ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.191
Committed: Sun Jan 31 22:33:45 2010 UTC (14 years, 4 months ago) by root
Branch: MAIN
Changes since 1.190: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.159 filehandles.
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 elmex 1.1 =head1 METHODS
81    
82     =over 4
83    
84 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
85 elmex 1.1
86 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
87 elmex 1.1
88     =over 4
89    
90 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
91 root 1.158
92 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
93 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
94     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95     that mode.
96 root 1.8
97 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98    
99     Try to connect to the specified host and service (port), using
100     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101     default C<peername>.
102    
103     You have to specify either this parameter, or C<fh>, above.
104    
105 root 1.160 It is possible to push requests on the read and write queues, and modify
106     properties of the stream, even while AnyEvent::Handle is connecting.
107    
108 root 1.159 When this parameter is specified, then the C<on_prepare>,
109     C<on_connect_error> and C<on_connect> callbacks will be called under the
110     appropriate circumstances:
111    
112     =over 4
113    
114     =item on_prepare => $cb->($handle)
115    
116     This (rarely used) callback is called before a new connection is
117     attempted, but after the file handle has been created. It could be used to
118     prepare the file handle with parameters required for the actual connect
119     (as opposed to settings that can be changed when the connection is already
120     established).
121    
122 root 1.161 The return value of this callback should be the connect timeout value in
123     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
124     timeout is to be used).
125    
126 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
127    
128     This callback is called when a connection has been successfully established.
129    
130     The actual numeric host and port (the socket peername) are passed as
131     parameters, together with a retry callback.
132    
133     When, for some reason, the handle is not acceptable, then calling
134 root 1.186 C<$retry> will continue with the next connection target (in case of
135 root 1.159 multi-homed hosts or SRV records there can be multiple connection
136 root 1.186 endpoints). At the time it is called the read and write queues, eof
137     status, tls status and similar properties of the handle will have been
138     reset.
139 root 1.159
140     In most cases, ignoring the C<$retry> parameter is the way to go.
141 root 1.158
142 root 1.159 =item on_connect_error => $cb->($handle, $message)
143 root 1.10
144 root 1.186 This callback is called when the connection could not be
145 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
146     message describing it (usually the same as C<"$!">).
147 root 1.8
148 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
149     fatal error instead.
150 root 1.82
151 root 1.159 =back
152 root 1.80
153 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
154 root 1.10
155 root 1.52 This is the error callback, which is called when, well, some error
156     occured, such as not being able to resolve the hostname, failure to
157     connect or a read error.
158    
159     Some errors are fatal (which is indicated by C<$fatal> being true). On
160 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
161     destroy >>) after invoking the error callback (which means you are free to
162     examine the handle object). Examples of fatal errors are an EOF condition
163 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
164     cases where the other side can close the connection at their will it is
165     often easiest to not report C<EPIPE> errors in this callback.
166 root 1.82
167 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
168     against, but in some cases (TLS errors), this does not work well. It is
169     recommended to always output the C<$message> argument in human-readable
170     error messages (it's usually the same as C<"$!">).
171    
172 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
173     to simply ignore this parameter and instead abondon the handle object
174     when this callback is invoked. Examples of non-fatal errors are timeouts
175     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
176 root 1.8
177 root 1.10 On callback entrance, the value of C<$!> contains the operating system
178 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
179     C<EPROTO>).
180 root 1.8
181 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
182     you will not be notified of errors otherwise. The default simply calls
183 root 1.52 C<croak>.
184 root 1.8
185 root 1.40 =item on_read => $cb->($handle)
186 root 1.8
187     This sets the default read callback, which is called when data arrives
188 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
189     callback will only be called when at least one octet of data is in the
190     read buffer).
191 root 1.8
192     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
193 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
194 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
195     the beginning from it.
196 root 1.8
197     When an EOF condition is detected then AnyEvent::Handle will first try to
198     feed all the remaining data to the queued callbacks and C<on_read> before
199     calling the C<on_eof> callback. If no progress can be made, then a fatal
200     error will be raised (with C<$!> set to C<EPIPE>).
201 elmex 1.1
202 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
203     doesn't mean you I<require> some data: if there is an EOF and there
204     are outstanding read requests then an error will be flagged. With an
205     C<on_read> callback, the C<on_eof> callback will be invoked.
206    
207 root 1.159 =item on_eof => $cb->($handle)
208    
209     Set the callback to be called when an end-of-file condition is detected,
210     i.e. in the case of a socket, when the other side has closed the
211     connection cleanly, and there are no outstanding read requests in the
212     queue (if there are read requests, then an EOF counts as an unexpected
213     connection close and will be flagged as an error).
214    
215     For sockets, this just means that the other side has stopped sending data,
216     you can still try to write data, and, in fact, one can return from the EOF
217     callback and continue writing data, as only the read part has been shut
218     down.
219    
220     If an EOF condition has been detected but no C<on_eof> callback has been
221     set, then a fatal error will be raised with C<$!> set to <0>.
222    
223 root 1.40 =item on_drain => $cb->($handle)
224 elmex 1.1
225 root 1.8 This sets the callback that is called when the write buffer becomes empty
226     (or when the callback is set and the buffer is empty already).
227 elmex 1.1
228 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
229 elmex 1.2
230 root 1.69 This callback is useful when you don't want to put all of your write data
231     into the queue at once, for example, when you want to write the contents
232     of some file to the socket you might not want to read the whole file into
233     memory and push it into the queue, but instead only read more data from
234     the file when the write queue becomes empty.
235    
236 root 1.43 =item timeout => $fractional_seconds
237    
238 root 1.176 =item rtimeout => $fractional_seconds
239    
240     =item wtimeout => $fractional_seconds
241    
242     If non-zero, then these enables an "inactivity" timeout: whenever this
243     many seconds pass without a successful read or write on the underlying
244     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
245     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
246     error will be raised).
247    
248     There are three variants of the timeouts that work fully independent
249     of each other, for both read and write, just read, and just write:
250     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
251     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
252     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
253 root 1.43
254     Note that timeout processing is also active when you currently do not have
255     any outstanding read or write requests: If you plan to keep the connection
256     idle then you should disable the timout temporarily or ignore the timeout
257 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
258     restart the timeout.
259 root 1.43
260     Zero (the default) disables this timeout.
261    
262     =item on_timeout => $cb->($handle)
263    
264     Called whenever the inactivity timeout passes. If you return from this
265     callback, then the timeout will be reset as if some activity had happened,
266     so this condition is not fatal in any way.
267    
268 root 1.8 =item rbuf_max => <bytes>
269 elmex 1.2
270 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
271     when the read buffer ever (strictly) exceeds this size. This is useful to
272 root 1.88 avoid some forms of denial-of-service attacks.
273 elmex 1.2
274 root 1.8 For example, a server accepting connections from untrusted sources should
275     be configured to accept only so-and-so much data that it cannot act on
276     (for example, when expecting a line, an attacker could send an unlimited
277     amount of data without a callback ever being called as long as the line
278     isn't finished).
279 elmex 1.2
280 root 1.70 =item autocork => <boolean>
281    
282     When disabled (the default), then C<push_write> will try to immediately
283 root 1.88 write the data to the handle, if possible. This avoids having to register
284     a write watcher and wait for the next event loop iteration, but can
285     be inefficient if you write multiple small chunks (on the wire, this
286     disadvantage is usually avoided by your kernel's nagle algorithm, see
287     C<no_delay>, but this option can save costly syscalls).
288 root 1.70
289     When enabled, then writes will always be queued till the next event loop
290     iteration. This is efficient when you do many small writes per iteration,
291 root 1.88 but less efficient when you do a single write only per iteration (or when
292     the write buffer often is full). It also increases write latency.
293 root 1.70
294     =item no_delay => <boolean>
295    
296     When doing small writes on sockets, your operating system kernel might
297     wait a bit for more data before actually sending it out. This is called
298     the Nagle algorithm, and usually it is beneficial.
299    
300 root 1.88 In some situations you want as low a delay as possible, which can be
301     accomplishd by setting this option to a true value.
302 root 1.70
303 root 1.88 The default is your opertaing system's default behaviour (most likely
304     enabled), this option explicitly enables or disables it, if possible.
305 root 1.70
306 root 1.182 =item keepalive => <boolean>
307    
308     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
309     normally, TCP connections have no time-out once established, so TCP
310 root 1.186 connections, once established, can stay alive forever even when the other
311 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
312     TCP connections whent he other side becomes unreachable. While the default
313     is OS-dependent, TCP keepalives usually kick in after around two hours,
314     and, if the other side doesn't reply, take down the TCP connection some 10
315     to 15 minutes later.
