ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.193
Committed: Mon Mar 15 18:51:30 2010 UTC (14 years, 2 months ago) by root
Branch: MAIN
CVS Tags: rel-5_261, rel-5_26
Changes since 1.192: +21 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.159 filehandles.
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 elmex 1.1 =head1 METHODS
81    
82     =over 4
83    
84 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
85 elmex 1.1
86 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
87 elmex 1.1
88     =over 4
89    
90 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
91 root 1.158
92 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
93 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
94     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95     that mode.
96 root 1.8
97 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98    
99     Try to connect to the specified host and service (port), using
100     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101     default C<peername>.
102    
103     You have to specify either this parameter, or C<fh>, above.
104    
105 root 1.160 It is possible to push requests on the read and write queues, and modify
106     properties of the stream, even while AnyEvent::Handle is connecting.
107    
108 root 1.159 When this parameter is specified, then the C<on_prepare>,
109     C<on_connect_error> and C<on_connect> callbacks will be called under the
110     appropriate circumstances:
111    
112     =over 4
113    
114     =item on_prepare => $cb->($handle)
115    
116     This (rarely used) callback is called before a new connection is
117     attempted, but after the file handle has been created. It could be used to
118     prepare the file handle with parameters required for the actual connect
119     (as opposed to settings that can be changed when the connection is already
120     established).
121    
122 root 1.161 The return value of this callback should be the connect timeout value in
123     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
124     timeout is to be used).
125    
126 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
127    
128     This callback is called when a connection has been successfully established.
129    
130     The actual numeric host and port (the socket peername) are passed as
131     parameters, together with a retry callback.
132    
133     When, for some reason, the handle is not acceptable, then calling
134 root 1.186 C<$retry> will continue with the next connection target (in case of
135 root 1.159 multi-homed hosts or SRV records there can be multiple connection
136 root 1.186 endpoints). At the time it is called the read and write queues, eof
137     status, tls status and similar properties of the handle will have been
138     reset.
139 root 1.159
140     In most cases, ignoring the C<$retry> parameter is the way to go.
141 root 1.158
142 root 1.159 =item on_connect_error => $cb->($handle, $message)
143 root 1.10
144 root 1.186 This callback is called when the connection could not be
145 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
146     message describing it (usually the same as C<"$!">).
147 root 1.8
148 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
149     fatal error instead.
150 root 1.82
151 root 1.159 =back
152 root 1.80
153 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
154 root 1.10
155 root 1.52 This is the error callback, which is called when, well, some error
156     occured, such as not being able to resolve the hostname, failure to
157     connect or a read error.
158    
159     Some errors are fatal (which is indicated by C<$fatal> being true). On
160 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
161     destroy >>) after invoking the error callback (which means you are free to
162     examine the handle object). Examples of fatal errors are an EOF condition
163 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
164     cases where the other side can close the connection at their will it is
165     often easiest to not report C<EPIPE> errors in this callback.
166 root 1.82
167 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
168     against, but in some cases (TLS errors), this does not work well. It is
169     recommended to always output the C<$message> argument in human-readable
170     error messages (it's usually the same as C<"$!">).
171    
172 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
173     to simply ignore this parameter and instead abondon the handle object
174     when this callback is invoked. Examples of non-fatal errors are timeouts
175     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
176 root 1.8
177 root 1.10 On callback entrance, the value of C<$!> contains the operating system
178 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
179     C<EPROTO>).
180 root 1.8
181 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
182     you will not be notified of errors otherwise. The default simply calls
183 root 1.52 C<croak>.
184 root 1.8
185 root 1.40 =item on_read => $cb->($handle)
186 root 1.8
187     This sets the default read callback, which is called when data arrives
188 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
189     callback will only be called when at least one octet of data is in the
190     read buffer).
191 root 1.8
192     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
193 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
194 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
195     the beginning from it.
196 root 1.8
197     When an EOF condition is detected then AnyEvent::Handle will first try to
198     feed all the remaining data to the queued callbacks and C<on_read> before
199     calling the C<on_eof> callback. If no progress can be made, then a fatal
200     error will be raised (with C<$!> set to C<EPIPE>).
201 elmex 1.1
202 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
203     doesn't mean you I<require> some data: if there is an EOF and there
204     are outstanding read requests then an error will be flagged. With an
205     C<on_read> callback, the C<on_eof> callback will be invoked.
206    
207 root 1.159 =item on_eof => $cb->($handle)
208    
209     Set the callback to be called when an end-of-file condition is detected,
210     i.e. in the case of a socket, when the other side has closed the
211     connection cleanly, and there are no outstanding read requests in the
212     queue (if there are read requests, then an EOF counts as an unexpected
213     connection close and will be flagged as an error).
214    
215     For sockets, this just means that the other side has stopped sending data,
216     you can still try to write data, and, in fact, one can return from the EOF
217     callback and continue writing data, as only the read part has been shut
218     down.
219    
220     If an EOF condition has been detected but no C<on_eof> callback has been
221     set, then a fatal error will be raised with C<$!> set to <0>.
222    
223 root 1.40 =item on_drain => $cb->($handle)
224 elmex 1.1
225 root 1.8 This sets the callback that is called when the write buffer becomes empty
226     (or when the callback is set and the buffer is empty already).
227 elmex 1.1
228 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
229 elmex 1.2
230 root 1.69 This callback is useful when you don't want to put all of your write data
231     into the queue at once, for example, when you want to write the contents
232     of some file to the socket you might not want to read the whole file into
233     memory and push it into the queue, but instead only read more data from
234     the file when the write queue becomes empty.
235    
236 root 1.43 =item timeout => $fractional_seconds
237    
238 root 1.176 =item rtimeout => $fractional_seconds
239    
240     =item wtimeout => $fractional_seconds
241    
242     If non-zero, then these enables an "inactivity" timeout: whenever this
243     many seconds pass without a successful read or write on the underlying
244     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
245     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
246     error will be raised).
247    
248     There are three variants of the timeouts that work fully independent
249     of each other, for both read and write, just read, and just write:
250     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
251     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
252     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
253 root 1.43
254     Note that timeout processing is also active when you currently do not have
255     any outstanding read or write requests: If you plan to keep the connection
256     idle then you should disable the timout temporarily or ignore the timeout
257 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
258     restart the timeout.
259 root 1.43
260     Zero (the default) disables this timeout.
261    
262     =item on_timeout => $cb->($handle)
263    
264     Called whenever the inactivity timeout passes. If you return from this
265     callback, then the timeout will be reset as if some activity had happened,
266     so this condition is not fatal in any way.
267    
268 root 1.8 =item rbuf_max => <bytes>
269 elmex 1.2
270 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
271     when the read buffer ever (strictly) exceeds this size. This is useful to
272 root 1.88 avoid some forms of denial-of-service attacks.
273 elmex 1.2
274 root 1.8 For example, a server accepting connections from untrusted sources should
275     be configured to accept only so-and-so much data that it cannot act on
276     (for example, when expecting a line, an attacker could send an unlimited
277     amount of data without a callback ever being called as long as the line
278     isn't finished).
279 elmex 1.2
280 root 1.70 =item autocork => <boolean>
281    
282     When disabled (the default), then C<push_write> will try to immediately
283 root 1.88 write the data to the handle, if possible. This avoids having to register
284     a write watcher and wait for the next event loop iteration, but can
285     be inefficient if you write multiple small chunks (on the wire, this
286     disadvantage is usually avoided by your kernel's nagle algorithm, see
287     C<no_delay>, but this option can save costly syscalls).
288 root 1.70
289     When enabled, then writes will always be queued till the next event loop
290     iteration. This is efficient when you do many small writes per iteration,
291 root 1.88 but less efficient when you do a single write only per iteration (or when
292     the write buffer often is full). It also increases write latency.
293 root 1.70
294     =item no_delay => <boolean>
295    
296     When doing small writes on sockets, your operating system kernel might
297     wait a bit for more data before actually sending it out. This is called
298     the Nagle algorithm, and usually it is beneficial.
299    
300 root 1.88 In some situations you want as low a delay as possible, which can be
301     accomplishd by setting this option to a true value.
302 root 1.70
303 root 1.88 The default is your opertaing system's default behaviour (most likely
304     enabled), this option explicitly enables or disables it, if possible.
305 root 1.70
306 root 1.182 =item keepalive => <boolean>
307    
308     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
309     normally, TCP connections have no time-out once established, so TCP
310 root 1.186 connections, once established, can stay alive forever even when the other
311 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
312     TCP connections whent he other side becomes unreachable. While the default
313     is OS-dependent, TCP keepalives usually kick in after around two hours,
314     and, if the other side doesn't reply, take down the TCP connection some 10
315     to 15 minutes later.
