ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.201
Committed: Wed Oct 13 01:15:57 2010 UTC (13 years, 7 months ago) by root
Branch: MAIN
CVS Tags: rel-5_28
Changes since 1.200: +3 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 elmex 1.1 =head1 METHODS
81    
82     =over 4
83    
84 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
85 elmex 1.1
86 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
87 elmex 1.1
88     =over 4
89    
90 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
91 root 1.158
92 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
93 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
94     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95     that mode.
96 root 1.8
97 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98    
99     Try to connect to the specified host and service (port), using
100     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101     default C<peername>.
102    
103     You have to specify either this parameter, or C<fh>, above.
104    
105 root 1.160 It is possible to push requests on the read and write queues, and modify
106     properties of the stream, even while AnyEvent::Handle is connecting.
107    
108 root 1.159 When this parameter is specified, then the C<on_prepare>,
109     C<on_connect_error> and C<on_connect> callbacks will be called under the
110     appropriate circumstances:
111    
112     =over 4
113    
114     =item on_prepare => $cb->($handle)
115    
116     This (rarely used) callback is called before a new connection is
117     attempted, but after the file handle has been created. It could be used to
118     prepare the file handle with parameters required for the actual connect
119     (as opposed to settings that can be changed when the connection is already
120     established).
121    
122 root 1.161 The return value of this callback should be the connect timeout value in
123 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
124     default timeout is to be used).
125 root 1.161
126 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
127    
128     This callback is called when a connection has been successfully established.
129    
130 root 1.198 The peer's numeric host and port (the socket peername) are passed as
131 root 1.159 parameters, together with a retry callback.
132    
133 root 1.198 If, for some reason, the handle is not acceptable, calling C<$retry>
134     will continue with the next connection target (in case of multi-homed
135     hosts or SRV records there can be multiple connection endpoints). At the
136     time it is called the read and write queues, eof status, tls status and
137     similar properties of the handle will have been reset.
138 root 1.159
139 root 1.198 In most cases, you should ignore the C<$retry> parameter.
140 root 1.158
141 root 1.159 =item on_connect_error => $cb->($handle, $message)
142 root 1.10
143 root 1.186 This callback is called when the connection could not be
144 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
145     message describing it (usually the same as C<"$!">).
146 root 1.8
147 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
148     fatal error instead.
149 root 1.82
150 root 1.159 =back
151 root 1.80
152 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
153 root 1.10
154 root 1.52 This is the error callback, which is called when, well, some error
155     occured, such as not being able to resolve the hostname, failure to
156 root 1.198 connect, or a read error.
157 root 1.52
158     Some errors are fatal (which is indicated by C<$fatal> being true). On
159 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
160     destroy >>) after invoking the error callback (which means you are free to
161     examine the handle object). Examples of fatal errors are an EOF condition
162 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
163 root 1.198 cases where the other side can close the connection at will, it is
164 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
165 root 1.82
166 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
167     against, but in some cases (TLS errors), this does not work well. It is
168     recommended to always output the C<$message> argument in human-readable
169     error messages (it's usually the same as C<"$!">).
170    
171 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
172 root 1.82 to simply ignore this parameter and instead abondon the handle object
173     when this callback is invoked. Examples of non-fatal errors are timeouts
174     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
175 root 1.8
176 root 1.198 On entry to the callback, the value of C<$!> contains the operating
177     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
178 root 1.133 C<EPROTO>).
179 root 1.8
180 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
181 root 1.198 you will not be notified of errors otherwise. The default just calls
182 root 1.52 C<croak>.
183 root 1.8
184 root 1.40 =item on_read => $cb->($handle)
185 root 1.8
186     This sets the default read callback, which is called when data arrives
187 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
188     callback will only be called when at least one octet of data is in the
189     read buffer).
190 root 1.8
191     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
192 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
193 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
194     the beginning from it.
195 root 1.8
196 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
197     modifies the read queue. Or do both. Or ...
198    
199 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
200 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
201     calling the C<on_eof> callback. If no progress can be made, then a fatal
202     error will be raised (with C<$!> set to C<EPIPE>).
203 elmex 1.1
204 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
205     doesn't mean you I<require> some data: if there is an EOF and there
206     are outstanding read requests then an error will be flagged. With an
207     C<on_read> callback, the C<on_eof> callback will be invoked.
208    
209 root 1.159 =item on_eof => $cb->($handle)
210    
211     Set the callback to be called when an end-of-file condition is detected,
212     i.e. in the case of a socket, when the other side has closed the
213     connection cleanly, and there are no outstanding read requests in the
214     queue (if there are read requests, then an EOF counts as an unexpected
215     connection close and will be flagged as an error).
216    
217     For sockets, this just means that the other side has stopped sending data,
218     you can still try to write data, and, in fact, one can return from the EOF
219     callback and continue writing data, as only the read part has been shut
220     down.
221    
222     If an EOF condition has been detected but no C<on_eof> callback has been
223     set, then a fatal error will be raised with C<$!> set to <0>.
224    
225 root 1.40 =item on_drain => $cb->($handle)
226 elmex 1.1
227 root 1.8 This sets the callback that is called when the write buffer becomes empty
228 root 1.198 (or immediately if the buffer is empty already).
229 elmex 1.1
230 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
231 elmex 1.2
232 root 1.69 This callback is useful when you don't want to put all of your write data
233     into the queue at once, for example, when you want to write the contents
234     of some file to the socket you might not want to read the whole file into
235     memory and push it into the queue, but instead only read more data from
236     the file when the write queue becomes empty.
237    
238 root 1.43 =item timeout => $fractional_seconds
239    
240 root 1.176 =item rtimeout => $fractional_seconds
241    
242     =item wtimeout => $fractional_seconds
243    
244     If non-zero, then these enables an "inactivity" timeout: whenever this
245     many seconds pass without a successful read or write on the underlying
246     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
247     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
248     error will be raised).
249    
250 root 1.198 There are three variants of the timeouts that work independently
251 root 1.176 of each other, for both read and write, just read, and just write:
252     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
253     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
254     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
255 root 1.43
256 root 1.198 Note that timeout processing is active even when you do not have
257 root 1.43 any outstanding read or write requests: If you plan to keep the connection
258 root 1.198 idle then you should disable the timeout temporarily or ignore the timeout
259 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
260     restart the timeout.
261 root 1.43
262     Zero (the default) disables this timeout.
263    
264     =item on_timeout => $cb->($handle)
265    
266     Called whenever the inactivity timeout passes. If you return from this
267     callback, then the timeout will be reset as if some activity had happened,
268     so this condition is not fatal in any way.
269    
270 root 1.8 =item rbuf_max => <bytes>
271 elmex 1.2
272 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
273     when the read buffer ever (strictly) exceeds this size. This is useful to
274 root 1.88 avoid some forms of denial-of-service attacks.
275 elmex 1.2
276 root 1.8 For example, a server accepting connections from untrusted sources should
277     be configured to accept only so-and-so much data that it cannot act on
278     (for example, when expecting a line, an attacker could send an unlimited
279     amount of data without a callback ever being called as long as the line
280     isn't finished).
281 elmex 1.2
282 root 1.70 =item autocork => <boolean>
283    
284 root 1.198 When disabled (the default), C<push_write> will try to immediately
285     write the data to the handle if possible. This avoids having to register
286 root 1.88 a write watcher and wait for the next event loop iteration, but can
287     be inefficient if you write multiple small chunks (on the wire, this
288     disadvantage is usually avoided by your kernel's nagle algorithm, see
289     C<no_delay>, but this option can save costly syscalls).
290 root 1.70
291 root 1.198 When enabled, writes will always be queued till the next event loop
292 root 1.70 iteration. This is efficient when you do many small writes per iteration,
293 root 1.88 but less efficient when you do a single write only per iteration (or when
294     the write buffer often is full). It also increases write latency.
295 root 1.70
296     =item no_delay => <boolean>
297    
298     When doing small writes on sockets, your operating system kernel might
299     wait a bit for more data before actually sending it out. This is called
300     the Nagle algorithm, and usually it is beneficial.
301    
302 root 1.88 In some situations you want as low a delay as possible, which can be
303     accomplishd by setting this option to a true value.
304 root 1.70
305 root 1.198 The default is your operating system's default behaviour (most likely
306     enabled). This option explicitly enables or disables it, if possible.
307 root 1.70
308 root 1.182 =item keepalive => <boolean>
309    
310     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
311     normally, TCP connections have no time-out once established, so TCP
312 root 1.186 connections, once established, can stay alive forever even when the other
313 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
314 root 1.198 TCP connections when the other side becomes unreachable. While the default
315 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
316     and, if the other side doesn't reply, take down the TCP connection some 10
317     to 15 minutes later.