316    
317     It is harmless to specify this option for file handles that do not support
318     keepalives, and enabling it on connections that are potentially long-lived
319     is usually a good idea.
320    
321     =item oobinline => <boolean>
322    
323     BSD majorly fucked up the implementation of TCP urgent data. The result
324     is that almost no OS implements TCP according to the specs, and every OS
325     implements it slightly differently.
326    
327 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
328     is enabled) gives you the most portable way of getting urgent data, by
329     putting it into the stream.
330    
331     Since BSD emulation of OOB data on top of TCP's urgent data can have
332     security implications, AnyEvent::Handle sets this flag automatically
333 root 1.184 unless explicitly specified. Note that setting this flag after
334     establishing a connection I<may> be a bit too late (data loss could
335     already have occured on BSD systems), but at least it will protect you
336     from most attacks.
337 root 1.182
338 root 1.8 =item read_size => <bytes>
339 elmex 1.2
340 root 1.88 The default read block size (the amount of bytes this module will
341     try to read during each loop iteration, which affects memory
342     requirements). Default: C<8192>.
343 root 1.8
344     =item low_water_mark => <bytes>
345    
346     Sets the amount of bytes (default: C<0>) that make up an "empty" write
347     buffer: If the write reaches this size or gets even samller it is
348     considered empty.
349 elmex 1.2
350 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
351     the write buffer before it is fully drained, but this is a rare case, as
352     the operating system kernel usually buffers data as well, so the default
353     is good in almost all cases.
354    
355 root 1.62 =item linger => <seconds>
356    
357     If non-zero (default: C<3600>), then the destructor of the
358 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
359     write data and will install a watcher that will write this data to the
360     socket. No errors will be reported (this mostly matches how the operating
361     system treats outstanding data at socket close time).
362 root 1.62
363 root 1.88 This will not work for partial TLS data that could not be encoded
364 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
365     help.
366 root 1.62
367 root 1.133 =item peername => $string
368    
369 root 1.134 A string used to identify the remote site - usually the DNS hostname
370     (I<not> IDN!) used to create the connection, rarely the IP address.
371 root 1.131
372 root 1.133 Apart from being useful in error messages, this string is also used in TLS
373 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
374     verification will be skipped when C<peername> is not specified or
375     C<undef>.
376 root 1.131
377 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
378    
379 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
380 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
381 root 1.88 established and will transparently encrypt/decrypt data afterwards.
382 root 1.19
383 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
384     appropriate error message.
385    
386 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
387 root 1.88 automatically when you try to create a TLS handle): this module doesn't
388     have a dependency on that module, so if your module requires it, you have
389     to add the dependency yourself.
390 root 1.26
391 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
392     C<accept>, and for the TLS client side of a connection, use C<connect>
393     mode.
394 root 1.19
395     You can also provide your own TLS connection object, but you have
396     to make sure that you call either C<Net::SSLeay::set_connect_state>
397     or C<Net::SSLeay::set_accept_state> on it before you pass it to
398 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
399     object.
400    
401     At some future point, AnyEvent::Handle might switch to another TLS
402     implementation, then the option to use your own session object will go
403     away.
404 root 1.19
405 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
406     passing in the wrong integer will lead to certain crash. This most often
407     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
408     segmentation fault.
409    
410 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
411 root 1.26
412 root 1.131 =item tls_ctx => $anyevent_tls
413 root 1.19
414 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
415 root 1.19 (unless a connection object was specified directly). If this parameter is
416     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
417    
418 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
419     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
420     new TLS context object.
421    
422 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
423 root 1.142
424     This callback will be invoked when the TLS/SSL handshake has finished. If
425     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
426     (C<on_stoptls> will not be called in this case).
427    
428     The session in C<< $handle->{tls} >> can still be examined in this
429     callback, even when the handshake was not successful.
430    
431 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
432     callback is in effect, instead, the error message will be passed to C<on_starttls>.
433    
434     Without this callback, handshake failures lead to C<on_error> being
435     called, as normal.
436    
437     Note that you cannot call C<starttls> right again in this callback. If you
438     need to do that, start an zero-second timer instead whose callback can
439     then call C<< ->starttls >> again.
440    
441 root 1.142 =item on_stoptls => $cb->($handle)
442    
443     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
444     set, then it will be invoked after freeing the TLS session. If it is not,
445     then a TLS shutdown condition will be treated like a normal EOF condition
446     on the handle.
447    
448     The session in C<< $handle->{tls} >> can still be examined in this
449     callback.
450    
451     This callback will only be called on TLS shutdowns, not when the
452     underlying handle signals EOF.
453    
454 root 1.40 =item json => JSON or JSON::XS object
455    
456     This is the json coder object used by the C<json> read and write types.
457    
458 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
459 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
460     texts.
461 root 1.40
462     Note that you are responsible to depend on the JSON module if you want to
463     use this functionality, as AnyEvent does not have a dependency itself.
464    
465 elmex 1.1 =back
466    
467     =cut
468    
469     sub new {
470 root 1.8 my $class = shift;
471     my $self = bless { @_ }, $class;
472    
473 root 1.159 if ($self->{fh}) {
474     $self->_start;
475     return unless $self->{fh}; # could be gone by now
476    
477     } elsif ($self->{connect}) {
478     require AnyEvent::Socket;
479    
480     $self->{peername} = $self->{connect}[0]
481     unless exists $self->{peername};
482    
483     $self->{_skip_drain_rbuf} = 1;
484    
485     {
486     Scalar::Util::weaken (my $self = $self);
487    
488     $self->{_connect} =
489     AnyEvent::Socket::tcp_connect (
490     $self->{connect}[0],
491     $self->{connect}[1],
492     sub {
493     my ($fh, $host, $port, $retry) = @_;
494    
495     if ($fh) {
496     $self->{fh} = $fh;
497    
498     delete $self->{_skip_drain_rbuf};
499     $self->_start;
500    
501     $self->{on_connect}
502     and $self->{on_connect}($self, $host, $port, sub {
503 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
504 root 1.159 $self->{_skip_drain_rbuf} = 1;
505     &$retry;
506     });
507    
508     } else {
509     if ($self->{on_connect_error}) {
510     $self->{on_connect_error}($self, "$!");
511     $self->destroy;
512     } else {
513 root 1.161 $self->_error ($!, 1);
514 root 1.159 }
515     }
516     },
517     sub {
518     local $self->{fh} = $_[0];
519    
520 root 1.161 $self->{on_prepare}
521     ? $self->{on_prepare}->($self)
522     : ()
523 root 1.159 }
524     );
525     }
526    
527     } else {
528     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
529     }
530    
531     $self
532     }
533    
534     sub _start {
535     my ($self) = @_;
536 root 1.8
537     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
538 elmex 1.1
539 root 1.176 $self->{_activity} =
540     $self->{_ractivity} =
541     $self->{_wactivity} = AE::now;
542    
543 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
544     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
545     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
546    
547 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
548     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
549    
550     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
551 root 1.131
552 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
553 root 1.94 if $self->{tls};
554 root 1.19
555 root 1.182 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
556 root 1.10
557 root 1.66 $self->start_read
558 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
559 root 1.160
560     $self->_drain_wbuf;
561 root 1.8 }
562 elmex 1.2
563 root 1.52 sub _error {
564 root 1.133 my ($self, $errno, $fatal, $message) = @_;
565 root 1.8
566 root 1.52 $! = $errno;
567 root 1.133 $message ||= "$!";
568 root 1.37
569 root 1.52 if ($self->{on_error}) {
570 root 1.133 $self->{on_error}($self, $fatal, $message);
571 root 1.151 $self->destroy if $fatal;
572 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
573 root 1.149 $self->destroy;
574 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
575 root 1.52 }
576 elmex 1.1 }
577    
578 root 1.8 =item $fh = $handle->fh
579 elmex 1.1
580 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
581 elmex 1.1
582     =cut
583    
584 root 1.38 sub fh { $_[0]{fh} }
585 elmex 1.1
586 root 1.8 =item $handle->on_error ($cb)
587 elmex 1.1
588 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
589 elmex 1.1
590 root 1.8 =cut
591    
592     sub on_error {
593     $_[0]{on_error} = $_[1];
594     }
595    
596     =item $handle->on_eof ($cb)
597    
598     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
599 elmex 1.1
600     =cut
601    
602 root 1.8 sub on_eof {
603     $_[0]{on_eof} = $_[1];
604     }
605    
606 root 1.43 =item $handle->on_timeout ($cb)
607    
608 root 1.176 =item $handle->on_rtimeout ($cb)
609    
610     =item $handle->on_wtimeout ($cb)
611    
612     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
613     callback, or disables the callback (but not the timeout) if C<$cb> =
614     C<undef>. See the C<timeout> constructor argument and method.
615 root 1.43
616     =cut
617    
618 root 1.176 # see below
619 root 1.43
620 root 1.70 =item $handle->autocork ($boolean)
621    
622     Enables or disables the current autocork behaviour (see C<autocork>
623 root 1.105 constructor argument). Changes will only take effect on the next write.