316    
317     It is harmless to specify this option for file handles that do not support
318     keepalives, and enabling it on connections that are potentially long-lived
319     is usually a good idea.
320    
321     =item oobinline => <boolean>
322    
323     BSD majorly fucked up the implementation of TCP urgent data. The result
324     is that almost no OS implements TCP according to the specs, and every OS
325     implements it slightly differently.
326    
327 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
328     is enabled) gives you the most portable way of getting urgent data, by
329     putting it into the stream.
330    
331     Since BSD emulation of OOB data on top of TCP's urgent data can have
332     security implications, AnyEvent::Handle sets this flag automatically
333 root 1.184 unless explicitly specified. Note that setting this flag after
334     establishing a connection I<may> be a bit too late (data loss could
335     already have occured on BSD systems), but at least it will protect you
336     from most attacks.
337 root 1.182
338 root 1.8 =item read_size => <bytes>
339 elmex 1.2
340 root 1.88 The default read block size (the amount of bytes this module will
341     try to read during each loop iteration, which affects memory
342     requirements). Default: C<8192>.
343 root 1.8
344     =item low_water_mark => <bytes>
345    
346     Sets the amount of bytes (default: C<0>) that make up an "empty" write
347     buffer: If the write reaches this size or gets even samller it is
348     considered empty.
349 elmex 1.2
350 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
351     the write buffer before it is fully drained, but this is a rare case, as
352     the operating system kernel usually buffers data as well, so the default
353     is good in almost all cases.
354    
355 root 1.62 =item linger => <seconds>
356    
357     If non-zero (default: C<3600>), then the destructor of the
358 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
359     write data and will install a watcher that will write this data to the
360     socket. No errors will be reported (this mostly matches how the operating
361     system treats outstanding data at socket close time).
362 root 1.62
363 root 1.88 This will not work for partial TLS data that could not be encoded
364 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
365     help.
366 root 1.62
367 root 1.133 =item peername => $string
368    
369 root 1.134 A string used to identify the remote site - usually the DNS hostname
370     (I<not> IDN!) used to create the connection, rarely the IP address.
371 root 1.131
372 root 1.133 Apart from being useful in error messages, this string is also used in TLS
373 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
374     verification will be skipped when C<peername> is not specified or
375     C<undef>.
376 root 1.131
377 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
378    
379 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
380 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
381 root 1.88 established and will transparently encrypt/decrypt data afterwards.
382 root 1.19
383 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
384     appropriate error message.
385    
386 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
387 root 1.88 automatically when you try to create a TLS handle): this module doesn't
388     have a dependency on that module, so if your module requires it, you have
389     to add the dependency yourself.
390 root 1.26
391 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
392     C<accept>, and for the TLS client side of a connection, use C<connect>
393     mode.
394 root 1.19
395     You can also provide your own TLS connection object, but you have
396     to make sure that you call either C<Net::SSLeay::set_connect_state>
397     or C<Net::SSLeay::set_accept_state> on it before you pass it to
398 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
399     object.
400    
401     At some future point, AnyEvent::Handle might switch to another TLS
402     implementation, then the option to use your own session object will go
403     away.
404 root 1.19
405 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
406     passing in the wrong integer will lead to certain crash. This most often
407     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
408     segmentation fault.
409    
410 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
411 root 1.26
412 root 1.131 =item tls_ctx => $anyevent_tls
413 root 1.19
414 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
415 root 1.19 (unless a connection object was specified directly). If this parameter is
416     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
417    
418 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
419     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
420     new TLS context object.
421    
422 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
423 root 1.142
424     This callback will be invoked when the TLS/SSL handshake has finished. If
425     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
426     (C<on_stoptls> will not be called in this case).
427    
428     The session in C<< $handle->{tls} >> can still be examined in this
429     callback, even when the handshake was not successful.
430    
431 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
432     callback is in effect, instead, the error message will be passed to C<on_starttls>.
433    
434     Without this callback, handshake failures lead to C<on_error> being
435     called, as normal.
436    
437     Note that you cannot call C<starttls> right again in this callback. If you
438     need to do that, start an zero-second timer instead whose callback can
439     then call C<< ->starttls >> again.
440    
441 root 1.142 =item on_stoptls => $cb->($handle)
442    
443     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
444     set, then it will be invoked after freeing the TLS session. If it is not,
445     then a TLS shutdown condition will be treated like a normal EOF condition
446     on the handle.
447    
448     The session in C<< $handle->{tls} >> can still be examined in this
449     callback.
450    
451     This callback will only be called on TLS shutdowns, not when the
452     underlying handle signals EOF.
453    
454 root 1.40 =item json => JSON or JSON::XS object
455    
456     This is the json coder object used by the C<json> read and write types.
457    
458 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
459 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
460     texts.
461 root 1.40
462     Note that you are responsible to depend on the JSON module if you want to
463     use this functionality, as AnyEvent does not have a dependency itself.
464    
465 elmex 1.1 =back
466    
467     =cut
468    
469     sub new {
470 root 1.8 my $class = shift;
471     my $self = bless { @_ }, $class;
472    
473 root 1.159 if ($self->{fh}) {
474     $self->_start;
475     return unless $self->{fh}; # could be gone by now
476    
477     } elsif ($self->{connect}) {
478     require AnyEvent::Socket;
479    
480     $self->{peername} = $self->{connect}[0]
481     unless exists $self->{peername};
482    
483     $self->{_skip_drain_rbuf} = 1;
484    
485     {
486     Scalar::Util::weaken (my $self = $self);
487    
488     $self->{_connect} =
489     AnyEvent::Socket::tcp_connect (
490     $self->{connect}[0],
491     $self->{connect}[1],
492     sub {
493     my ($fh, $host, $port, $retry) = @_;
494    
495     if ($fh) {
496     $self->{fh} = $fh;
497    
498     delete $self->{_skip_drain_rbuf};
499     $self->_start;
500    
501     $self->{on_connect}
502     and $self->{on_connect}($self, $host, $port, sub {
503 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
504 root 1.159 $self->{_skip_drain_rbuf} = 1;
505     &$retry;
506     });
507    
508     } else {
509     if ($self->{on_connect_error}) {
510     $self->{on_connect_error}($self, "$!");
511     $self->destroy;
512     } else {
513 root 1.161 $self->_error ($!, 1);
514 root 1.159 }
515     }
516     },
517     sub {
518     local $self->{fh} = $_[0];
519    
520 root 1.161 $self->{on_prepare}
521     ? $self->{on_prepare}->($self)
522     : ()
523 root 1.159 }
524     );
525     }
526    
527     } else {
528     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
529     }
530    
531     $self
532     }
533    
534     sub _start {
535     my ($self) = @_;
536 root 1.8
537     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
538 elmex 1.1
539 root 1.176 $self->{_activity} =
540     $self->{_ractivity} =
541     $self->{_wactivity} = AE::now;
542    
543 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
544     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
545     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
546    
547 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
548     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
549    
550     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
551 root 1.131
552 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
553 root 1.94 if $self->{tls};
554 root 1.19
555 root 1.182 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
556 root 1.10
557 root 1.66 $self->start_read
558 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
559 root 1.160
560     $self->_drain_wbuf;
561 root 1.8 }
562 elmex 1.2
563 root 1.52 sub _error {
564 root 1.133 my ($self, $errno, $fatal, $message) = @_;
565 root 1.8
566 root 1.52 $! = $errno;
567 root 1.133 $message ||= "$!";
568 root 1.37
569 root 1.52 if ($self->{on_error}) {
570 root 1.133 $self->{on_error}($self, $fatal, $message);
571 root 1.151 $self->destroy if $fatal;
572 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
573 root 1.149 $self->destroy;
574 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
575 root 1.52 }
576 elmex 1.1 }
577    
578 root 1.8 =item $fh = $handle->fh
579 elmex 1.1
580 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
581 elmex 1.1
582     =cut
583    
584 root 1.38 sub fh { $_[0]{fh} }
585 elmex 1.1
586 root 1.8 =item $handle->on_error ($cb)
587 elmex 1.1
588 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
589 elmex 1.1
590 root 1.8 =cut
591    
592     sub on_error {
593     $_[0]{on_error} = $_[1];
594     }
595    
596     =item $handle->on_eof ($cb)
597    
598     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
599 elmex 1.1
600     =cut
601    
602 root 1.8 sub on_eof {
603     $_[0]{on_eof} = $_[1];
604     }
605    
606 root 1.43 =item $handle->on_timeout ($cb)
607    
608 root 1.176 =item $handle->on_rtimeout ($cb)
609    
610     =item $handle->on_wtimeout ($cb)
611    
612     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
613     callback, or disables the callback (but not the timeout) if C<$cb> =
614     C<undef>. See the C<timeout> constructor argument and method.
615 root 1.43
616     =cut
617    
618 root 1.176 # see below
619 root 1.43
620 root 1.70 =item $handle->autocork ($boolean)
621    
622     Enables or disables the current autocork behaviour (see C<autocork>
623 root 1.105 constructor argument). Changes will only take effect on the next write.
