ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.200
Committed: Tue Oct 12 06:47:54 2010 UTC (13 years, 7 months ago) by root
Branch: MAIN
Changes since 1.199: +2 -5 lines
Log Message:
start of a faq

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 elmex 1.1 =head1 METHODS
81    
82     =over 4
83    
84 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
85 elmex 1.1
86 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
87 elmex 1.1
88     =over 4
89    
90 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
91 root 1.158
92 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
93 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
94     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95     that mode.
96 root 1.8
97 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98    
99     Try to connect to the specified host and service (port), using
100     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101     default C<peername>.
102    
103     You have to specify either this parameter, or C<fh>, above.
104    
105 root 1.160 It is possible to push requests on the read and write queues, and modify
106     properties of the stream, even while AnyEvent::Handle is connecting.
107    
108 root 1.159 When this parameter is specified, then the C<on_prepare>,
109     C<on_connect_error> and C<on_connect> callbacks will be called under the
110     appropriate circumstances:
111    
112     =over 4
113    
114     =item on_prepare => $cb->($handle)
115    
116     This (rarely used) callback is called before a new connection is
117     attempted, but after the file handle has been created. It could be used to
118     prepare the file handle with parameters required for the actual connect
119     (as opposed to settings that can be changed when the connection is already
120     established).
121    
122 root 1.161 The return value of this callback should be the connect timeout value in
123 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
124     default timeout is to be used).
125 root 1.161
126 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
127    
128     This callback is called when a connection has been successfully established.
129    
130 root 1.198 The peer's numeric host and port (the socket peername) are passed as
131 root 1.159 parameters, together with a retry callback.
132    
133 root 1.198 If, for some reason, the handle is not acceptable, calling C<$retry>
134     will continue with the next connection target (in case of multi-homed
135     hosts or SRV records there can be multiple connection endpoints). At the
136     time it is called the read and write queues, eof status, tls status and
137     similar properties of the handle will have been reset.
138 root 1.159
139 root 1.198 In most cases, you should ignore the C<$retry> parameter.
140 root 1.158
141 root 1.159 =item on_connect_error => $cb->($handle, $message)
142 root 1.10
143 root 1.186 This callback is called when the connection could not be
144 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
145     message describing it (usually the same as C<"$!">).
146 root 1.8
147 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
148     fatal error instead.
149 root 1.82
150 root 1.159 =back
151 root 1.80
152 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
153 root 1.10
154 root 1.52 This is the error callback, which is called when, well, some error
155     occured, such as not being able to resolve the hostname, failure to
156 root 1.198 connect, or a read error.
157 root 1.52
158     Some errors are fatal (which is indicated by C<$fatal> being true). On
159 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
160     destroy >>) after invoking the error callback (which means you are free to
161     examine the handle object). Examples of fatal errors are an EOF condition
162 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
163 root 1.198 cases where the other side can close the connection at will, it is
164 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
165 root 1.82
166 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
167     against, but in some cases (TLS errors), this does not work well. It is
168     recommended to always output the C<$message> argument in human-readable
169     error messages (it's usually the same as C<"$!">).
170    
171 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
172 root 1.82 to simply ignore this parameter and instead abondon the handle object
173     when this callback is invoked. Examples of non-fatal errors are timeouts
174     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
175 root 1.8
176 root 1.198 On entry to the callback, the value of C<$!> contains the operating
177     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
178 root 1.133 C<EPROTO>).
179 root 1.8
180 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
181 root 1.198 you will not be notified of errors otherwise. The default just calls
182 root 1.52 C<croak>.
183 root 1.8
184 root 1.40 =item on_read => $cb->($handle)
185 root 1.8
186     This sets the default read callback, which is called when data arrives
187 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
188     callback will only be called when at least one octet of data is in the
189     read buffer).
190 root 1.8
191     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
192 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
193 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
194     the beginning from it.
195 root 1.8
196 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
197     modifies the read queue. Or do both. Or ...
198    
199 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
200 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
201     calling the C<on_eof> callback. If no progress can be made, then a fatal
202     error will be raised (with C<$!> set to C<EPIPE>).
203 elmex 1.1
204 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
205     doesn't mean you I<require> some data: if there is an EOF and there
206     are outstanding read requests then an error will be flagged. With an
207     C<on_read> callback, the C<on_eof> callback will be invoked.
208    
209 root 1.159 =item on_eof => $cb->($handle)
210    
211     Set the callback to be called when an end-of-file condition is detected,
212     i.e. in the case of a socket, when the other side has closed the
213     connection cleanly, and there are no outstanding read requests in the
214     queue (if there are read requests, then an EOF counts as an unexpected
215     connection close and will be flagged as an error).
216    
217     For sockets, this just means that the other side has stopped sending data,
218     you can still try to write data, and, in fact, one can return from the EOF
219     callback and continue writing data, as only the read part has been shut
220     down.
221    
222     If an EOF condition has been detected but no C<on_eof> callback has been
223     set, then a fatal error will be raised with C<$!> set to <0>.
224    
225 root 1.40 =item on_drain => $cb->($handle)
226 elmex 1.1
227 root 1.8 This sets the callback that is called when the write buffer becomes empty
228 root 1.198 (or immediately if the buffer is empty already).
229 elmex 1.1
230 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
231 elmex 1.2
232 root 1.69 This callback is useful when you don't want to put all of your write data
233     into the queue at once, for example, when you want to write the contents
234     of some file to the socket you might not want to read the whole file into
235     memory and push it into the queue, but instead only read more data from
236     the file when the write queue becomes empty.
237    
238 root 1.43 =item timeout => $fractional_seconds
239    
240 root 1.176 =item rtimeout => $fractional_seconds
241    
242     =item wtimeout => $fractional_seconds
243    
244     If non-zero, then these enables an "inactivity" timeout: whenever this
245     many seconds pass without a successful read or write on the underlying
246     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
247     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
248     error will be raised).
249    
250 root 1.198 There are three variants of the timeouts that work independently
251 root 1.176 of each other, for both read and write, just read, and just write:
252     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
253     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
254     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
255 root 1.43
256 root 1.198 Note that timeout processing is active even when you do not have
257 root 1.43 any outstanding read or write requests: If you plan to keep the connection
258 root 1.198 idle then you should disable the timeout temporarily or ignore the timeout
259 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
260     restart the timeout.
261 root 1.43
262     Zero (the default) disables this timeout.
263    
264     =item on_timeout => $cb->($handle)
265    
266     Called whenever the inactivity timeout passes. If you return from this
267     callback, then the timeout will be reset as if some activity had happened,
268     so this condition is not fatal in any way.
269    
270 root 1.8 =item rbuf_max => <bytes>
271 elmex 1.2
272 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
273     when the read buffer ever (strictly) exceeds this size. This is useful to
274 root 1.88 avoid some forms of denial-of-service attacks.
275 elmex 1.2
276 root 1.8 For example, a server accepting connections from untrusted sources should
277     be configured to accept only so-and-so much data that it cannot act on
278     (for example, when expecting a line, an attacker could send an unlimited
279     amount of data without a callback ever being called as long as the line
280     isn't finished).
281 elmex 1.2
282 root 1.70 =item autocork => <boolean>
283    
284 root 1.198 When disabled (the default), C<push_write> will try to immediately
285     write the data to the handle if possible. This avoids having to register
286 root 1.88 a write watcher and wait for the next event loop iteration, but can
287     be inefficient if you write multiple small chunks (on the wire, this
288     disadvantage is usually avoided by your kernel's nagle algorithm, see
289     C<no_delay>, but this option can save costly syscalls).
290 root 1.70
291 root 1.198 When enabled, writes will always be queued till the next event loop
292 root 1.70 iteration. This is efficient when you do many small writes per iteration,
293 root 1.88 but less efficient when you do a single write only per iteration (or when
294     the write buffer often is full). It also increases write latency.
295 root 1.70
296     =item no_delay => <boolean>
297    
298     When doing small writes on sockets, your operating system kernel might
299     wait a bit for more data before actually sending it out. This is called
300     the Nagle algorithm, and usually it is beneficial.
301    
302 root 1.88 In some situations you want as low a delay as possible, which can be
303     accomplishd by setting this option to a true value.
304 root 1.70
305 root 1.198 The default is your operating system's default behaviour (most likely
306     enabled). This option explicitly enables or disables it, if possible.
307 root 1.70
308 root 1.182 =item keepalive => <boolean>
309    
310     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
311     normally, TCP connections have no time-out once established, so TCP
312 root 1.186 connections, once established, can stay alive forever even when the other
313 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
314 root 1.198 TCP connections when the other side becomes unreachable. While the default
315 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
316     and, if the other side doesn't reply, take down the TCP connection some 10
317     to 15 minutes later.
