ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.204
Committed: Mon Nov 15 03:29:17 2010 UTC (13 years, 6 months ago) by root
Branch: MAIN
Changes since 1.203: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119     attempted, but after the file handle has been created. It could be used to
120     prepare the file handle with parameters required for the actual connect
121     (as opposed to settings that can be changed when the connection is already
122     established).
123    
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.159 parameters, together with a retry callback.
134    
135 root 1.198 If, for some reason, the handle is not acceptable, calling C<$retry>
136     will continue with the next connection target (in case of multi-homed
137     hosts or SRV records there can be multiple connection endpoints). At the
138     time it is called the read and write queues, eof status, tls status and
139     similar properties of the handle will have been reset.
140 root 1.159
141 root 1.198 In most cases, you should ignore the C<$retry> parameter.
142 root 1.158
143 root 1.159 =item on_connect_error => $cb->($handle, $message)
144 root 1.10
145 root 1.186 This callback is called when the connection could not be
146 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
147     message describing it (usually the same as C<"$!">).
148 root 1.8
149 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
150     fatal error instead.
151 root 1.82
152 root 1.159 =back
153 root 1.80
154 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
155 root 1.10
156 root 1.52 This is the error callback, which is called when, well, some error
157     occured, such as not being able to resolve the hostname, failure to
158 root 1.198 connect, or a read error.
159 root 1.52
160     Some errors are fatal (which is indicated by C<$fatal> being true). On
161 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
162     destroy >>) after invoking the error callback (which means you are free to
163     examine the handle object). Examples of fatal errors are an EOF condition
164 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
165 root 1.198 cases where the other side can close the connection at will, it is
166 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
167 root 1.82
168 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
169     against, but in some cases (TLS errors), this does not work well. It is
170     recommended to always output the C<$message> argument in human-readable
171     error messages (it's usually the same as C<"$!">).
172    
173 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
174 root 1.82 to simply ignore this parameter and instead abondon the handle object
175     when this callback is invoked. Examples of non-fatal errors are timeouts
176     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
177 root 1.8
178 root 1.198 On entry to the callback, the value of C<$!> contains the operating
179     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
180 root 1.133 C<EPROTO>).
181 root 1.8
182 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
183 root 1.198 you will not be notified of errors otherwise. The default just calls
184 root 1.52 C<croak>.
185 root 1.8
186 root 1.40 =item on_read => $cb->($handle)
187 root 1.8
188     This sets the default read callback, which is called when data arrives
189 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
190     callback will only be called when at least one octet of data is in the
191     read buffer).
192 root 1.8
193     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
194 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
195 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
196     the beginning from it.
197 root 1.8
198 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
199     modifies the read queue. Or do both. Or ...
200    
201 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
202 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
203     calling the C<on_eof> callback. If no progress can be made, then a fatal
204     error will be raised (with C<$!> set to C<EPIPE>).
205 elmex 1.1
206 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
207     doesn't mean you I<require> some data: if there is an EOF and there
208     are outstanding read requests then an error will be flagged. With an
209     C<on_read> callback, the C<on_eof> callback will be invoked.
210    
211 root 1.159 =item on_eof => $cb->($handle)
212    
213     Set the callback to be called when an end-of-file condition is detected,
214     i.e. in the case of a socket, when the other side has closed the
215     connection cleanly, and there are no outstanding read requests in the
216     queue (if there are read requests, then an EOF counts as an unexpected
217     connection close and will be flagged as an error).
218    
219     For sockets, this just means that the other side has stopped sending data,
220     you can still try to write data, and, in fact, one can return from the EOF
221     callback and continue writing data, as only the read part has been shut
222     down.
223    
224     If an EOF condition has been detected but no C<on_eof> callback has been
225     set, then a fatal error will be raised with C<$!> set to <0>.
226    
227 root 1.40 =item on_drain => $cb->($handle)
228 elmex 1.1
229 root 1.8 This sets the callback that is called when the write buffer becomes empty
230 root 1.198 (or immediately if the buffer is empty already).
231 elmex 1.1
232 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
233 elmex 1.2
234 root 1.69 This callback is useful when you don't want to put all of your write data
235     into the queue at once, for example, when you want to write the contents
236     of some file to the socket you might not want to read the whole file into
237     memory and push it into the queue, but instead only read more data from
238     the file when the write queue becomes empty.
239    
240 root 1.43 =item timeout => $fractional_seconds
241    
242 root 1.176 =item rtimeout => $fractional_seconds
243    
244     =item wtimeout => $fractional_seconds
245    
246     If non-zero, then these enables an "inactivity" timeout: whenever this
247     many seconds pass without a successful read or write on the underlying
248     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
249     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
250     error will be raised).
251    
252 root 1.198 There are three variants of the timeouts that work independently
253 root 1.176 of each other, for both read and write, just read, and just write:
254     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
255     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
256     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
257 root 1.43
258 root 1.198 Note that timeout processing is active even when you do not have
259 root 1.43 any outstanding read or write requests: If you plan to keep the connection
260 root 1.198 idle then you should disable the timeout temporarily or ignore the timeout
261 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
262     restart the timeout.
263 root 1.43
264     Zero (the default) disables this timeout.
265    
266     =item on_timeout => $cb->($handle)
267    
268     Called whenever the inactivity timeout passes. If you return from this
269     callback, then the timeout will be reset as if some activity had happened,
270     so this condition is not fatal in any way.
271    
272 root 1.8 =item rbuf_max => <bytes>
273 elmex 1.2
274 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
275     when the read buffer ever (strictly) exceeds this size. This is useful to
276 root 1.88 avoid some forms of denial-of-service attacks.
277 elmex 1.2
278 root 1.8 For example, a server accepting connections from untrusted sources should
279     be configured to accept only so-and-so much data that it cannot act on
280     (for example, when expecting a line, an attacker could send an unlimited
281     amount of data without a callback ever being called as long as the line
282     isn't finished).
283 elmex 1.2
284 root 1.70 =item autocork => <boolean>
285    
286 root 1.198 When disabled (the default), C<push_write> will try to immediately
287     write the data to the handle if possible. This avoids having to register
288 root 1.88 a write watcher and wait for the next event loop iteration, but can
289     be inefficient if you write multiple small chunks (on the wire, this
290     disadvantage is usually avoided by your kernel's nagle algorithm, see
291     C<no_delay>, but this option can save costly syscalls).
292 root 1.70
293 root 1.198 When enabled, writes will always be queued till the next event loop
294 root 1.70 iteration. This is efficient when you do many small writes per iteration,
295 root 1.88 but less efficient when you do a single write only per iteration (or when
296     the write buffer often is full). It also increases write latency.
297 root 1.70
298     =item no_delay => <boolean>
299    
300     When doing small writes on sockets, your operating system kernel might
301     wait a bit for more data before actually sending it out. This is called
302     the Nagle algorithm, and usually it is beneficial.
303    
304 root 1.88 In some situations you want as low a delay as possible, which can be
305     accomplishd by setting this option to a true value.
306 root 1.70
307 root 1.198 The default is your operating system's default behaviour (most likely
308     enabled). This option explicitly enables or disables it, if possible.
309 root 1.70
310 root 1.182 =item keepalive => <boolean>
311    
312     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
313     normally, TCP connections have no time-out once established, so TCP
314 root 1.186 connections, once established, can stay alive forever even when the other
315 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
316 root 1.198 TCP connections when the other side becomes unreachable. While the default
317 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
318     and, if the other side doesn't reply, take down the TCP connection some 10
319     to 15 minutes later.
320    
321     It is harmless to specify this option for file handles that do not support
322     keepalives, and enabling it on connections that are potentially long-lived
323     is usually a good idea.
324    
325     =item oobinline => <boolean>
326    
327     BSD majorly fucked up the implementation of TCP urgent data. The result
328     is that almost no OS implements TCP according to the specs, and every OS
329     implements it slightly differently.
330    
331 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
332     is enabled) gives you the most portable way of getting urgent data, by
333     putting it into the stream.
334    
335     Since BSD emulation of OOB data on top of TCP's urgent data can have
336     security implications, AnyEvent::Handle sets this flag automatically
337 root 1.184 unless explicitly specified. Note that setting this flag after
338     establishing a connection I<may> be a bit too late (data loss could
339     already have occured on BSD systems), but at least it will protect you
340     from most attacks.
341 root 1.182
342 root 1.8 =item read_size => <bytes>
343 elmex 1.2
344 root 1.203 The initial read block size, the number of bytes this module will try to
345     read during each loop iteration. Each handle object will consume at least
346     this amount of memory for the read buffer as well, so when handling many
347     connections requirements). See also C<max_read_size>. Default: C<2048>.