624 root 1.70
625     =cut
626    
627 root 1.105 sub autocork {
628     $_[0]{autocork} = $_[1];
629     }
630    
631 root 1.70 =item $handle->no_delay ($boolean)
632    
633     Enables or disables the C<no_delay> setting (see constructor argument of
634     the same name for details).
635    
636     =cut
637    
638     sub no_delay {
639     $_[0]{no_delay} = $_[1];
640    
641     eval {
642     local $SIG{__DIE__};
643 root 1.182 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
644     if $_[0]{fh};
645     };
646     }
647    
648     =item $handle->keepalive ($boolean)
649    
650     Enables or disables the C<keepalive> setting (see constructor argument of
651     the same name for details).
652    
653     =cut
654    
655     sub keepalive {
656     $_[0]{keepalive} = $_[1];
657    
658     eval {
659     local $SIG{__DIE__};
660     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
661     if $_[0]{fh};
662     };
663     }
664    
665     =item $handle->oobinline ($boolean)
666    
667     Enables or disables the C<oobinline> setting (see constructor argument of
668     the same name for details).
669    
670     =cut
671    
672     sub oobinline {
673     $_[0]{oobinline} = $_[1];
674    
675     eval {
676     local $SIG{__DIE__};
677     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
678     if $_[0]{fh};
679     };
680     }
681    
682     =item $handle->keepalive ($boolean)
683    
684     Enables or disables the C<keepalive> setting (see constructor argument of
685     the same name for details).
686    
687     =cut
688    
689     sub keepalive {
690     $_[0]{keepalive} = $_[1];
691    
692     eval {
693     local $SIG{__DIE__};
694     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
695 root 1.159 if $_[0]{fh};
696 root 1.70 };
697     }
698    
699 root 1.142 =item $handle->on_starttls ($cb)
700    
701     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
702    
703     =cut
704    
705     sub on_starttls {
706     $_[0]{on_starttls} = $_[1];
707     }
708    
709     =item $handle->on_stoptls ($cb)
710    
711     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
712    
713     =cut
714    
715 root 1.189 sub on_stoptls {
716 root 1.142 $_[0]{on_stoptls} = $_[1];
717     }
718    
719 root 1.168 =item $handle->rbuf_max ($max_octets)
720    
721     Configures the C<rbuf_max> setting (C<undef> disables it).
722    
723     =cut
724    
725     sub rbuf_max {
726     $_[0]{rbuf_max} = $_[1];
727     }
728    
729 root 1.43 #############################################################################
730    
731     =item $handle->timeout ($seconds)
732    
733 root 1.176 =item $handle->rtimeout ($seconds)
734    
735     =item $handle->wtimeout ($seconds)
736    
737 root 1.43 Configures (or disables) the inactivity timeout.
738    
739 root 1.176 =item $handle->timeout_reset
740    
741     =item $handle->rtimeout_reset
742    
743     =item $handle->wtimeout_reset
744    
745     Reset the activity timeout, as if data was received or sent.
746    
747     These methods are cheap to call.
748    
749 root 1.43 =cut
750    
751 root 1.176 for my $dir ("", "r", "w") {
752     my $timeout = "${dir}timeout";
753     my $tw = "_${dir}tw";
754     my $on_timeout = "on_${dir}timeout";
755     my $activity = "_${dir}activity";
756     my $cb;
757    
758     *$on_timeout = sub {
759     $_[0]{$on_timeout} = $_[1];
760     };
761    
762     *$timeout = sub {
763     my ($self, $new_value) = @_;
764 root 1.43
765 root 1.176 $self->{$timeout} = $new_value;
766     delete $self->{$tw}; &$cb;
767     };
768 root 1.43
769 root 1.176 *{"${dir}timeout_reset"} = sub {
770     $_[0]{$activity} = AE::now;
771     };
772 root 1.43
773 root 1.176 # main workhorse:
774     # reset the timeout watcher, as neccessary
775     # also check for time-outs
776     $cb = sub {
777     my ($self) = @_;
778    
779     if ($self->{$timeout} && $self->{fh}) {
780     my $NOW = AE::now;
781    
782     # when would the timeout trigger?
783     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
784    
785     # now or in the past already?
786     if ($after <= 0) {
787     $self->{$activity} = $NOW;
788 root 1.43
789 root 1.176 if ($self->{$on_timeout}) {
790     $self->{$on_timeout}($self);
791     } else {
792     $self->_error (Errno::ETIMEDOUT);
793     }
794 root 1.43
795 root 1.176 # callback could have changed timeout value, optimise
796     return unless $self->{$timeout};
797 root 1.43
798 root 1.176 # calculate new after
799     $after = $self->{$timeout};
800 root 1.43 }
801    
802 root 1.176 Scalar::Util::weaken $self;
803     return unless $self; # ->error could have destroyed $self
804 root 1.43
805 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
806     delete $self->{$tw};
807     $cb->($self);
808     };
809     } else {
810     delete $self->{$tw};
811 root 1.43 }
812     }
813     }
814    
815 root 1.9 #############################################################################
816    
817     =back
818    
819     =head2 WRITE QUEUE
820    
821     AnyEvent::Handle manages two queues per handle, one for writing and one
822     for reading.
823    
824     The write queue is very simple: you can add data to its end, and
825     AnyEvent::Handle will automatically try to get rid of it for you.
826    
827 elmex 1.20 When data could be written and the write buffer is shorter then the low
828 root 1.9 water mark, the C<on_drain> callback will be invoked.
829    
830     =over 4
831    
832 root 1.8 =item $handle->on_drain ($cb)
833    
834     Sets the C<on_drain> callback or clears it (see the description of
835     C<on_drain> in the constructor).
836    
837 root 1.193 This method may invoke callbacks (and therefore the handle might be
838     destroyed after it returns).
839    
840 root 1.8 =cut
841    
842     sub on_drain {
843 elmex 1.1 my ($self, $cb) = @_;
844    
845 root 1.8 $self->{on_drain} = $cb;
846    
847     $cb->($self)
848 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
849 root 1.8 }
850    
851     =item $handle->push_write ($data)
852    
853     Queues the given scalar to be written. You can push as much data as you
854     want (only limited by the available memory), as C<AnyEvent::Handle>
855     buffers it independently of the kernel.
856    
857 root 1.193 This method may invoke callbacks (and therefore the handle might be
858     destroyed after it returns).
859    
860 root 1.8 =cut
861    
862 root 1.17 sub _drain_wbuf {
863     my ($self) = @_;
864 root 1.8
865 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
866 root 1.35
867 root 1.8 Scalar::Util::weaken $self;
868 root 1.35
869 root 1.8 my $cb = sub {
870     my $len = syswrite $self->{fh}, $self->{wbuf};
871    
872 root 1.146 if (defined $len) {
873 root 1.8 substr $self->{wbuf}, 0, $len, "";
874    
875 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
876 root 1.43
877 root 1.8 $self->{on_drain}($self)
878 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
879 root 1.8 && $self->{on_drain};
880    
881 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
882 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
883 root 1.52 $self->_error ($!, 1);
884 elmex 1.1 }
885 root 1.8 };
886    
887 root 1.35 # try to write data immediately
888 root 1.70 $cb->() unless $self->{autocork};
889 root 1.8
890 root 1.35 # if still data left in wbuf, we need to poll
891 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
892 root 1.35 if length $self->{wbuf};
893 root 1.8 };
894     }
895    
896 root 1.30 our %WH;
897    
898 root 1.185 # deprecated
899 root 1.30 sub register_write_type($$) {
900     $WH{$_[0]} = $_[1];
901     }
902    
903 root 1.17 sub push_write {
904     my $self = shift;
905    
906 root 1.29 if (@_ > 1) {
907     my $type = shift;
908    
909 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
910     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
911 root 1.29 ->($self, @_);
912     }
913    
914 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
915     # and diagnose the problem earlier and better.