318    
319     It is harmless to specify this option for file handles that do not support
320     keepalives, and enabling it on connections that are potentially long-lived
321     is usually a good idea.
322    
323     =item oobinline => <boolean>
324    
325     BSD majorly fucked up the implementation of TCP urgent data. The result
326     is that almost no OS implements TCP according to the specs, and every OS
327     implements it slightly differently.
328    
329 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
330     is enabled) gives you the most portable way of getting urgent data, by
331     putting it into the stream.
332    
333     Since BSD emulation of OOB data on top of TCP's urgent data can have
334     security implications, AnyEvent::Handle sets this flag automatically
335 root 1.184 unless explicitly specified. Note that setting this flag after
336     establishing a connection I<may> be a bit too late (data loss could
337     already have occured on BSD systems), but at least it will protect you
338     from most attacks.
339 root 1.182
340 root 1.8 =item read_size => <bytes>
341 elmex 1.2
342 root 1.198 The default read block size (the number of bytes this module will
343 root 1.88 try to read during each loop iteration, which affects memory
344     requirements). Default: C<8192>.
345 root 1.8
346     =item low_water_mark => <bytes>
347    
348 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
349     buffer: If the buffer reaches this size or gets even samller it is
350 root 1.8 considered empty.
351 elmex 1.2
352 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
353     the write buffer before it is fully drained, but this is a rare case, as
354     the operating system kernel usually buffers data as well, so the default
355     is good in almost all cases.
356    
357 root 1.62 =item linger => <seconds>
358    
359 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
360 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
361     write data and will install a watcher that will write this data to the
362     socket. No errors will be reported (this mostly matches how the operating
363     system treats outstanding data at socket close time).
364 root 1.62
365 root 1.88 This will not work for partial TLS data that could not be encoded
366 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
367     help.
368 root 1.62
369 root 1.133 =item peername => $string
370    
371 root 1.134 A string used to identify the remote site - usually the DNS hostname
372     (I<not> IDN!) used to create the connection, rarely the IP address.
373 root 1.131
374 root 1.133 Apart from being useful in error messages, this string is also used in TLS
375 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
376 root 1.198 verification will be skipped when C<peername> is not specified or is
377 root 1.144 C<undef>.
378 root 1.131
379 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
380    
381 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
382 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
383 root 1.88 established and will transparently encrypt/decrypt data afterwards.
384 root 1.19
385 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
386     appropriate error message.
387    
388 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
389 root 1.88 automatically when you try to create a TLS handle): this module doesn't
390     have a dependency on that module, so if your module requires it, you have
391     to add the dependency yourself.
392 root 1.26
393 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
394     C<accept>, and for the TLS client side of a connection, use C<connect>
395     mode.
396 root 1.19
397     You can also provide your own TLS connection object, but you have
398     to make sure that you call either C<Net::SSLeay::set_connect_state>
399     or C<Net::SSLeay::set_accept_state> on it before you pass it to
400 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
401     object.
402    
403     At some future point, AnyEvent::Handle might switch to another TLS
404     implementation, then the option to use your own session object will go
405     away.
406 root 1.19
407 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
408     passing in the wrong integer will lead to certain crash. This most often
409     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
410     segmentation fault.
411    
412 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
413 root 1.26
414 root 1.131 =item tls_ctx => $anyevent_tls
415 root 1.19
416 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
417 root 1.19 (unless a connection object was specified directly). If this parameter is
418     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
419    
420 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
421     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
422     new TLS context object.
423    
424 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
425 root 1.142
426     This callback will be invoked when the TLS/SSL handshake has finished. If
427     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
428     (C<on_stoptls> will not be called in this case).
429    
430     The session in C<< $handle->{tls} >> can still be examined in this
431     callback, even when the handshake was not successful.
432    
433 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
434     callback is in effect, instead, the error message will be passed to C<on_starttls>.
435    
436     Without this callback, handshake failures lead to C<on_error> being
437 root 1.198 called as usual.
438 root 1.143
439 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
440 root 1.143 need to do that, start an zero-second timer instead whose callback can
441     then call C<< ->starttls >> again.
442    
443 root 1.142 =item on_stoptls => $cb->($handle)
444    
445     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
446     set, then it will be invoked after freeing the TLS session. If it is not,
447     then a TLS shutdown condition will be treated like a normal EOF condition
448     on the handle.
449    
450     The session in C<< $handle->{tls} >> can still be examined in this
451     callback.
452    
453     This callback will only be called on TLS shutdowns, not when the
454     underlying handle signals EOF.
455    
456 root 1.40 =item json => JSON or JSON::XS object
457    
458     This is the json coder object used by the C<json> read and write types.
459    
460 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
461 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
462     texts.
463 root 1.40
464     Note that you are responsible to depend on the JSON module if you want to
465     use this functionality, as AnyEvent does not have a dependency itself.
466    
467 elmex 1.1 =back
468    
469     =cut
470    
471     sub new {
472 root 1.8 my $class = shift;
473     my $self = bless { @_ }, $class;
474    
475 root 1.159 if ($self->{fh}) {
476     $self->_start;
477     return unless $self->{fh}; # could be gone by now
478    
479     } elsif ($self->{connect}) {
480     require AnyEvent::Socket;
481    
482     $self->{peername} = $self->{connect}[0]
483     unless exists $self->{peername};
484    
485     $self->{_skip_drain_rbuf} = 1;
486    
487     {
488     Scalar::Util::weaken (my $self = $self);
489    
490     $self->{_connect} =
491     AnyEvent::Socket::tcp_connect (
492     $self->{connect}[0],
493     $self->{connect}[1],
494     sub {
495     my ($fh, $host, $port, $retry) = @_;
496    
497     if ($fh) {
498     $self->{fh} = $fh;
499    
500     delete $self->{_skip_drain_rbuf};
501     $self->_start;
502    
503     $self->{on_connect}
504     and $self->{on_connect}($self, $host, $port, sub {
505 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
506 root 1.159 $self->{_skip_drain_rbuf} = 1;
507     &$retry;
508     });
509    
510     } else {
511     if ($self->{on_connect_error}) {
512     $self->{on_connect_error}($self, "$!");
513     $self->destroy;
514     } else {
515 root 1.161 $self->_error ($!, 1);
516 root 1.159 }
517     }
518     },
519     sub {
520     local $self->{fh} = $_[0];
521    
522 root 1.161 $self->{on_prepare}
523     ? $self->{on_prepare}->($self)
524     : ()
525 root 1.159 }
526     );
527     }
528    
529     } else {
530     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
531     }
532    
533     $self
534     }
535    
536     sub _start {
537     my ($self) = @_;
538 root 1.8
539 root 1.194 # too many clueless people try to use udp and similar sockets
540     # with AnyEvent::Handle, do them a favour.
541 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
542     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
543 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
544 root 1.194
545 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
546 elmex 1.1
547 root 1.176 $self->{_activity} =
548     $self->{_ractivity} =
549     $self->{_wactivity} = AE::now;
550    
551 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
552     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
553     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
554    
555 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
556     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
557    
558     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
559 root 1.131
560 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
561 root 1.94 if $self->{tls};
562 root 1.19
563 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
564 root 1.10
565 root 1.66 $self->start_read
566 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
567 root 1.160
568     $self->_drain_wbuf;
569 root 1.8 }
570 elmex 1.2
571 root 1.52 sub _error {
572 root 1.133 my ($self, $errno, $fatal, $message) = @_;
573 root 1.8
574 root 1.52 $! = $errno;
575 root 1.133 $message ||= "$!";
576 root 1.37
577 root 1.52 if ($self->{on_error}) {
578 root 1.133 $self->{on_error}($self, $fatal, $message);
579 root 1.151 $self->destroy if $fatal;
580 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
581 root 1.149 $self->destroy;
582 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
583 root 1.52 }
584 elmex 1.1 }
585    
586 root 1.8 =item $fh = $handle->fh
587 elmex 1.1
588 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
589 elmex 1.1
590     =cut
591    
592 root 1.38 sub fh { $_[0]{fh} }
593 elmex 1.1
594 root 1.8 =item $handle->on_error ($cb)
595 elmex 1.1
596 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
597 elmex 1.1
598 root 1.8 =cut
599    
600     sub on_error {
601     $_[0]{on_error} = $_[1];
602     }
603    
604     =item $handle->on_eof ($cb)
605    
606     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
607 elmex 1.1
608     =cut
609    
610 root 1.8 sub on_eof {
611     $_[0]{on_eof} = $_[1];
612     }
613    
614 root 1.43 =item $handle->on_timeout ($cb)
615    
616 root 1.176 =item $handle->on_rtimeout ($cb)
617    
618     =item $handle->on_wtimeout ($cb)
619    
620     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
621     callback, or disables the callback (but not the timeout) if C<$cb> =
622     C<undef>. See the C<timeout> constructor argument and method.
623 root 1.43
624     =cut
625    
626 root 1.176 # see below
627 root 1.43
628 root 1.70 =item $handle->autocork ($boolean)
629    
630     Enables or disables the current autocork behaviour (see C<autocork>
631 root 1.105 constructor argument). Changes will only take effect on the next write.