348    
349     =item max_read_size => <bytes>
350    
351     The maximum read buffer size used by the dynamic adjustment
352     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
353     one go it will double C<read_size> up to the maximum given by this
354     option. Default: C<131072> or C<read_size>, whichever is higher.
355 root 1.8
356     =item low_water_mark => <bytes>
357    
358 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
359     buffer: If the buffer reaches this size or gets even samller it is
360 root 1.8 considered empty.
361 elmex 1.2
362 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
363     the write buffer before it is fully drained, but this is a rare case, as
364     the operating system kernel usually buffers data as well, so the default
365     is good in almost all cases.
366    
367 root 1.62 =item linger => <seconds>
368    
369 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
370 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
371     write data and will install a watcher that will write this data to the
372     socket. No errors will be reported (this mostly matches how the operating
373     system treats outstanding data at socket close time).
374 root 1.62
375 root 1.88 This will not work for partial TLS data that could not be encoded
376 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
377     help.
378 root 1.62
379 root 1.133 =item peername => $string
380    
381 root 1.134 A string used to identify the remote site - usually the DNS hostname
382     (I<not> IDN!) used to create the connection, rarely the IP address.
383 root 1.131
384 root 1.133 Apart from being useful in error messages, this string is also used in TLS
385 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
386 root 1.198 verification will be skipped when C<peername> is not specified or is
387 root 1.144 C<undef>.
388 root 1.131
389 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
390    
391 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
392 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
393 root 1.88 established and will transparently encrypt/decrypt data afterwards.
394 root 1.19
395 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
396     appropriate error message.
397    
398 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
399 root 1.88 automatically when you try to create a TLS handle): this module doesn't
400     have a dependency on that module, so if your module requires it, you have
401     to add the dependency yourself.
402 root 1.26
403 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
404     C<accept>, and for the TLS client side of a connection, use C<connect>
405     mode.
406 root 1.19
407     You can also provide your own TLS connection object, but you have
408     to make sure that you call either C<Net::SSLeay::set_connect_state>
409     or C<Net::SSLeay::set_accept_state> on it before you pass it to
410 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
411     object.
412    
413     At some future point, AnyEvent::Handle might switch to another TLS
414     implementation, then the option to use your own session object will go
415     away.
416 root 1.19
417 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
418     passing in the wrong integer will lead to certain crash. This most often
419     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
420     segmentation fault.
421    
422 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
423 root 1.26
424 root 1.131 =item tls_ctx => $anyevent_tls
425 root 1.19
426 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
427 root 1.19 (unless a connection object was specified directly). If this parameter is
428     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
429    
430 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
431     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
432     new TLS context object.
433    
434 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
435 root 1.142
436     This callback will be invoked when the TLS/SSL handshake has finished. If
437     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
438     (C<on_stoptls> will not be called in this case).
439    
440     The session in C<< $handle->{tls} >> can still be examined in this
441     callback, even when the handshake was not successful.
442    
443 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
444     callback is in effect, instead, the error message will be passed to C<on_starttls>.
445    
446     Without this callback, handshake failures lead to C<on_error> being
447 root 1.198 called as usual.
448 root 1.143
449 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
450 root 1.143 need to do that, start an zero-second timer instead whose callback can
451     then call C<< ->starttls >> again.
452    
453 root 1.142 =item on_stoptls => $cb->($handle)
454    
455     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
456     set, then it will be invoked after freeing the TLS session. If it is not,
457     then a TLS shutdown condition will be treated like a normal EOF condition
458     on the handle.
459    
460     The session in C<< $handle->{tls} >> can still be examined in this
461     callback.
462    
463     This callback will only be called on TLS shutdowns, not when the
464     underlying handle signals EOF.
465    
466 root 1.40 =item json => JSON or JSON::XS object
467    
468     This is the json coder object used by the C<json> read and write types.
469    
470 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
471 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
472     texts.
473 root 1.40
474     Note that you are responsible to depend on the JSON module if you want to
475     use this functionality, as AnyEvent does not have a dependency itself.
476    
477 elmex 1.1 =back
478    
479     =cut
480    
481     sub new {
482 root 1.8 my $class = shift;
483     my $self = bless { @_ }, $class;
484    
485 root 1.159 if ($self->{fh}) {
486     $self->_start;
487     return unless $self->{fh}; # could be gone by now
488    
489     } elsif ($self->{connect}) {
490     require AnyEvent::Socket;
491    
492     $self->{peername} = $self->{connect}[0]
493     unless exists $self->{peername};
494    
495     $self->{_skip_drain_rbuf} = 1;
496    
497     {
498     Scalar::Util::weaken (my $self = $self);
499    
500     $self->{_connect} =
501     AnyEvent::Socket::tcp_connect (
502     $self->{connect}[0],
503     $self->{connect}[1],
504     sub {
505     my ($fh, $host, $port, $retry) = @_;
506    
507     if ($fh) {
508     $self->{fh} = $fh;
509    
510     delete $self->{_skip_drain_rbuf};
511     $self->_start;
512    
513     $self->{on_connect}
514     and $self->{on_connect}($self, $host, $port, sub {
515 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
516 root 1.159 $self->{_skip_drain_rbuf} = 1;
517     &$retry;
518     });
519    
520     } else {
521     if ($self->{on_connect_error}) {
522     $self->{on_connect_error}($self, "$!");
523     $self->destroy;
524     } else {
525 root 1.161 $self->_error ($!, 1);
526 root 1.159 }
527     }
528     },
529     sub {
530     local $self->{fh} = $_[0];
531    
532 root 1.161 $self->{on_prepare}
533     ? $self->{on_prepare}->($self)
534     : ()
535 root 1.159 }
536     );
537     }
538    
539     } else {
540     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
541     }
542    
543     $self
544     }
545    
546     sub _start {
547     my ($self) = @_;
548 root 1.8
549 root 1.194 # too many clueless people try to use udp and similar sockets
550     # with AnyEvent::Handle, do them a favour.
551 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
552     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
553 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
554 root 1.194
555 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
556 elmex 1.1
557 root 1.176 $self->{_activity} =
558     $self->{_ractivity} =
559     $self->{_wactivity} = AE::now;
560    
561 root 1.203 $self->{read_size} ||= 2048;
562     $self->{max_read_size} = $self->{read_size}
563     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
564    
565 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
566     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
567     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
568    
569 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
570     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
571    
572     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
573 root 1.131
574 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
575 root 1.94 if $self->{tls};
576 root 1.19
577 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
578 root 1.10
579 root 1.66 $self->start_read
580 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
581 root 1.160
582     $self->_drain_wbuf;
583 root 1.8 }
584 elmex 1.2
585 root 1.52 sub _error {
586 root 1.133 my ($self, $errno, $fatal, $message) = @_;
587 root 1.8
588 root 1.52 $! = $errno;
589 root 1.133 $message ||= "$!";
590 root 1.37
591 root 1.52 if ($self->{on_error}) {
592 root 1.133 $self->{on_error}($self, $fatal, $message);
593 root 1.151 $self->destroy if $fatal;
594 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
595 root 1.149 $self->destroy;
596 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
597 root 1.52 }
598 elmex 1.1 }
599    
600 root 1.8 =item $fh = $handle->fh
601 elmex 1.1
602 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
603 elmex 1.1
604     =cut
605    
606 root 1.38 sub fh { $_[0]{fh} }
607 elmex 1.1
608 root 1.8 =item $handle->on_error ($cb)
609 elmex 1.1
610 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
611 elmex 1.1
612 root 1.8 =cut
613    
614     sub on_error {
615     $_[0]{on_error} = $_[1];
616     }
617    
618     =item $handle->on_eof ($cb)
619    
620     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
621 elmex 1.1
622     =cut
623    
624 root 1.8 sub on_eof {
625     $_[0]{on_eof} = $_[1];
626     }
627    
628 root 1.43 =item $handle->on_timeout ($cb)
629    
630 root 1.176 =item $handle->on_rtimeout ($cb)
631    
632     =item $handle->on_wtimeout ($cb)
633    
634     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
635     callback, or disables the callback (but not the timeout) if C<$cb> =
636     C<undef>. See the C<timeout> constructor argument and method.
637 root 1.43
638     =cut
639    
640 root 1.176 # see below
641 root 1.43
642 root 1.70 =item $handle->autocork ($boolean)
643    
644     Enables or disables the current autocork behaviour (see C<autocork>
645 root 1.105 constructor argument). Changes will only take effect on the next write.