318    
319     It is harmless to specify this option for file handles that do not support
320     keepalives, and enabling it on connections that are potentially long-lived
321     is usually a good idea.
322    
323     =item oobinline => <boolean>
324    
325     BSD majorly fucked up the implementation of TCP urgent data. The result
326     is that almost no OS implements TCP according to the specs, and every OS
327     implements it slightly differently.
328    
329 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
330     is enabled) gives you the most portable way of getting urgent data, by
331     putting it into the stream.
332    
333     Since BSD emulation of OOB data on top of TCP's urgent data can have
334     security implications, AnyEvent::Handle sets this flag automatically
335 root 1.184 unless explicitly specified. Note that setting this flag after
336     establishing a connection I<may> be a bit too late (data loss could
337     already have occured on BSD systems), but at least it will protect you
338     from most attacks.
339 root 1.182
340 root 1.8 =item read_size => <bytes>
341 elmex 1.2
342 root 1.198 The default read block size (the number of bytes this module will
343 root 1.88 try to read during each loop iteration, which affects memory
344     requirements). Default: C<8192>.
345 root 1.8
346     =item low_water_mark => <bytes>
347    
348 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
349     buffer: If the buffer reaches this size or gets even samller it is
350 root 1.8 considered empty.
351 elmex 1.2
352 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
353     the write buffer before it is fully drained, but this is a rare case, as
354     the operating system kernel usually buffers data as well, so the default
355     is good in almost all cases.
356    
357 root 1.62 =item linger => <seconds>
358    
359 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
360 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
361     write data and will install a watcher that will write this data to the
362     socket. No errors will be reported (this mostly matches how the operating
363     system treats outstanding data at socket close time).
364 root 1.62
365 root 1.88 This will not work for partial TLS data that could not be encoded
366 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
367     help.
368 root 1.62
369 root 1.133 =item peername => $string
370    
371 root 1.134 A string used to identify the remote site - usually the DNS hostname
372     (I<not> IDN!) used to create the connection, rarely the IP address.
373 root 1.131
374 root 1.133 Apart from being useful in error messages, this string is also used in TLS
375 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
376 root 1.198 verification will be skipped when C<peername> is not specified or is
377 root 1.144 C<undef>.
378 root 1.131
379 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
380    
381 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
382 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
383 root 1.88 established and will transparently encrypt/decrypt data afterwards.
384 root 1.19
385 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
386     appropriate error message.
387    
388 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
389 root 1.88 automatically when you try to create a TLS handle): this module doesn't
390     have a dependency on that module, so if your module requires it, you have
391     to add the dependency yourself.
392 root 1.26
393 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
394     C<accept>, and for the TLS client side of a connection, use C<connect>
395     mode.
396 root 1.19
397     You can also provide your own TLS connection object, but you have
398     to make sure that you call either C<Net::SSLeay::set_connect_state>
399     or C<Net::SSLeay::set_accept_state> on it before you pass it to
400 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
401     object.
402    
403     At some future point, AnyEvent::Handle might switch to another TLS
404     implementation, then the option to use your own session object will go
405     away.
406 root 1.19
407 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
408     passing in the wrong integer will lead to certain crash. This most often
409     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
410     segmentation fault.
411    
412 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
413 root 1.26
414 root 1.131 =item tls_ctx => $anyevent_tls
415 root 1.19
416 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
417 root 1.19 (unless a connection object was specified directly). If this parameter is
418     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
419    
420 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
421     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
422     new TLS context object.
423    
424 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
425 root 1.142
426     This callback will be invoked when the TLS/SSL handshake has finished. If
427     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
428     (C<on_stoptls> will not be called in this case).
429    
430     The session in C<< $handle->{tls} >> can still be examined in this
431     callback, even when the handshake was not successful.
432    
433 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
434     callback is in effect, instead, the error message will be passed to C<on_starttls>.
435    
436     Without this callback, handshake failures lead to C<on_error> being
437 root 1.198 called as usual.
438 root 1.143
439 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
440 root 1.143 need to do that, start an zero-second timer instead whose callback can
441     then call C<< ->starttls >> again.
442    
443 root 1.142 =item on_stoptls => $cb->($handle)
444    
445     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
446     set, then it will be invoked after freeing the TLS session. If it is not,
447     then a TLS shutdown condition will be treated like a normal EOF condition
448     on the handle.
449    
450     The session in C<< $handle->{tls} >> can still be examined in this
451     callback.
452    
453     This callback will only be called on TLS shutdowns, not when the
454     underlying handle signals EOF.
455    
456 root 1.40 =item json => JSON or JSON::XS object
457    
458     This is the json coder object used by the C<json> read and write types.
459    
460 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
461 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
462     texts.
463 root 1.40
464     Note that you are responsible to depend on the JSON module if you want to
465     use this functionality, as AnyEvent does not have a dependency itself.
466    
467 elmex 1.1 =back
468    
469     =cut
470    
471     sub new {
472 root 1.8 my $class = shift;
473     my $self = bless { @_ }, $class;
474    
475 root 1.159 if ($self->{fh}) {
476     $self->_start;
477     return unless $self->{fh}; # could be gone by now
478    
479     } elsif ($self->{connect}) {
480     require AnyEvent::Socket;
481    
482     $self->{peername} = $self->{connect}[0]
483     unless exists $self->{peername};
484    
485     $self->{_skip_drain_rbuf} = 1;
486    
487     {
488     Scalar::Util::weaken (my $self = $self);
489    
490     $self->{_connect} =
491     AnyEvent::Socket::tcp_connect (
492     $self->{connect}[0],
493     $self->{connect}[1],
494     sub {
495     my ($fh, $host, $port, $retry) = @_;
496    
497     if ($fh) {
498     $self->{fh} = $fh;
499    
500     delete $self->{_skip_drain_rbuf};
501     $self->_start;
502    
503     $self->{on_connect}
504     and $self->{on_connect}($self, $host, $port, sub {
505 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
506 root 1.159 $self->{_skip_drain_rbuf} = 1;
507     &$retry;
508     });
509    
510     } else {
511     if ($self->{on_connect_error}) {
512     $self->{on_connect_error}($self, "$!");
513     $self->destroy;
514     } else {
515 root 1.161 $self->_error ($!, 1);
516 root 1.159 }
517     }
518     },
519     sub {
520     local $self->{fh} = $_[0];
521    
522 root 1.161 $self->{on_prepare}
523     ? $self->{on_prepare}->($self)
524     : ()
525 root 1.159 }
526     );
527     }
528    
529     } else {
530     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
531     }
532    
533     $self
534     }
535    
536     sub _start {
537     my ($self) = @_;
538 root 1.8
539 root 1.194 # too many clueless people try to use udp and similar sockets
540     # with AnyEvent::Handle, do them a favour.
541 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
542     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
543 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
544 root 1.194
545 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
546 elmex 1.1
547 root 1.176 $self->{_activity} =
548     $self->{_ractivity} =
549     $self->{_wactivity} = AE::now;
550    
551 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
552     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
553     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
554    
555 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
556     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
557    
558     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
559 root 1.131
560 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
561 root 1.94 if $self->{tls};
562 root 1.19
563 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
564 root 1.10
565 root 1.66 $self->start_read
566 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
567 root 1.160
568     $self->_drain_wbuf;
569 root 1.8 }
570 elmex 1.2
571 root 1.52 sub _error {
572 root 1.133 my ($self, $errno, $fatal, $message) = @_;
573 root 1.8
574 root 1.52 $! = $errno;
575 root 1.133 $message ||= "$!";
576 root 1.37
577 root 1.52 if ($self->{on_error}) {
578 root 1.133 $self->{on_error}($self, $fatal, $message);
579 root 1.151 $self->destroy if $fatal;
580 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
581 root 1.149 $self->destroy;
582 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
583 root 1.52 }
584 elmex 1.1 }
585    
586 root 1.8 =item $fh = $handle->fh
587 elmex 1.1
588 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
589 elmex 1.1
590     =cut
591    
592 root 1.38 sub fh { $_[0]{fh} }
593 elmex 1.1
594 root 1.8 =item $handle->on_error ($cb)
595 elmex 1.1
596 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
597 elmex 1.1
598 root 1.8 =cut
599    
600     sub on_error {
601     $_[0]{on_error} = $_[1];
602     }
603    
604     =item $handle->on_eof ($cb)
605    
606     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
607 elmex 1.1
608     =cut
609    
610 root 1.8 sub on_eof {
611     $_[0]{on_eof} = $_[1];
612     }
613    
614 root 1.43 =item $handle->on_timeout ($cb)
615    
616 root 1.176 =item $handle->on_rtimeout ($cb)
617    
618     =item $handle->on_wtimeout ($cb)
619    
620     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
621     callback, or disables the callback (but not the timeout) if C<$cb> =
622     C<undef>. See the C<timeout> constructor argument and method.
623 root 1.43
624     =cut
625    
626 root 1.176 # see below
627 root 1.43
628 root 1.70 =item $handle->autocork ($boolean)
629    
630     Enables or disables the current autocork behaviour (see C<autocork>
631 root 1.105 constructor argument). Changes will only take effect on the next write.