632 root 1.70
633     =cut
634    
635 root 1.105 sub autocork {
636     $_[0]{autocork} = $_[1];
637     }
638    
639 root 1.70 =item $handle->no_delay ($boolean)
640    
641     Enables or disables the C<no_delay> setting (see constructor argument of
642     the same name for details).
643    
644     =cut
645    
646     sub no_delay {
647     $_[0]{no_delay} = $_[1];
648    
649 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
650     if $_[0]{fh};
651 root 1.182 }
652    
653     =item $handle->keepalive ($boolean)
654    
655     Enables or disables the C<keepalive> setting (see constructor argument of
656     the same name for details).
657    
658     =cut
659    
660     sub keepalive {
661     $_[0]{keepalive} = $_[1];
662    
663     eval {
664     local $SIG{__DIE__};
665     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
666     if $_[0]{fh};
667     };
668     }
669    
670     =item $handle->oobinline ($boolean)
671    
672     Enables or disables the C<oobinline> setting (see constructor argument of
673     the same name for details).
674    
675     =cut
676    
677     sub oobinline {
678     $_[0]{oobinline} = $_[1];
679    
680     eval {
681     local $SIG{__DIE__};
682     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
683     if $_[0]{fh};
684     };
685     }
686    
687     =item $handle->keepalive ($boolean)
688    
689     Enables or disables the C<keepalive> setting (see constructor argument of
690     the same name for details).
691    
692     =cut
693    
694     sub keepalive {
695     $_[0]{keepalive} = $_[1];
696    
697     eval {
698     local $SIG{__DIE__};
699     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
700 root 1.159 if $_[0]{fh};
701 root 1.70 };
702     }
703    
704 root 1.142 =item $handle->on_starttls ($cb)
705    
706     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
707    
708     =cut
709    
710     sub on_starttls {
711     $_[0]{on_starttls} = $_[1];
712     }
713    
714     =item $handle->on_stoptls ($cb)
715    
716     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
717    
718     =cut
719    
720 root 1.189 sub on_stoptls {
721 root 1.142 $_[0]{on_stoptls} = $_[1];
722     }
723    
724 root 1.168 =item $handle->rbuf_max ($max_octets)
725    
726     Configures the C<rbuf_max> setting (C<undef> disables it).
727    
728     =cut
729    
730     sub rbuf_max {
731     $_[0]{rbuf_max} = $_[1];
732     }
733    
734 root 1.43 #############################################################################
735    
736     =item $handle->timeout ($seconds)
737    
738 root 1.176 =item $handle->rtimeout ($seconds)
739    
740     =item $handle->wtimeout ($seconds)
741    
742 root 1.43 Configures (or disables) the inactivity timeout.
743    
744 root 1.176 =item $handle->timeout_reset
745    
746     =item $handle->rtimeout_reset
747    
748     =item $handle->wtimeout_reset
749    
750     Reset the activity timeout, as if data was received or sent.
751    
752     These methods are cheap to call.
753    
754 root 1.43 =cut
755    
756 root 1.176 for my $dir ("", "r", "w") {
757     my $timeout = "${dir}timeout";
758     my $tw = "_${dir}tw";
759     my $on_timeout = "on_${dir}timeout";
760     my $activity = "_${dir}activity";
761     my $cb;
762    
763     *$on_timeout = sub {
764     $_[0]{$on_timeout} = $_[1];
765     };
766    
767     *$timeout = sub {
768     my ($self, $new_value) = @_;
769 root 1.43
770 root 1.201 $new_value >= 0
771     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
772    
773 root 1.176 $self->{$timeout} = $new_value;
774     delete $self->{$tw}; &$cb;
775     };
776 root 1.43
777 root 1.176 *{"${dir}timeout_reset"} = sub {
778     $_[0]{$activity} = AE::now;
779     };
780 root 1.43
781 root 1.176 # main workhorse:
782     # reset the timeout watcher, as neccessary
783     # also check for time-outs
784     $cb = sub {
785     my ($self) = @_;
786    
787     if ($self->{$timeout} && $self->{fh}) {
788     my $NOW = AE::now;
789    
790     # when would the timeout trigger?
791     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
792    
793     # now or in the past already?
794     if ($after <= 0) {
795     $self->{$activity} = $NOW;
796 root 1.43
797 root 1.176 if ($self->{$on_timeout}) {
798     $self->{$on_timeout}($self);
799     } else {
800     $self->_error (Errno::ETIMEDOUT);
801     }
802 root 1.43
803 root 1.176 # callback could have changed timeout value, optimise
804     return unless $self->{$timeout};
805 root 1.43
806 root 1.176 # calculate new after
807     $after = $self->{$timeout};
808 root 1.43 }
809    
810 root 1.176 Scalar::Util::weaken $self;
811     return unless $self; # ->error could have destroyed $self
812 root 1.43
813 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
814     delete $self->{$tw};
815     $cb->($self);
816     };
817     } else {
818     delete $self->{$tw};
819 root 1.43 }
820     }
821     }
822    
823 root 1.9 #############################################################################
824    
825     =back
826    
827     =head2 WRITE QUEUE
828    
829     AnyEvent::Handle manages two queues per handle, one for writing and one
830     for reading.
831    
832     The write queue is very simple: you can add data to its end, and
833     AnyEvent::Handle will automatically try to get rid of it for you.
834    
835 elmex 1.20 When data could be written and the write buffer is shorter then the low
836 root 1.9 water mark, the C<on_drain> callback will be invoked.
837    
838     =over 4
839    
840 root 1.8 =item $handle->on_drain ($cb)
841    
842     Sets the C<on_drain> callback or clears it (see the description of
843     C<on_drain> in the constructor).
844    
845 root 1.193 This method may invoke callbacks (and therefore the handle might be
846     destroyed after it returns).
847    
848 root 1.8 =cut
849    
850     sub on_drain {
851 elmex 1.1 my ($self, $cb) = @_;
852    
853 root 1.8 $self->{on_drain} = $cb;
854    
855     $cb->($self)
856 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
857 root 1.8 }
858    
859     =item $handle->push_write ($data)
860    
861     Queues the given scalar to be written. You can push as much data as you
862     want (only limited by the available memory), as C<AnyEvent::Handle>
863     buffers it independently of the kernel.
864    
865 root 1.193 This method may invoke callbacks (and therefore the handle might be
866     destroyed after it returns).
867    
868 root 1.8 =cut
869    
870 root 1.17 sub _drain_wbuf {
871     my ($self) = @_;
872 root 1.8
873 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
874 root 1.35
875 root 1.8 Scalar::Util::weaken $self;
876 root 1.35
877 root 1.8 my $cb = sub {
878     my $len = syswrite $self->{fh}, $self->{wbuf};
879    
880 root 1.146 if (defined $len) {
881 root 1.8 substr $self->{wbuf}, 0, $len, "";
882    
883 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
884 root 1.43
885 root 1.8 $self->{on_drain}($self)
886 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
887 root 1.8 && $self->{on_drain};
888    
889 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
890 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
891 root 1.52 $self->_error ($!, 1);
892 elmex 1.1 }
893 root 1.8 };
894    
895 root 1.35 # try to write data immediately
896 root 1.70 $cb->() unless $self->{autocork};
897 root 1.8
898 root 1.35 # if still data left in wbuf, we need to poll
899 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
900 root 1.35 if length $self->{wbuf};
901 root 1.8 };
902     }
903    
904 root 1.30 our %WH;
905    
906 root 1.185 # deprecated
907 root 1.30 sub register_write_type($$) {
908     $WH{$_[0]} = $_[1];
909     }
910    
911 root 1.17 sub push_write {
912     my $self = shift;
913    
914 root 1.29 if (@_ > 1) {
915     my $type = shift;
916    
917 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
918     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
919 root 1.29 ->($self, @_);
920     }
921    
922 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
923     # and diagnose the problem earlier and better.