646 root 1.70
647     =cut
648    
649 root 1.105 sub autocork {
650     $_[0]{autocork} = $_[1];
651     }
652    
653 root 1.70 =item $handle->no_delay ($boolean)
654    
655     Enables or disables the C<no_delay> setting (see constructor argument of
656     the same name for details).
657    
658     =cut
659    
660     sub no_delay {
661     $_[0]{no_delay} = $_[1];
662    
663 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
664     if $_[0]{fh};
665 root 1.182 }
666    
667     =item $handle->keepalive ($boolean)
668    
669     Enables or disables the C<keepalive> setting (see constructor argument of
670     the same name for details).
671    
672     =cut
673    
674     sub keepalive {
675     $_[0]{keepalive} = $_[1];
676    
677     eval {
678     local $SIG{__DIE__};
679     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
680     if $_[0]{fh};
681     };
682     }
683    
684     =item $handle->oobinline ($boolean)
685    
686     Enables or disables the C<oobinline> setting (see constructor argument of
687     the same name for details).
688    
689     =cut
690    
691     sub oobinline {
692     $_[0]{oobinline} = $_[1];
693    
694     eval {
695     local $SIG{__DIE__};
696     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
697     if $_[0]{fh};
698     };
699     }
700    
701     =item $handle->keepalive ($boolean)
702    
703     Enables or disables the C<keepalive> setting (see constructor argument of
704     the same name for details).
705    
706     =cut
707    
708     sub keepalive {
709     $_[0]{keepalive} = $_[1];
710    
711     eval {
712     local $SIG{__DIE__};
713     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
714 root 1.159 if $_[0]{fh};
715 root 1.70 };
716     }
717    
718 root 1.142 =item $handle->on_starttls ($cb)
719    
720     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
721    
722     =cut
723    
724     sub on_starttls {
725     $_[0]{on_starttls} = $_[1];
726     }
727    
728     =item $handle->on_stoptls ($cb)
729    
730     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
731    
732     =cut
733    
734 root 1.189 sub on_stoptls {
735 root 1.142 $_[0]{on_stoptls} = $_[1];
736     }
737    
738 root 1.168 =item $handle->rbuf_max ($max_octets)
739    
740     Configures the C<rbuf_max> setting (C<undef> disables it).
741    
742     =cut
743    
744     sub rbuf_max {
745     $_[0]{rbuf_max} = $_[1];
746     }
747    
748 root 1.43 #############################################################################
749    
750     =item $handle->timeout ($seconds)
751    
752 root 1.176 =item $handle->rtimeout ($seconds)
753    
754     =item $handle->wtimeout ($seconds)
755    
756 root 1.43 Configures (or disables) the inactivity timeout.
757    
758 root 1.176 =item $handle->timeout_reset
759    
760     =item $handle->rtimeout_reset
761    
762     =item $handle->wtimeout_reset
763    
764     Reset the activity timeout, as if data was received or sent.
765    
766     These methods are cheap to call.
767    
768 root 1.43 =cut
769    
770 root 1.176 for my $dir ("", "r", "w") {
771     my $timeout = "${dir}timeout";
772     my $tw = "_${dir}tw";
773     my $on_timeout = "on_${dir}timeout";
774     my $activity = "_${dir}activity";
775     my $cb;
776    
777     *$on_timeout = sub {
778     $_[0]{$on_timeout} = $_[1];
779     };
780    
781     *$timeout = sub {
782     my ($self, $new_value) = @_;
783 root 1.43
784 root 1.201 $new_value >= 0
785     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
786    
787 root 1.176 $self->{$timeout} = $new_value;
788     delete $self->{$tw}; &$cb;
789     };
790 root 1.43
791 root 1.176 *{"${dir}timeout_reset"} = sub {
792     $_[0]{$activity} = AE::now;
793     };
794 root 1.43
795 root 1.176 # main workhorse:
796     # reset the timeout watcher, as neccessary
797     # also check for time-outs
798     $cb = sub {
799     my ($self) = @_;
800    
801     if ($self->{$timeout} && $self->{fh}) {
802     my $NOW = AE::now;
803    
804     # when would the timeout trigger?
805     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
806    
807     # now or in the past already?
808     if ($after <= 0) {
809     $self->{$activity} = $NOW;
810 root 1.43
811 root 1.176 if ($self->{$on_timeout}) {
812     $self->{$on_timeout}($self);
813     } else {
814     $self->_error (Errno::ETIMEDOUT);
815     }
816 root 1.43
817 root 1.176 # callback could have changed timeout value, optimise
818     return unless $self->{$timeout};
819 root 1.43
820 root 1.176 # calculate new after
821     $after = $self->{$timeout};
822 root 1.43 }
823    
824 root 1.176 Scalar::Util::weaken $self;
825     return unless $self; # ->error could have destroyed $self
826 root 1.43
827 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
828     delete $self->{$tw};
829     $cb->($self);
830     };
831     } else {
832     delete $self->{$tw};
833 root 1.43 }
834     }
835     }
836    
837 root 1.9 #############################################################################
838    
839     =back
840    
841     =head2 WRITE QUEUE
842    
843     AnyEvent::Handle manages two queues per handle, one for writing and one
844     for reading.
845    
846     The write queue is very simple: you can add data to its end, and
847     AnyEvent::Handle will automatically try to get rid of it for you.
848    
849 elmex 1.20 When data could be written and the write buffer is shorter then the low
850 root 1.9 water mark, the C<on_drain> callback will be invoked.
851    
852     =over 4
853    
854 root 1.8 =item $handle->on_drain ($cb)
855    
856     Sets the C<on_drain> callback or clears it (see the description of
857     C<on_drain> in the constructor).
858    
859 root 1.193 This method may invoke callbacks (and therefore the handle might be
860     destroyed after it returns).
861    
862 root 1.8 =cut
863    
864     sub on_drain {
865 elmex 1.1 my ($self, $cb) = @_;
866    
867 root 1.8 $self->{on_drain} = $cb;
868    
869     $cb->($self)
870 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
871 root 1.8 }
872    
873     =item $handle->push_write ($data)
874    
875     Queues the given scalar to be written. You can push as much data as you
876     want (only limited by the available memory), as C<AnyEvent::Handle>
877     buffers it independently of the kernel.
878    
879 root 1.193 This method may invoke callbacks (and therefore the handle might be
880     destroyed after it returns).
881    
882 root 1.8 =cut
883    
884 root 1.17 sub _drain_wbuf {
885     my ($self) = @_;
886 root 1.8
887 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
888 root 1.35
889 root 1.8 Scalar::Util::weaken $self;
890 root 1.35
891 root 1.8 my $cb = sub {
892     my $len = syswrite $self->{fh}, $self->{wbuf};
893    
894 root 1.146 if (defined $len) {
895 root 1.8 substr $self->{wbuf}, 0, $len, "";
896    
897 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
898 root 1.43
899 root 1.8 $self->{on_drain}($self)
900 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
901 root 1.8 && $self->{on_drain};
902    
903 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
904 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
905 root 1.52 $self->_error ($!, 1);
906 elmex 1.1 }
907 root 1.8 };
908    
909 root 1.35 # try to write data immediately
910 root 1.70 $cb->() unless $self->{autocork};
911 root 1.8
912 root 1.35 # if still data left in wbuf, we need to poll
913 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
914 root 1.35 if length $self->{wbuf};
915 root 1.8 };
916     }
917    
918 root 1.30 our %WH;
919    
920 root 1.185 # deprecated
921 root 1.30 sub register_write_type($$) {
922     $WH{$_[0]} = $_[1];
923     }
924    
925 root 1.17 sub push_write {
926     my $self = shift;
927    
928 root 1.29 if (@_ > 1) {
929     my $type = shift;
930    
931 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
932     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
933 root 1.29 ->($self, @_);
934     }
935    
936 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
937     # and diagnose the problem earlier and better.
938    
939 root 1.93 if ($self->{tls}) {
940 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
941 root 1.160 &_dotls ($self) if $self->{fh};
942 root 1.17 } else {
943 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
944 root 1.159 $self->_drain_wbuf if $self->{fh};
945 root 1.17 }
946     }
947    
948 root 1.29 =item $handle->push_write (type => @args)
949    
950 root 1.185 Instead of formatting your data yourself, you can also let this module
951     do the job by specifying a type and type-specific arguments. You
952     can also specify the (fully qualified) name of a package, in which
953     case AnyEvent tries to load the package and then expects to find the
954 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
955 root 1.29
956 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
957     drop by and tell us):
958 root 1.29
959     =over 4
960    
961     =item netstring => $string
962    
963     Formats the given value as netstring
964     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
965    
966     =cut
967    
968     register_write_type netstring => sub {
969     my ($self, $string) = @_;
970    
971 root 1.96 (length $string) . ":$string,"
972 root 1.29 };
973    
974 root 1.61 =item packstring => $format, $data
975    
976     An octet string prefixed with an encoded length. The encoding C<$format>
977     uses the same format as a Perl C<pack> format, but must specify a single
978     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
979     optional C<!>, C<< < >> or C<< > >> modifier).