632 root 1.70
633     =cut
634    
635 root 1.105 sub autocork {
636     $_[0]{autocork} = $_[1];
637     }
638    
639 root 1.70 =item $handle->no_delay ($boolean)
640    
641     Enables or disables the C<no_delay> setting (see constructor argument of
642     the same name for details).
643    
644     =cut
645    
646     sub no_delay {
647     $_[0]{no_delay} = $_[1];
648    
649 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
650     if $_[0]{fh};
651 root 1.182 }
652    
653     =item $handle->keepalive ($boolean)
654    
655     Enables or disables the C<keepalive> setting (see constructor argument of
656     the same name for details).
657    
658     =cut
659    
660     sub keepalive {
661     $_[0]{keepalive} = $_[1];
662    
663     eval {
664     local $SIG{__DIE__};
665     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
666     if $_[0]{fh};
667     };
668     }
669    
670     =item $handle->oobinline ($boolean)
671    
672     Enables or disables the C<oobinline> setting (see constructor argument of
673     the same name for details).
674    
675     =cut
676    
677     sub oobinline {
678     $_[0]{oobinline} = $_[1];
679    
680     eval {
681     local $SIG{__DIE__};
682     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
683     if $_[0]{fh};
684     };
685     }
686    
687     =item $handle->keepalive ($boolean)
688    
689     Enables or disables the C<keepalive> setting (see constructor argument of
690     the same name for details).
691    
692     =cut
693    
694     sub keepalive {
695     $_[0]{keepalive} = $_[1];
696    
697     eval {
698     local $SIG{__DIE__};
699     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
700 root 1.159 if $_[0]{fh};
701 root 1.70 };
702     }
703    
704 root 1.142 =item $handle->on_starttls ($cb)
705    
706     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
707    
708     =cut
709    
710     sub on_starttls {
711     $_[0]{on_starttls} = $_[1];
712     }
713    
714     =item $handle->on_stoptls ($cb)
715    
716     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
717    
718     =cut
719    
720 root 1.189 sub on_stoptls {
721 root 1.142 $_[0]{on_stoptls} = $_[1];
722     }
723    
724 root 1.168 =item $handle->rbuf_max ($max_octets)
725    
726     Configures the C<rbuf_max> setting (C<undef> disables it).
727    
728     =cut
729    
730     sub rbuf_max {
731     $_[0]{rbuf_max} = $_[1];
732     }
733    
734 root 1.43 #############################################################################
735    
736     =item $handle->timeout ($seconds)
737    
738 root 1.176 =item $handle->rtimeout ($seconds)
739    
740     =item $handle->wtimeout ($seconds)
741    
742 root 1.43 Configures (or disables) the inactivity timeout.
743    
744 root 1.176 =item $handle->timeout_reset
745    
746     =item $handle->rtimeout_reset
747    
748     =item $handle->wtimeout_reset
749    
750     Reset the activity timeout, as if data was received or sent.
751    
752     These methods are cheap to call.
753    
754 root 1.43 =cut
755    
756 root 1.176 for my $dir ("", "r", "w") {
757     my $timeout = "${dir}timeout";
758     my $tw = "_${dir}tw";
759     my $on_timeout = "on_${dir}timeout";
760     my $activity = "_${dir}activity";
761     my $cb;
762    
763     *$on_timeout = sub {
764     $_[0]{$on_timeout} = $_[1];
765     };
766    
767     *$timeout = sub {
768     my ($self, $new_value) = @_;
769 root 1.43
770 root 1.176 $self->{$timeout} = $new_value;
771     delete $self->{$tw}; &$cb;
772     };
773 root 1.43
774 root 1.176 *{"${dir}timeout_reset"} = sub {
775     $_[0]{$activity} = AE::now;
776     };
777 root 1.43
778 root 1.176 # main workhorse:
779     # reset the timeout watcher, as neccessary
780     # also check for time-outs
781     $cb = sub {
782     my ($self) = @_;
783    
784     if ($self->{$timeout} && $self->{fh}) {
785     my $NOW = AE::now;
786    
787     # when would the timeout trigger?
788     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
789    
790     # now or in the past already?
791     if ($after <= 0) {
792     $self->{$activity} = $NOW;
793 root 1.43
794 root 1.176 if ($self->{$on_timeout}) {
795     $self->{$on_timeout}($self);
796     } else {
797     $self->_error (Errno::ETIMEDOUT);
798     }
799 root 1.43
800 root 1.176 # callback could have changed timeout value, optimise
801     return unless $self->{$timeout};
802 root 1.43
803 root 1.176 # calculate new after
804     $after = $self->{$timeout};
805 root 1.43 }
806    
807 root 1.176 Scalar::Util::weaken $self;
808     return unless $self; # ->error could have destroyed $self
809 root 1.43
810 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
811     delete $self->{$tw};
812     $cb->($self);
813     };
814     } else {
815     delete $self->{$tw};
816 root 1.43 }
817     }
818     }
819    
820 root 1.9 #############################################################################
821    
822     =back
823    
824     =head2 WRITE QUEUE
825    
826     AnyEvent::Handle manages two queues per handle, one for writing and one
827     for reading.
828    
829     The write queue is very simple: you can add data to its end, and
830     AnyEvent::Handle will automatically try to get rid of it for you.
831    
832 elmex 1.20 When data could be written and the write buffer is shorter then the low
833 root 1.9 water mark, the C<on_drain> callback will be invoked.
834    
835     =over 4
836    
837 root 1.8 =item $handle->on_drain ($cb)
838    
839     Sets the C<on_drain> callback or clears it (see the description of
840     C<on_drain> in the constructor).
841    
842 root 1.193 This method may invoke callbacks (and therefore the handle might be
843     destroyed after it returns).
844    
845 root 1.8 =cut
846    
847     sub on_drain {
848 elmex 1.1 my ($self, $cb) = @_;
849    
850 root 1.8 $self->{on_drain} = $cb;
851    
852     $cb->($self)
853 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
854 root 1.8 }
855    
856     =item $handle->push_write ($data)
857    
858     Queues the given scalar to be written. You can push as much data as you
859     want (only limited by the available memory), as C<AnyEvent::Handle>
860     buffers it independently of the kernel.
861    
862 root 1.193 This method may invoke callbacks (and therefore the handle might be
863     destroyed after it returns).
864    
865 root 1.8 =cut
866    
867 root 1.17 sub _drain_wbuf {
868     my ($self) = @_;
869 root 1.8
870 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
871 root 1.35
872 root 1.8 Scalar::Util::weaken $self;
873 root 1.35
874 root 1.8 my $cb = sub {
875     my $len = syswrite $self->{fh}, $self->{wbuf};
876    
877 root 1.146 if (defined $len) {
878 root 1.8 substr $self->{wbuf}, 0, $len, "";
879    
880 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
881 root 1.43
882 root 1.8 $self->{on_drain}($self)
883 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
884 root 1.8 && $self->{on_drain};
885    
886 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
887 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
888 root 1.52 $self->_error ($!, 1);
889 elmex 1.1 }
890 root 1.8 };
891    
892 root 1.35 # try to write data immediately
893 root 1.70 $cb->() unless $self->{autocork};
894 root 1.8
895 root 1.35 # if still data left in wbuf, we need to poll
896 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
897 root 1.35 if length $self->{wbuf};
898 root 1.8 };
899     }
900    
901 root 1.30 our %WH;
902    
903 root 1.185 # deprecated
904 root 1.30 sub register_write_type($$) {
905     $WH{$_[0]} = $_[1];
906     }
907    
908 root 1.17 sub push_write {
909     my $self = shift;
910    
911 root 1.29 if (@_ > 1) {
912     my $type = shift;
913    
914 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
915     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
916 root 1.29 ->($self, @_);
917     }
918    
919 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
920     # and diagnose the problem earlier and better.