916    
917 root 1.93 if ($self->{tls}) {
918 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
919 root 1.160 &_dotls ($self) if $self->{fh};
920 root 1.17 } else {
921 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
922 root 1.159 $self->_drain_wbuf if $self->{fh};
923 root 1.17 }
924     }
925    
926 root 1.29 =item $handle->push_write (type => @args)
927    
928 root 1.185 Instead of formatting your data yourself, you can also let this module
929     do the job by specifying a type and type-specific arguments. You
930     can also specify the (fully qualified) name of a package, in which
931     case AnyEvent tries to load the package and then expects to find the
932     C<anyevent_read_type> function inside (see "custom write types", below).
933 root 1.29
934 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
935     drop by and tell us):
936 root 1.29
937     =over 4
938    
939     =item netstring => $string
940    
941     Formats the given value as netstring
942     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
943    
944     =cut
945    
946     register_write_type netstring => sub {
947     my ($self, $string) = @_;
948    
949 root 1.96 (length $string) . ":$string,"
950 root 1.29 };
951    
952 root 1.61 =item packstring => $format, $data
953    
954     An octet string prefixed with an encoded length. The encoding C<$format>
955     uses the same format as a Perl C<pack> format, but must specify a single
956     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
957     optional C<!>, C<< < >> or C<< > >> modifier).
958    
959     =cut
960    
961     register_write_type packstring => sub {
962     my ($self, $format, $string) = @_;
963    
964 root 1.65 pack "$format/a*", $string
965 root 1.61 };
966    
967 root 1.39 =item json => $array_or_hashref
968    
969 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
970     provide your own JSON object, this means it will be encoded to JSON text
971     in UTF-8.
972    
973     JSON objects (and arrays) are self-delimiting, so you can write JSON at
974     one end of a handle and read them at the other end without using any
975     additional framing.
976    
977 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
978     this module doesn't need delimiters after or between JSON texts to be
979     able to read them, many other languages depend on that.
980    
981     A simple RPC protocol that interoperates easily with others is to send
982     JSON arrays (or objects, although arrays are usually the better choice as
983     they mimic how function argument passing works) and a newline after each
984     JSON text:
985    
986     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
987     $handle->push_write ("\012");
988    
989     An AnyEvent::Handle receiver would simply use the C<json> read type and
990     rely on the fact that the newline will be skipped as leading whitespace:
991    
992     $handle->push_read (json => sub { my $array = $_[1]; ... });
993    
994     Other languages could read single lines terminated by a newline and pass
995     this line into their JSON decoder of choice.
996    
997 root 1.40 =cut
998    
999 root 1.179 sub json_coder() {
1000     eval { require JSON::XS; JSON::XS->new->utf8 }
1001     || do { require JSON; JSON->new->utf8 }
1002     }
1003    
1004 root 1.40 register_write_type json => sub {
1005     my ($self, $ref) = @_;
1006    
1007 root 1.179 my $json = $self->{json} ||= json_coder;
1008 root 1.40
1009 root 1.179 $json->encode ($ref)
1010 root 1.40 };
1011    
1012 root 1.63 =item storable => $reference
1013    
1014     Freezes the given reference using L<Storable> and writes it to the
1015     handle. Uses the C<nfreeze> format.
1016    
1017     =cut
1018    
1019     register_write_type storable => sub {
1020     my ($self, $ref) = @_;
1021    
1022     require Storable;
1023    
1024 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1025 root 1.63 };
1026    
1027 root 1.53 =back
1028    
1029 root 1.133 =item $handle->push_shutdown
1030    
1031     Sometimes you know you want to close the socket after writing your data
1032     before it was actually written. One way to do that is to replace your
1033 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1034     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1035     replaces the C<on_drain> callback with:
1036 root 1.133
1037     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1038    
1039     This simply shuts down the write side and signals an EOF condition to the
1040     the peer.
1041    
1042     You can rely on the normal read queue and C<on_eof> handling
1043     afterwards. This is the cleanest way to close a connection.
1044    
1045 root 1.193 This method may invoke callbacks (and therefore the handle might be
1046     destroyed after it returns).
1047    
1048 root 1.133 =cut
1049    
1050     sub push_shutdown {
1051 root 1.142 my ($self) = @_;
1052    
1053     delete $self->{low_water_mark};
1054     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1055 root 1.133 }
1056    
1057 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1058    
1059     Instead of one of the predefined types, you can also specify the name of
1060     a package. AnyEvent will try to load the package and then expects to find
1061     a function named C<anyevent_write_type> inside. If it isn't found, it
1062     progressively tries to load the parent package until it either finds the
1063     function (good) or runs out of packages (bad).
1064    
1065     Whenever the given C<type> is used, C<push_write> will the function with
1066     the handle object and the remaining arguments.
1067    
1068     The function is supposed to return a single octet string that will be
1069     appended to the write buffer, so you cna mentally treat this function as a
1070     "arguments to on-the-wire-format" converter.
1071 root 1.30
1072 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1073     arguments using the first one.
1074 root 1.29
1075 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1076 root 1.29
1077 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1078     # the "My" modules to be auto-loaded, or just about anywhere when the
1079     # My::Type::anyevent_write_type is defined before invoking it.
1080    
1081     package My::Type;
1082    
1083     sub anyevent_write_type {
1084     my ($handle, $delim, @args) = @_;
1085    
1086     join $delim, @args
1087     }
1088 root 1.29
1089 root 1.30 =cut
1090 root 1.29
1091 root 1.8 #############################################################################
1092    
1093 root 1.9 =back
1094    
1095     =head2 READ QUEUE
1096    
1097     AnyEvent::Handle manages two queues per handle, one for writing and one
1098     for reading.
1099    
1100     The read queue is more complex than the write queue. It can be used in two
1101     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1102     a queue.
1103    
1104     In the simple case, you just install an C<on_read> callback and whenever
1105     new data arrives, it will be called. You can then remove some data (if
1106 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
1107     leave the data there if you want to accumulate more (e.g. when only a
1108     partial message has been received so far).
1109 root 1.9
1110     In the more complex case, you want to queue multiple callbacks. In this
1111     case, AnyEvent::Handle will call the first queued callback each time new
1112 root 1.61 data arrives (also the first time it is queued) and removes it when it has
1113     done its job (see C<push_read>, below).
1114 root 1.9
1115     This way you can, for example, push three line-reads, followed by reading
1116     a chunk of data, and AnyEvent::Handle will execute them in order.
1117    
1118     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1119     the specified number of bytes which give an XML datagram.
1120    
1121     # in the default state, expect some header bytes
1122     $handle->on_read (sub {
1123     # some data is here, now queue the length-header-read (4 octets)
1124 root 1.52 shift->unshift_read (chunk => 4, sub {
1125 root 1.9 # header arrived, decode
1126     my $len = unpack "N", $_[1];
1127    
1128     # now read the payload
1129 root 1.52 shift->unshift_read (chunk => $len, sub {
1130 root 1.9 my $xml = $_[1];
1131     # handle xml
1132     });
1133     });
1134     });
1135    
1136 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1137     and another line or "ERROR" for the first request that is sent, and 64
1138     bytes for the second request. Due to the availability of a queue, we can
1139     just pipeline sending both requests and manipulate the queue as necessary
1140     in the callbacks.
1141    
1142     When the first callback is called and sees an "OK" response, it will
1143     C<unshift> another line-read. This line-read will be queued I<before> the
1144     64-byte chunk callback.
1145 root 1.9
1146 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1147 root 1.9 $handle->push_write ("request 1\015\012");
1148    
1149     # we expect "ERROR" or "OK" as response, so push a line read
1150 root 1.52 $handle->push_read (line => sub {
1151 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1152     # so it will be read before the second request reads its 64 bytes
1153     # which are already in the queue when this callback is called
1154     # we don't do this in case we got an error
1155     if ($_[1] eq "OK") {
1156 root 1.52 $_[0]->unshift_read (line => sub {
1157 root 1.9 my $response = $_[1];
1158     ...
1159     });
1160     }
1161     });
1162    
1163 root 1.69 # request two, simply returns 64 octets
1164 root 1.9 $handle->push_write ("request 2\015\012");
1165    
1166     # simply read 64 bytes, always
1167 root 1.52 $handle->push_read (chunk => 64, sub {
1168 root 1.9 my $response = $_[1];
1169     ...
1170     });
1171    
1172     =over 4
1173    
1174 root 1.10 =cut
1175    
1176 root 1.8 sub _drain_rbuf {
1177     my ($self) = @_;
1178 elmex 1.1
1179 root 1.159 # avoid recursion
1180 root 1.167 return if $self->{_skip_drain_rbuf};
1181 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1182 root 1.59
1183     while () {
1184 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1185     # we are draining the buffer, and this can only happen with TLS.