980    
981     =cut
982    
983     register_write_type packstring => sub {
984     my ($self, $format, $string) = @_;
985    
986 root 1.65 pack "$format/a*", $string
987 root 1.61 };
988    
989 root 1.39 =item json => $array_or_hashref
990    
991 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
992     provide your own JSON object, this means it will be encoded to JSON text
993     in UTF-8.
994    
995     JSON objects (and arrays) are self-delimiting, so you can write JSON at
996     one end of a handle and read them at the other end without using any
997     additional framing.
998    
999 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
1000     this module doesn't need delimiters after or between JSON texts to be
1001     able to read them, many other languages depend on that.
1002    
1003     A simple RPC protocol that interoperates easily with others is to send
1004     JSON arrays (or objects, although arrays are usually the better choice as
1005     they mimic how function argument passing works) and a newline after each
1006     JSON text:
1007    
1008     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1009     $handle->push_write ("\012");
1010    
1011     An AnyEvent::Handle receiver would simply use the C<json> read type and
1012     rely on the fact that the newline will be skipped as leading whitespace:
1013    
1014     $handle->push_read (json => sub { my $array = $_[1]; ... });
1015    
1016     Other languages could read single lines terminated by a newline and pass
1017     this line into their JSON decoder of choice.
1018    
1019 root 1.40 =cut
1020    
1021 root 1.179 sub json_coder() {
1022     eval { require JSON::XS; JSON::XS->new->utf8 }
1023     || do { require JSON; JSON->new->utf8 }
1024     }
1025    
1026 root 1.40 register_write_type json => sub {
1027     my ($self, $ref) = @_;
1028    
1029 root 1.179 my $json = $self->{json} ||= json_coder;
1030 root 1.40
1031 root 1.179 $json->encode ($ref)
1032 root 1.40 };
1033    
1034 root 1.63 =item storable => $reference
1035    
1036     Freezes the given reference using L<Storable> and writes it to the
1037     handle. Uses the C<nfreeze> format.
1038    
1039     =cut
1040    
1041     register_write_type storable => sub {
1042     my ($self, $ref) = @_;
1043    
1044     require Storable;
1045    
1046 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1047 root 1.63 };
1048    
1049 root 1.53 =back
1050    
1051 root 1.133 =item $handle->push_shutdown
1052    
1053     Sometimes you know you want to close the socket after writing your data
1054     before it was actually written. One way to do that is to replace your
1055 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1056     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1057     replaces the C<on_drain> callback with:
1058 root 1.133
1059     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1060    
1061     This simply shuts down the write side and signals an EOF condition to the
1062     the peer.
1063    
1064     You can rely on the normal read queue and C<on_eof> handling
1065     afterwards. This is the cleanest way to close a connection.
1066    
1067 root 1.193 This method may invoke callbacks (and therefore the handle might be
1068     destroyed after it returns).
1069    
1070 root 1.133 =cut
1071    
1072     sub push_shutdown {
1073 root 1.142 my ($self) = @_;
1074    
1075     delete $self->{low_water_mark};
1076     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1077 root 1.133 }
1078    
1079 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1080    
1081     Instead of one of the predefined types, you can also specify the name of
1082     a package. AnyEvent will try to load the package and then expects to find
1083     a function named C<anyevent_write_type> inside. If it isn't found, it
1084     progressively tries to load the parent package until it either finds the
1085     function (good) or runs out of packages (bad).
1086    
1087     Whenever the given C<type> is used, C<push_write> will the function with
1088     the handle object and the remaining arguments.
1089    
1090     The function is supposed to return a single octet string that will be
1091     appended to the write buffer, so you cna mentally treat this function as a
1092     "arguments to on-the-wire-format" converter.
1093 root 1.30
1094 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1095     arguments using the first one.
1096 root 1.29
1097 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1098 root 1.29
1099 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1100     # the "My" modules to be auto-loaded, or just about anywhere when the
1101     # My::Type::anyevent_write_type is defined before invoking it.
1102    
1103     package My::Type;
1104    
1105     sub anyevent_write_type {
1106     my ($handle, $delim, @args) = @_;
1107    
1108     join $delim, @args
1109     }
1110 root 1.29
1111 root 1.30 =cut
1112 root 1.29
1113 root 1.8 #############################################################################
1114    
1115 root 1.9 =back
1116    
1117     =head2 READ QUEUE
1118    
1119     AnyEvent::Handle manages two queues per handle, one for writing and one
1120     for reading.
1121    
1122     The read queue is more complex than the write queue. It can be used in two
1123     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1124     a queue.
1125    
1126     In the simple case, you just install an C<on_read> callback and whenever
1127     new data arrives, it will be called. You can then remove some data (if
1128 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1129 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1130 root 1.197 partial message has been received so far), or change the read queue with
1131     e.g. C<push_read>.
1132 root 1.9
1133     In the more complex case, you want to queue multiple callbacks. In this
1134     case, AnyEvent::Handle will call the first queued callback each time new
1135 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1136 root 1.61 done its job (see C<push_read>, below).
1137 root 1.9
1138     This way you can, for example, push three line-reads, followed by reading
1139     a chunk of data, and AnyEvent::Handle will execute them in order.
1140    
1141     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1142     the specified number of bytes which give an XML datagram.
1143    
1144     # in the default state, expect some header bytes
1145     $handle->on_read (sub {
1146     # some data is here, now queue the length-header-read (4 octets)
1147 root 1.52 shift->unshift_read (chunk => 4, sub {
1148 root 1.9 # header arrived, decode
1149     my $len = unpack "N", $_[1];
1150    
1151     # now read the payload
1152 root 1.52 shift->unshift_read (chunk => $len, sub {
1153 root 1.9 my $xml = $_[1];
1154     # handle xml
1155     });
1156     });
1157     });
1158    
1159 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1160     and another line or "ERROR" for the first request that is sent, and 64
1161     bytes for the second request. Due to the availability of a queue, we can
1162     just pipeline sending both requests and manipulate the queue as necessary
1163     in the callbacks.
1164    
1165     When the first callback is called and sees an "OK" response, it will
1166     C<unshift> another line-read. This line-read will be queued I<before> the
1167     64-byte chunk callback.
1168 root 1.9
1169 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1170 root 1.9 $handle->push_write ("request 1\015\012");
1171    
1172     # we expect "ERROR" or "OK" as response, so push a line read
1173 root 1.52 $handle->push_read (line => sub {
1174 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1175     # so it will be read before the second request reads its 64 bytes
1176     # which are already in the queue when this callback is called
1177     # we don't do this in case we got an error
1178     if ($_[1] eq "OK") {
1179 root 1.52 $_[0]->unshift_read (line => sub {
1180 root 1.9 my $response = $_[1];
1181     ...
1182     });
1183     }
1184     });
1185    
1186 root 1.69 # request two, simply returns 64 octets
1187 root 1.9 $handle->push_write ("request 2\015\012");
1188    
1189     # simply read 64 bytes, always
1190 root 1.52 $handle->push_read (chunk => 64, sub {
1191 root 1.9 my $response = $_[1];
1192     ...
1193     });
1194    
1195     =over 4
1196    
1197 root 1.10 =cut
1198    
1199 root 1.8 sub _drain_rbuf {
1200     my ($self) = @_;
1201 elmex 1.1
1202 root 1.159 # avoid recursion
1203 root 1.167 return if $self->{_skip_drain_rbuf};
1204 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1205 root 1.59
1206     while () {
1207 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1208     # we are draining the buffer, and this can only happen with TLS.