624 root 1.70
625     =cut
626    
627 root 1.105 sub autocork {
628     $_[0]{autocork} = $_[1];
629     }
630    
631 root 1.70 =item $handle->no_delay ($boolean)
632    
633     Enables or disables the C<no_delay> setting (see constructor argument of
634     the same name for details).
635    
636     =cut
637    
638     sub no_delay {
639     $_[0]{no_delay} = $_[1];
640    
641     eval {
642     local $SIG{__DIE__};
643 root 1.182 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
644     if $_[0]{fh};
645     };
646     }
647    
648     =item $handle->keepalive ($boolean)
649    
650     Enables or disables the C<keepalive> setting (see constructor argument of
651     the same name for details).
652    
653     =cut
654    
655     sub keepalive {
656     $_[0]{keepalive} = $_[1];
657    
658     eval {
659     local $SIG{__DIE__};
660     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
661     if $_[0]{fh};
662     };
663     }
664    
665     =item $handle->oobinline ($boolean)
666    
667     Enables or disables the C<oobinline> setting (see constructor argument of
668     the same name for details).
669    
670     =cut
671    
672     sub oobinline {
673     $_[0]{oobinline} = $_[1];
674    
675     eval {
676     local $SIG{__DIE__};
677     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
678     if $_[0]{fh};
679     };
680     }
681    
682     =item $handle->keepalive ($boolean)
683    
684     Enables or disables the C<keepalive> setting (see constructor argument of
685     the same name for details).
686    
687     =cut
688    
689     sub keepalive {
690     $_[0]{keepalive} = $_[1];
691    
692     eval {
693     local $SIG{__DIE__};
694     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
695 root 1.159 if $_[0]{fh};
696 root 1.70 };
697     }
698    
699 root 1.142 =item $handle->on_starttls ($cb)
700    
701     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
702    
703     =cut
704    
705     sub on_starttls {
706     $_[0]{on_starttls} = $_[1];
707     }
708    
709     =item $handle->on_stoptls ($cb)
710    
711     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
712    
713     =cut
714    
715 root 1.189 sub on_stoptls {
716 root 1.142 $_[0]{on_stoptls} = $_[1];
717     }
718    
719 root 1.168 =item $handle->rbuf_max ($max_octets)
720    
721     Configures the C<rbuf_max> setting (C<undef> disables it).
722    
723     =cut
724    
725     sub rbuf_max {
726     $_[0]{rbuf_max} = $_[1];
727     }
728    
729 root 1.43 #############################################################################
730    
731     =item $handle->timeout ($seconds)
732    
733 root 1.176 =item $handle->rtimeout ($seconds)
734    
735     =item $handle->wtimeout ($seconds)
736    
737 root 1.43 Configures (or disables) the inactivity timeout.
738    
739 root 1.176 =item $handle->timeout_reset
740    
741     =item $handle->rtimeout_reset
742    
743     =item $handle->wtimeout_reset
744    
745     Reset the activity timeout, as if data was received or sent.
746    
747     These methods are cheap to call.
748    
749 root 1.43 =cut
750    
751 root 1.176 for my $dir ("", "r", "w") {
752     my $timeout = "${dir}timeout";
753     my $tw = "_${dir}tw";
754     my $on_timeout = "on_${dir}timeout";
755     my $activity = "_${dir}activity";
756     my $cb;
757    
758     *$on_timeout = sub {
759     $_[0]{$on_timeout} = $_[1];
760     };
761    
762     *$timeout = sub {
763     my ($self, $new_value) = @_;
764 root 1.43
765 root 1.176 $self->{$timeout} = $new_value;
766     delete $self->{$tw}; &$cb;
767     };
768 root 1.43
769 root 1.176 *{"${dir}timeout_reset"} = sub {
770     $_[0]{$activity} = AE::now;
771     };
772 root 1.43
773 root 1.176 # main workhorse:
774     # reset the timeout watcher, as neccessary
775     # also check for time-outs
776     $cb = sub {
777     my ($self) = @_;
778    
779     if ($self->{$timeout} && $self->{fh}) {
780     my $NOW = AE::now;
781    
782     # when would the timeout trigger?
783     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
784    
785     # now or in the past already?
786     if ($after <= 0) {
787     $self->{$activity} = $NOW;
788 root 1.43
789 root 1.176 if ($self->{$on_timeout}) {
790     $self->{$on_timeout}($self);
791     } else {
792     $self->_error (Errno::ETIMEDOUT);
793     }
794 root 1.43
795 root 1.176 # callback could have changed timeout value, optimise
796     return unless $self->{$timeout};
797 root 1.43
798 root 1.176 # calculate new after
799     $after = $self->{$timeout};
800 root 1.43 }
801    
802 root 1.176 Scalar::Util::weaken $self;
803     return unless $self; # ->error could have destroyed $self
804 root 1.43
805 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
806     delete $self->{$tw};
807     $cb->($self);
808     };
809     } else {
810     delete $self->{$tw};
811 root 1.43 }
812     }
813     }
814    
815 root 1.9 #############################################################################
816    
817     =back
818    
819     =head2 WRITE QUEUE
820    
821     AnyEvent::Handle manages two queues per handle, one for writing and one
822     for reading.
823    
824     The write queue is very simple: you can add data to its end, and
825     AnyEvent::Handle will automatically try to get rid of it for you.
826    
827 elmex 1.20 When data could be written and the write buffer is shorter then the low
828 root 1.9 water mark, the C<on_drain> callback will be invoked.
829    
830     =over 4
831    
832 root 1.8 =item $handle->on_drain ($cb)
833    
834     Sets the C<on_drain> callback or clears it (see the description of
835     C<on_drain> in the constructor).
836    
837     =cut
838    
839     sub on_drain {
840 elmex 1.1 my ($self, $cb) = @_;
841    
842 root 1.8 $self->{on_drain} = $cb;
843    
844     $cb->($self)
845 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
846 root 1.8 }
847    
848     =item $handle->push_write ($data)
849    
850     Queues the given scalar to be written. You can push as much data as you
851     want (only limited by the available memory), as C<AnyEvent::Handle>
852     buffers it independently of the kernel.
853    
854     =cut
855    
856 root 1.17 sub _drain_wbuf {
857     my ($self) = @_;
858 root 1.8
859 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
860 root 1.35
861 root 1.8 Scalar::Util::weaken $self;
862 root 1.35
863 root 1.8 my $cb = sub {
864     my $len = syswrite $self->{fh}, $self->{wbuf};
865    
866 root 1.146 if (defined $len) {
867 root 1.8 substr $self->{wbuf}, 0, $len, "";
868    
869 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
870 root 1.43
871 root 1.8 $self->{on_drain}($self)
872 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
873 root 1.8 && $self->{on_drain};
874    
875 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
876 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
877 root 1.52 $self->_error ($!, 1);
878 elmex 1.1 }
879 root 1.8 };
880    
881 root 1.35 # try to write data immediately
882 root 1.70 $cb->() unless $self->{autocork};
883 root 1.8
884 root 1.35 # if still data left in wbuf, we need to poll
885 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
886 root 1.35 if length $self->{wbuf};
887 root 1.8 };
888     }
889    
890 root 1.30 our %WH;
891    
892 root 1.185 # deprecated
893 root 1.30 sub register_write_type($$) {
894     $WH{$_[0]} = $_[1];
895     }
896    
897 root 1.17 sub push_write {
898     my $self = shift;
899    
900 root 1.29 if (@_ > 1) {
901     my $type = shift;
902    
903 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
904     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
905 root 1.29 ->($self, @_);
906     }
907    
908 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
909     # and diagnose the problem earlier and better.