921    
922 root 1.93 if ($self->{tls}) {
923 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
924 root 1.160 &_dotls ($self) if $self->{fh};
925 root 1.17 } else {
926 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
927 root 1.159 $self->_drain_wbuf if $self->{fh};
928 root 1.17 }
929     }
930    
931 root 1.29 =item $handle->push_write (type => @args)
932    
933 root 1.185 Instead of formatting your data yourself, you can also let this module
934     do the job by specifying a type and type-specific arguments. You
935     can also specify the (fully qualified) name of a package, in which
936     case AnyEvent tries to load the package and then expects to find the
937 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
938 root 1.29
939 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
940     drop by and tell us):
941 root 1.29
942     =over 4
943    
944     =item netstring => $string
945    
946     Formats the given value as netstring
947     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
948    
949     =cut
950    
951     register_write_type netstring => sub {
952     my ($self, $string) = @_;
953    
954 root 1.96 (length $string) . ":$string,"
955 root 1.29 };
956    
957 root 1.61 =item packstring => $format, $data
958    
959     An octet string prefixed with an encoded length. The encoding C<$format>
960     uses the same format as a Perl C<pack> format, but must specify a single
961     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
962     optional C<!>, C<< < >> or C<< > >> modifier).
963    
964     =cut
965    
966     register_write_type packstring => sub {
967     my ($self, $format, $string) = @_;
968    
969 root 1.65 pack "$format/a*", $string
970 root 1.61 };
971    
972 root 1.39 =item json => $array_or_hashref
973    
974 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
975     provide your own JSON object, this means it will be encoded to JSON text
976     in UTF-8.
977    
978     JSON objects (and arrays) are self-delimiting, so you can write JSON at
979     one end of a handle and read them at the other end without using any
980     additional framing.
981    
982 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
983     this module doesn't need delimiters after or between JSON texts to be
984     able to read them, many other languages depend on that.
985    
986     A simple RPC protocol that interoperates easily with others is to send
987     JSON arrays (or objects, although arrays are usually the better choice as
988     they mimic how function argument passing works) and a newline after each
989     JSON text:
990    
991     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
992     $handle->push_write ("\012");
993    
994     An AnyEvent::Handle receiver would simply use the C<json> read type and
995     rely on the fact that the newline will be skipped as leading whitespace:
996    
997     $handle->push_read (json => sub { my $array = $_[1]; ... });
998    
999     Other languages could read single lines terminated by a newline and pass
1000     this line into their JSON decoder of choice.
1001    
1002 root 1.40 =cut
1003    
1004 root 1.179 sub json_coder() {
1005     eval { require JSON::XS; JSON::XS->new->utf8 }
1006     || do { require JSON; JSON->new->utf8 }
1007     }
1008    
1009 root 1.40 register_write_type json => sub {
1010     my ($self, $ref) = @_;
1011    
1012 root 1.179 my $json = $self->{json} ||= json_coder;
1013 root 1.40
1014 root 1.179 $json->encode ($ref)
1015 root 1.40 };
1016    
1017 root 1.63 =item storable => $reference
1018    
1019     Freezes the given reference using L<Storable> and writes it to the
1020     handle. Uses the C<nfreeze> format.
1021    
1022     =cut
1023    
1024     register_write_type storable => sub {
1025     my ($self, $ref) = @_;
1026    
1027     require Storable;
1028    
1029 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1030 root 1.63 };
1031    
1032 root 1.53 =back
1033    
1034 root 1.133 =item $handle->push_shutdown
1035    
1036     Sometimes you know you want to close the socket after writing your data
1037     before it was actually written. One way to do that is to replace your
1038 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1039     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1040     replaces the C<on_drain> callback with:
1041 root 1.133
1042     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1043    
1044     This simply shuts down the write side and signals an EOF condition to the
1045     the peer.
1046    
1047     You can rely on the normal read queue and C<on_eof> handling
1048     afterwards. This is the cleanest way to close a connection.
1049    
1050 root 1.193 This method may invoke callbacks (and therefore the handle might be
1051     destroyed after it returns).
1052    
1053 root 1.133 =cut
1054    
1055     sub push_shutdown {
1056 root 1.142 my ($self) = @_;
1057    
1058     delete $self->{low_water_mark};
1059     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1060 root 1.133 }
1061    
1062 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1063    
1064     Instead of one of the predefined types, you can also specify the name of
1065     a package. AnyEvent will try to load the package and then expects to find
1066     a function named C<anyevent_write_type> inside. If it isn't found, it
1067     progressively tries to load the parent package until it either finds the
1068     function (good) or runs out of packages (bad).
1069    
1070     Whenever the given C<type> is used, C<push_write> will the function with
1071     the handle object and the remaining arguments.
1072    
1073     The function is supposed to return a single octet string that will be
1074     appended to the write buffer, so you cna mentally treat this function as a
1075     "arguments to on-the-wire-format" converter.
1076 root 1.30
1077 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1078     arguments using the first one.
1079 root 1.29
1080 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1081 root 1.29
1082 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1083     # the "My" modules to be auto-loaded, or just about anywhere when the
1084     # My::Type::anyevent_write_type is defined before invoking it.
1085    
1086     package My::Type;
1087    
1088     sub anyevent_write_type {
1089     my ($handle, $delim, @args) = @_;
1090    
1091     join $delim, @args
1092     }
1093 root 1.29
1094 root 1.30 =cut
1095 root 1.29
1096 root 1.8 #############################################################################
1097    
1098 root 1.9 =back
1099    
1100     =head2 READ QUEUE
1101    
1102     AnyEvent::Handle manages two queues per handle, one for writing and one
1103     for reading.
1104    
1105     The read queue is more complex than the write queue. It can be used in two
1106     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1107     a queue.
1108    
1109     In the simple case, you just install an C<on_read> callback and whenever
1110     new data arrives, it will be called. You can then remove some data (if
1111 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1112 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1113 root 1.197 partial message has been received so far), or change the read queue with
1114     e.g. C<push_read>.
1115 root 1.9
1116     In the more complex case, you want to queue multiple callbacks. In this
1117     case, AnyEvent::Handle will call the first queued callback each time new
1118 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1119 root 1.61 done its job (see C<push_read>, below).
1120 root 1.9
1121     This way you can, for example, push three line-reads, followed by reading
1122     a chunk of data, and AnyEvent::Handle will execute them in order.
1123    
1124     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1125     the specified number of bytes which give an XML datagram.
1126    
1127     # in the default state, expect some header bytes
1128     $handle->on_read (sub {
1129     # some data is here, now queue the length-header-read (4 octets)
1130 root 1.52 shift->unshift_read (chunk => 4, sub {
1131 root 1.9 # header arrived, decode
1132     my $len = unpack "N", $_[1];
1133    
1134     # now read the payload
1135 root 1.52 shift->unshift_read (chunk => $len, sub {
1136 root 1.9 my $xml = $_[1];
1137     # handle xml
1138     });
1139     });
1140     });
1141    
1142 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1143     and another line or "ERROR" for the first request that is sent, and 64
1144     bytes for the second request. Due to the availability of a queue, we can
1145     just pipeline sending both requests and manipulate the queue as necessary
1146     in the callbacks.
1147    
1148     When the first callback is called and sees an "OK" response, it will
1149     C<unshift> another line-read. This line-read will be queued I<before> the
1150     64-byte chunk callback.
1151 root 1.9
1152 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1153 root 1.9 $handle->push_write ("request 1\015\012");
1154    
1155     # we expect "ERROR" or "OK" as response, so push a line read
1156 root 1.52 $handle->push_read (line => sub {
1157 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1158     # so it will be read before the second request reads its 64 bytes
1159     # which are already in the queue when this callback is called
1160     # we don't do this in case we got an error
1161     if ($_[1] eq "OK") {
1162 root 1.52 $_[0]->unshift_read (line => sub {
1163 root 1.9 my $response = $_[1];
1164     ...
1165     });
1166     }
1167     });
1168    
1169 root 1.69 # request two, simply returns 64 octets
1170 root 1.9 $handle->push_write ("request 2\015\012");
1171    
1172     # simply read 64 bytes, always
1173 root 1.52 $handle->push_read (chunk => 64, sub {
1174 root 1.9 my $response = $_[1];
1175     ...
1176     });
1177    
1178     =over 4
1179    
1180 root 1.10 =cut
1181    
1182 root 1.8 sub _drain_rbuf {
1183     my ($self) = @_;
1184 elmex 1.1
1185 root 1.159 # avoid recursion
1186 root 1.167 return if $self->{_skip_drain_rbuf};
1187 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1188 root 1.59
1189     while () {
1190 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1191     # we are draining the buffer, and this can only happen with TLS.