1209 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1210     if exists $self->{_tls_rbuf};
1211 root 1.115
1212 root 1.59 my $len = length $self->{rbuf};
1213 elmex 1.1
1214 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1215 root 1.29 unless ($cb->($self)) {
1216 root 1.163 # no progress can be made
1217     # (not enough data and no data forthcoming)
1218     $self->_error (Errno::EPIPE, 1), return
1219     if $self->{_eof};
1220 root 1.10
1221 root 1.38 unshift @{ $self->{_queue} }, $cb;
1222 root 1.55 last;
1223 root 1.8 }
1224     } elsif ($self->{on_read}) {
1225 root 1.61 last unless $len;
1226    
1227 root 1.8 $self->{on_read}($self);
1228    
1229     if (
1230 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1231     && !@{ $self->{_queue} } # and the queue is still empty
1232     && $self->{on_read} # but we still have on_read
1233 root 1.8 ) {
1234 root 1.55 # no further data will arrive
1235     # so no progress can be made
1236 root 1.150 $self->_error (Errno::EPIPE, 1), return
1237 root 1.55 if $self->{_eof};
1238    
1239     last; # more data might arrive
1240 elmex 1.1 }
1241 root 1.8 } else {
1242     # read side becomes idle
1243 root 1.93 delete $self->{_rw} unless $self->{tls};
1244 root 1.55 last;
1245 root 1.8 }
1246     }
1247    
1248 root 1.80 if ($self->{_eof}) {
1249 root 1.163 $self->{on_eof}
1250     ? $self->{on_eof}($self)
1251     : $self->_error (0, 1, "Unexpected end-of-file");
1252    
1253     return;
1254 root 1.80 }
1255 root 1.55
1256 root 1.169 if (
1257     defined $self->{rbuf_max}
1258     && $self->{rbuf_max} < length $self->{rbuf}
1259     ) {
1260     $self->_error (Errno::ENOSPC, 1), return;
1261     }
1262    
1263 root 1.55 # may need to restart read watcher
1264     unless ($self->{_rw}) {
1265     $self->start_read
1266     if $self->{on_read} || @{ $self->{_queue} };
1267     }
1268 elmex 1.1 }
1269    
1270 root 1.8 =item $handle->on_read ($cb)
1271 elmex 1.1
1272 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1273     the new callback is C<undef>). See the description of C<on_read> in the
1274     constructor.
1275 elmex 1.1
1276 root 1.193 This method may invoke callbacks (and therefore the handle might be
1277     destroyed after it returns).
1278    
1279 root 1.8 =cut
1280    
1281     sub on_read {
1282     my ($self, $cb) = @_;
1283 elmex 1.1
1284 root 1.8 $self->{on_read} = $cb;
1285 root 1.159 $self->_drain_rbuf if $cb;
1286 elmex 1.1 }
1287    
1288 root 1.8 =item $handle->rbuf
1289    
1290 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1291     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1292     much faster, and no less clean).
1293    
1294     The only operation allowed on the read buffer (apart from looking at it)
1295     is removing data from its beginning. Otherwise modifying or appending to
1296     it is not allowed and will lead to hard-to-track-down bugs.
1297    
1298     NOTE: The read buffer should only be used or modified in the C<on_read>
1299     callback or when C<push_read> or C<unshift_read> are used with a single
1300     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1301     will manage the read buffer on their own.
1302 elmex 1.1
1303     =cut
1304    
1305 elmex 1.2 sub rbuf : lvalue {
1306 root 1.8 $_[0]{rbuf}
1307 elmex 1.2 }
1308 elmex 1.1
1309 root 1.8 =item $handle->push_read ($cb)
1310    
1311     =item $handle->unshift_read ($cb)
1312    
1313     Append the given callback to the end of the queue (C<push_read>) or
1314     prepend it (C<unshift_read>).
1315    
1316     The callback is called each time some additional read data arrives.
1317 elmex 1.1
1318 elmex 1.20 It must check whether enough data is in the read buffer already.
1319 elmex 1.1
1320 root 1.8 If not enough data is available, it must return the empty list or a false
1321     value, in which case it will be called repeatedly until enough data is
1322     available (or an error condition is detected).
1323    
1324     If enough data was available, then the callback must remove all data it is
1325     interested in (which can be none at all) and return a true value. After returning
1326     true, it will be removed from the queue.
1327 elmex 1.1
1328 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1329     destroyed after it returns).
1330    
1331 elmex 1.1 =cut
1332    
1333 root 1.30 our %RH;
1334    
1335     sub register_read_type($$) {
1336     $RH{$_[0]} = $_[1];
1337     }
1338    
1339 root 1.8 sub push_read {
1340 root 1.28 my $self = shift;
1341     my $cb = pop;
1342    
1343     if (@_) {
1344     my $type = shift;
1345    
1346 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1347     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1348 root 1.28 ->($self, $cb, @_);
1349     }
1350 elmex 1.1
1351 root 1.38 push @{ $self->{_queue} }, $cb;
1352 root 1.159 $self->_drain_rbuf;
1353 elmex 1.1 }
1354    
1355 root 1.8 sub unshift_read {
1356 root 1.28 my $self = shift;
1357     my $cb = pop;
1358    
1359     if (@_) {
1360     my $type = shift;
1361    
1362 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1363     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1364 root 1.28 ->($self, $cb, @_);
1365     }
1366    
1367 root 1.38 unshift @{ $self->{_queue} }, $cb;
1368 root 1.159 $self->_drain_rbuf;
1369 root 1.8 }
1370 elmex 1.1
1371 root 1.28 =item $handle->push_read (type => @args, $cb)
1372 elmex 1.1
1373 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1374 elmex 1.1
1375 root 1.28 Instead of providing a callback that parses the data itself you can chose
1376     between a number of predefined parsing formats, for chunks of data, lines
1377 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1378     which case AnyEvent tries to load the package and then expects to find the
1379     C<anyevent_read_type> function inside (see "custom read types", below).
1380 elmex 1.1
1381 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1382     drop by and tell us):
1383 root 1.28
1384     =over 4
1385    
1386 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1387 root 1.28
1388     Invoke the callback only once C<$octets> bytes have been read. Pass the
1389     data read to the callback. The callback will never be called with less
1390     data.
1391    
1392     Example: read 2 bytes.
1393    
1394     $handle->push_read (chunk => 2, sub {
1395     warn "yay ", unpack "H*", $_[1];
1396     });
1397 elmex 1.1
1398     =cut
1399    
1400 root 1.28 register_read_type chunk => sub {
1401     my ($self, $cb, $len) = @_;
1402 elmex 1.1
1403 root 1.8 sub {
1404     $len <= length $_[0]{rbuf} or return;
1405 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1406 root 1.8 1
1407     }
1408 root 1.28 };
1409 root 1.8
1410 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1411 elmex 1.1
1412 root 1.8 The callback will be called only once a full line (including the end of
1413     line marker, C<$eol>) has been read. This line (excluding the end of line
1414     marker) will be passed to the callback as second argument (C<$line>), and
1415     the end of line marker as the third argument (C<$eol>).
1416 elmex 1.1
1417 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1418     will be interpreted as a fixed record end marker, or it can be a regex
1419     object (e.g. created by C<qr>), in which case it is interpreted as a
1420     regular expression.
1421 elmex 1.1
1422 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1423     undef), then C<qr|\015?\012|> is used (which is good for most internet
1424     protocols).
1425 elmex 1.1
1426 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1427     not marked by the end of line marker.
1428 elmex 1.1
1429 root 1.8 =cut
1430 elmex 1.1
1431 root 1.28 register_read_type line => sub {
1432     my ($self, $cb, $eol) = @_;
1433 elmex 1.1
1434 root 1.76 if (@_ < 3) {
1435     # this is more than twice as fast as the generic code below
1436     sub {
1437     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1438 elmex 1.1
1439 root 1.76 $cb->($_[0], $1, $2);
1440     1
1441     }
1442     } else {
1443     $eol = quotemeta $eol unless ref $eol;
1444     $eol = qr|^(.*?)($eol)|s;
1445    
1446     sub {
1447     $_[0]{rbuf} =~ s/$eol// or return;
1448 elmex 1.1
1449 root 1.76 $cb->($_[0], $1, $2);
1450     1
1451     }
1452 root 1.8 }
1453 root 1.28 };
1454 elmex 1.1
1455 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1456 root 1.36
1457     Makes a regex match against the regex object C<$accept> and returns
1458     everything up to and including the match.
1459    
1460     Example: read a single line terminated by '\n'.
1461    
1462     $handle->push_read (regex => qr<\n>, sub { ... });
1463    
1464     If C<$reject> is given and not undef, then it determines when the data is
1465     to be rejected: it is matched against the data when the C<$accept> regex
1466     does not match and generates an C<EBADMSG> error when it matches. This is
1467     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1468     receive buffer overflow).
1469    
1470     Example: expect a single decimal number followed by whitespace, reject
1471     anything else (not the use of an anchor).
