert.pem",
2160     },
2161    
2162     =item I want to create a TLS/SSL server, how do I do that?
2163    
2164     Well, you first need to get a server certificate and key. You have
2165     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2166     self-signed certificate (cheap. check the search engine of your choice,
2167     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2168     nice program for that purpose).
2169    
2170     Then create a file with your private key (in PEM format, see
2171     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2172     file should then look like this:
2173    
2174     -----BEGIN RSA PRIVATE KEY-----
2175     ...header data
2176     ... lots of base64'y-stuff
2177     -----END RSA PRIVATE KEY-----
2178    
2179     -----BEGIN CERTIFICATE-----
2180     ... lots of base64'y-stuff
2181     -----END CERTIFICATE-----
2182    
2183     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2184     specify this file as C<cert_file>:
2185    
2186     tcp_server undef, $port, sub {
2187     my ($fh) = @_;
2188    
2189     my $handle = new AnyEvent::Handle
2190     fh => $fh,
2191     tls => "accept",
2192     tls_ctx => { cert_file => "my-server-keycert.pem" },
2193     ...
2194 root 1.143
2195 root 1.144 When you have intermediate CA certificates that your clients might not
2196     know about, just append them to the C<cert_file>.
2197 root 1.143
2198 root 1.95 =back
2199    
2200    
2201 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2202    
2203     In many cases, you might want to subclass AnyEvent::Handle.
2204    
2205     To make this easier, a given version of AnyEvent::Handle uses these
2206     conventions:
2207    
2208     =over 4
2209    
2210     =item * all constructor arguments become object members.
2211    
2212     At least initially, when you pass a C<tls>-argument to the constructor it
2213 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2214 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2215    
2216     =item * other object member names are prefixed with an C<_>.
2217    
2218     All object members not explicitly documented (internal use) are prefixed
2219     with an underscore character, so the remaining non-C<_>-namespace is free
2220     for use for subclasses.
2221    
2222     =item * all members not documented here and not prefixed with an underscore
2223     are free to use in subclasses.
2224    
2225     Of course, new versions of AnyEvent::Handle may introduce more "public"
2226     member variables, but thats just life, at least it is documented.
2227    
2228     =back
2229    
2230 elmex 1.1 =head1 AUTHOR
2231    
2232 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2233 elmex 1.1
2234     =cut
2235    
2236     1; # End of AnyEvent::Handle