924    
925 root 1.93 if ($self->{tls}) {
926 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
927 root 1.160 &_dotls ($self) if $self->{fh};
928 root 1.17 } else {
929 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
930 root 1.159 $self->_drain_wbuf if $self->{fh};
931 root 1.17 }
932     }
933    
934 root 1.29 =item $handle->push_write (type => @args)
935    
936 root 1.185 Instead of formatting your data yourself, you can also let this module
937     do the job by specifying a type and type-specific arguments. You
938     can also specify the (fully qualified) name of a package, in which
939     case AnyEvent tries to load the package and then expects to find the
940 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
941 root 1.29
942 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
943     drop by and tell us):
944 root 1.29
945     =over 4
946    
947     =item netstring => $string
948    
949     Formats the given value as netstring
950     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
951    
952     =cut
953    
954     register_write_type netstring => sub {
955     my ($self, $string) = @_;
956    
957 root 1.96 (length $string) . ":$string,"
958 root 1.29 };
959    
960 root 1.61 =item packstring => $format, $data
961    
962     An octet string prefixed with an encoded length. The encoding C<$format>
963     uses the same format as a Perl C<pack> format, but must specify a single
964     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
965     optional C<!>, C<< < >> or C<< > >> modifier).
966    
967     =cut
968    
969     register_write_type packstring => sub {
970     my ($self, $format, $string) = @_;
971    
972 root 1.65 pack "$format/a*", $string
973 root 1.61 };
974    
975 root 1.39 =item json => $array_or_hashref
976    
977 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
978     provide your own JSON object, this means it will be encoded to JSON text
979     in UTF-8.
980    
981     JSON objects (and arrays) are self-delimiting, so you can write JSON at
982     one end of a handle and read them at the other end without using any
983     additional framing.
984    
985 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
986     this module doesn't need delimiters after or between JSON texts to be
987     able to read them, many other languages depend on that.
988    
989     A simple RPC protocol that interoperates easily with others is to send
990     JSON arrays (or objects, although arrays are usually the better choice as
991     they mimic how function argument passing works) and a newline after each
992     JSON text:
993    
994     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
995     $handle->push_write ("\012");
996    
997     An AnyEvent::Handle receiver would simply use the C<json> read type and
998     rely on the fact that the newline will be skipped as leading whitespace:
999    
1000     $handle->push_read (json => sub { my $array = $_[1]; ... });
1001    
1002     Other languages could read single lines terminated by a newline and pass
1003     this line into their JSON decoder of choice.
1004    
1005 root 1.40 =cut
1006    
1007 root 1.179 sub json_coder() {
1008     eval { require JSON::XS; JSON::XS->new->utf8 }
1009     || do { require JSON; JSON->new->utf8 }
1010     }
1011    
1012 root 1.40 register_write_type json => sub {
1013     my ($self, $ref) = @_;
1014    
1015 root 1.179 my $json = $self->{json} ||= json_coder;
1016 root 1.40
1017 root 1.179 $json->encode ($ref)
1018 root 1.40 };
1019    
1020 root 1.63 =item storable => $reference
1021    
1022     Freezes the given reference using L<Storable> and writes it to the
1023     handle. Uses the C<nfreeze> format.
1024    
1025     =cut
1026    
1027     register_write_type storable => sub {
1028     my ($self, $ref) = @_;
1029    
1030     require Storable;
1031    
1032 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1033 root 1.63 };
1034    
1035 root 1.53 =back
1036    
1037 root 1.133 =item $handle->push_shutdown
1038    
1039     Sometimes you know you want to close the socket after writing your data
1040     before it was actually written. One way to do that is to replace your
1041 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1042     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1043     replaces the C<on_drain> callback with:
1044 root 1.133
1045     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1046    
1047     This simply shuts down the write side and signals an EOF condition to the
1048     the peer.
1049    
1050     You can rely on the normal read queue and C<on_eof> handling
1051     afterwards. This is the cleanest way to close a connection.
1052    
1053 root 1.193 This method may invoke callbacks (and therefore the handle might be
1054     destroyed after it returns).
1055    
1056 root 1.133 =cut
1057    
1058     sub push_shutdown {
1059 root 1.142 my ($self) = @_;
1060    
1061     delete $self->{low_water_mark};
1062     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1063 root 1.133 }
1064    
1065 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1066    
1067     Instead of one of the predefined types, you can also specify the name of
1068     a package. AnyEvent will try to load the package and then expects to find
1069     a function named C<anyevent_write_type> inside. If it isn't found, it
1070     progressively tries to load the parent package until it either finds the
1071     function (good) or runs out of packages (bad).
1072    
1073     Whenever the given C<type> is used, C<push_write> will the function with
1074     the handle object and the remaining arguments.
1075    
1076     The function is supposed to return a single octet string that will be
1077     appended to the write buffer, so you cna mentally treat this function as a
1078     "arguments to on-the-wire-format" converter.
1079 root 1.30
1080 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1081     arguments using the first one.
1082 root 1.29
1083 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1084 root 1.29
1085 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1086     # the "My" modules to be auto-loaded, or just about anywhere when the
1087     # My::Type::anyevent_write_type is defined before invoking it.
1088    
1089     package My::Type;
1090    
1091     sub anyevent_write_type {
1092     my ($handle, $delim, @args) = @_;
1093    
1094     join $delim, @args
1095     }
1096 root 1.29
1097 root 1.30 =cut
1098 root 1.29
1099 root 1.8 #############################################################################
1100    
1101 root 1.9 =back
1102    
1103     =head2 READ QUEUE
1104    
1105     AnyEvent::Handle manages two queues per handle, one for writing and one
1106     for reading.
1107    
1108     The read queue is more complex than the write queue. It can be used in two
1109     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1110     a queue.
1111    
1112     In the simple case, you just install an C<on_read> callback and whenever
1113     new data arrives, it will be called. You can then remove some data (if
1114 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1115 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1116 root 1.197 partial message has been received so far), or change the read queue with
1117     e.g. C<push_read>.
1118 root 1.9
1119     In the more complex case, you want to queue multiple callbacks. In this
1120     case, AnyEvent::Handle will call the first queued callback each time new
1121 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1122 root 1.61 done its job (see C<push_read>, below).
1123 root 1.9
1124     This way you can, for example, push three line-reads, followed by reading
1125     a chunk of data, and AnyEvent::Handle will execute them in order.
1126    
1127     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1128     the specified number of bytes which give an XML datagram.
1129    
1130     # in the default state, expect some header bytes
1131     $handle->on_read (sub {
1132     # some data is here, now queue the length-header-read (4 octets)
1133 root 1.52 shift->unshift_read (chunk => 4, sub {
1134 root 1.9 # header arrived, decode
1135     my $len = unpack "N", $_[1];
1136    
1137     # now read the payload
1138 root 1.52 shift->unshift_read (chunk => $len, sub {
1139 root 1.9 my $xml = $_[1];
1140     # handle xml
1141     });
1142     });
1143     });
1144    
1145 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1146     and another line or "ERROR" for the first request that is sent, and 64
1147     bytes for the second request. Due to the availability of a queue, we can
1148     just pipeline sending both requests and manipulate the queue as necessary
1149     in the callbacks.
1150    
1151     When the first callback is called and sees an "OK" response, it will
1152     C<unshift> another line-read. This line-read will be queued I<before> the
1153     64-byte chunk callback.
1154 root 1.9
1155 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1156 root 1.9 $handle->push_write ("request 1\015\012");
1157    
1158     # we expect "ERROR" or "OK" as response, so push a line read
1159 root 1.52 $handle->push_read (line => sub {
1160 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1161     # so it will be read before the second request reads its 64 bytes
1162     # which are already in the queue when this callback is called
1163     # we don't do this in case we got an error
1164     if ($_[1] eq "OK") {
1165 root 1.52 $_[0]->unshift_read (line => sub {
1166 root 1.9 my $response = $_[1];
1167     ...
1168     });
1169     }
1170     });
1171    
1172 root 1.69 # request two, simply returns 64 octets
1173 root 1.9 $handle->push_write ("request 2\015\012");
1174    
1175     # simply read 64 bytes, always
1176 root 1.52 $handle->push_read (chunk => 64, sub {
1177 root 1.9 my $response = $_[1];
1178     ...
1179     });
1180    
1181     =over 4
1182    
1183 root 1.10 =cut
1184    
1185 root 1.8 sub _drain_rbuf {
1186     my ($self) = @_;
1187 elmex 1.1
1188 root 1.159 # avoid recursion
1189 root 1.167 return if $self->{_skip_drain_rbuf};
1190 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1191 root 1.59
1192     while () {
1193 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1194     # we are draining the buffer, and this can only happen with TLS.