1472    
1473     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1474    
1475     If C<$skip> is given and not C<undef>, then it will be matched against
1476     the receive buffer when neither C<$accept> nor C<$reject> match,
1477     and everything preceding and including the match will be accepted
1478     unconditionally. This is useful to skip large amounts of data that you
1479     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1480     have to start matching from the beginning. This is purely an optimisation
1481 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1482 root 1.36
1483     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1484 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1485 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1486     it only accepts something not ending in either \015 or \012, as these are
1487     required for the accept regex.
1488    
1489     $handle->push_read (regex =>
1490     qr<\015\012\015\012>,
1491     undef, # no reject
1492     qr<^.*[^\015\012]>,
1493     sub { ... });
1494    
1495     =cut
1496    
1497     register_read_type regex => sub {
1498     my ($self, $cb, $accept, $reject, $skip) = @_;
1499    
1500     my $data;
1501     my $rbuf = \$self->{rbuf};
1502    
1503     sub {
1504     # accept
1505     if ($$rbuf =~ $accept) {
1506     $data .= substr $$rbuf, 0, $+[0], "";
1507     $cb->($self, $data);
1508     return 1;
1509     }
1510    
1511     # reject
1512     if ($reject && $$rbuf =~ $reject) {
1513 root 1.150 $self->_error (Errno::EBADMSG);
1514 root 1.36 }
1515    
1516     # skip
1517     if ($skip && $$rbuf =~ $skip) {
1518     $data .= substr $$rbuf, 0, $+[0], "";
1519     }
1520    
1521     ()
1522     }
1523     };
1524    
1525 root 1.61 =item netstring => $cb->($handle, $string)
1526    
1527     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1528    
1529     Throws an error with C<$!> set to EBADMSG on format violations.
1530    
1531     =cut
1532    
1533     register_read_type netstring => sub {
1534     my ($self, $cb) = @_;
1535    
1536     sub {
1537     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1538     if ($_[0]{rbuf} =~ /[^0-9]/) {
1539 root 1.150 $self->_error (Errno::EBADMSG);
1540 root 1.61 }
1541     return;
1542     }
1543    
1544     my $len = $1;
1545    
1546     $self->unshift_read (chunk => $len, sub {
1547     my $string = $_[1];
1548     $_[0]->unshift_read (chunk => 1, sub {
1549     if ($_[1] eq ",") {
1550     $cb->($_[0], $string);
1551     } else {
1552 root 1.150 $self->_error (Errno::EBADMSG);
1553 root 1.61 }
1554     });
1555     });
1556    
1557     1
1558     }
1559     };
1560    
1561     =item packstring => $format, $cb->($handle, $string)
1562    
1563     An octet string prefixed with an encoded length. The encoding C<$format>
1564     uses the same format as a Perl C<pack> format, but must specify a single
1565     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1566     optional C<!>, C<< < >> or C<< > >> modifier).
1567    
1568 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1569     EPP uses a prefix of C<N> (4 octtes).
1570 root 1.61
1571     Example: read a block of data prefixed by its length in BER-encoded
1572     format (very efficient).
1573    
1574     $handle->push_read (packstring => "w", sub {
1575     my ($handle, $data) = @_;
1576     });
1577    
1578     =cut
1579    
1580     register_read_type packstring => sub {
1581     my ($self, $cb, $format) = @_;
1582    
1583     sub {
1584     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1585 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1586 root 1.61 or return;
1587    
1588 root 1.77 $format = length pack $format, $len;
1589 root 1.61
1590 root 1.77 # bypass unshift if we already have the remaining chunk
1591     if ($format + $len <= length $_[0]{rbuf}) {
1592     my $data = substr $_[0]{rbuf}, $format, $len;
1593     substr $_[0]{rbuf}, 0, $format + $len, "";
1594     $cb->($_[0], $data);
1595     } else {
1596     # remove prefix
1597     substr $_[0]{rbuf}, 0, $format, "";
1598    
1599     # read remaining chunk
1600     $_[0]->unshift_read (chunk => $len, $cb);
1601     }
1602 root 1.61
1603     1
1604     }
1605     };
1606    
1607 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1608    
1609 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1610     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1611 root 1.40
1612     If a C<json> object was passed to the constructor, then that will be used
1613     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1614    
1615     This read type uses the incremental parser available with JSON version
1616     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1617     dependency on your own: this module will load the JSON module, but
1618     AnyEvent does not depend on it itself.
1619    
1620     Since JSON texts are fully self-delimiting, the C<json> read and write
1621 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1622     the C<json> write type description, above, for an actual example.
1623 root 1.40
1624     =cut
1625    
1626     register_read_type json => sub {
1627 root 1.63 my ($self, $cb) = @_;
1628 root 1.40
1629 root 1.179 my $json = $self->{json} ||= json_coder;
1630 root 1.40
1631     my $data;
1632     my $rbuf = \$self->{rbuf};
1633    
1634     sub {
1635 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1636 root 1.110
1637 root 1.113 if ($ref) {
1638     $self->{rbuf} = $json->incr_text;
1639     $json->incr_text = "";
1640     $cb->($self, $ref);
1641 root 1.110
1642     1
1643 root 1.113 } elsif ($@) {
1644 root 1.111 # error case
1645 root 1.110 $json->incr_skip;
1646 root 1.40
1647     $self->{rbuf} = $json->incr_text;
1648     $json->incr_text = "";
1649    
1650 root 1.150 $self->_error (Errno::EBADMSG);
1651 root 1.114
1652 root 1.113 ()
1653     } else {
1654     $self->{rbuf} = "";
1655 root 1.114
1656 root 1.113 ()
1657     }
1658 root 1.40 }
1659     };
1660    
1661 root 1.63 =item storable => $cb->($handle, $ref)
1662    
1663     Deserialises a L<Storable> frozen representation as written by the
1664     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1665     data).
1666    
1667     Raises C<EBADMSG> error if the data could not be decoded.
1668    
1669     =cut
1670    
1671     register_read_type storable => sub {
1672     my ($self, $cb) = @_;
1673    
1674     require Storable;
1675    
1676     sub {
1677     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1678 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1679 root 1.63 or return;
1680    
1681 root 1.77 my $format = length pack "w", $len;
1682 root 1.63
1683 root 1.77 # bypass unshift if we already have the remaining chunk
1684     if ($format + $len <= length $_[0]{rbuf}) {
1685     my $data = substr $_[0]{rbuf}, $format, $len;
1686     substr $_[0]{rbuf}, 0, $format + $len, "";
1687     $cb->($_[0], Storable::thaw ($data));
1688     } else {
1689     # remove prefix
1690     substr $_[0]{rbuf}, 0, $format, "";
1691    
1692     # read remaining chunk
1693     $_[0]->unshift_read (chunk => $len, sub {
1694     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1695     $cb->($_[0], $ref);
1696     } else {
1697 root 1.150 $self->_error (Errno::EBADMSG);
1698 root 1.77 }
1699     });
1700     }
1701    
1702     1
1703 root 1.63 }
1704     };
1705    
1706 root 1.28 =back
1707    
1708 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1709 root 1.30
1710 root 1.185 Instead of one of the predefined types, you can also specify the name
1711     of a package. AnyEvent will try to load the package and then expects to
1712     find a function named C<anyevent_read_type> inside. If it isn't found, it
1713     progressively tries to load the parent package until it either finds the
1714     function (good) or runs out of packages (bad).
1715    
1716     Whenever this type is used, C<push_read> will invoke the function with the
1717     handle object, the original callback and the remaining arguments.
1718    
1719     The function is supposed to return a callback (usually a closure) that
1720     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1721     mentally treat the function as a "configurable read type to read callback"
1722     converter.
1723    
1724     It should invoke the original callback when it is done reading (remember
1725     to pass C<$handle> as first argument as all other callbacks do that,
1726     although there is no strict requirement on this).
1727 root 1.30
1728 root 1.185 For examples, see the source of this module (F<perldoc -m
1729     AnyEvent::Handle>, search for C<register_read_type>)).
1730 root 1.30
1731 root 1.10 =item $handle->stop_read
1732    
1733     =item $handle->start_read
1734    
1735 root 1.18 In rare cases you actually do not want to read anything from the
1736 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1737 root 1.22 any queued callbacks will be executed then. To start reading again, call
1738 root 1.10 C<start_read>.
1739    
1740 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1741     you change the C<on_read> callback or push/unshift a read callback, and it
1742     will automatically C<stop_read> for you when neither C<on_read> is set nor
1743     there are any read requests in the queue.
1744    
1745 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1746     half-duplex connections).