1192 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1193     if exists $self->{_tls_rbuf};
1194 root 1.115
1195 root 1.59 my $len = length $self->{rbuf};
1196 elmex 1.1
1197 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1198 root 1.29 unless ($cb->($self)) {
1199 root 1.163 # no progress can be made
1200     # (not enough data and no data forthcoming)
1201     $self->_error (Errno::EPIPE, 1), return
1202     if $self->{_eof};
1203 root 1.10
1204 root 1.38 unshift @{ $self->{_queue} }, $cb;
1205 root 1.55 last;
1206 root 1.8 }
1207     } elsif ($self->{on_read}) {
1208 root 1.61 last unless $len;
1209    
1210 root 1.8 $self->{on_read}($self);
1211    
1212     if (
1213 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1214     && !@{ $self->{_queue} } # and the queue is still empty
1215     && $self->{on_read} # but we still have on_read
1216 root 1.8 ) {
1217 root 1.55 # no further data will arrive
1218     # so no progress can be made
1219 root 1.150 $self->_error (Errno::EPIPE, 1), return
1220 root 1.55 if $self->{_eof};
1221    
1222     last; # more data might arrive
1223 elmex 1.1 }
1224 root 1.8 } else {
1225     # read side becomes idle
1226 root 1.93 delete $self->{_rw} unless $self->{tls};
1227 root 1.55 last;
1228 root 1.8 }
1229     }
1230    
1231 root 1.80 if ($self->{_eof}) {
1232 root 1.163 $self->{on_eof}
1233     ? $self->{on_eof}($self)
1234     : $self->_error (0, 1, "Unexpected end-of-file");
1235    
1236     return;
1237 root 1.80 }
1238 root 1.55
1239 root 1.169 if (
1240     defined $self->{rbuf_max}
1241     && $self->{rbuf_max} < length $self->{rbuf}
1242     ) {
1243     $self->_error (Errno::ENOSPC, 1), return;
1244     }
1245    
1246 root 1.55 # may need to restart read watcher
1247     unless ($self->{_rw}) {
1248     $self->start_read
1249     if $self->{on_read} || @{ $self->{_queue} };
1250     }
1251 elmex 1.1 }
1252    
1253 root 1.8 =item $handle->on_read ($cb)
1254 elmex 1.1
1255 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1256     the new callback is C<undef>). See the description of C<on_read> in the
1257     constructor.
1258 elmex 1.1
1259 root 1.193 This method may invoke callbacks (and therefore the handle might be
1260     destroyed after it returns).
1261    
1262 root 1.8 =cut
1263    
1264     sub on_read {
1265     my ($self, $cb) = @_;
1266 elmex 1.1
1267 root 1.8 $self->{on_read} = $cb;
1268 root 1.159 $self->_drain_rbuf if $cb;
1269 elmex 1.1 }
1270    
1271 root 1.8 =item $handle->rbuf
1272    
1273 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1274     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1275     much faster, and no less clean).
1276    
1277     The only operation allowed on the read buffer (apart from looking at it)
1278     is removing data from its beginning. Otherwise modifying or appending to
1279     it is not allowed and will lead to hard-to-track-down bugs.
1280    
1281     NOTE: The read buffer should only be used or modified in the C<on_read>
1282     callback or when C<push_read> or C<unshift_read> are used with a single
1283     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1284     will manage the read buffer on their own.
1285 elmex 1.1
1286     =cut
1287    
1288 elmex 1.2 sub rbuf : lvalue {
1289 root 1.8 $_[0]{rbuf}
1290 elmex 1.2 }
1291 elmex 1.1
1292 root 1.8 =item $handle->push_read ($cb)
1293    
1294     =item $handle->unshift_read ($cb)
1295    
1296     Append the given callback to the end of the queue (C<push_read>) or
1297     prepend it (C<unshift_read>).
1298    
1299     The callback is called each time some additional read data arrives.
1300 elmex 1.1
1301 elmex 1.20 It must check whether enough data is in the read buffer already.
1302 elmex 1.1
1303 root 1.8 If not enough data is available, it must return the empty list or a false
1304     value, in which case it will be called repeatedly until enough data is
1305     available (or an error condition is detected).
1306    
1307     If enough data was available, then the callback must remove all data it is
1308     interested in (which can be none at all) and return a true value. After returning
1309     true, it will be removed from the queue.
1310 elmex 1.1
1311 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1312     destroyed after it returns).
1313    
1314 elmex 1.1 =cut
1315    
1316 root 1.30 our %RH;
1317    
1318     sub register_read_type($$) {
1319     $RH{$_[0]} = $_[1];
1320     }
1321    
1322 root 1.8 sub push_read {
1323 root 1.28 my $self = shift;
1324     my $cb = pop;
1325    
1326     if (@_) {
1327     my $type = shift;
1328    
1329 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1330     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1331 root 1.28 ->($self, $cb, @_);
1332     }
1333 elmex 1.1
1334 root 1.38 push @{ $self->{_queue} }, $cb;
1335 root 1.159 $self->_drain_rbuf;
1336 elmex 1.1 }
1337    
1338 root 1.8 sub unshift_read {
1339 root 1.28 my $self = shift;
1340     my $cb = pop;
1341    
1342     if (@_) {
1343     my $type = shift;
1344    
1345 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1346     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1347 root 1.28 ->($self, $cb, @_);
1348     }
1349    
1350 root 1.38 unshift @{ $self->{_queue} }, $cb;
1351 root 1.159 $self->_drain_rbuf;
1352 root 1.8 }
1353 elmex 1.1
1354 root 1.28 =item $handle->push_read (type => @args, $cb)
1355 elmex 1.1
1356 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1357 elmex 1.1
1358 root 1.28 Instead of providing a callback that parses the data itself you can chose
1359     between a number of predefined parsing formats, for chunks of data, lines
1360 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1361     which case AnyEvent tries to load the package and then expects to find the
1362     C<anyevent_read_type> function inside (see "custom read types", below).
1363 elmex 1.1
1364 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1365     drop by and tell us):
1366 root 1.28
1367     =over 4
1368    
1369 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1370 root 1.28
1371     Invoke the callback only once C<$octets> bytes have been read. Pass the
1372     data read to the callback. The callback will never be called with less
1373     data.
1374    
1375     Example: read 2 bytes.
1376    
1377     $handle->push_read (chunk => 2, sub {
1378     warn "yay ", unpack "H*", $_[1];
1379     });
1380 elmex 1.1
1381     =cut
1382    
1383 root 1.28 register_read_type chunk => sub {
1384     my ($self, $cb, $len) = @_;
1385 elmex 1.1
1386 root 1.8 sub {
1387     $len <= length $_[0]{rbuf} or return;
1388 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1389 root 1.8 1
1390     }
1391 root 1.28 };
1392 root 1.8
1393 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1394 elmex 1.1
1395 root 1.8 The callback will be called only once a full line (including the end of
1396     line marker, C<$eol>) has been read. This line (excluding the end of line
1397     marker) will be passed to the callback as second argument (C<$line>), and
1398     the end of line marker as the third argument (C<$eol>).
1399 elmex 1.1
1400 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1401     will be interpreted as a fixed record end marker, or it can be a regex
1402     object (e.g. created by C<qr>), in which case it is interpreted as a
1403     regular expression.
1404 elmex 1.1
1405 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1406     undef), then C<qr|\015?\012|> is used (which is good for most internet
1407     protocols).
1408 elmex 1.1
1409 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1410     not marked by the end of line marker.
1411 elmex 1.1
1412 root 1.8 =cut
1413 elmex 1.1
1414 root 1.28 register_read_type line => sub {
1415     my ($self, $cb, $eol) = @_;
1416 elmex 1.1
1417 root 1.76 if (@_ < 3) {
1418     # this is more than twice as fast as the generic code below
1419     sub {
1420     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1421 elmex 1.1
1422 root 1.76 $cb->($_[0], $1, $2);
1423     1
1424     }
1425     } else {
1426     $eol = quotemeta $eol unless ref $eol;
1427     $eol = qr|^(.*?)($eol)|s;
1428    
1429     sub {
1430     $_[0]{rbuf} =~ s/$eol// or return;
1431 elmex 1.1
1432 root 1.76 $cb->($_[0], $1, $2);
1433     1
1434     }
1435 root 1.8 }
1436 root 1.28 };
1437 elmex 1.1
1438 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1439 root 1.36
1440     Makes a regex match against the regex object C<$accept> and returns
1441     everything up to and including the match.
1442    
1443     Example: read a single line terminated by '\n'.
1444    
1445     $handle->push_read (regex => qr<\n>, sub { ... });
1446    
1447     If C<$reject> is given and not undef, then it determines when the data is
1448     to be rejected: it is matched against the data when the C<$accept> regex
1449     does not match and generates an C<EBADMSG> error when it matches. This is
1450     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1451     receive buffer overflow).