1195 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1196     if exists $self->{_tls_rbuf};
1197 root 1.115
1198 root 1.59 my $len = length $self->{rbuf};
1199 elmex 1.1
1200 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1201 root 1.29 unless ($cb->($self)) {
1202 root 1.163 # no progress can be made
1203     # (not enough data and no data forthcoming)
1204     $self->_error (Errno::EPIPE, 1), return
1205     if $self->{_eof};
1206 root 1.10
1207 root 1.38 unshift @{ $self->{_queue} }, $cb;
1208 root 1.55 last;
1209 root 1.8 }
1210     } elsif ($self->{on_read}) {
1211 root 1.61 last unless $len;
1212    
1213 root 1.8 $self->{on_read}($self);
1214    
1215     if (
1216 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1217     && !@{ $self->{_queue} } # and the queue is still empty
1218     && $self->{on_read} # but we still have on_read
1219 root 1.8 ) {
1220 root 1.55 # no further data will arrive
1221     # so no progress can be made
1222 root 1.150 $self->_error (Errno::EPIPE, 1), return
1223 root 1.55 if $self->{_eof};
1224    
1225     last; # more data might arrive
1226 elmex 1.1 }
1227 root 1.8 } else {
1228     # read side becomes idle
1229 root 1.93 delete $self->{_rw} unless $self->{tls};
1230 root 1.55 last;
1231 root 1.8 }
1232     }
1233    
1234 root 1.80 if ($self->{_eof}) {
1235 root 1.163 $self->{on_eof}
1236     ? $self->{on_eof}($self)
1237     : $self->_error (0, 1, "Unexpected end-of-file");
1238    
1239     return;
1240 root 1.80 }
1241 root 1.55
1242 root 1.169 if (
1243     defined $self->{rbuf_max}
1244     && $self->{rbuf_max} < length $self->{rbuf}
1245     ) {
1246     $self->_error (Errno::ENOSPC, 1), return;
1247     }
1248    
1249 root 1.55 # may need to restart read watcher
1250     unless ($self->{_rw}) {
1251     $self->start_read
1252     if $self->{on_read} || @{ $self->{_queue} };
1253     }
1254 elmex 1.1 }
1255    
1256 root 1.8 =item $handle->on_read ($cb)
1257 elmex 1.1
1258 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1259     the new callback is C<undef>). See the description of C<on_read> in the
1260     constructor.
1261 elmex 1.1
1262 root 1.193 This method may invoke callbacks (and therefore the handle might be
1263     destroyed after it returns).
1264    
1265 root 1.8 =cut
1266    
1267     sub on_read {
1268     my ($self, $cb) = @_;
1269 elmex 1.1
1270 root 1.8 $self->{on_read} = $cb;
1271 root 1.159 $self->_drain_rbuf if $cb;
1272 elmex 1.1 }
1273    
1274 root 1.8 =item $handle->rbuf
1275    
1276 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1277     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1278     much faster, and no less clean).
1279    
1280     The only operation allowed on the read buffer (apart from looking at it)
1281     is removing data from its beginning. Otherwise modifying or appending to
1282     it is not allowed and will lead to hard-to-track-down bugs.
1283    
1284     NOTE: The read buffer should only be used or modified in the C<on_read>
1285     callback or when C<push_read> or C<unshift_read> are used with a single
1286     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1287     will manage the read buffer on their own.
1288 elmex 1.1
1289     =cut
1290    
1291 elmex 1.2 sub rbuf : lvalue {
1292 root 1.8 $_[0]{rbuf}
1293 elmex 1.2 }
1294 elmex 1.1
1295 root 1.8 =item $handle->push_read ($cb)
1296    
1297     =item $handle->unshift_read ($cb)
1298    
1299     Append the given callback to the end of the queue (C<push_read>) or
1300     prepend it (C<unshift_read>).
1301    
1302     The callback is called each time some additional read data arrives.
1303 elmex 1.1
1304 elmex 1.20 It must check whether enough data is in the read buffer already.
1305 elmex 1.1
1306 root 1.8 If not enough data is available, it must return the empty list or a false
1307     value, in which case it will be called repeatedly until enough data is
1308     available (or an error condition is detected).
1309    
1310     If enough data was available, then the callback must remove all data it is
1311     interested in (which can be none at all) and return a true value. After returning
1312     true, it will be removed from the queue.
1313 elmex 1.1
1314 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1315     destroyed after it returns).
1316    
1317 elmex 1.1 =cut
1318    
1319 root 1.30 our %RH;
1320    
1321     sub register_read_type($$) {
1322     $RH{$_[0]} = $_[1];
1323     }
1324    
1325 root 1.8 sub push_read {
1326 root 1.28 my $self = shift;
1327     my $cb = pop;
1328    
1329     if (@_) {
1330     my $type = shift;
1331    
1332 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1333     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1334 root 1.28 ->($self, $cb, @_);
1335     }
1336 elmex 1.1
1337 root 1.38 push @{ $self->{_queue} }, $cb;
1338 root 1.159 $self->_drain_rbuf;
1339 elmex 1.1 }
1340    
1341 root 1.8 sub unshift_read {
1342 root 1.28 my $self = shift;
1343     my $cb = pop;
1344    
1345     if (@_) {
1346     my $type = shift;
1347    
1348 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1349     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1350 root 1.28 ->($self, $cb, @_);
1351     }
1352    
1353 root 1.38 unshift @{ $self->{_queue} }, $cb;
1354 root 1.159 $self->_drain_rbuf;
1355 root 1.8 }
1356 elmex 1.1
1357 root 1.28 =item $handle->push_read (type => @args, $cb)
1358 elmex 1.1
1359 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1360 elmex 1.1
1361 root 1.28 Instead of providing a callback that parses the data itself you can chose
1362     between a number of predefined parsing formats, for chunks of data, lines
1363 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1364     which case AnyEvent tries to load the package and then expects to find the
1365     C<anyevent_read_type> function inside (see "custom read types", below).
1366 elmex 1.1
1367 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1368     drop by and tell us):
1369 root 1.28
1370     =over 4
1371    
1372 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1373 root 1.28
1374     Invoke the callback only once C<$octets> bytes have been read. Pass the
1375     data read to the callback. The callback will never be called with less
1376     data.
1377    
1378     Example: read 2 bytes.
1379    
1380     $handle->push_read (chunk => 2, sub {
1381     warn "yay ", unpack "H*", $_[1];
1382     });
1383 elmex 1.1
1384     =cut
1385    
1386 root 1.28 register_read_type chunk => sub {
1387     my ($self, $cb, $len) = @_;
1388 elmex 1.1
1389 root 1.8 sub {
1390     $len <= length $_[0]{rbuf} or return;
1391 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1392 root 1.8 1
1393     }
1394 root 1.28 };
1395 root 1.8
1396 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1397 elmex 1.1
1398 root 1.8 The callback will be called only once a full line (including the end of
1399     line marker, C<$eol>) has been read. This line (excluding the end of line
1400     marker) will be passed to the callback as second argument (C<$line>), and
1401     the end of line marker as the third argument (C<$eol>).
1402 elmex 1.1
1403 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1404     will be interpreted as a fixed record end marker, or it can be a regex
1405     object (e.g. created by C<qr>), in which case it is interpreted as a
1406     regular expression.
1407 elmex 1.1
1408 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1409     undef), then C<qr|\015?\012|> is used (which is good for most internet
1410     protocols).
1411 elmex 1.1
1412 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1413     not marked by the end of line marker.
1414 elmex 1.1
1415 root 1.8 =cut
1416 elmex 1.1
1417 root 1.28 register_read_type line => sub {
1418     my ($self, $cb, $eol) = @_;
1419 elmex 1.1
1420 root 1.76 if (@_ < 3) {
1421     # this is more than twice as fast as the generic code below
1422     sub {
1423     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1424 elmex 1.1
1425 root 1.76 $cb->($_[0], $1, $2);
1426     1
1427     }
1428     } else {
1429     $eol = quotemeta $eol unless ref $eol;
1430     $eol = qr|^(.*?)($eol)|s;
1431    
1432     sub {
1433     $_[0]{rbuf} =~ s/$eol// or return;
1434 elmex 1.1
1435 root 1.76 $cb->($_[0], $1, $2);
1436     1
1437     }
1438 root 1.8 }
1439 root 1.28 };
1440 elmex 1.1
1441 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1442 root 1.36
1443     Makes a regex match against the regex object C<$accept> and returns
1444     everything up to and including the match.
1445    
1446     Example: read a single line terminated by '\n'.
1447    
1448     $handle->push_read (regex => qr<\n>, sub { ... });
1449    
1450     If C<$reject> is given and not undef, then it determines when the data is
1451     to be rejected: it is matched against the data when the C<$accept> regex
1452     does not match and generates an C<EBADMSG> error when it matches. This is
1453     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1454     receive buffer overflow).