1186 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1187     if exists $self->{_tls_rbuf};
1188 root 1.115
1189 root 1.59 my $len = length $self->{rbuf};
1190 elmex 1.1
1191 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1192 root 1.29 unless ($cb->($self)) {
1193 root 1.163 # no progress can be made
1194     # (not enough data and no data forthcoming)
1195     $self->_error (Errno::EPIPE, 1), return
1196     if $self->{_eof};
1197 root 1.10
1198 root 1.38 unshift @{ $self->{_queue} }, $cb;
1199 root 1.55 last;
1200 root 1.8 }
1201     } elsif ($self->{on_read}) {
1202 root 1.61 last unless $len;
1203    
1204 root 1.8 $self->{on_read}($self);
1205    
1206     if (
1207 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1208     && !@{ $self->{_queue} } # and the queue is still empty
1209     && $self->{on_read} # but we still have on_read
1210 root 1.8 ) {
1211 root 1.55 # no further data will arrive
1212     # so no progress can be made
1213 root 1.150 $self->_error (Errno::EPIPE, 1), return
1214 root 1.55 if $self->{_eof};
1215    
1216     last; # more data might arrive
1217 elmex 1.1 }
1218 root 1.8 } else {
1219     # read side becomes idle
1220 root 1.93 delete $self->{_rw} unless $self->{tls};
1221 root 1.55 last;
1222 root 1.8 }
1223     }
1224    
1225 root 1.80 if ($self->{_eof}) {
1226 root 1.163 $self->{on_eof}
1227     ? $self->{on_eof}($self)
1228     : $self->_error (0, 1, "Unexpected end-of-file");
1229    
1230     return;
1231 root 1.80 }
1232 root 1.55
1233 root 1.169 if (
1234     defined $self->{rbuf_max}
1235     && $self->{rbuf_max} < length $self->{rbuf}
1236     ) {
1237     $self->_error (Errno::ENOSPC, 1), return;
1238     }
1239    
1240 root 1.55 # may need to restart read watcher
1241     unless ($self->{_rw}) {
1242     $self->start_read
1243     if $self->{on_read} || @{ $self->{_queue} };
1244     }
1245 elmex 1.1 }
1246    
1247 root 1.8 =item $handle->on_read ($cb)
1248 elmex 1.1
1249 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1250     the new callback is C<undef>). See the description of C<on_read> in the
1251     constructor.
1252 elmex 1.1
1253 root 1.193 This method may invoke callbacks (and therefore the handle might be
1254     destroyed after it returns).
1255    
1256 root 1.8 =cut
1257    
1258     sub on_read {
1259     my ($self, $cb) = @_;
1260 elmex 1.1
1261 root 1.8 $self->{on_read} = $cb;
1262 root 1.159 $self->_drain_rbuf if $cb;
1263 elmex 1.1 }
1264    
1265 root 1.8 =item $handle->rbuf
1266    
1267     Returns the read buffer (as a modifiable lvalue).
1268 elmex 1.1
1269 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1270     member, if you want. However, the only operation allowed on the
1271     read buffer (apart from looking at it) is removing data from its
1272     beginning. Otherwise modifying or appending to it is not allowed and will
1273     lead to hard-to-track-down bugs.
1274 elmex 1.1
1275 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1276     C<push_read> or C<unshift_read> methods are used. The other read methods
1277     automatically manage the read buffer.
1278 elmex 1.1
1279     =cut
1280    
1281 elmex 1.2 sub rbuf : lvalue {
1282 root 1.8 $_[0]{rbuf}
1283 elmex 1.2 }
1284 elmex 1.1
1285 root 1.8 =item $handle->push_read ($cb)
1286    
1287     =item $handle->unshift_read ($cb)
1288    
1289     Append the given callback to the end of the queue (C<push_read>) or
1290     prepend it (C<unshift_read>).
1291    
1292     The callback is called each time some additional read data arrives.
1293 elmex 1.1
1294 elmex 1.20 It must check whether enough data is in the read buffer already.
1295 elmex 1.1
1296 root 1.8 If not enough data is available, it must return the empty list or a false
1297     value, in which case it will be called repeatedly until enough data is
1298     available (or an error condition is detected).
1299    
1300     If enough data was available, then the callback must remove all data it is
1301     interested in (which can be none at all) and return a true value. After returning
1302     true, it will be removed from the queue.
1303 elmex 1.1
1304 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1305     destroyed after it returns).
1306    
1307 elmex 1.1 =cut
1308    
1309 root 1.30 our %RH;
1310    
1311     sub register_read_type($$) {
1312     $RH{$_[0]} = $_[1];
1313     }
1314    
1315 root 1.8 sub push_read {
1316 root 1.28 my $self = shift;
1317     my $cb = pop;
1318    
1319     if (@_) {
1320     my $type = shift;
1321    
1322 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1323     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1324 root 1.28 ->($self, $cb, @_);
1325     }
1326 elmex 1.1
1327 root 1.38 push @{ $self->{_queue} }, $cb;
1328 root 1.159 $self->_drain_rbuf;
1329 elmex 1.1 }
1330    
1331 root 1.8 sub unshift_read {
1332 root 1.28 my $self = shift;
1333     my $cb = pop;
1334    
1335     if (@_) {
1336     my $type = shift;
1337    
1338     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1339     ->($self, $cb, @_);
1340     }
1341    
1342 root 1.38 unshift @{ $self->{_queue} }, $cb;
1343 root 1.159 $self->_drain_rbuf;
1344 root 1.8 }
1345 elmex 1.1
1346 root 1.28 =item $handle->push_read (type => @args, $cb)
1347 elmex 1.1
1348 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1349 elmex 1.1
1350 root 1.28 Instead of providing a callback that parses the data itself you can chose
1351     between a number of predefined parsing formats, for chunks of data, lines
1352 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1353     which case AnyEvent tries to load the package and then expects to find the
1354     C<anyevent_read_type> function inside (see "custom read types", below).
1355 elmex 1.1
1356 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1357     drop by and tell us):
1358 root 1.28
1359     =over 4
1360    
1361 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1362 root 1.28
1363     Invoke the callback only once C<$octets> bytes have been read. Pass the
1364     data read to the callback. The callback will never be called with less
1365     data.
1366    
1367     Example: read 2 bytes.
1368    
1369     $handle->push_read (chunk => 2, sub {
1370     warn "yay ", unpack "H*", $_[1];
1371     });
1372 elmex 1.1
1373     =cut
1374    
1375 root 1.28 register_read_type chunk => sub {
1376     my ($self, $cb, $len) = @_;
1377 elmex 1.1
1378 root 1.8 sub {
1379     $len <= length $_[0]{rbuf} or return;
1380 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1381 root 1.8 1
1382     }
1383 root 1.28 };
1384 root 1.8
1385 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1386 elmex 1.1
1387 root 1.8 The callback will be called only once a full line (including the end of
1388     line marker, C<$eol>) has been read. This line (excluding the end of line
1389     marker) will be passed to the callback as second argument (C<$line>), and
1390     the end of line marker as the third argument (C<$eol>).
1391 elmex 1.1
1392 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1393     will be interpreted as a fixed record end marker, or it can be a regex
1394     object (e.g. created by C<qr>), in which case it is interpreted as a
1395     regular expression.
1396 elmex 1.1
1397 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1398     undef), then C<qr|\015?\012|> is used (which is good for most internet
1399     protocols).
1400 elmex 1.1
1401 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1402     not marked by the end of line marker.
1403 elmex 1.1
1404 root 1.8 =cut
1405 elmex 1.1
1406 root 1.28 register_read_type line => sub {
1407     my ($self, $cb, $eol) = @_;
1408 elmex 1.1
1409 root 1.76 if (@_ < 3) {
1410     # this is more than twice as fast as the generic code below
1411     sub {
1412     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1413 elmex 1.1
1414 root 1.76 $cb->($_[0], $1, $2);
1415     1
1416     }
1417     } else {
1418     $eol = quotemeta $eol unless ref $eol;
1419     $eol = qr|^(.*?)($eol)|s;
1420    
1421     sub {
1422     $_[0]{rbuf} =~ s/$eol// or return;
1423 elmex 1.1
1424 root 1.76 $cb->($_[0], $1, $2);
1425     1
1426     }
1427 root 1.8 }
1428 root 1.28 };
1429 elmex 1.1
1430 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1431 root 1.36
1432     Makes a regex match against the regex object C<$accept> and returns
1433     everything up to and including the match.
1434    
1435     Example: read a single line terminated by '\n'.
1436    
1437     $handle->push_read (regex => qr<\n>, sub { ... });
1438    
1439     If C<$reject> is given and not undef, then it determines when the data is
1440     to be rejected: it is matched against the data when the C<$accept> regex
1441     does not match and generates an C<EBADMSG> error when it matches. This is
1442     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1443     receive buffer overflow).