910    
911 root 1.93 if ($self->{tls}) {
912 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
913 root 1.160 &_dotls ($self) if $self->{fh};
914 root 1.17 } else {
915 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
916 root 1.159 $self->_drain_wbuf if $self->{fh};
917 root 1.17 }
918     }
919    
920 root 1.29 =item $handle->push_write (type => @args)
921    
922 root 1.185 Instead of formatting your data yourself, you can also let this module
923     do the job by specifying a type and type-specific arguments. You
924     can also specify the (fully qualified) name of a package, in which
925     case AnyEvent tries to load the package and then expects to find the
926     C<anyevent_read_type> function inside (see "custom write types", below).
927 root 1.29
928 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
929     drop by and tell us):
930 root 1.29
931     =over 4
932    
933     =item netstring => $string
934    
935     Formats the given value as netstring
936     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
937    
938     =cut
939    
940     register_write_type netstring => sub {
941     my ($self, $string) = @_;
942    
943 root 1.96 (length $string) . ":$string,"
944 root 1.29 };
945    
946 root 1.61 =item packstring => $format, $data
947    
948     An octet string prefixed with an encoded length. The encoding C<$format>
949     uses the same format as a Perl C<pack> format, but must specify a single
950     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
951     optional C<!>, C<< < >> or C<< > >> modifier).
952    
953     =cut
954    
955     register_write_type packstring => sub {
956     my ($self, $format, $string) = @_;
957    
958 root 1.65 pack "$format/a*", $string
959 root 1.61 };
960    
961 root 1.39 =item json => $array_or_hashref
962    
963 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
964     provide your own JSON object, this means it will be encoded to JSON text
965     in UTF-8.
966    
967     JSON objects (and arrays) are self-delimiting, so you can write JSON at
968     one end of a handle and read them at the other end without using any
969     additional framing.
970    
971 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
972     this module doesn't need delimiters after or between JSON texts to be
973     able to read them, many other languages depend on that.
974    
975     A simple RPC protocol that interoperates easily with others is to send
976     JSON arrays (or objects, although arrays are usually the better choice as
977     they mimic how function argument passing works) and a newline after each
978     JSON text:
979    
980     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
981     $handle->push_write ("\012");
982    
983     An AnyEvent::Handle receiver would simply use the C<json> read type and
984     rely on the fact that the newline will be skipped as leading whitespace:
985    
986     $handle->push_read (json => sub { my $array = $_[1]; ... });
987    
988     Other languages could read single lines terminated by a newline and pass
989     this line into their JSON decoder of choice.
990    
991 root 1.40 =cut
992    
993 root 1.179 sub json_coder() {
994     eval { require JSON::XS; JSON::XS->new->utf8 }
995     || do { require JSON; JSON->new->utf8 }
996     }
997    
998 root 1.40 register_write_type json => sub {
999     my ($self, $ref) = @_;
1000    
1001 root 1.179 my $json = $self->{json} ||= json_coder;
1002 root 1.40
1003 root 1.179 $json->encode ($ref)
1004 root 1.40 };
1005    
1006 root 1.63 =item storable => $reference
1007    
1008     Freezes the given reference using L<Storable> and writes it to the
1009     handle. Uses the C<nfreeze> format.
1010    
1011     =cut
1012    
1013     register_write_type storable => sub {
1014     my ($self, $ref) = @_;
1015    
1016     require Storable;
1017    
1018 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1019 root 1.63 };
1020    
1021 root 1.53 =back
1022    
1023 root 1.133 =item $handle->push_shutdown
1024    
1025     Sometimes you know you want to close the socket after writing your data
1026     before it was actually written. One way to do that is to replace your
1027 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1028     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1029     replaces the C<on_drain> callback with:
1030 root 1.133
1031     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1032    
1033     This simply shuts down the write side and signals an EOF condition to the
1034     the peer.
1035    
1036     You can rely on the normal read queue and C<on_eof> handling
1037     afterwards. This is the cleanest way to close a connection.
1038    
1039     =cut
1040    
1041     sub push_shutdown {
1042 root 1.142 my ($self) = @_;
1043    
1044     delete $self->{low_water_mark};
1045     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1046 root 1.133 }
1047    
1048 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1049    
1050     Instead of one of the predefined types, you can also specify the name of
1051     a package. AnyEvent will try to load the package and then expects to find
1052     a function named C<anyevent_write_type> inside. If it isn't found, it
1053     progressively tries to load the parent package until it either finds the
1054     function (good) or runs out of packages (bad).
1055    
1056     Whenever the given C<type> is used, C<push_write> will the function with
1057     the handle object and the remaining arguments.
1058    
1059     The function is supposed to return a single octet string that will be
1060     appended to the write buffer, so you cna mentally treat this function as a
1061     "arguments to on-the-wire-format" converter.
1062 root 1.30
1063 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1064     arguments using the first one.
1065 root 1.29
1066 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1067 root 1.29
1068 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1069     # the "My" modules to be auto-loaded, or just about anywhere when the
1070     # My::Type::anyevent_write_type is defined before invoking it.
1071    
1072     package My::Type;
1073    
1074     sub anyevent_write_type {
1075     my ($handle, $delim, @args) = @_;
1076    
1077     join $delim, @args
1078     }
1079 root 1.29
1080 root 1.30 =cut
1081 root 1.29
1082 root 1.8 #############################################################################
1083    
1084 root 1.9 =back
1085    
1086     =head2 READ QUEUE
1087    
1088     AnyEvent::Handle manages two queues per handle, one for writing and one
1089     for reading.
1090    
1091     The read queue is more complex than the write queue. It can be used in two
1092     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1093     a queue.
1094    
1095     In the simple case, you just install an C<on_read> callback and whenever
1096     new data arrives, it will be called. You can then remove some data (if
1097 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
1098     leave the data there if you want to accumulate more (e.g. when only a
1099     partial message has been received so far).
1100 root 1.9
1101     In the more complex case, you want to queue multiple callbacks. In this
1102     case, AnyEvent::Handle will call the first queued callback each time new
1103 root 1.61 data arrives (also the first time it is queued) and removes it when it has
1104     done its job (see C<push_read>, below).
1105 root 1.9
1106     This way you can, for example, push three line-reads, followed by reading
1107     a chunk of data, and AnyEvent::Handle will execute them in order.
1108    
1109     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1110     the specified number of bytes which give an XML datagram.
1111    
1112     # in the default state, expect some header bytes
1113     $handle->on_read (sub {
1114     # some data is here, now queue the length-header-read (4 octets)
1115 root 1.52 shift->unshift_read (chunk => 4, sub {
1116 root 1.9 # header arrived, decode
1117     my $len = unpack "N", $_[1];
1118    
1119     # now read the payload
1120 root 1.52 shift->unshift_read (chunk => $len, sub {
1121 root 1.9 my $xml = $_[1];
1122     # handle xml
1123     });
1124     });
1125     });
1126    
1127 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1128     and another line or "ERROR" for the first request that is sent, and 64
1129     bytes for the second request. Due to the availability of a queue, we can
1130     just pipeline sending both requests and manipulate the queue as necessary
1131     in the callbacks.
1132    
1133     When the first callback is called and sees an "OK" response, it will
1134     C<unshift> another line-read. This line-read will be queued I<before> the
1135     64-byte chunk callback.
1136 root 1.9
1137 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1138 root 1.9 $handle->push_write ("request 1\015\012");
1139    
1140     # we expect "ERROR" or "OK" as response, so push a line read
1141 root 1.52 $handle->push_read (line => sub {
1142 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1143     # so it will be read before the second request reads its 64 bytes
1144     # which are already in the queue when this callback is called
1145     # we don't do this in case we got an error
1146     if ($_[1] eq "OK") {
1147 root 1.52 $_[0]->unshift_read (line => sub {
1148 root 1.9 my $response = $_[1];
1149     ...
1150     });
1151     }
1152     });
1153    
1154 root 1.69 # request two, simply returns 64 octets
1155 root 1.9 $handle->push_write ("request 2\015\012");
1156    
1157     # simply read 64 bytes, always
1158 root 1.52 $handle->push_read (chunk => 64, sub {
1159 root 1.9 my $response = $_[1];
1160     ...