1455    
1456     Example: expect a single decimal number followed by whitespace, reject
1457     anything else (not the use of an anchor).
1458    
1459     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1460    
1461     If C<$skip> is given and not C<undef>, then it will be matched against
1462     the receive buffer when neither C<$accept> nor C<$reject> match,
1463     and everything preceding and including the match will be accepted
1464     unconditionally. This is useful to skip large amounts of data that you
1465     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1466     have to start matching from the beginning. This is purely an optimisation
1467 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1468 root 1.36
1469     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1470 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1471 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1472     it only accepts something not ending in either \015 or \012, as these are
1473     required for the accept regex.
1474    
1475     $handle->push_read (regex =>
1476     qr<\015\012\015\012>,
1477     undef, # no reject
1478     qr<^.*[^\015\012]>,
1479     sub { ... });
1480    
1481     =cut
1482    
1483     register_read_type regex => sub {
1484     my ($self, $cb, $accept, $reject, $skip) = @_;
1485    
1486     my $data;
1487     my $rbuf = \$self->{rbuf};
1488    
1489     sub {
1490     # accept
1491     if ($$rbuf =~ $accept) {
1492     $data .= substr $$rbuf, 0, $+[0], "";
1493     $cb->($self, $data);
1494     return 1;
1495     }
1496    
1497     # reject
1498     if ($reject && $$rbuf =~ $reject) {
1499 root 1.150 $self->_error (Errno::EBADMSG);
1500 root 1.36 }
1501    
1502     # skip
1503     if ($skip && $$rbuf =~ $skip) {
1504     $data .= substr $$rbuf, 0, $+[0], "";
1505     }
1506    
1507     ()
1508     }
1509     };
1510    
1511 root 1.61 =item netstring => $cb->($handle, $string)
1512    
1513     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1514    
1515     Throws an error with C<$!> set to EBADMSG on format violations.
1516    
1517     =cut
1518    
1519     register_read_type netstring => sub {
1520     my ($self, $cb) = @_;
1521    
1522     sub {
1523     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1524     if ($_[0]{rbuf} =~ /[^0-9]/) {
1525 root 1.150 $self->_error (Errno::EBADMSG);
1526 root 1.61 }
1527     return;
1528     }
1529    
1530     my $len = $1;
1531    
1532     $self->unshift_read (chunk => $len, sub {
1533     my $string = $_[1];
1534     $_[0]->unshift_read (chunk => 1, sub {
1535     if ($_[1] eq ",") {
1536     $cb->($_[0], $string);
1537     } else {
1538 root 1.150 $self->_error (Errno::EBADMSG);
1539 root 1.61 }
1540     });
1541     });
1542    
1543     1
1544     }
1545     };
1546    
1547     =item packstring => $format, $cb->($handle, $string)
1548    
1549     An octet string prefixed with an encoded length. The encoding C<$format>
1550     uses the same format as a Perl C<pack> format, but must specify a single
1551     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1552     optional C<!>, C<< < >> or C<< > >> modifier).
1553    
1554 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1555     EPP uses a prefix of C<N> (4 octtes).
1556 root 1.61
1557     Example: read a block of data prefixed by its length in BER-encoded
1558     format (very efficient).
1559    
1560     $handle->push_read (packstring => "w", sub {
1561     my ($handle, $data) = @_;
1562     });
1563    
1564     =cut
1565    
1566     register_read_type packstring => sub {
1567     my ($self, $cb, $format) = @_;
1568    
1569     sub {
1570     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1571 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1572 root 1.61 or return;
1573    
1574 root 1.77 $format = length pack $format, $len;
1575 root 1.61
1576 root 1.77 # bypass unshift if we already have the remaining chunk
1577     if ($format + $len <= length $_[0]{rbuf}) {
1578     my $data = substr $_[0]{rbuf}, $format, $len;
1579     substr $_[0]{rbuf}, 0, $format + $len, "";
1580     $cb->($_[0], $data);
1581     } else {
1582     # remove prefix
1583     substr $_[0]{rbuf}, 0, $format, "";
1584    
1585     # read remaining chunk
1586     $_[0]->unshift_read (chunk => $len, $cb);
1587     }
1588 root 1.61
1589     1
1590     }
1591     };
1592    
1593 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1594    
1595 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1596     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1597 root 1.40
1598     If a C<json> object was passed to the constructor, then that will be used
1599     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1600    
1601     This read type uses the incremental parser available with JSON version
1602     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1603     dependency on your own: this module will load the JSON module, but
1604     AnyEvent does not depend on it itself.
1605    
1606     Since JSON texts are fully self-delimiting, the C<json> read and write
1607 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1608     the C<json> write type description, above, for an actual example.
1609 root 1.40
1610     =cut
1611    
1612     register_read_type json => sub {
1613 root 1.63 my ($self, $cb) = @_;
1614 root 1.40
1615 root 1.179 my $json = $self->{json} ||= json_coder;
1616 root 1.40
1617     my $data;
1618     my $rbuf = \$self->{rbuf};
1619    
1620     sub {
1621 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1622 root 1.110
1623 root 1.113 if ($ref) {
1624     $self->{rbuf} = $json->incr_text;
1625     $json->incr_text = "";
1626     $cb->($self, $ref);
1627 root 1.110
1628     1
1629 root 1.113 } elsif ($@) {
1630 root 1.111 # error case
1631 root 1.110 $json->incr_skip;
1632 root 1.40
1633     $self->{rbuf} = $json->incr_text;
1634     $json->incr_text = "";
1635    
1636 root 1.150 $self->_error (Errno::EBADMSG);
1637 root 1.114
1638 root 1.113 ()
1639     } else {
1640     $self->{rbuf} = "";
1641 root 1.114
1642 root 1.113 ()
1643     }
1644 root 1.40 }
1645     };
1646    
1647 root 1.63 =item storable => $cb->($handle, $ref)
1648    
1649     Deserialises a L<Storable> frozen representation as written by the
1650     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1651     data).
1652    
1653     Raises C<EBADMSG> error if the data could not be decoded.
1654    
1655     =cut
1656    
1657     register_read_type storable => sub {
1658     my ($self, $cb) = @_;
1659    
1660     require Storable;
1661    
1662     sub {
1663     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1664 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1665 root 1.63 or return;
1666    
1667 root 1.77 my $format = length pack "w", $len;
1668 root 1.63
1669 root 1.77 # bypass unshift if we already have the remaining chunk
1670     if ($format + $len <= length $_[0]{rbuf}) {
1671     my $data = substr $_[0]{rbuf}, $format, $len;
1672     substr $_[0]{rbuf}, 0, $format + $len, "";
1673     $cb->($_[0], Storable::thaw ($data));
1674     } else {
1675     # remove prefix
1676     substr $_[0]{rbuf}, 0, $format, "";
1677    
1678     # read remaining chunk
1679     $_[0]->unshift_read (chunk => $len, sub {
1680     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1681     $cb->($_[0], $ref);
1682     } else {
1683 root 1.150 $self->_error (Errno::EBADMSG);
1684 root 1.77 }
1685     });
1686     }
1687    
1688     1
1689 root 1.63 }
1690     };
1691    
1692 root 1.28 =back
1693    
1694 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1695 root 1.30
1696 root 1.185 Instead of one of the predefined types, you can also specify the name
1697     of a package. AnyEvent will try to load the package and then expects to
1698     find a function named C<anyevent_read_type> inside. If it isn't found, it
1699     progressively tries to load the parent package until it either finds the
1700     function (good) or runs out of packages (bad).
1701    
1702     Whenever this type is used, C<push_read> will invoke the function with the
1703     handle object, the original callback and the remaining arguments.
1704    
1705     The function is supposed to return a callback (usually a closure) that
1706     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1707     mentally treat the function as a "configurable read type to read callback"
1708     converter.
1709    
1710     It should invoke the original callback when it is done reading (remember
1711     to pass C<$handle> as first argument as all other callbacks do that,
1712     although there is no strict requirement on this).
1713 root 1.30
1714 root 1.185 For examples, see the source of this module (F<perldoc -m
1715     AnyEvent::Handle>, search for C<register_read_type>)).
1716 root 1.30
1717 root 1.10 =item $handle->stop_read
1718    
1719     =item $handle->start_read
1720    
1721 root 1.18 In rare cases you actually do not want to read anything from the
1722 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1723 root 1.22 any queued callbacks will be executed then. To start reading again, call
1724 root 1.10 C<start_read>.