1444    
1445     Example: expect a single decimal number followed by whitespace, reject
1446     anything else (not the use of an anchor).
1447    
1448     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1449    
1450     If C<$skip> is given and not C<undef>, then it will be matched against
1451     the receive buffer when neither C<$accept> nor C<$reject> match,
1452     and everything preceding and including the match will be accepted
1453     unconditionally. This is useful to skip large amounts of data that you
1454     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1455     have to start matching from the beginning. This is purely an optimisation
1456     and is usually worth only when you expect more than a few kilobytes.
1457    
1458     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1459     expect the header to be very large (it isn't in practise, but...), we use
1460     a skip regex to skip initial portions. The skip regex is tricky in that
1461     it only accepts something not ending in either \015 or \012, as these are
1462     required for the accept regex.
1463    
1464     $handle->push_read (regex =>
1465     qr<\015\012\015\012>,
1466     undef, # no reject
1467     qr<^.*[^\015\012]>,
1468     sub { ... });
1469    
1470     =cut
1471    
1472     register_read_type regex => sub {
1473     my ($self, $cb, $accept, $reject, $skip) = @_;
1474    
1475     my $data;
1476     my $rbuf = \$self->{rbuf};
1477    
1478     sub {
1479     # accept
1480     if ($$rbuf =~ $accept) {
1481     $data .= substr $$rbuf, 0, $+[0], "";
1482     $cb->($self, $data);
1483     return 1;
1484     }
1485    
1486     # reject
1487     if ($reject && $$rbuf =~ $reject) {
1488 root 1.150 $self->_error (Errno::EBADMSG);
1489 root 1.36 }
1490    
1491     # skip
1492     if ($skip && $$rbuf =~ $skip) {
1493     $data .= substr $$rbuf, 0, $+[0], "";
1494     }
1495    
1496     ()
1497     }
1498     };
1499    
1500 root 1.61 =item netstring => $cb->($handle, $string)
1501    
1502     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1503    
1504     Throws an error with C<$!> set to EBADMSG on format violations.
1505    
1506     =cut
1507    
1508     register_read_type netstring => sub {
1509     my ($self, $cb) = @_;
1510    
1511     sub {
1512     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1513     if ($_[0]{rbuf} =~ /[^0-9]/) {
1514 root 1.150 $self->_error (Errno::EBADMSG);
1515 root 1.61 }
1516     return;
1517     }
1518    
1519     my $len = $1;
1520    
1521     $self->unshift_read (chunk => $len, sub {
1522     my $string = $_[1];
1523     $_[0]->unshift_read (chunk => 1, sub {
1524     if ($_[1] eq ",") {
1525     $cb->($_[0], $string);
1526     } else {
1527 root 1.150 $self->_error (Errno::EBADMSG);
1528 root 1.61 }
1529     });
1530     });
1531    
1532     1
1533     }
1534     };
1535    
1536     =item packstring => $format, $cb->($handle, $string)
1537    
1538     An octet string prefixed with an encoded length. The encoding C<$format>
1539     uses the same format as a Perl C<pack> format, but must specify a single
1540     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1541     optional C<!>, C<< < >> or C<< > >> modifier).
1542    
1543 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1544     EPP uses a prefix of C<N> (4 octtes).
1545 root 1.61
1546     Example: read a block of data prefixed by its length in BER-encoded
1547     format (very efficient).
1548    
1549     $handle->push_read (packstring => "w", sub {
1550     my ($handle, $data) = @_;
1551     });
1552    
1553     =cut
1554    
1555     register_read_type packstring => sub {
1556     my ($self, $cb, $format) = @_;
1557    
1558     sub {
1559     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1560 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1561 root 1.61 or return;
1562    
1563 root 1.77 $format = length pack $format, $len;
1564 root 1.61
1565 root 1.77 # bypass unshift if we already have the remaining chunk
1566     if ($format + $len <= length $_[0]{rbuf}) {
1567     my $data = substr $_[0]{rbuf}, $format, $len;
1568     substr $_[0]{rbuf}, 0, $format + $len, "";
1569     $cb->($_[0], $data);
1570     } else {
1571     # remove prefix
1572     substr $_[0]{rbuf}, 0, $format, "";
1573    
1574     # read remaining chunk
1575     $_[0]->unshift_read (chunk => $len, $cb);
1576     }
1577 root 1.61
1578     1
1579     }
1580     };
1581    
1582 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1583    
1584 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1585     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1586 root 1.40
1587     If a C<json> object was passed to the constructor, then that will be used
1588     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1589    
1590     This read type uses the incremental parser available with JSON version
1591     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1592     dependency on your own: this module will load the JSON module, but
1593     AnyEvent does not depend on it itself.
1594    
1595     Since JSON texts are fully self-delimiting, the C<json> read and write
1596 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1597     the C<json> write type description, above, for an actual example.
1598 root 1.40
1599     =cut
1600    
1601     register_read_type json => sub {
1602 root 1.63 my ($self, $cb) = @_;
1603 root 1.40
1604 root 1.179 my $json = $self->{json} ||= json_coder;
1605 root 1.40
1606     my $data;
1607     my $rbuf = \$self->{rbuf};
1608    
1609     sub {
1610 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1611 root 1.110
1612 root 1.113 if ($ref) {
1613     $self->{rbuf} = $json->incr_text;
1614     $json->incr_text = "";
1615     $cb->($self, $ref);
1616 root 1.110
1617     1
1618 root 1.113 } elsif ($@) {
1619 root 1.111 # error case
1620 root 1.110 $json->incr_skip;
1621 root 1.40
1622     $self->{rbuf} = $json->incr_text;
1623     $json->incr_text = "";
1624    
1625 root 1.150 $self->_error (Errno::EBADMSG);
1626 root 1.114
1627 root 1.113 ()
1628     } else {
1629     $self->{rbuf} = "";
1630 root 1.114
1631 root 1.113 ()
1632     }
1633 root 1.40 }
1634     };
1635    
1636 root 1.63 =item storable => $cb->($handle, $ref)
1637    
1638     Deserialises a L<Storable> frozen representation as written by the
1639     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1640     data).
1641    
1642     Raises C<EBADMSG> error if the data could not be decoded.
1643    
1644     =cut
1645    
1646     register_read_type storable => sub {
1647     my ($self, $cb) = @_;
1648    
1649     require Storable;
1650    
1651     sub {
1652     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1653 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1654 root 1.63 or return;
1655    
1656 root 1.77 my $format = length pack "w", $len;
1657 root 1.63
1658 root 1.77 # bypass unshift if we already have the remaining chunk
1659     if ($format + $len <= length $_[0]{rbuf}) {
1660     my $data = substr $_[0]{rbuf}, $format, $len;
1661     substr $_[0]{rbuf}, 0, $format + $len, "";
1662     $cb->($_[0], Storable::thaw ($data));
1663     } else {
1664     # remove prefix
1665     substr $_[0]{rbuf}, 0, $format, "";
1666    
1667     # read remaining chunk
1668     $_[0]->unshift_read (chunk => $len, sub {
1669     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1670     $cb->($_[0], $ref);
1671     } else {
1672 root 1.150 $self->_error (Errno::EBADMSG);
1673 root 1.77 }
1674     });
1675     }
1676    
1677     1
1678 root 1.63 }
1679     };
1680    
1681 root 1.28 =back
1682    
1683 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1684 root 1.30
1685 root 1.185 Instead of one of the predefined types, you can also specify the name
1686     of a package. AnyEvent will try to load the package and then expects to
1687     find a function named C<anyevent_read_type> inside. If it isn't found, it
1688     progressively tries to load the parent package until it either finds the
1689     function (good) or runs out of packages (bad).
1690    
1691     Whenever this type is used, C<push_read> will invoke the function with the
1692     handle object, the original callback and the remaining arguments.
1693    
1694     The function is supposed to return a callback (usually a closure) that
1695     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1696     mentally treat the function as a "configurable read type to read callback"
1697     converter.
1698    
1699     It should invoke the original callback when it is done reading (remember
1700     to pass C<$handle> as first argument as all other callbacks do that,
1701     although there is no strict requirement on this).
1702 root 1.30
1703 root 1.185 For examples, see the source of this module (F<perldoc -m
1704     AnyEvent::Handle>, search for C<register_read_type>)).
1705 root 1.30
1706 root 1.10 =item $handle->stop_read
1707    
1708     =item $handle->start_read
1709    
1710 root 1.18 In rare cases you actually do not want to read anything from the
1711 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1712 root 1.22 any queued callbacks will be executed then. To start reading again, call
1713 root 1.10 C<start_read>.