1452    
1453     Example: expect a single decimal number followed by whitespace, reject
1454     anything else (not the use of an anchor).
1455    
1456     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1457    
1458     If C<$skip> is given and not C<undef>, then it will be matched against
1459     the receive buffer when neither C<$accept> nor C<$reject> match,
1460     and everything preceding and including the match will be accepted
1461     unconditionally. This is useful to skip large amounts of data that you
1462     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1463     have to start matching from the beginning. This is purely an optimisation
1464 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1465 root 1.36
1466     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1467 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1468 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1469     it only accepts something not ending in either \015 or \012, as these are
1470     required for the accept regex.
1471    
1472     $handle->push_read (regex =>
1473     qr<\015\012\015\012>,
1474     undef, # no reject
1475     qr<^.*[^\015\012]>,
1476     sub { ... });
1477    
1478     =cut
1479    
1480     register_read_type regex => sub {
1481     my ($self, $cb, $accept, $reject, $skip) = @_;
1482    
1483     my $data;
1484     my $rbuf = \$self->{rbuf};
1485    
1486     sub {
1487     # accept
1488     if ($$rbuf =~ $accept) {
1489     $data .= substr $$rbuf, 0, $+[0], "";
1490     $cb->($self, $data);
1491     return 1;
1492     }
1493    
1494     # reject
1495     if ($reject && $$rbuf =~ $reject) {
1496 root 1.150 $self->_error (Errno::EBADMSG);
1497 root 1.36 }
1498    
1499     # skip
1500     if ($skip && $$rbuf =~ $skip) {
1501     $data .= substr $$rbuf, 0, $+[0], "";
1502     }
1503    
1504     ()
1505     }
1506     };
1507    
1508 root 1.61 =item netstring => $cb->($handle, $string)
1509    
1510     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1511    
1512     Throws an error with C<$!> set to EBADMSG on format violations.
1513    
1514     =cut
1515    
1516     register_read_type netstring => sub {
1517     my ($self, $cb) = @_;
1518    
1519     sub {
1520     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1521     if ($_[0]{rbuf} =~ /[^0-9]/) {
1522 root 1.150 $self->_error (Errno::EBADMSG);
1523 root 1.61 }
1524     return;
1525     }
1526    
1527     my $len = $1;
1528    
1529     $self->unshift_read (chunk => $len, sub {
1530     my $string = $_[1];
1531     $_[0]->unshift_read (chunk => 1, sub {
1532     if ($_[1] eq ",") {
1533     $cb->($_[0], $string);
1534     } else {
1535 root 1.150 $self->_error (Errno::EBADMSG);
1536 root 1.61 }
1537     });
1538     });
1539    
1540     1
1541     }
1542     };
1543    
1544     =item packstring => $format, $cb->($handle, $string)
1545    
1546     An octet string prefixed with an encoded length. The encoding C<$format>
1547     uses the same format as a Perl C<pack> format, but must specify a single
1548     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1549     optional C<!>, C<< < >> or C<< > >> modifier).
1550    
1551 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1552     EPP uses a prefix of C<N> (4 octtes).
1553 root 1.61
1554     Example: read a block of data prefixed by its length in BER-encoded
1555     format (very efficient).
1556    
1557     $handle->push_read (packstring => "w", sub {
1558     my ($handle, $data) = @_;
1559     });
1560    
1561     =cut
1562    
1563     register_read_type packstring => sub {
1564     my ($self, $cb, $format) = @_;
1565    
1566     sub {
1567     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1568 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1569 root 1.61 or return;
1570    
1571 root 1.77 $format = length pack $format, $len;
1572 root 1.61
1573 root 1.77 # bypass unshift if we already have the remaining chunk
1574     if ($format + $len <= length $_[0]{rbuf}) {
1575     my $data = substr $_[0]{rbuf}, $format, $len;
1576     substr $_[0]{rbuf}, 0, $format + $len, "";
1577     $cb->($_[0], $data);
1578     } else {
1579     # remove prefix
1580     substr $_[0]{rbuf}, 0, $format, "";
1581    
1582     # read remaining chunk
1583     $_[0]->unshift_read (chunk => $len, $cb);
1584     }
1585 root 1.61
1586     1
1587     }
1588     };
1589    
1590 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1591    
1592 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1593     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1594 root 1.40
1595     If a C<json> object was passed to the constructor, then that will be used
1596     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1597    
1598     This read type uses the incremental parser available with JSON version
1599     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1600     dependency on your own: this module will load the JSON module, but
1601     AnyEvent does not depend on it itself.
1602    
1603     Since JSON texts are fully self-delimiting, the C<json> read and write
1604 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1605     the C<json> write type description, above, for an actual example.
1606 root 1.40
1607     =cut
1608    
1609     register_read_type json => sub {
1610 root 1.63 my ($self, $cb) = @_;
1611 root 1.40
1612 root 1.179 my $json = $self->{json} ||= json_coder;
1613 root 1.40
1614     my $data;
1615     my $rbuf = \$self->{rbuf};
1616    
1617     sub {
1618 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1619 root 1.110
1620 root 1.113 if ($ref) {
1621     $self->{rbuf} = $json->incr_text;
1622     $json->incr_text = "";
1623     $cb->($self, $ref);
1624 root 1.110
1625     1
1626 root 1.113 } elsif ($@) {
1627 root 1.111 # error case
1628 root 1.110 $json->incr_skip;
1629 root 1.40
1630     $self->{rbuf} = $json->incr_text;
1631     $json->incr_text = "";
1632    
1633 root 1.150 $self->_error (Errno::EBADMSG);
1634 root 1.114
1635 root 1.113 ()
1636     } else {
1637     $self->{rbuf} = "";
1638 root 1.114
1639 root 1.113 ()
1640     }
1641 root 1.40 }
1642     };
1643    
1644 root 1.63 =item storable => $cb->($handle, $ref)
1645    
1646     Deserialises a L<Storable> frozen representation as written by the
1647     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1648     data).
1649    
1650     Raises C<EBADMSG> error if the data could not be decoded.
1651    
1652     =cut
1653    
1654     register_read_type storable => sub {
1655     my ($self, $cb) = @_;
1656    
1657     require Storable;
1658    
1659     sub {
1660     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1661 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1662 root 1.63 or return;
1663    
1664 root 1.77 my $format = length pack "w", $len;
1665 root 1.63
1666 root 1.77 # bypass unshift if we already have the remaining chunk
1667     if ($format + $len <= length $_[0]{rbuf}) {
1668     my $data = substr $_[0]{rbuf}, $format, $len;
1669     substr $_[0]{rbuf}, 0, $format + $len, "";
1670     $cb->($_[0], Storable::thaw ($data));
1671     } else {
1672     # remove prefix
1673     substr $_[0]{rbuf}, 0, $format, "";
1674    
1675     # read remaining chunk
1676     $_[0]->unshift_read (chunk => $len, sub {
1677     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1678     $cb->($_[0], $ref);
1679     } else {
1680 root 1.150 $self->_error (Errno::EBADMSG);
1681 root 1.77 }
1682     });
1683     }
1684    
1685     1
1686 root 1.63 }
1687     };
1688    
1689 root 1.28 =back
1690    
1691 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1692 root 1.30
1693 root 1.185 Instead of one of the predefined types, you can also specify the name
1694     of a package. AnyEvent will try to load the package and then expects to
1695     find a function named C<anyevent_read_type> inside. If it isn't found, it
1696     progressively tries to load the parent package until it either finds the
1697     function (good) or runs out of packages (bad).
1698    
1699     Whenever this type is used, C<push_read> will invoke the function with the
1700     handle object, the original callback and the remaining arguments.
1701    
1702     The function is supposed to return a callback (usually a closure) that
1703     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1704     mentally treat the function as a "configurable read type to read callback"
1705     converter.
1706    
1707     It should invoke the original callback when it is done reading (remember
1708     to pass C<$handle> as first argument as all other callbacks do that,
1709     although there is no strict requirement on this).
1710 root 1.30
1711 root 1.185 For examples, see the source of this module (F<perldoc -m
1712     AnyEvent::Handle>, search for C<register_read_type>)).
1713 root 1.30
1714 root 1.10 =item $handle->stop_read
1715    
1716     =item $handle->start_read
1717    
1718 root 1.18 In rare cases you actually do not want to read anything from the
1719 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1720 root 1.22 any queued callbacks will be executed then. To start reading again, call
1721 root 1.10 C<start_read>.
1722    
1723 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1724     you change the C<on_read> callback or push/unshift a read callback, and it
1725     will automatically C<stop_read> for you when neither C<on_read> is set nor
1726     there are any read requests in the queue.