1747    
1748 root 1.10 =cut
1749    
1750     sub stop_read {
1751     my ($self) = @_;
1752 elmex 1.1
1753 root 1.93 delete $self->{_rw} unless $self->{tls};
1754 root 1.8 }
1755 elmex 1.1
1756 root 1.10 sub start_read {
1757     my ($self) = @_;
1758    
1759 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1760 root 1.10 Scalar::Util::weaken $self;
1761    
1762 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1763 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1764 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
1765 root 1.10
1766     if ($len > 0) {
1767 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1768 root 1.43
1769 root 1.93 if ($self->{tls}) {
1770     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1771 root 1.97
1772 root 1.93 &_dotls ($self);
1773     } else {
1774 root 1.159 $self->_drain_rbuf;
1775 root 1.93 }
1776 root 1.10
1777 root 1.203 if ($len == $self->{read_size}) {
1778     $self->{read_size} *= 2;
1779     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
1780     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
1781     }
1782    
1783 root 1.10 } elsif (defined $len) {
1784 root 1.38 delete $self->{_rw};
1785     $self->{_eof} = 1;
1786 root 1.159 $self->_drain_rbuf;
1787 root 1.10
1788 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1789 root 1.52 return $self->_error ($!, 1);
1790 root 1.10 }
1791 root 1.175 };
1792 root 1.10 }
1793 elmex 1.1 }
1794    
1795 root 1.133 our $ERROR_SYSCALL;
1796     our $ERROR_WANT_READ;
1797    
1798     sub _tls_error {
1799     my ($self, $err) = @_;
1800    
1801     return $self->_error ($!, 1)
1802     if $err == Net::SSLeay::ERROR_SYSCALL ();
1803    
1804 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1805    
1806     # reduce error string to look less scary
1807     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1808    
1809 root 1.143 if ($self->{_on_starttls}) {
1810     (delete $self->{_on_starttls})->($self, undef, $err);
1811     &_freetls;
1812     } else {
1813     &_freetls;
1814 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1815 root 1.143 }
1816 root 1.133 }
1817    
1818 root 1.97 # poll the write BIO and send the data if applicable
1819 root 1.133 # also decode read data if possible
1820     # this is basiclaly our TLS state machine
1821     # more efficient implementations are possible with openssl,
1822     # but not with the buggy and incomplete Net::SSLeay.
1823 root 1.19 sub _dotls {
1824     my ($self) = @_;
1825    
1826 root 1.97 my $tmp;
1827 root 1.56
1828 root 1.38 if (length $self->{_tls_wbuf}) {
1829 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1830     substr $self->{_tls_wbuf}, 0, $tmp, "";
1831 root 1.22 }
1832 root 1.133
1833     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1834     return $self->_tls_error ($tmp)
1835     if $tmp != $ERROR_WANT_READ
1836 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1837 root 1.19 }
1838    
1839 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1840     unless (length $tmp) {
1841 root 1.143 $self->{_on_starttls}
1842     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1843 root 1.92 &_freetls;
1844 root 1.143
1845 root 1.142 if ($self->{on_stoptls}) {
1846     $self->{on_stoptls}($self);
1847     return;
1848     } else {
1849     # let's treat SSL-eof as we treat normal EOF
1850     delete $self->{_rw};
1851     $self->{_eof} = 1;
1852     }
1853 root 1.56 }
1854 root 1.91
1855 root 1.116 $self->{_tls_rbuf} .= $tmp;
1856 root 1.159 $self->_drain_rbuf;
1857 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1858 root 1.23 }
1859    
1860 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1861 root 1.133 return $self->_tls_error ($tmp)
1862     if $tmp != $ERROR_WANT_READ
1863 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1864 root 1.91
1865 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1866     $self->{wbuf} .= $tmp;
1867 root 1.91 $self->_drain_wbuf;
1868 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1869 root 1.91 }
1870 root 1.142
1871     $self->{_on_starttls}
1872     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1873 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1874 root 1.19 }
1875    
1876 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1877    
1878     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1879     object is created, you can also do that at a later time by calling
1880     C<starttls>.
1881    
1882 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1883     write data and then call C<< ->starttls >> then TLS negotiation will start
1884     immediately, after which the queued write data is then sent.
1885    
1886 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1887     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1888    
1889 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1890     when AnyEvent::Handle has to create its own TLS connection object, or
1891     a hash reference with C<< key => value >> pairs that will be used to
1892     construct a new context.
1893    
1894     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1895     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1896     changed to your liking. Note that the handshake might have already started
1897     when this function returns.
1898 root 1.38
1899 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1900 root 1.198 handshakes on the same stream. It is best to not attempt to use the
1901     stream after stopping TLS.
1902 root 1.92
1903 root 1.193 This method may invoke callbacks (and therefore the handle might be
1904     destroyed after it returns).
1905    
1906 root 1.25 =cut
1907    
1908 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1909    
1910 root 1.19 sub starttls {
1911 root 1.160 my ($self, $tls, $ctx) = @_;
1912    
1913     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1914     if $self->{tls};
1915    
1916     $self->{tls} = $tls;
1917     $self->{tls_ctx} = $ctx if @_ > 2;
1918    
1919     return unless $self->{fh};
1920 root 1.19
1921 root 1.94 require Net::SSLeay;
1922    
1923 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1924     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1925 root 1.133
1926 root 1.180 $tls = delete $self->{tls};
1927 root 1.160 $ctx = $self->{tls_ctx};
1928 root 1.131
1929 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1930    
1931 root 1.131 if ("HASH" eq ref $ctx) {
1932     require AnyEvent::TLS;
1933    
1934 root 1.137 if ($ctx->{cache}) {
1935     my $key = $ctx+0;
1936     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1937     } else {
1938     $ctx = new AnyEvent::TLS %$ctx;
1939     }
1940 root 1.131 }
1941 root 1.92
1942 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1943 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1944 root 1.19
1945 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1946     # but the openssl maintainers basically said: "trust us, it just works".
1947     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1948     # and mismaintained ssleay-module doesn't even offer them).
1949 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1950 root 1.87 #
1951     # in short: this is a mess.
1952     #
1953 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1954 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1955 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1956     # have identity issues in that area.
1957 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1958     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1959     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1960 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1961 root 1.21
1962 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1963     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1964 root 1.19
1965 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1966    
1967 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1968 root 1.19
1969 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1970 root 1.143 if $self->{on_starttls};
1971 root 1.142
1972 root 1.93 &_dotls; # need to trigger the initial handshake
1973     $self->start_read; # make sure we actually do read
1974 root 1.19 }
1975    
1976 root 1.25 =item $handle->stoptls
1977    
1978 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1979     sending a close notify to the other side, but since OpenSSL doesn't
1980 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
1981 root 1.160 the stream afterwards.
1982 root 1.25
1983 root 1.193 This method may invoke callbacks (and therefore the handle might be
1984     destroyed after it returns).
1985    
1986 root 1.25 =cut
1987    
1988     sub stoptls {
1989     my ($self) = @_;
1990    
1991 root 1.192 if ($self->{tls} && $self->{fh}) {
1992 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1993 root 1.92
1994     &_dotls;
1995    
1996 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1997     # # we, we... have to use openssl :/#d#
1998     # &_freetls;#d#
1999 root 1.92 }
2000     }
2001    
2002     sub _freetls {
2003     my ($self) = @_;
2004    
2005     return unless $self->{tls};
2006 root 1.38
2007 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2008 root 1.171 if $self->{tls} > 0;
2009 root 1.92
2010 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2011 root 1.25 }
2012    
2013 root 1.19 sub DESTROY {
2014 root 1.120 my ($self) = @_;
2015 root 1.19
2016 root 1.92 &_freetls;
2017 root 1.62
2018     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2019    
2020 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2021 root 1.62 my $fh = delete $self->{fh};
2022     my $wbuf = delete $self->{wbuf};
2023    
2024     my @linger;
2025    
2026 root 1.175 push @linger, AE::io $fh, 1, sub {
2027 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2028    
2029     if ($len > 0) {
2030     substr $wbuf, 0, $len, "";
2031 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2032 root 1.62 @linger = (); # end
2033     }
2034 root 1.175 };
2035     push @linger, AE::timer $linger, 0, sub {
2036 root 1.62 @linger = ();
2037 root 1.175 };
2038 root 1.62 }
2039 root 1.19 }
2040    
2041 root 1.99 =item $handle->destroy
2042    
2043 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2044 root 1.141 no further callbacks will be invoked and as many resources as possible
2045 root 1.165 will be freed. Any method you will call on the handle object after
2046     destroying it in this way will be silently ignored (and it will return the
2047     empty list).