1714    
1715 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1716     you change the C<on_read> callback or push/unshift a read callback, and it
1717     will automatically C<stop_read> for you when neither C<on_read> is set nor
1718     there are any read requests in the queue.
1719    
1720 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1721     half-duplex connections).
1722    
1723 root 1.10 =cut
1724    
1725     sub stop_read {
1726     my ($self) = @_;
1727 elmex 1.1
1728 root 1.93 delete $self->{_rw} unless $self->{tls};
1729 root 1.8 }
1730 elmex 1.1
1731 root 1.10 sub start_read {
1732     my ($self) = @_;
1733    
1734 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1735 root 1.10 Scalar::Util::weaken $self;
1736    
1737 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1738 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1739 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1740 root 1.10
1741     if ($len > 0) {
1742 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1743 root 1.43
1744 root 1.93 if ($self->{tls}) {
1745     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1746 root 1.97
1747 root 1.93 &_dotls ($self);
1748     } else {
1749 root 1.159 $self->_drain_rbuf;
1750 root 1.93 }
1751 root 1.10
1752     } elsif (defined $len) {
1753 root 1.38 delete $self->{_rw};
1754     $self->{_eof} = 1;
1755 root 1.159 $self->_drain_rbuf;
1756 root 1.10
1757 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1758 root 1.52 return $self->_error ($!, 1);
1759 root 1.10 }
1760 root 1.175 };
1761 root 1.10 }
1762 elmex 1.1 }
1763    
1764 root 1.133 our $ERROR_SYSCALL;
1765     our $ERROR_WANT_READ;
1766    
1767     sub _tls_error {
1768     my ($self, $err) = @_;
1769    
1770     return $self->_error ($!, 1)
1771     if $err == Net::SSLeay::ERROR_SYSCALL ();
1772    
1773 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1774    
1775     # reduce error string to look less scary
1776     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1777    
1778 root 1.143 if ($self->{_on_starttls}) {
1779     (delete $self->{_on_starttls})->($self, undef, $err);
1780     &_freetls;
1781     } else {
1782     &_freetls;
1783 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1784 root 1.143 }
1785 root 1.133 }
1786    
1787 root 1.97 # poll the write BIO and send the data if applicable
1788 root 1.133 # also decode read data if possible
1789     # this is basiclaly our TLS state machine
1790     # more efficient implementations are possible with openssl,
1791     # but not with the buggy and incomplete Net::SSLeay.
1792 root 1.19 sub _dotls {
1793     my ($self) = @_;
1794    
1795 root 1.97 my $tmp;
1796 root 1.56
1797 root 1.38 if (length $self->{_tls_wbuf}) {
1798 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1799     substr $self->{_tls_wbuf}, 0, $tmp, "";
1800 root 1.22 }
1801 root 1.133
1802     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1803     return $self->_tls_error ($tmp)
1804     if $tmp != $ERROR_WANT_READ
1805 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1806 root 1.19 }
1807    
1808 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1809     unless (length $tmp) {
1810 root 1.143 $self->{_on_starttls}
1811     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1812 root 1.92 &_freetls;
1813 root 1.143
1814 root 1.142 if ($self->{on_stoptls}) {
1815     $self->{on_stoptls}($self);
1816     return;
1817     } else {
1818     # let's treat SSL-eof as we treat normal EOF
1819     delete $self->{_rw};
1820     $self->{_eof} = 1;
1821     }
1822 root 1.56 }
1823 root 1.91
1824 root 1.116 $self->{_tls_rbuf} .= $tmp;
1825 root 1.159 $self->_drain_rbuf;
1826 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1827 root 1.23 }
1828    
1829 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1830 root 1.133 return $self->_tls_error ($tmp)
1831     if $tmp != $ERROR_WANT_READ
1832 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1833 root 1.91
1834 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1835     $self->{wbuf} .= $tmp;
1836 root 1.91 $self->_drain_wbuf;
1837 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1838 root 1.91 }
1839 root 1.142
1840     $self->{_on_starttls}
1841     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1842 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1843 root 1.19 }
1844    
1845 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1846    
1847     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1848     object is created, you can also do that at a later time by calling
1849     C<starttls>.
1850    
1851 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1852     write data and then call C<< ->starttls >> then TLS negotiation will start
1853     immediately, after which the queued write data is then sent.
1854    
1855 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1856     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1857    
1858 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1859     when AnyEvent::Handle has to create its own TLS connection object, or
1860     a hash reference with C<< key => value >> pairs that will be used to
1861     construct a new context.
1862    
1863     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1864     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1865     changed to your liking. Note that the handshake might have already started
1866     when this function returns.
1867 root 1.38
1868 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1869     handshakes on the same stream. Best do not attempt to use the stream after
1870     stopping TLS.
1871 root 1.92
1872 root 1.193 This method may invoke callbacks (and therefore the handle might be
1873     destroyed after it returns).
1874    
1875 root 1.25 =cut
1876    
1877 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1878    
1879 root 1.19 sub starttls {
1880 root 1.160 my ($self, $tls, $ctx) = @_;
1881    
1882     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1883     if $self->{tls};
1884    
1885     $self->{tls} = $tls;
1886     $self->{tls_ctx} = $ctx if @_ > 2;
1887    
1888     return unless $self->{fh};
1889 root 1.19
1890 root 1.94 require Net::SSLeay;
1891    
1892 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1893     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1894 root 1.133
1895 root 1.180 $tls = delete $self->{tls};
1896 root 1.160 $ctx = $self->{tls_ctx};
1897 root 1.131
1898 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1899    
1900 root 1.131 if ("HASH" eq ref $ctx) {
1901     require AnyEvent::TLS;
1902    
1903 root 1.137 if ($ctx->{cache}) {
1904     my $key = $ctx+0;
1905     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1906     } else {
1907     $ctx = new AnyEvent::TLS %$ctx;
1908     }
1909 root 1.131 }
1910 root 1.92
1911 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1912 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1913 root 1.19
1914 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1915     # but the openssl maintainers basically said: "trust us, it just works".
1916     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1917     # and mismaintained ssleay-module doesn't even offer them).
1918 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1919 root 1.87 #
1920     # in short: this is a mess.
1921     #
1922 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1923 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1924 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1925     # have identity issues in that area.
1926 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1927     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1928     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1929 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1930 root 1.21
1931 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1932     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1933 root 1.19
1934 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1935    
1936 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1937 root 1.19
1938 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1939 root 1.143 if $self->{on_starttls};
1940 root 1.142
1941 root 1.93 &_dotls; # need to trigger the initial handshake
1942     $self->start_read; # make sure we actually do read
1943 root 1.19 }
1944    
1945 root 1.25 =item $handle->stoptls
1946    
1947 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1948     sending a close notify to the other side, but since OpenSSL doesn't
1949 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
1950 root 1.160 the stream afterwards.
1951 root 1.25
1952 root 1.193 This method may invoke callbacks (and therefore the handle might be
1953     destroyed after it returns).
1954    
1955 root 1.25 =cut
1956    
1957     sub stoptls {
1958     my ($self) = @_;
1959    
1960 root 1.192 if ($self->{tls} && $self->{fh}) {
1961 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1962 root 1.92
1963     &_dotls;
1964    
1965 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1966     # # we, we... have to use openssl :/#d#
1967     # &_freetls;#d#
1968 root 1.92 }
1969     }
1970    
1971     sub _freetls {
1972     my ($self) = @_;
1973    
1974     return unless $self->{tls};
1975 root 1.38
1976 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1977 root 1.171 if $self->{tls} > 0;
1978 root 1.92
1979 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1980 root 1.25 }
1981    
1982 root 1.19 sub DESTROY {
1983 root 1.120 my ($self) = @_;
1984 root 1.19
1985 root 1.92 &_freetls;
1986 root 1.62
1987     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1988    
1989 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1990 root 1.62 my $fh = delete $self->{fh};
1991     my $wbuf = delete $self->{wbuf};
1992    
1993     my @linger;
1994    
1995 root 1.175 push @linger, AE::io $fh, 1, sub {
1996 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1997    
1998     if ($len > 0) {
1999     substr $wbuf, 0, $len, "";
2000     } else {
2001     @linger = (); # end
2002     }
2003 root 1.175 };
2004     push @linger, AE::timer $linger, 0, sub {
2005 root 1.62 @linger = ();
2006 root 1.175 };
2007 root 1.62 }
2008 root 1.19 }
2009    
2010 root 1.99 =item $handle->destroy
2011    
2012 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2013 root 1.141 no further callbacks will be invoked and as many resources as possible
2014 root 1.165 will be freed. Any method you will call on the handle object after
2015     destroying it in this way will be silently ignored (and it will return the
2016     empty list).