1161     });
1162    
1163     =over 4
1164    
1165 root 1.10 =cut
1166    
1167 root 1.8 sub _drain_rbuf {
1168     my ($self) = @_;
1169 elmex 1.1
1170 root 1.159 # avoid recursion
1171 root 1.167 return if $self->{_skip_drain_rbuf};
1172 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1173 root 1.59
1174     while () {
1175 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1176     # we are draining the buffer, and this can only happen with TLS.
1177 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1178     if exists $self->{_tls_rbuf};
1179 root 1.115
1180 root 1.59 my $len = length $self->{rbuf};
1181 elmex 1.1
1182 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1183 root 1.29 unless ($cb->($self)) {
1184 root 1.163 # no progress can be made
1185     # (not enough data and no data forthcoming)
1186     $self->_error (Errno::EPIPE, 1), return
1187     if $self->{_eof};
1188 root 1.10
1189 root 1.38 unshift @{ $self->{_queue} }, $cb;
1190 root 1.55 last;
1191 root 1.8 }
1192     } elsif ($self->{on_read}) {
1193 root 1.61 last unless $len;
1194    
1195 root 1.8 $self->{on_read}($self);
1196    
1197     if (
1198 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1199     && !@{ $self->{_queue} } # and the queue is still empty
1200     && $self->{on_read} # but we still have on_read
1201 root 1.8 ) {
1202 root 1.55 # no further data will arrive
1203     # so no progress can be made
1204 root 1.150 $self->_error (Errno::EPIPE, 1), return
1205 root 1.55 if $self->{_eof};
1206    
1207     last; # more data might arrive
1208 elmex 1.1 }
1209 root 1.8 } else {
1210     # read side becomes idle
1211 root 1.93 delete $self->{_rw} unless $self->{tls};
1212 root 1.55 last;
1213 root 1.8 }
1214     }
1215    
1216 root 1.80 if ($self->{_eof}) {
1217 root 1.163 $self->{on_eof}
1218     ? $self->{on_eof}($self)
1219     : $self->_error (0, 1, "Unexpected end-of-file");
1220    
1221     return;
1222 root 1.80 }
1223 root 1.55
1224 root 1.169 if (
1225     defined $self->{rbuf_max}
1226     && $self->{rbuf_max} < length $self->{rbuf}
1227     ) {
1228     $self->_error (Errno::ENOSPC, 1), return;
1229     }
1230    
1231 root 1.55 # may need to restart read watcher
1232     unless ($self->{_rw}) {
1233     $self->start_read
1234     if $self->{on_read} || @{ $self->{_queue} };
1235     }
1236 elmex 1.1 }
1237    
1238 root 1.8 =item $handle->on_read ($cb)
1239 elmex 1.1
1240 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1241     the new callback is C<undef>). See the description of C<on_read> in the
1242     constructor.
1243 elmex 1.1
1244 root 1.8 =cut
1245    
1246     sub on_read {
1247     my ($self, $cb) = @_;
1248 elmex 1.1
1249 root 1.8 $self->{on_read} = $cb;
1250 root 1.159 $self->_drain_rbuf if $cb;
1251 elmex 1.1 }
1252    
1253 root 1.8 =item $handle->rbuf
1254    
1255     Returns the read buffer (as a modifiable lvalue).
1256 elmex 1.1
1257 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1258     member, if you want. However, the only operation allowed on the
1259     read buffer (apart from looking at it) is removing data from its
1260     beginning. Otherwise modifying or appending to it is not allowed and will
1261     lead to hard-to-track-down bugs.
1262 elmex 1.1
1263 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1264     C<push_read> or C<unshift_read> methods are used. The other read methods
1265     automatically manage the read buffer.
1266 elmex 1.1
1267     =cut
1268    
1269 elmex 1.2 sub rbuf : lvalue {
1270 root 1.8 $_[0]{rbuf}
1271 elmex 1.2 }
1272 elmex 1.1
1273 root 1.8 =item $handle->push_read ($cb)
1274    
1275     =item $handle->unshift_read ($cb)
1276    
1277     Append the given callback to the end of the queue (C<push_read>) or
1278     prepend it (C<unshift_read>).
1279    
1280     The callback is called each time some additional read data arrives.
1281 elmex 1.1
1282 elmex 1.20 It must check whether enough data is in the read buffer already.
1283 elmex 1.1
1284 root 1.8 If not enough data is available, it must return the empty list or a false
1285     value, in which case it will be called repeatedly until enough data is
1286     available (or an error condition is detected).
1287    
1288     If enough data was available, then the callback must remove all data it is
1289     interested in (which can be none at all) and return a true value. After returning
1290     true, it will be removed from the queue.
1291 elmex 1.1
1292     =cut
1293    
1294 root 1.30 our %RH;
1295    
1296     sub register_read_type($$) {
1297     $RH{$_[0]} = $_[1];
1298     }
1299    
1300 root 1.8 sub push_read {
1301 root 1.28 my $self = shift;
1302     my $cb = pop;
1303    
1304     if (@_) {
1305     my $type = shift;
1306    
1307 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1308     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1309 root 1.28 ->($self, $cb, @_);
1310     }
1311 elmex 1.1
1312 root 1.38 push @{ $self->{_queue} }, $cb;
1313 root 1.159 $self->_drain_rbuf;
1314 elmex 1.1 }
1315    
1316 root 1.8 sub unshift_read {
1317 root 1.28 my $self = shift;
1318     my $cb = pop;
1319    
1320     if (@_) {
1321     my $type = shift;
1322    
1323     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1324     ->($self, $cb, @_);
1325     }
1326    
1327 root 1.38 unshift @{ $self->{_queue} }, $cb;
1328 root 1.159 $self->_drain_rbuf;
1329 root 1.8 }
1330 elmex 1.1
1331 root 1.28 =item $handle->push_read (type => @args, $cb)
1332 elmex 1.1
1333 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1334 elmex 1.1
1335 root 1.28 Instead of providing a callback that parses the data itself you can chose
1336     between a number of predefined parsing formats, for chunks of data, lines
1337 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1338     which case AnyEvent tries to load the package and then expects to find the
1339     C<anyevent_read_type> function inside (see "custom read types", below).
1340 elmex 1.1
1341 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1342     drop by and tell us):
1343 root 1.28
1344     =over 4
1345    
1346 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1347 root 1.28
1348     Invoke the callback only once C<$octets> bytes have been read. Pass the
1349     data read to the callback. The callback will never be called with less
1350     data.
1351    
1352     Example: read 2 bytes.
1353    
1354     $handle->push_read (chunk => 2, sub {
1355     warn "yay ", unpack "H*", $_[1];
1356     });
1357 elmex 1.1
1358     =cut
1359    
1360 root 1.28 register_read_type chunk => sub {
1361     my ($self, $cb, $len) = @_;
1362 elmex 1.1
1363 root 1.8 sub {
1364     $len <= length $_[0]{rbuf} or return;
1365 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1366 root 1.8 1
1367     }
1368 root 1.28 };
1369 root 1.8
1370 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1371 elmex 1.1
1372 root 1.8 The callback will be called only once a full line (including the end of
1373     line marker, C<$eol>) has been read. This line (excluding the end of line
1374     marker) will be passed to the callback as second argument (C<$line>), and
1375     the end of line marker as the third argument (C<$eol>).
1376 elmex 1.1
1377 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1378     will be interpreted as a fixed record end marker, or it can be a regex
1379     object (e.g. created by C<qr>), in which case it is interpreted as a
1380     regular expression.
1381 elmex 1.1
1382 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1383     undef), then C<qr|\015?\012|> is used (which is good for most internet
1384     protocols).
1385 elmex 1.1
1386 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1387     not marked by the end of line marker.
1388 elmex 1.1
1389 root 1.8 =cut
1390 elmex 1.1
1391 root 1.28 register_read_type line => sub {
1392     my ($self, $cb, $eol) = @_;
1393 elmex 1.1
1394 root 1.76 if (@_ < 3) {
1395     # this is more than twice as fast as the generic code below
1396     sub {
1397     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1398 elmex 1.1
1399 root 1.76 $cb->($_[0], $1, $2);
1400     1
1401     }
1402     } else {
1403     $eol = quotemeta $eol unless ref $eol;
1404     $eol = qr|^(.*?)($eol)|s;
1405    
1406     sub {
1407     $_[0]{rbuf} =~ s/$eol// or return;
1408 elmex 1.1
1409 root 1.76 $cb->($_[0], $1, $2);
1410     1
1411     }
1412 root 1.8 }
1413 root 1.28 };
1414 elmex 1.1
1415 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1416 root 1.36
1417     Makes a regex match against the regex object C<$accept> and returns
1418     everything up to and including the match.