1727    
1728 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1729     half-duplex connections).
1730    
1731 root 1.10 =cut
1732    
1733     sub stop_read {
1734     my ($self) = @_;
1735 elmex 1.1
1736 root 1.93 delete $self->{_rw} unless $self->{tls};
1737 root 1.8 }
1738 elmex 1.1
1739 root 1.10 sub start_read {
1740     my ($self) = @_;
1741    
1742 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1743 root 1.10 Scalar::Util::weaken $self;
1744    
1745 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1746 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1747 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1748 root 1.10
1749     if ($len > 0) {
1750 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1751 root 1.43
1752 root 1.93 if ($self->{tls}) {
1753     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1754 root 1.97
1755 root 1.93 &_dotls ($self);
1756     } else {
1757 root 1.159 $self->_drain_rbuf;
1758 root 1.93 }
1759 root 1.10
1760     } elsif (defined $len) {
1761 root 1.38 delete $self->{_rw};
1762     $self->{_eof} = 1;
1763 root 1.159 $self->_drain_rbuf;
1764 root 1.10
1765 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1766 root 1.52 return $self->_error ($!, 1);
1767 root 1.10 }
1768 root 1.175 };
1769 root 1.10 }
1770 elmex 1.1 }
1771    
1772 root 1.133 our $ERROR_SYSCALL;
1773     our $ERROR_WANT_READ;
1774    
1775     sub _tls_error {
1776     my ($self, $err) = @_;
1777    
1778     return $self->_error ($!, 1)
1779     if $err == Net::SSLeay::ERROR_SYSCALL ();
1780    
1781 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1782    
1783     # reduce error string to look less scary
1784     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1785    
1786 root 1.143 if ($self->{_on_starttls}) {
1787     (delete $self->{_on_starttls})->($self, undef, $err);
1788     &_freetls;
1789     } else {
1790     &_freetls;
1791 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1792 root 1.143 }
1793 root 1.133 }
1794    
1795 root 1.97 # poll the write BIO and send the data if applicable
1796 root 1.133 # also decode read data if possible
1797     # this is basiclaly our TLS state machine
1798     # more efficient implementations are possible with openssl,
1799     # but not with the buggy and incomplete Net::SSLeay.
1800 root 1.19 sub _dotls {
1801     my ($self) = @_;
1802    
1803 root 1.97 my $tmp;
1804 root 1.56
1805 root 1.38 if (length $self->{_tls_wbuf}) {
1806 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1807     substr $self->{_tls_wbuf}, 0, $tmp, "";
1808 root 1.22 }
1809 root 1.133
1810     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1811     return $self->_tls_error ($tmp)
1812     if $tmp != $ERROR_WANT_READ
1813 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1814 root 1.19 }
1815    
1816 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1817     unless (length $tmp) {
1818 root 1.143 $self->{_on_starttls}
1819     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1820 root 1.92 &_freetls;
1821 root 1.143
1822 root 1.142 if ($self->{on_stoptls}) {
1823     $self->{on_stoptls}($self);
1824     return;
1825     } else {
1826     # let's treat SSL-eof as we treat normal EOF
1827     delete $self->{_rw};
1828     $self->{_eof} = 1;
1829     }
1830 root 1.56 }
1831 root 1.91
1832 root 1.116 $self->{_tls_rbuf} .= $tmp;
1833 root 1.159 $self->_drain_rbuf;
1834 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1835 root 1.23 }
1836    
1837 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1838 root 1.133 return $self->_tls_error ($tmp)
1839     if $tmp != $ERROR_WANT_READ
1840 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1841 root 1.91
1842 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1843     $self->{wbuf} .= $tmp;
1844 root 1.91 $self->_drain_wbuf;
1845 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1846 root 1.91 }
1847 root 1.142
1848     $self->{_on_starttls}
1849     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1850 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1851 root 1.19 }
1852    
1853 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1854    
1855     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1856     object is created, you can also do that at a later time by calling
1857     C<starttls>.
1858    
1859 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1860     write data and then call C<< ->starttls >> then TLS negotiation will start
1861     immediately, after which the queued write data is then sent.
1862    
1863 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1864     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1865    
1866 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1867     when AnyEvent::Handle has to create its own TLS connection object, or
1868     a hash reference with C<< key => value >> pairs that will be used to
1869     construct a new context.
1870    
1871     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1872     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1873     changed to your liking. Note that the handshake might have already started
1874     when this function returns.
1875 root 1.38
1876 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1877 root 1.198 handshakes on the same stream. It is best to not attempt to use the
1878     stream after stopping TLS.
1879 root 1.92
1880 root 1.193 This method may invoke callbacks (and therefore the handle might be
1881     destroyed after it returns).
1882    
1883 root 1.25 =cut
1884    
1885 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1886    
1887 root 1.19 sub starttls {
1888 root 1.160 my ($self, $tls, $ctx) = @_;
1889    
1890     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1891     if $self->{tls};
1892    
1893     $self->{tls} = $tls;
1894     $self->{tls_ctx} = $ctx if @_ > 2;
1895    
1896     return unless $self->{fh};
1897 root 1.19
1898 root 1.94 require Net::SSLeay;
1899    
1900 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1901     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1902 root 1.133
1903 root 1.180 $tls = delete $self->{tls};
1904 root 1.160 $ctx = $self->{tls_ctx};
1905 root 1.131
1906 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1907    
1908 root 1.131 if ("HASH" eq ref $ctx) {
1909     require AnyEvent::TLS;
1910    
1911 root 1.137 if ($ctx->{cache}) {
1912     my $key = $ctx+0;
1913     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1914     } else {
1915     $ctx = new AnyEvent::TLS %$ctx;
1916     }
1917 root 1.131 }
1918 root 1.92
1919 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1920 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1921 root 1.19
1922 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1923     # but the openssl maintainers basically said: "trust us, it just works".
1924     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1925     # and mismaintained ssleay-module doesn't even offer them).
1926 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1927 root 1.87 #
1928     # in short: this is a mess.
1929     #
1930 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1931 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1932 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1933     # have identity issues in that area.
1934 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1935     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1936     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1937 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1938 root 1.21
1939 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1940     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1941 root 1.19
1942 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1943    
1944 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1945 root 1.19
1946 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1947 root 1.143 if $self->{on_starttls};
1948 root 1.142
1949 root 1.93 &_dotls; # need to trigger the initial handshake
1950     $self->start_read; # make sure we actually do read
1951 root 1.19 }
1952    
1953 root 1.25 =item $handle->stoptls
1954    
1955 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1956     sending a close notify to the other side, but since OpenSSL doesn't
1957 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
1958 root 1.160 the stream afterwards.
1959 root 1.25
1960 root 1.193 This method may invoke callbacks (and therefore the handle might be
1961     destroyed after it returns).
1962    
1963 root 1.25 =cut
1964    
1965     sub stoptls {
1966     my ($self) = @_;
1967    
1968 root 1.192 if ($self->{tls} && $self->{fh}) {
1969 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1970 root 1.92
1971     &_dotls;
1972    
1973 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1974     # # we, we... have to use openssl :/#d#
1975     # &_freetls;#d#
1976 root 1.92 }
1977     }
1978    
1979     sub _freetls {
1980     my ($self) = @_;
1981    
1982     return unless $self->{tls};
1983 root 1.38
1984 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1985 root 1.171 if $self->{tls} > 0;
1986 root 1.92
1987 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1988 root 1.25 }
1989    
1990 root 1.19 sub DESTROY {
1991 root 1.120 my ($self) = @_;
1992 root 1.19
1993 root 1.92 &_freetls;
1994 root 1.62
1995     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1996    
1997 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1998 root 1.62 my $fh = delete $self->{fh};
1999     my $wbuf = delete $self->{wbuf};
2000    
2001     my @linger;
2002    
2003 root 1.175 push @linger, AE::io $fh, 1, sub {
2004 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2005    
2006     if ($len > 0) {
2007     substr $wbuf, 0, $len, "";
2008     } else {
2009     @linger = (); # end
2010     }
2011 root 1.175 };
2012     push @linger, AE::timer $linger, 0, sub {
2013 root 1.62 @linger = ();
2014 root 1.175 };
2015 root 1.62 }
2016 root 1.19 }
2017    
2018 root 1.99 =item $handle->destroy
2019    
2020 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2021 root 1.141 no further callbacks will be invoked and as many resources as possible
2022 root 1.165 will be freed. Any method you will call on the handle object after
2023     destroying it in this way will be silently ignored (and it will return the
2024     empty list).