2017 root 1.99
2018 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2019     object and it will simply shut down. This works in fatal error and EOF
2020     callbacks, as well as code outside. It does I<NOT> work in a read or write
2021     callback, so when you want to destroy the AnyEvent::Handle object from
2022     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2023     that case.
2024    
2025 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2026     will be removed as well, so if those are the only reference holders (as
2027     is common), then one doesn't need to do anything special to break any
2028     reference cycles.
2029    
2030 root 1.99 The handle might still linger in the background and write out remaining
2031     data, as specified by the C<linger> option, however.
2032    
2033     =cut
2034    
2035     sub destroy {
2036     my ($self) = @_;
2037    
2038     $self->DESTROY;
2039     %$self = ();
2040 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2041     }
2042    
2043 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2044     #nop
2045 root 1.99 }
2046    
2047 root 1.192 =item $handle->destroyed
2048    
2049     Returns false as long as the handle hasn't been destroyed by a call to C<<
2050     ->destroy >>, true otherwise.
2051    
2052     Can be useful to decide whether the handle is still valid after some
2053     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2054     C<< ->starttls >> and other methods can call user callbacks, which in turn
2055     can destroy the handle, so work can be avoided by checking sometimes:
2056    
2057     $hdl->starttls ("accept");
2058     return if $hdl->destroyed;
2059     $hdl->push_write (...
2060    
2061     Note that the call to C<push_write> will silently be ignored if the handle
2062     has been destroyed, so often you can just ignore the possibility of the
2063     handle being destroyed.
2064    
2065     =cut
2066    
2067     sub destroyed { 0 }
2068     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2069    
2070 root 1.19 =item AnyEvent::Handle::TLS_CTX
2071    
2072 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2073     for TLS mode.
2074 root 1.19
2075 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2076 root 1.19
2077     =cut
2078    
2079     our $TLS_CTX;
2080    
2081     sub TLS_CTX() {
2082 root 1.131 $TLS_CTX ||= do {
2083     require AnyEvent::TLS;
2084 root 1.19
2085 root 1.131 new AnyEvent::TLS
2086 root 1.19 }
2087     }
2088    
2089 elmex 1.1 =back
2090    
2091 root 1.95
2092     =head1 NONFREQUENTLY ASKED QUESTIONS
2093    
2094     =over 4
2095    
2096 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2097     still get further invocations!
2098    
2099     That's because AnyEvent::Handle keeps a reference to itself when handling
2100     read or write callbacks.
2101    
2102     It is only safe to "forget" the reference inside EOF or error callbacks,
2103     from within all other callbacks, you need to explicitly call the C<<
2104     ->destroy >> method.
2105    
2106     =item I get different callback invocations in TLS mode/Why can't I pause
2107     reading?
2108    
2109     Unlike, say, TCP, TLS connections do not consist of two independent
2110     communication channels, one for each direction. Or put differently. The
2111     read and write directions are not independent of each other: you cannot
2112     write data unless you are also prepared to read, and vice versa.
2113    
2114     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2115     callback invocations when you are not expecting any read data - the reason
2116     is that AnyEvent::Handle always reads in TLS mode.
2117    
2118     During the connection, you have to make sure that you always have a
2119     non-empty read-queue, or an C<on_read> watcher. At the end of the
2120     connection (or when you no longer want to use it) you can call the
2121     C<destroy> method.
2122    
2123 root 1.95 =item How do I read data until the other side closes the connection?
2124    
2125 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2126     to achieve this is by setting an C<on_read> callback that does nothing,
2127     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2128     will be in C<$_[0]{rbuf}>:
2129 root 1.95
2130     $handle->on_read (sub { });
2131     $handle->on_eof (undef);
2132     $handle->on_error (sub {
2133     my $data = delete $_[0]{rbuf};
2134     });
2135    
2136     The reason to use C<on_error> is that TCP connections, due to latencies
2137     and packets loss, might get closed quite violently with an error, when in
2138     fact, all data has been received.
2139    
2140 root 1.101 It is usually better to use acknowledgements when transferring data,
2141 root 1.95 to make sure the other side hasn't just died and you got the data
2142     intact. This is also one reason why so many internet protocols have an
2143     explicit QUIT command.
2144    
2145 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2146     all data has been written?
2147 root 1.95
2148     After writing your last bits of data, set the C<on_drain> callback
2149     and destroy the handle in there - with the default setting of
2150     C<low_water_mark> this will be called precisely when all data has been
2151     written to the socket:
2152    
2153     $handle->push_write (...);
2154     $handle->on_drain (sub {
2155     warn "all data submitted to the kernel\n";
2156     undef $handle;
2157     });
2158    
2159 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2160     consider using C<< ->push_shutdown >> instead.
2161    
2162     =item I want to contact a TLS/SSL server, I don't care about security.
2163    
2164     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2165     simply connect to it and then create the AnyEvent::Handle with the C<tls>
2166     parameter:
2167    
2168 root 1.144 tcp_connect $host, $port, sub {
2169     my ($fh) = @_;
2170 root 1.143
2171 root 1.144 my $handle = new AnyEvent::Handle
2172     fh => $fh,
2173     tls => "connect",
2174     on_error => sub { ... };
2175    
2176     $handle->push_write (...);
2177     };
2178 root 1.143
2179     =item I want to contact a TLS/SSL server, I do care about security.
2180    
2181 root 1.144 Then you should additionally enable certificate verification, including
2182     peername verification, if the protocol you use supports it (see
2183     L<AnyEvent::TLS>, C<verify_peername>).
2184    
2185     E.g. for HTTPS:
2186    
2187     tcp_connect $host, $port, sub {
2188     my ($fh) = @_;
2189    
2190     my $handle = new AnyEvent::Handle
2191     fh => $fh,
2192     peername => $host,
2193     tls => "connect",
2194     tls_ctx => { verify => 1, verify_peername => "https" },
2195     ...
2196    
2197     Note that you must specify the hostname you connected to (or whatever
2198     "peername" the protocol needs) as the C<peername> argument, otherwise no
2199     peername verification will be done.
2200    
2201     The above will use the system-dependent default set of trusted CA
2202     certificates. If you want to check against a specific CA, add the
2203     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2204    
2205     tls_ctx => {
2206     verify => 1,
2207     verify_peername => "https",
2208     ca_file => "my-ca-cert.pem",
2209     },
2210    
2211     =item I want to create a TLS/SSL server, how do I do that?
2212    
2213     Well, you first need to get a server certificate and key. You have
2214     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2215     self-signed certificate (cheap. check the search engine of your choice,
2216     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2217     nice program for that purpose).
2218    
2219     Then create a file with your private key (in PEM format, see
2220     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2221     file should then look like this:
2222    
2223     -----BEGIN RSA PRIVATE KEY-----
2224     ...header data
2225     ... lots of base64'y-stuff
2226     -----END RSA PRIVATE KEY-----
2227    
2228     -----BEGIN CERTIFICATE-----
2229     ... lots of base64'y-stuff
2230     -----END CERTIFICATE-----
2231    
2232     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2233     specify this file as C<cert_file>:
2234    
2235     tcp_server undef, $port, sub {
2236     my ($fh) = @_;
2237    
2238     my $handle = new AnyEvent::Handle
2239     fh => $fh,
2240     tls => "accept",
2241     tls_ctx => { cert_file => "my-server-keycert.pem" },
2242     ...
2243 root 1.143
2244 root 1.144 When you have intermediate CA certificates that your clients might not
2245     know about, just append them to the C<cert_file>.
2246 root 1.143
2247 root 1.95 =back
2248    
2249    
2250 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2251    
2252     In many cases, you might want to subclass AnyEvent::Handle.
2253    
2254     To make this easier, a given version of AnyEvent::Handle uses these
2255     conventions:
2256    
2257     =over 4
2258    
2259     =item * all constructor arguments become object members.
2260    
2261     At least initially, when you pass a C<tls>-argument to the constructor it
2262 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2263 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2264    
2265     =item * other object member names are prefixed with an C<_>.
2266    
2267     All object members not explicitly documented (internal use) are prefixed
2268     with an underscore character, so the remaining non-C<_>-namespace is free
2269     for use for subclasses.
2270    
2271     =item * all members not documented here and not prefixed with an underscore
2272     are free to use in subclasses.
2273    
2274     Of course, new versions of AnyEvent::Handle may introduce more "public"
2275     member variables, but thats just life, at least it is documented.
2276    
2277     =back
2278    
2279 elmex 1.1 =head1 AUTHOR
2280    
2281 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2282 elmex 1.1
2283     =cut
2284    
2285     1; # End of AnyEvent::Handle