1725    
1726 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1727     you change the C<on_read> callback or push/unshift a read callback, and it
1728     will automatically C<stop_read> for you when neither C<on_read> is set nor
1729     there are any read requests in the queue.
1730    
1731 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1732     half-duplex connections).
1733    
1734 root 1.10 =cut
1735    
1736     sub stop_read {
1737     my ($self) = @_;
1738 elmex 1.1
1739 root 1.93 delete $self->{_rw} unless $self->{tls};
1740 root 1.8 }
1741 elmex 1.1
1742 root 1.10 sub start_read {
1743     my ($self) = @_;
1744    
1745 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1746 root 1.10 Scalar::Util::weaken $self;
1747    
1748 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1749 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1750 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1751 root 1.10
1752     if ($len > 0) {
1753 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1754 root 1.43
1755 root 1.93 if ($self->{tls}) {
1756     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1757 root 1.97
1758 root 1.93 &_dotls ($self);
1759     } else {
1760 root 1.159 $self->_drain_rbuf;
1761 root 1.93 }
1762 root 1.10
1763     } elsif (defined $len) {
1764 root 1.38 delete $self->{_rw};
1765     $self->{_eof} = 1;
1766 root 1.159 $self->_drain_rbuf;
1767 root 1.10
1768 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1769 root 1.52 return $self->_error ($!, 1);
1770 root 1.10 }
1771 root 1.175 };
1772 root 1.10 }
1773 elmex 1.1 }
1774    
1775 root 1.133 our $ERROR_SYSCALL;
1776     our $ERROR_WANT_READ;
1777    
1778     sub _tls_error {
1779     my ($self, $err) = @_;
1780    
1781     return $self->_error ($!, 1)
1782     if $err == Net::SSLeay::ERROR_SYSCALL ();
1783    
1784 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1785    
1786     # reduce error string to look less scary
1787     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1788    
1789 root 1.143 if ($self->{_on_starttls}) {
1790     (delete $self->{_on_starttls})->($self, undef, $err);
1791     &_freetls;
1792     } else {
1793     &_freetls;
1794 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1795 root 1.143 }
1796 root 1.133 }
1797    
1798 root 1.97 # poll the write BIO and send the data if applicable
1799 root 1.133 # also decode read data if possible
1800     # this is basiclaly our TLS state machine
1801     # more efficient implementations are possible with openssl,
1802     # but not with the buggy and incomplete Net::SSLeay.
1803 root 1.19 sub _dotls {
1804     my ($self) = @_;
1805    
1806 root 1.97 my $tmp;
1807 root 1.56
1808 root 1.38 if (length $self->{_tls_wbuf}) {
1809 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1810     substr $self->{_tls_wbuf}, 0, $tmp, "";
1811 root 1.22 }
1812 root 1.133
1813     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1814     return $self->_tls_error ($tmp)
1815     if $tmp != $ERROR_WANT_READ
1816 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1817 root 1.19 }
1818    
1819 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1820     unless (length $tmp) {
1821 root 1.143 $self->{_on_starttls}
1822     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1823 root 1.92 &_freetls;
1824 root 1.143
1825 root 1.142 if ($self->{on_stoptls}) {
1826     $self->{on_stoptls}($self);
1827     return;
1828     } else {
1829     # let's treat SSL-eof as we treat normal EOF
1830     delete $self->{_rw};
1831     $self->{_eof} = 1;
1832     }
1833 root 1.56 }
1834 root 1.91
1835 root 1.116 $self->{_tls_rbuf} .= $tmp;
1836 root 1.159 $self->_drain_rbuf;
1837 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1838 root 1.23 }
1839    
1840 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1841 root 1.133 return $self->_tls_error ($tmp)
1842     if $tmp != $ERROR_WANT_READ
1843 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1844 root 1.91
1845 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1846     $self->{wbuf} .= $tmp;
1847 root 1.91 $self->_drain_wbuf;
1848 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1849 root 1.91 }
1850 root 1.142
1851     $self->{_on_starttls}
1852     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1853 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1854 root 1.19 }
1855    
1856 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1857    
1858     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1859     object is created, you can also do that at a later time by calling
1860     C<starttls>.
1861    
1862 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1863     write data and then call C<< ->starttls >> then TLS negotiation will start
1864     immediately, after which the queued write data is then sent.
1865    
1866 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1867     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1868    
1869 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1870     when AnyEvent::Handle has to create its own TLS connection object, or
1871     a hash reference with C<< key => value >> pairs that will be used to
1872     construct a new context.
1873    
1874     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1875     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1876     changed to your liking. Note that the handshake might have already started
1877     when this function returns.
1878 root 1.38
1879 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1880 root 1.198 handshakes on the same stream. It is best to not attempt to use the
1881     stream after stopping TLS.
1882 root 1.92
1883 root 1.193 This method may invoke callbacks (and therefore the handle might be
1884     destroyed after it returns).
1885    
1886 root 1.25 =cut
1887    
1888 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1889    
1890 root 1.19 sub starttls {
1891 root 1.160 my ($self, $tls, $ctx) = @_;
1892    
1893     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1894     if $self->{tls};
1895    
1896     $self->{tls} = $tls;
1897     $self->{tls_ctx} = $ctx if @_ > 2;
1898    
1899     return unless $self->{fh};
1900 root 1.19
1901 root 1.94 require Net::SSLeay;
1902    
1903 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1904     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1905 root 1.133
1906 root 1.180 $tls = delete $self->{tls};
1907 root 1.160 $ctx = $self->{tls_ctx};
1908 root 1.131
1909 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1910    
1911 root 1.131 if ("HASH" eq ref $ctx) {
1912     require AnyEvent::TLS;
1913    
1914 root 1.137 if ($ctx->{cache}) {
1915     my $key = $ctx+0;
1916     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1917     } else {
1918     $ctx = new AnyEvent::TLS %$ctx;
1919     }
1920 root 1.131 }
1921 root 1.92
1922 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1923 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1924 root 1.19
1925 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1926     # but the openssl maintainers basically said: "trust us, it just works".
1927     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1928     # and mismaintained ssleay-module doesn't even offer them).
1929 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1930 root 1.87 #
1931     # in short: this is a mess.
1932     #
1933 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1934 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1935 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1936     # have identity issues in that area.
1937 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1938     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1939     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1940 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1941 root 1.21
1942 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1943     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1944 root 1.19
1945 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1946    
1947 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1948 root 1.19
1949 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1950 root 1.143 if $self->{on_starttls};
1951 root 1.142
1952 root 1.93 &_dotls; # need to trigger the initial handshake
1953     $self->start_read; # make sure we actually do read
1954 root 1.19 }
1955    
1956 root 1.25 =item $handle->stoptls
1957    
1958 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1959     sending a close notify to the other side, but since OpenSSL doesn't
1960 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
1961 root 1.160 the stream afterwards.
1962 root 1.25
1963 root 1.193 This method may invoke callbacks (and therefore the handle might be
1964     destroyed after it returns).
1965    
1966 root 1.25 =cut
1967    
1968     sub stoptls {
1969     my ($self) = @_;
1970    
1971 root 1.192 if ($self->{tls} && $self->{fh}) {
1972 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1973 root 1.92
1974     &_dotls;
1975    
1976 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1977     # # we, we... have to use openssl :/#d#
1978     # &_freetls;#d#
1979 root 1.92 }
1980     }
1981    
1982     sub _freetls {
1983     my ($self) = @_;
1984    
1985     return unless $self->{tls};
1986 root 1.38
1987 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1988 root 1.171 if $self->{tls} > 0;
1989 root 1.92
1990 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1991 root 1.25 }
1992    
1993 root 1.19 sub DESTROY {
1994 root 1.120 my ($self) = @_;
1995 root 1.19
1996 root 1.92 &_freetls;
1997 root 1.62
1998     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1999    
2000 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2001 root 1.62 my $fh = delete $self->{fh};
2002     my $wbuf = delete $self->{wbuf};
2003    
2004     my @linger;
2005    
2006 root 1.175 push @linger, AE::io $fh, 1, sub {
2007 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2008    
2009     if ($len > 0) {
2010     substr $wbuf, 0, $len, "";
2011     } else {
2012     @linger = (); # end
2013     }
2014 root 1.175 };
2015     push @linger, AE::timer $linger, 0, sub {
2016 root 1.62 @linger = ();
2017 root 1.175 };
2018 root 1.62 }
2019 root 1.19 }
2020    
2021 root 1.99 =item $handle->destroy
2022    
2023 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2024 root 1.141 no further callbacks will be invoked and as many resources as possible
2025 root 1.165 will be freed. Any method you will call on the handle object after
2026     destroying it in this way will be silently ignored (and it will return the
2027     empty list).