1419    
1420     Example: read a single line terminated by '\n'.
1421    
1422     $handle->push_read (regex => qr<\n>, sub { ... });
1423    
1424     If C<$reject> is given and not undef, then it determines when the data is
1425     to be rejected: it is matched against the data when the C<$accept> regex
1426     does not match and generates an C<EBADMSG> error when it matches. This is
1427     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1428     receive buffer overflow).
1429    
1430     Example: expect a single decimal number followed by whitespace, reject
1431     anything else (not the use of an anchor).
1432    
1433     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1434    
1435     If C<$skip> is given and not C<undef>, then it will be matched against
1436     the receive buffer when neither C<$accept> nor C<$reject> match,
1437     and everything preceding and including the match will be accepted
1438     unconditionally. This is useful to skip large amounts of data that you
1439     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1440     have to start matching from the beginning. This is purely an optimisation
1441     and is usually worth only when you expect more than a few kilobytes.
1442    
1443     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1444     expect the header to be very large (it isn't in practise, but...), we use
1445     a skip regex to skip initial portions. The skip regex is tricky in that
1446     it only accepts something not ending in either \015 or \012, as these are
1447     required for the accept regex.
1448    
1449     $handle->push_read (regex =>
1450     qr<\015\012\015\012>,
1451     undef, # no reject
1452     qr<^.*[^\015\012]>,
1453     sub { ... });
1454    
1455     =cut
1456    
1457     register_read_type regex => sub {
1458     my ($self, $cb, $accept, $reject, $skip) = @_;
1459    
1460     my $data;
1461     my $rbuf = \$self->{rbuf};
1462    
1463     sub {
1464     # accept
1465     if ($$rbuf =~ $accept) {
1466     $data .= substr $$rbuf, 0, $+[0], "";
1467     $cb->($self, $data);
1468     return 1;
1469     }
1470    
1471     # reject
1472     if ($reject && $$rbuf =~ $reject) {
1473 root 1.150 $self->_error (Errno::EBADMSG);
1474 root 1.36 }
1475    
1476     # skip
1477     if ($skip && $$rbuf =~ $skip) {
1478     $data .= substr $$rbuf, 0, $+[0], "";
1479     }
1480    
1481     ()
1482     }
1483     };
1484    
1485 root 1.61 =item netstring => $cb->($handle, $string)
1486    
1487     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1488    
1489     Throws an error with C<$!> set to EBADMSG on format violations.
1490    
1491     =cut
1492    
1493     register_read_type netstring => sub {
1494     my ($self, $cb) = @_;
1495    
1496     sub {
1497     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1498     if ($_[0]{rbuf} =~ /[^0-9]/) {
1499 root 1.150 $self->_error (Errno::EBADMSG);
1500 root 1.61 }
1501     return;
1502     }
1503    
1504     my $len = $1;
1505    
1506     $self->unshift_read (chunk => $len, sub {
1507     my $string = $_[1];
1508     $_[0]->unshift_read (chunk => 1, sub {
1509     if ($_[1] eq ",") {
1510     $cb->($_[0], $string);
1511     } else {
1512 root 1.150 $self->_error (Errno::EBADMSG);
1513 root 1.61 }
1514     });
1515     });
1516    
1517     1
1518     }
1519     };
1520    
1521     =item packstring => $format, $cb->($handle, $string)
1522    
1523     An octet string prefixed with an encoded length. The encoding C<$format>
1524     uses the same format as a Perl C<pack> format, but must specify a single
1525     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1526     optional C<!>, C<< < >> or C<< > >> modifier).
1527    
1528 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1529     EPP uses a prefix of C<N> (4 octtes).
1530 root 1.61
1531     Example: read a block of data prefixed by its length in BER-encoded
1532     format (very efficient).
1533    
1534     $handle->push_read (packstring => "w", sub {
1535     my ($handle, $data) = @_;
1536     });
1537    
1538     =cut
1539    
1540     register_read_type packstring => sub {
1541     my ($self, $cb, $format) = @_;
1542    
1543     sub {
1544     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1545 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1546 root 1.61 or return;
1547    
1548 root 1.77 $format = length pack $format, $len;
1549 root 1.61
1550 root 1.77 # bypass unshift if we already have the remaining chunk
1551     if ($format + $len <= length $_[0]{rbuf}) {
1552     my $data = substr $_[0]{rbuf}, $format, $len;
1553     substr $_[0]{rbuf}, 0, $format + $len, "";
1554     $cb->($_[0], $data);
1555     } else {
1556     # remove prefix
1557     substr $_[0]{rbuf}, 0, $format, "";
1558    
1559     # read remaining chunk
1560     $_[0]->unshift_read (chunk => $len, $cb);
1561     }
1562 root 1.61
1563     1
1564     }
1565     };
1566    
1567 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1568    
1569 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1570     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1571 root 1.40
1572     If a C<json> object was passed to the constructor, then that will be used
1573     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1574    
1575     This read type uses the incremental parser available with JSON version
1576     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1577     dependency on your own: this module will load the JSON module, but
1578     AnyEvent does not depend on it itself.
1579    
1580     Since JSON texts are fully self-delimiting, the C<json> read and write
1581 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1582     the C<json> write type description, above, for an actual example.
1583 root 1.40
1584     =cut
1585    
1586     register_read_type json => sub {
1587 root 1.63 my ($self, $cb) = @_;
1588 root 1.40
1589 root 1.179 my $json = $self->{json} ||= json_coder;
1590 root 1.40
1591     my $data;
1592     my $rbuf = \$self->{rbuf};
1593    
1594     sub {
1595 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1596 root 1.110
1597 root 1.113 if ($ref) {
1598     $self->{rbuf} = $json->incr_text;
1599     $json->incr_text = "";
1600     $cb->($self, $ref);
1601 root 1.110
1602     1
1603 root 1.113 } elsif ($@) {
1604 root 1.111 # error case
1605 root 1.110 $json->incr_skip;
1606 root 1.40
1607     $self->{rbuf} = $json->incr_text;
1608     $json->incr_text = "";
1609    
1610 root 1.150 $self->_error (Errno::EBADMSG);
1611 root 1.114
1612 root 1.113 ()
1613     } else {
1614     $self->{rbuf} = "";
1615 root 1.114
1616 root 1.113 ()
1617     }
1618 root 1.40 }
1619     };
1620    
1621 root 1.63 =item storable => $cb->($handle, $ref)
1622    
1623     Deserialises a L<Storable> frozen representation as written by the
1624     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1625     data).
1626    
1627     Raises C<EBADMSG> error if the data could not be decoded.
1628    
1629     =cut
1630    
1631     register_read_type storable => sub {
1632     my ($self, $cb) = @_;
1633    
1634     require Storable;
1635    
1636     sub {
1637     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1638 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1639 root 1.63 or return;
1640    
1641 root 1.77 my $format = length pack "w", $len;
1642 root 1.63
1643 root 1.77 # bypass unshift if we already have the remaining chunk
1644     if ($format + $len <= length $_[0]{rbuf}) {
1645     my $data = substr $_[0]{rbuf}, $format, $len;
1646     substr $_[0]{rbuf}, 0, $format + $len, "";
1647     $cb->($_[0], Storable::thaw ($data));
1648     } else {
1649     # remove prefix
1650     substr $_[0]{rbuf}, 0, $format, "";
1651    
1652     # read remaining chunk
1653     $_[0]->unshift_read (chunk => $len, sub {
1654     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1655     $cb->($_[0], $ref);
1656     } else {
1657 root 1.150 $self->_error (Errno::EBADMSG);
1658 root 1.77 }
1659     });
1660     }
1661    
1662     1
1663 root 1.63 }
1664     };
1665    
1666 root 1.28 =back
1667    
1668 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1669 root 1.30
1670 root 1.185 Instead of one of the predefined types, you can also specify the name
1671     of a package. AnyEvent will try to load the package and then expects to
1672     find a function named C<anyevent_read_type> inside. If it isn't found, it
1673     progressively tries to load the parent package until it either finds the
1674     function (good) or runs out of packages (bad).
1675    
1676     Whenever this type is used, C<push_read> will invoke the function with the
1677     handle object, the original callback and the remaining arguments.
1678    
1679     The function is supposed to return a callback (usually a closure) that
1680     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1681     mentally treat the function as a "configurable read type to read callback"
1682     converter.