2048 root 1.99
2049 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2050     object and it will simply shut down. This works in fatal error and EOF
2051     callbacks, as well as code outside. It does I<NOT> work in a read or write
2052     callback, so when you want to destroy the AnyEvent::Handle object from
2053     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2054     that case.
2055    
2056 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2057     will be removed as well, so if those are the only reference holders (as
2058     is common), then one doesn't need to do anything special to break any
2059     reference cycles.
2060    
2061 root 1.99 The handle might still linger in the background and write out remaining
2062     data, as specified by the C<linger> option, however.
2063    
2064     =cut
2065    
2066     sub destroy {
2067     my ($self) = @_;
2068    
2069     $self->DESTROY;
2070     %$self = ();
2071 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2072     }
2073    
2074 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2075     #nop
2076 root 1.99 }
2077    
2078 root 1.192 =item $handle->destroyed
2079    
2080     Returns false as long as the handle hasn't been destroyed by a call to C<<
2081     ->destroy >>, true otherwise.
2082    
2083     Can be useful to decide whether the handle is still valid after some
2084     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2085     C<< ->starttls >> and other methods can call user callbacks, which in turn
2086     can destroy the handle, so work can be avoided by checking sometimes:
2087    
2088     $hdl->starttls ("accept");
2089     return if $hdl->destroyed;
2090     $hdl->push_write (...
2091    
2092     Note that the call to C<push_write> will silently be ignored if the handle
2093     has been destroyed, so often you can just ignore the possibility of the
2094     handle being destroyed.
2095    
2096     =cut
2097    
2098     sub destroyed { 0 }
2099     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2100    
2101 root 1.19 =item AnyEvent::Handle::TLS_CTX
2102    
2103 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2104     for TLS mode.
2105 root 1.19
2106 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2107 root 1.19
2108     =cut
2109    
2110     our $TLS_CTX;
2111    
2112     sub TLS_CTX() {
2113 root 1.131 $TLS_CTX ||= do {
2114     require AnyEvent::TLS;
2115 root 1.19
2116 root 1.131 new AnyEvent::TLS
2117 root 1.19 }
2118     }
2119    
2120 elmex 1.1 =back
2121    
2122 root 1.95
2123     =head1 NONFREQUENTLY ASKED QUESTIONS
2124    
2125     =over 4
2126    
2127 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2128     still get further invocations!
2129    
2130     That's because AnyEvent::Handle keeps a reference to itself when handling
2131     read or write callbacks.
2132    
2133     It is only safe to "forget" the reference inside EOF or error callbacks,
2134     from within all other callbacks, you need to explicitly call the C<<
2135     ->destroy >> method.
2136    
2137     =item I get different callback invocations in TLS mode/Why can't I pause
2138     reading?
2139    
2140     Unlike, say, TCP, TLS connections do not consist of two independent
2141 root 1.198 communication channels, one for each direction. Or put differently, the
2142 root 1.101 read and write directions are not independent of each other: you cannot
2143     write data unless you are also prepared to read, and vice versa.
2144    
2145 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2146 root 1.101 callback invocations when you are not expecting any read data - the reason
2147     is that AnyEvent::Handle always reads in TLS mode.
2148    
2149     During the connection, you have to make sure that you always have a
2150     non-empty read-queue, or an C<on_read> watcher. At the end of the
2151     connection (or when you no longer want to use it) you can call the
2152     C<destroy> method.
2153    
2154 root 1.95 =item How do I read data until the other side closes the connection?
2155    
2156 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2157     to achieve this is by setting an C<on_read> callback that does nothing,
2158     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2159     will be in C<$_[0]{rbuf}>:
2160 root 1.95
2161     $handle->on_read (sub { });
2162     $handle->on_eof (undef);
2163     $handle->on_error (sub {
2164     my $data = delete $_[0]{rbuf};
2165     });
2166    
2167     The reason to use C<on_error> is that TCP connections, due to latencies
2168     and packets loss, might get closed quite violently with an error, when in
2169 root 1.198 fact all data has been received.
2170 root 1.95
2171 root 1.101 It is usually better to use acknowledgements when transferring data,
2172 root 1.95 to make sure the other side hasn't just died and you got the data
2173     intact. This is also one reason why so many internet protocols have an
2174     explicit QUIT command.
2175    
2176 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2177     all data has been written?
2178 root 1.95
2179     After writing your last bits of data, set the C<on_drain> callback
2180     and destroy the handle in there - with the default setting of
2181     C<low_water_mark> this will be called precisely when all data has been
2182     written to the socket:
2183    
2184     $handle->push_write (...);
2185     $handle->on_drain (sub {
2186     warn "all data submitted to the kernel\n";
2187     undef $handle;
2188     });
2189    
2190 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2191     consider using C<< ->push_shutdown >> instead.
2192    
2193     =item I want to contact a TLS/SSL server, I don't care about security.
2194    
2195     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2196 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2197 root 1.143 parameter:
2198    
2199 root 1.144 tcp_connect $host, $port, sub {
2200     my ($fh) = @_;
2201 root 1.143
2202 root 1.144 my $handle = new AnyEvent::Handle
2203     fh => $fh,
2204     tls => "connect",
2205     on_error => sub { ... };
2206    
2207     $handle->push_write (...);
2208     };
2209 root 1.143
2210     =item I want to contact a TLS/SSL server, I do care about security.
2211    
2212 root 1.144 Then you should additionally enable certificate verification, including
2213     peername verification, if the protocol you use supports it (see
2214     L<AnyEvent::TLS>, C<verify_peername>).
2215    
2216     E.g. for HTTPS:
2217    
2218     tcp_connect $host, $port, sub {
2219     my ($fh) = @_;
2220    
2221     my $handle = new AnyEvent::Handle
2222     fh => $fh,
2223     peername => $host,
2224     tls => "connect",
2225     tls_ctx => { verify => 1, verify_peername => "https" },
2226     ...
2227    
2228     Note that you must specify the hostname you connected to (or whatever
2229     "peername" the protocol needs) as the C<peername> argument, otherwise no
2230     peername verification will be done.
2231    
2232     The above will use the system-dependent default set of trusted CA
2233     certificates. If you want to check against a specific CA, add the
2234     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2235    
2236     tls_ctx => {
2237     verify => 1,
2238     verify_peername => "https",
2239     ca_file => "my-ca-cert.pem",
2240     },
2241    
2242     =item I want to create a TLS/SSL server, how do I do that?
2243    
2244     Well, you first need to get a server certificate and key. You have
2245     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2246     self-signed certificate (cheap. check the search engine of your choice,
2247     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2248     nice program for that purpose).
2249    
2250     Then create a file with your private key (in PEM format, see
2251     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2252     file should then look like this:
2253    
2254     -----BEGIN RSA PRIVATE KEY-----
2255     ...header data
2256     ... lots of base64'y-stuff
2257     -----END RSA PRIVATE KEY-----
2258    
2259     -----BEGIN CERTIFICATE-----
2260     ... lots of base64'y-stuff
2261     -----END CERTIFICATE-----
2262    
2263     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2264     specify this file as C<cert_file>:
2265    
2266     tcp_server undef, $port, sub {
2267     my ($fh) = @_;
2268    
2269     my $handle = new AnyEvent::Handle
2270     fh => $fh,
2271     tls => "accept",
2272     tls_ctx => { cert_file => "my-server-keycert.pem" },
2273     ...
2274 root 1.143
2275 root 1.144 When you have intermediate CA certificates that your clients might not
2276     know about, just append them to the C<cert_file>.
2277 root 1.143
2278 root 1.95 =back
2279    
2280    
2281 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2282    
2283     In many cases, you might want to subclass AnyEvent::Handle.
2284    
2285     To make this easier, a given version of AnyEvent::Handle uses these
2286     conventions:
2287    
2288     =over 4
2289    
2290     =item * all constructor arguments become object members.
2291    
2292     At least initially, when you pass a C<tls>-argument to the constructor it
2293 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2294 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2295    
2296     =item * other object member names are prefixed with an C<_>.
2297    
2298     All object members not explicitly documented (internal use) are prefixed
2299     with an underscore character, so the remaining non-C<_>-namespace is free
2300     for use for subclasses.
2301    
2302     =item * all members not documented here and not prefixed with an underscore
2303     are free to use in subclasses.
2304    
2305     Of course, new versions of AnyEvent::Handle may introduce more "public"
2306 root 1.198 member variables, but that's just life. At least it is documented.
2307 root 1.38
2308     =back
2309    
2310 elmex 1.1 =head1 AUTHOR
2311    
2312 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2313 elmex 1.1
2314     =cut
2315    
2316     1; # End of AnyEvent::Handle