2025 root 1.99
2026 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2027     object and it will simply shut down. This works in fatal error and EOF
2028     callbacks, as well as code outside. It does I<NOT> work in a read or write
2029     callback, so when you want to destroy the AnyEvent::Handle object from
2030     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2031     that case.
2032    
2033 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2034     will be removed as well, so if those are the only reference holders (as
2035     is common), then one doesn't need to do anything special to break any
2036     reference cycles.
2037    
2038 root 1.99 The handle might still linger in the background and write out remaining
2039     data, as specified by the C<linger> option, however.
2040    
2041     =cut
2042    
2043     sub destroy {
2044     my ($self) = @_;
2045    
2046     $self->DESTROY;
2047     %$self = ();
2048 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2049     }
2050    
2051 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2052     #nop
2053 root 1.99 }
2054    
2055 root 1.192 =item $handle->destroyed
2056    
2057     Returns false as long as the handle hasn't been destroyed by a call to C<<
2058     ->destroy >>, true otherwise.
2059    
2060     Can be useful to decide whether the handle is still valid after some
2061     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2062     C<< ->starttls >> and other methods can call user callbacks, which in turn
2063     can destroy the handle, so work can be avoided by checking sometimes:
2064    
2065     $hdl->starttls ("accept");
2066     return if $hdl->destroyed;
2067     $hdl->push_write (...
2068    
2069     Note that the call to C<push_write> will silently be ignored if the handle
2070     has been destroyed, so often you can just ignore the possibility of the
2071     handle being destroyed.
2072    
2073     =cut
2074    
2075     sub destroyed { 0 }
2076     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2077    
2078 root 1.19 =item AnyEvent::Handle::TLS_CTX
2079    
2080 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2081     for TLS mode.
2082 root 1.19
2083 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2084 root 1.19
2085     =cut
2086    
2087     our $TLS_CTX;
2088    
2089     sub TLS_CTX() {
2090 root 1.131 $TLS_CTX ||= do {
2091     require AnyEvent::TLS;
2092 root 1.19
2093 root 1.131 new AnyEvent::TLS
2094 root 1.19 }
2095     }
2096    
2097 elmex 1.1 =back
2098    
2099 root 1.95
2100     =head1 NONFREQUENTLY ASKED QUESTIONS
2101    
2102     =over 4
2103    
2104 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2105     still get further invocations!
2106    
2107     That's because AnyEvent::Handle keeps a reference to itself when handling
2108     read or write callbacks.
2109    
2110     It is only safe to "forget" the reference inside EOF or error callbacks,
2111     from within all other callbacks, you need to explicitly call the C<<
2112     ->destroy >> method.
2113    
2114     =item I get different callback invocations in TLS mode/Why can't I pause
2115     reading?
2116    
2117     Unlike, say, TCP, TLS connections do not consist of two independent
2118 root 1.198 communication channels, one for each direction. Or put differently, the
2119 root 1.101 read and write directions are not independent of each other: you cannot
2120     write data unless you are also prepared to read, and vice versa.
2121    
2122 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2123 root 1.101 callback invocations when you are not expecting any read data - the reason
2124     is that AnyEvent::Handle always reads in TLS mode.
2125    
2126     During the connection, you have to make sure that you always have a
2127     non-empty read-queue, or an C<on_read> watcher. At the end of the
2128     connection (or when you no longer want to use it) you can call the
2129     C<destroy> method.
2130    
2131 root 1.95 =item How do I read data until the other side closes the connection?
2132    
2133 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2134     to achieve this is by setting an C<on_read> callback that does nothing,
2135     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2136     will be in C<$_[0]{rbuf}>:
2137 root 1.95
2138     $handle->on_read (sub { });
2139     $handle->on_eof (undef);
2140     $handle->on_error (sub {
2141     my $data = delete $_[0]{rbuf};
2142     });
2143    
2144     The reason to use C<on_error> is that TCP connections, due to latencies
2145     and packets loss, might get closed quite violently with an error, when in
2146 root 1.198 fact all data has been received.
2147 root 1.95
2148 root 1.101 It is usually better to use acknowledgements when transferring data,
2149 root 1.95 to make sure the other side hasn't just died and you got the data
2150     intact. This is also one reason why so many internet protocols have an
2151     explicit QUIT command.
2152    
2153 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2154     all data has been written?
2155 root 1.95
2156     After writing your last bits of data, set the C<on_drain> callback
2157     and destroy the handle in there - with the default setting of
2158     C<low_water_mark> this will be called precisely when all data has been
2159     written to the socket:
2160    
2161     $handle->push_write (...);
2162     $handle->on_drain (sub {
2163     warn "all data submitted to the kernel\n";
2164     undef $handle;
2165     });
2166    
2167 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2168     consider using C<< ->push_shutdown >> instead.
2169    
2170     =item I want to contact a TLS/SSL server, I don't care about security.
2171    
2172     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2173 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2174 root 1.143 parameter:
2175    
2176 root 1.144 tcp_connect $host, $port, sub {
2177     my ($fh) = @_;
2178 root 1.143
2179 root 1.144 my $handle = new AnyEvent::Handle
2180     fh => $fh,
2181     tls => "connect",
2182     on_error => sub { ... };
2183    
2184     $handle->push_write (...);
2185     };
2186 root 1.143
2187     =item I want to contact a TLS/SSL server, I do care about security.
2188    
2189 root 1.144 Then you should additionally enable certificate verification, including
2190     peername verification, if the protocol you use supports it (see
2191     L<AnyEvent::TLS>, C<verify_peername>).
2192    
2193     E.g. for HTTPS:
2194    
2195     tcp_connect $host, $port, sub {
2196     my ($fh) = @_;
2197    
2198     my $handle = new AnyEvent::Handle
2199     fh => $fh,
2200     peername => $host,
2201     tls => "connect",
2202     tls_ctx => { verify => 1, verify_peername => "https" },
2203     ...
2204    
2205     Note that you must specify the hostname you connected to (or whatever
2206     "peername" the protocol needs) as the C<peername> argument, otherwise no
2207     peername verification will be done.
2208    
2209     The above will use the system-dependent default set of trusted CA
2210     certificates. If you want to check against a specific CA, add the
2211     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2212    
2213     tls_ctx => {
2214     verify => 1,
2215     verify_peername => "https",
2216     ca_file => "my-ca-cert.pem",
2217     },
2218    
2219     =item I want to create a TLS/SSL server, how do I do that?
2220    
2221     Well, you first need to get a server certificate and key. You have
2222     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2223     self-signed certificate (cheap. check the search engine of your choice,
2224     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2225     nice program for that purpose).
2226    
2227     Then create a file with your private key (in PEM format, see
2228     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2229     file should then look like this:
2230    
2231     -----BEGIN RSA PRIVATE KEY-----
2232     ...header data
2233     ... lots of base64'y-stuff
2234     -----END RSA PRIVATE KEY-----
2235    
2236     -----BEGIN CERTIFICATE-----
2237     ... lots of base64'y-stuff
2238     -----END CERTIFICATE-----
2239    
2240     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2241     specify this file as C<cert_file>:
2242    
2243     tcp_server undef, $port, sub {
2244     my ($fh) = @_;
2245    
2246     my $handle = new AnyEvent::Handle
2247     fh => $fh,
2248     tls => "accept",
2249     tls_ctx => { cert_file => "my-server-keycert.pem" },
2250     ...
2251 root 1.143
2252 root 1.144 When you have intermediate CA certificates that your clients might not
2253     know about, just append them to the C<cert_file>.
2254 root 1.143
2255 root 1.95 =back
2256    
2257    
2258 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2259    
2260     In many cases, you might want to subclass AnyEvent::Handle.
2261    
2262     To make this easier, a given version of AnyEvent::Handle uses these
2263     conventions:
2264    
2265     =over 4
2266    
2267     =item * all constructor arguments become object members.
2268    
2269     At least initially, when you pass a C<tls>-argument to the constructor it
2270 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2271 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2272    
2273     =item * other object member names are prefixed with an C<_>.
2274    
2275     All object members not explicitly documented (internal use) are prefixed
2276     with an underscore character, so the remaining non-C<_>-namespace is free
2277     for use for subclasses.
2278    
2279     =item * all members not documented here and not prefixed with an underscore
2280     are free to use in subclasses.
2281    
2282     Of course, new versions of AnyEvent::Handle may introduce more "public"
2283 root 1.198 member variables, but that's just life. At least it is documented.
2284 root 1.38
2285     =back
2286    
2287 elmex 1.1 =head1 AUTHOR
2288    
2289 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2290 elmex 1.1
2291     =cut
2292    
2293     1; # End of AnyEvent::Handle