1683    
1684     It should invoke the original callback when it is done reading (remember
1685     to pass C<$handle> as first argument as all other callbacks do that,
1686     although there is no strict requirement on this).
1687 root 1.30
1688 root 1.185 For examples, see the source of this module (F<perldoc -m
1689     AnyEvent::Handle>, search for C<register_read_type>)).
1690 root 1.30
1691 root 1.10 =item $handle->stop_read
1692    
1693     =item $handle->start_read
1694    
1695 root 1.18 In rare cases you actually do not want to read anything from the
1696 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1697 root 1.22 any queued callbacks will be executed then. To start reading again, call
1698 root 1.10 C<start_read>.
1699    
1700 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1701     you change the C<on_read> callback or push/unshift a read callback, and it
1702     will automatically C<stop_read> for you when neither C<on_read> is set nor
1703     there are any read requests in the queue.
1704    
1705 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1706     half-duplex connections).
1707    
1708 root 1.10 =cut
1709    
1710     sub stop_read {
1711     my ($self) = @_;
1712 elmex 1.1
1713 root 1.93 delete $self->{_rw} unless $self->{tls};
1714 root 1.8 }
1715 elmex 1.1
1716 root 1.10 sub start_read {
1717     my ($self) = @_;
1718    
1719 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1720 root 1.10 Scalar::Util::weaken $self;
1721    
1722 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1723 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1724 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1725 root 1.10
1726     if ($len > 0) {
1727 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1728 root 1.43
1729 root 1.93 if ($self->{tls}) {
1730     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1731 root 1.97
1732 root 1.93 &_dotls ($self);
1733     } else {
1734 root 1.159 $self->_drain_rbuf;
1735 root 1.93 }
1736 root 1.10
1737     } elsif (defined $len) {
1738 root 1.38 delete $self->{_rw};
1739     $self->{_eof} = 1;
1740 root 1.159 $self->_drain_rbuf;
1741 root 1.10
1742 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1743 root 1.52 return $self->_error ($!, 1);
1744 root 1.10 }
1745 root 1.175 };
1746 root 1.10 }
1747 elmex 1.1 }
1748    
1749 root 1.133 our $ERROR_SYSCALL;
1750     our $ERROR_WANT_READ;
1751    
1752     sub _tls_error {
1753     my ($self, $err) = @_;
1754    
1755     return $self->_error ($!, 1)
1756     if $err == Net::SSLeay::ERROR_SYSCALL ();
1757    
1758 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1759    
1760     # reduce error string to look less scary
1761     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1762    
1763 root 1.143 if ($self->{_on_starttls}) {
1764     (delete $self->{_on_starttls})->($self, undef, $err);
1765     &_freetls;
1766     } else {
1767     &_freetls;
1768 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1769 root 1.143 }
1770 root 1.133 }
1771    
1772 root 1.97 # poll the write BIO and send the data if applicable
1773 root 1.133 # also decode read data if possible
1774     # this is basiclaly our TLS state machine
1775     # more efficient implementations are possible with openssl,
1776     # but not with the buggy and incomplete Net::SSLeay.
1777 root 1.19 sub _dotls {
1778     my ($self) = @_;
1779    
1780 root 1.97 my $tmp;
1781 root 1.56
1782 root 1.38 if (length $self->{_tls_wbuf}) {
1783 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1784     substr $self->{_tls_wbuf}, 0, $tmp, "";
1785 root 1.22 }
1786 root 1.133
1787     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1788     return $self->_tls_error ($tmp)
1789     if $tmp != $ERROR_WANT_READ
1790 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1791 root 1.19 }
1792    
1793 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1794     unless (length $tmp) {
1795 root 1.143 $self->{_on_starttls}
1796     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1797 root 1.92 &_freetls;
1798 root 1.143
1799 root 1.142 if ($self->{on_stoptls}) {
1800     $self->{on_stoptls}($self);
1801     return;
1802     } else {
1803     # let's treat SSL-eof as we treat normal EOF
1804     delete $self->{_rw};
1805     $self->{_eof} = 1;
1806     }
1807 root 1.56 }
1808 root 1.91
1809 root 1.116 $self->{_tls_rbuf} .= $tmp;
1810 root 1.159 $self->_drain_rbuf;
1811 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1812 root 1.23 }
1813    
1814 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1815 root 1.133 return $self->_tls_error ($tmp)
1816     if $tmp != $ERROR_WANT_READ
1817 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1818 root 1.91
1819 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1820     $self->{wbuf} .= $tmp;
1821 root 1.91 $self->_drain_wbuf;
1822     }
1823 root 1.142
1824     $self->{_on_starttls}
1825     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1826 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1827 root 1.19 }
1828    
1829 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1830    
1831     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1832     object is created, you can also do that at a later time by calling
1833     C<starttls>.
1834    
1835 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1836     write data and then call C<< ->starttls >> then TLS negotiation will start
1837     immediately, after which the queued write data is then sent.
1838    
1839 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1840     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1841    
1842 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1843     when AnyEvent::Handle has to create its own TLS connection object, or
1844     a hash reference with C<< key => value >> pairs that will be used to
1845     construct a new context.
1846    
1847     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1848     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1849     changed to your liking. Note that the handshake might have already started
1850     when this function returns.
1851 root 1.38
1852 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1853     handshakes on the same stream. Best do not attempt to use the stream after
1854     stopping TLS.
1855 root 1.92
1856 root 1.25 =cut
1857    
1858 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1859    
1860 root 1.19 sub starttls {
1861 root 1.160 my ($self, $tls, $ctx) = @_;
1862    
1863     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1864     if $self->{tls};
1865    
1866     $self->{tls} = $tls;
1867     $self->{tls_ctx} = $ctx if @_ > 2;
1868    
1869     return unless $self->{fh};
1870 root 1.19
1871 root 1.94 require Net::SSLeay;
1872    
1873 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1874     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1875 root 1.133
1876 root 1.180 $tls = delete $self->{tls};
1877 root 1.160 $ctx = $self->{tls_ctx};
1878 root 1.131
1879 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1880    
1881 root 1.131 if ("HASH" eq ref $ctx) {
1882     require AnyEvent::TLS;
1883    
1884 root 1.137 if ($ctx->{cache}) {
1885     my $key = $ctx+0;
1886     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1887     } else {
1888     $ctx = new AnyEvent::TLS %$ctx;
1889     }
1890 root 1.131 }
1891 root 1.92
1892 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1893 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1894 root 1.19
1895 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1896     # but the openssl maintainers basically said: "trust us, it just works".
1897     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1898     # and mismaintained ssleay-module doesn't even offer them).
1899 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1900 root 1.87 #
1901     # in short: this is a mess.
1902     #
1903 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1904 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1905 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1906     # have identity issues in that area.
1907 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1908     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1909     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1910 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1911 root 1.21
1912 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1913     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1914 root 1.19
1915 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1916    
1917 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1918 root 1.19
1919 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1920 root 1.143 if $self->{on_starttls};
1921 root 1.142
1922 root 1.93 &_dotls; # need to trigger the initial handshake
1923     $self->start_read; # make sure we actually do read
1924 root 1.19 }
1925    
1926 root 1.25 =item $handle->stoptls
1927    
1928 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1929     sending a close notify to the other side, but since OpenSSL doesn't
1930 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1931     the stream afterwards.
1932 root 1.25
1933     =cut
1934    
1935     sub stoptls {
1936     my ($self) = @_;
1937    
1938 root 1.92 if ($self->{tls}) {
1939 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1940 root 1.92
1941     &_dotls;
1942    
1943 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1944     # # we, we... have to use openssl :/#d#
1945     # &_freetls;#d#
1946 root 1.92 }
1947     }
1948    
1949     sub _freetls {
1950     my ($self) = @_;
1951    
1952     return unless $self->{tls};
1953 root 1.38
1954 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1955 root 1.171 if $self->{tls} > 0;
1956 root 1.92
1957 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1958 root 1.25 }
1959    
1960 root 1.19 sub DESTROY {
1961 root 1.120 my ($self) = @_;
1962 root 1.19
1963 root 1.92 &_freetls;
1964 root 1.62
1965     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1966    
1967 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1968 root 1.62 my $fh = delete $self->{fh};
1969     my $wbuf = delete $self->{wbuf};
1970    
1971     my @linger;
1972    
1973 root 1.175 push @linger, AE::io $fh, 1, sub {
1974 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1975    
1976     if ($len > 0) {
1977     substr $wbuf, 0, $len, "";
1978     } else {
1979     @linger = (); # end
1980     }
1981 root 1.175 };
1982     push @linger, AE::timer $linger, 0, sub {
1983 root 1.62 @linger = ();
1984 root 1.175 };
1985 root 1.62 }
1986 root 1.19 }
1987    
1988 root 1.99 =item $handle->destroy
1989    
1990 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1991 root 1.141 no further callbacks will be invoked and as many resources as possible
1992 root 1.165 will be freed. Any method you will call on the handle object after
1993     destroying it in this way will be silently ignored (and it will return the
1994     empty list).