2028 root 1.99
2029 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2030     object and it will simply shut down. This works in fatal error and EOF
2031     callbacks, as well as code outside. It does I<NOT> work in a read or write
2032     callback, so when you want to destroy the AnyEvent::Handle object from
2033     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2034     that case.
2035    
2036 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2037     will be removed as well, so if those are the only reference holders (as
2038     is common), then one doesn't need to do anything special to break any
2039     reference cycles.
2040    
2041 root 1.99 The handle might still linger in the background and write out remaining
2042     data, as specified by the C<linger> option, however.
2043    
2044     =cut
2045    
2046     sub destroy {
2047     my ($self) = @_;
2048    
2049     $self->DESTROY;
2050     %$self = ();
2051 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2052     }
2053    
2054 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2055     #nop
2056 root 1.99 }
2057    
2058 root 1.192 =item $handle->destroyed
2059    
2060     Returns false as long as the handle hasn't been destroyed by a call to C<<
2061     ->destroy >>, true otherwise.
2062    
2063     Can be useful to decide whether the handle is still valid after some
2064     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2065     C<< ->starttls >> and other methods can call user callbacks, which in turn
2066     can destroy the handle, so work can be avoided by checking sometimes:
2067    
2068     $hdl->starttls ("accept");
2069     return if $hdl->destroyed;
2070     $hdl->push_write (...
2071    
2072     Note that the call to C<push_write> will silently be ignored if the handle
2073     has been destroyed, so often you can just ignore the possibility of the
2074     handle being destroyed.
2075    
2076     =cut
2077    
2078     sub destroyed { 0 }
2079     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2080    
2081 root 1.19 =item AnyEvent::Handle::TLS_CTX
2082    
2083 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2084     for TLS mode.
2085 root 1.19
2086 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2087 root 1.19
2088     =cut
2089    
2090     our $TLS_CTX;
2091    
2092     sub TLS_CTX() {
2093 root 1.131 $TLS_CTX ||= do {
2094     require AnyEvent::TLS;
2095 root 1.19
2096 root 1.131 new AnyEvent::TLS
2097 root 1.19 }
2098     }
2099    
2100 elmex 1.1 =back
2101    
2102 root 1.95
2103     =head1 NONFREQUENTLY ASKED QUESTIONS
2104    
2105     =over 4
2106    
2107 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2108     still get further invocations!
2109    
2110     That's because AnyEvent::Handle keeps a reference to itself when handling
2111     read or write callbacks.
2112    
2113     It is only safe to "forget" the reference inside EOF or error callbacks,
2114     from within all other callbacks, you need to explicitly call the C<<
2115     ->destroy >> method.
2116    
2117     =item I get different callback invocations in TLS mode/Why can't I pause
2118     reading?
2119    
2120     Unlike, say, TCP, TLS connections do not consist of two independent
2121 root 1.198 communication channels, one for each direction. Or put differently, the
2122 root 1.101 read and write directions are not independent of each other: you cannot
2123     write data unless you are also prepared to read, and vice versa.
2124    
2125 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2126 root 1.101 callback invocations when you are not expecting any read data - the reason
2127     is that AnyEvent::Handle always reads in TLS mode.
2128    
2129     During the connection, you have to make sure that you always have a
2130     non-empty read-queue, or an C<on_read> watcher. At the end of the
2131     connection (or when you no longer want to use it) you can call the
2132     C<destroy> method.
2133    
2134 root 1.95 =item How do I read data until the other side closes the connection?
2135    
2136 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2137     to achieve this is by setting an C<on_read> callback that does nothing,
2138     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2139     will be in C<$_[0]{rbuf}>:
2140 root 1.95
2141     $handle->on_read (sub { });
2142     $handle->on_eof (undef);
2143     $handle->on_error (sub {
2144     my $data = delete $_[0]{rbuf};
2145     });
2146    
2147     The reason to use C<on_error> is that TCP connections, due to latencies
2148     and packets loss, might get closed quite violently with an error, when in
2149 root 1.198 fact all data has been received.
2150 root 1.95
2151 root 1.101 It is usually better to use acknowledgements when transferring data,
2152 root 1.95 to make sure the other side hasn't just died and you got the data
2153     intact. This is also one reason why so many internet protocols have an
2154     explicit QUIT command.
2155    
2156 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2157     all data has been written?
2158 root 1.95
2159     After writing your last bits of data, set the C<on_drain> callback
2160     and destroy the handle in there - with the default setting of
2161     C<low_water_mark> this will be called precisely when all data has been
2162     written to the socket:
2163    
2164     $handle->push_write (...);
2165     $handle->on_drain (sub {
2166     warn "all data submitted to the kernel\n";
2167     undef $handle;
2168     });
2169    
2170 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2171     consider using C<< ->push_shutdown >> instead.
2172    
2173     =item I want to contact a TLS/SSL server, I don't care about security.
2174    
2175     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2176 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2177 root 1.143 parameter:
2178    
2179 root 1.144 tcp_connect $host, $port, sub {
2180     my ($fh) = @_;
2181 root 1.143
2182 root 1.144 my $handle = new AnyEvent::Handle
2183     fh => $fh,
2184     tls => "connect",
2185     on_error => sub { ... };
2186    
2187     $handle->push_write (...);
2188     };
2189 root 1.143
2190     =item I want to contact a TLS/SSL server, I do care about security.
2191    
2192 root 1.144 Then you should additionally enable certificate verification, including
2193     peername verification, if the protocol you use supports it (see
2194     L<AnyEvent::TLS>, C<verify_peername>).
2195    
2196     E.g. for HTTPS:
2197    
2198     tcp_connect $host, $port, sub {
2199     my ($fh) = @_;
2200    
2201     my $handle = new AnyEvent::Handle
2202     fh => $fh,
2203     peername => $host,
2204     tls => "connect",
2205     tls_ctx => { verify => 1, verify_peername => "https" },
2206     ...
2207    
2208     Note that you must specify the hostname you connected to (or whatever
2209     "peername" the protocol needs) as the C<peername> argument, otherwise no
2210     peername verification will be done.
2211    
2212     The above will use the system-dependent default set of trusted CA
2213     certificates. If you want to check against a specific CA, add the
2214     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2215    
2216     tls_ctx => {
2217     verify => 1,
2218     verify_peername => "https",
2219     ca_file => "my-ca-cert.pem",
2220     },
2221    
2222     =item I want to create a TLS/SSL server, how do I do that?
2223    
2224     Well, you first need to get a server certificate and key. You have
2225     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2226     self-signed certificate (cheap. check the search engine of your choice,
2227     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2228     nice program for that purpose).
2229    
2230     Then create a file with your private key (in PEM format, see
2231     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2232     file should then look like this:
2233    
2234     -----BEGIN RSA PRIVATE KEY-----
2235     ...header data
2236     ... lots of base64'y-stuff
2237     -----END RSA PRIVATE KEY-----
2238    
2239     -----BEGIN CERTIFICATE-----
2240     ... lots of base64'y-stuff
2241     -----END CERTIFICATE-----
2242    
2243     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2244     specify this file as C<cert_file>:
2245    
2246     tcp_server undef, $port, sub {
2247     my ($fh) = @_;
2248    
2249     my $handle = new AnyEvent::Handle
2250     fh => $fh,
2251     tls => "accept",
2252     tls_ctx => { cert_file => "my-server-keycert.pem" },
2253     ...
2254 root 1.143
2255 root 1.144 When you have intermediate CA certificates that your clients might not
2256     know about, just append them to the C<cert_file>.
2257 root 1.143
2258 root 1.95 =back
2259    
2260    
2261 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2262    
2263     In many cases, you might want to subclass AnyEvent::Handle.
2264    
2265     To make this easier, a given version of AnyEvent::Handle uses these
2266     conventions:
2267    
2268     =over 4
2269    
2270     =item * all constructor arguments become object members.
2271    
2272     At least initially, when you pass a C<tls>-argument to the constructor it
2273 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2274 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2275    
2276     =item * other object member names are prefixed with an C<_>.
2277    
2278     All object members not explicitly documented (internal use) are prefixed
2279     with an underscore character, so the remaining non-C<_>-namespace is free
2280     for use for subclasses.
2281    
2282     =item * all members not documented here and not prefixed with an underscore
2283     are free to use in subclasses.
2284    
2285     Of course, new versions of AnyEvent::Handle may introduce more "public"
2286 root 1.198 member variables, but that's just life. At least it is documented.
2287 root 1.38
2288     =back
2289    
2290 elmex 1.1 =head1 AUTHOR
2291    
2292 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2293 elmex 1.1
2294     =cut
2295    
2296     1; # End of AnyEvent::Handle