1995 root 1.99
1996 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1997     object and it will simply shut down. This works in fatal error and EOF
1998     callbacks, as well as code outside. It does I<NOT> work in a read or write
1999     callback, so when you want to destroy the AnyEvent::Handle object from
2000     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2001     that case.
2002    
2003 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2004     will be removed as well, so if those are the only reference holders (as
2005     is common), then one doesn't need to do anything special to break any
2006     reference cycles.
2007    
2008 root 1.99 The handle might still linger in the background and write out remaining
2009     data, as specified by the C<linger> option, however.
2010    
2011     =cut
2012    
2013     sub destroy {
2014     my ($self) = @_;
2015    
2016     $self->DESTROY;
2017     %$self = ();
2018 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2019     }
2020    
2021 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2022     #nop
2023 root 1.99 }
2024    
2025 root 1.19 =item AnyEvent::Handle::TLS_CTX
2026    
2027 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2028     for TLS mode.
2029 root 1.19
2030 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2031 root 1.19
2032     =cut
2033    
2034     our $TLS_CTX;
2035    
2036     sub TLS_CTX() {
2037 root 1.131 $TLS_CTX ||= do {
2038     require AnyEvent::TLS;
2039 root 1.19
2040 root 1.131 new AnyEvent::TLS
2041 root 1.19 }
2042     }
2043    
2044 elmex 1.1 =back
2045    
2046 root 1.95
2047     =head1 NONFREQUENTLY ASKED QUESTIONS
2048    
2049     =over 4
2050    
2051 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2052     still get further invocations!
2053    
2054     That's because AnyEvent::Handle keeps a reference to itself when handling
2055     read or write callbacks.
2056    
2057     It is only safe to "forget" the reference inside EOF or error callbacks,
2058     from within all other callbacks, you need to explicitly call the C<<
2059     ->destroy >> method.
2060    
2061     =item I get different callback invocations in TLS mode/Why can't I pause
2062     reading?
2063    
2064     Unlike, say, TCP, TLS connections do not consist of two independent
2065     communication channels, one for each direction. Or put differently. The
2066     read and write directions are not independent of each other: you cannot
2067     write data unless you are also prepared to read, and vice versa.
2068    
2069     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2070     callback invocations when you are not expecting any read data - the reason
2071     is that AnyEvent::Handle always reads in TLS mode.
2072    
2073     During the connection, you have to make sure that you always have a
2074     non-empty read-queue, or an C<on_read> watcher. At the end of the
2075     connection (or when you no longer want to use it) you can call the
2076     C<destroy> method.
2077    
2078 root 1.95 =item How do I read data until the other side closes the connection?
2079    
2080 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2081     to achieve this is by setting an C<on_read> callback that does nothing,
2082     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2083     will be in C<$_[0]{rbuf}>:
2084 root 1.95
2085     $handle->on_read (sub { });
2086     $handle->on_eof (undef);
2087     $handle->on_error (sub {
2088     my $data = delete $_[0]{rbuf};
2089     });
2090    
2091     The reason to use C<on_error> is that TCP connections, due to latencies
2092     and packets loss, might get closed quite violently with an error, when in
2093     fact, all data has been received.
2094    
2095 root 1.101 It is usually better to use acknowledgements when transferring data,
2096 root 1.95 to make sure the other side hasn't just died and you got the data
2097     intact. This is also one reason why so many internet protocols have an
2098     explicit QUIT command.
2099    
2100 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2101     all data has been written?
2102 root 1.95
2103     After writing your last bits of data, set the C<on_drain> callback
2104     and destroy the handle in there - with the default setting of
2105     C<low_water_mark> this will be called precisely when all data has been
2106     written to the socket:
2107    
2108     $handle->push_write (...);
2109     $handle->on_drain (sub {
2110     warn "all data submitted to the kernel\n";
2111     undef $handle;
2112     });
2113    
2114 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2115     consider using C<< ->push_shutdown >> instead.
2116    
2117     =item I want to contact a TLS/SSL server, I don't care about security.
2118    
2119     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2120     simply connect to it and then create the AnyEvent::Handle with the C<tls>
2121     parameter:
2122    
2123 root 1.144 tcp_connect $host, $port, sub {
2124     my ($fh) = @_;
2125 root 1.143
2126 root 1.144 my $handle = new AnyEvent::Handle
2127     fh => $fh,
2128     tls => "connect",
2129     on_error => sub { ... };
2130    
2131     $handle->push_write (...);
2132     };
2133 root 1.143
2134     =item I want to contact a TLS/SSL server, I do care about security.
2135    
2136 root 1.144 Then you should additionally enable certificate verification, including
2137     peername verification, if the protocol you use supports it (see
2138     L<AnyEvent::TLS>, C<verify_peername>).
2139    
2140     E.g. for HTTPS:
2141    
2142     tcp_connect $host, $port, sub {
2143     my ($fh) = @_;
2144    
2145     my $handle = new AnyEvent::Handle
2146     fh => $fh,
2147     peername => $host,
2148     tls => "connect",
2149     tls_ctx => { verify => 1, verify_peername => "https" },
2150     ...
2151    
2152     Note that you must specify the hostname you connected to (or whatever
2153     "peername" the protocol needs) as the C<peername> argument, otherwise no
2154     peername verification will be done.
2155    
2156     The above will use the system-dependent default set of trusted CA
2157     certificates. If you want to check against a specific CA, add the
2158     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2159    
2160     tls_ctx => {
2161     verify => 1,
2162     verify_peername => "https",
2163     ca_file => "my-ca-cert.pem",
2164     },
2165    
2166     =item I want to create a TLS/SSL server, how do I do that?
2167    
2168     Well, you first need to get a server certificate and key. You have
2169     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2170     self-signed certificate (cheap. check the search engine of your choice,
2171     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2172     nice program for that purpose).
2173    
2174     Then create a file with your private key (in PEM format, see
2175     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2176     file should then look like this:
2177    
2178     -----BEGIN RSA PRIVATE KEY-----
2179     ...header data
2180     ... lots of base64'y-stuff
2181     -----END RSA PRIVATE KEY-----
2182    
2183     -----BEGIN CERTIFICATE-----
2184     ... lots of base64'y-stuff
2185     -----END CERTIFICATE-----
2186    
2187     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2188     specify this file as C<cert_file>:
2189    
2190     tcp_server undef, $port, sub {
2191     my ($fh) = @_;
2192    
2193     my $handle = new AnyEvent::Handle
2194     fh => $fh,
2195     tls => "accept",
2196     tls_ctx => { cert_file => "my-server-keycert.pem" },
2197     ...
2198 root 1.143
2199 root 1.144 When you have intermediate CA certificates that your clients might not
2200     know about, just append them to the C<cert_file>.
2201 root 1.143
2202 root 1.95 =back
2203    
2204    
2205 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2206    
2207     In many cases, you might want to subclass AnyEvent::Handle.
2208    
2209     To make this easier, a given version of AnyEvent::Handle uses these
2210     conventions:
2211    
2212     =over 4
2213    
2214     =item * all constructor arguments become object members.
2215    
2216     At least initially, when you pass a C<tls>-argument to the constructor it
2217 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2218 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2219    
2220     =item * other object member names are prefixed with an C<_>.
2221    
2222     All object members not explicitly documented (internal use) are prefixed
2223     with an underscore character, so the remaining non-C<_>-namespace is free
2224     for use for subclasses.
2225    
2226     =item * all members not documented here and not prefixed with an underscore
2227     are free to use in subclasses.
2228    
2229     Of course, new versions of AnyEvent::Handle may introduce more "public"
2230     member variables, but thats just life, at least it is documented.
2231    
2232     =back
2233    
2234 elmex 1.1 =head1 AUTHOR
2235    
2236 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2237 elmex 1.1
2238     =cut
2239    
2240     1; # End of AnyEvent::Handle