ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.205
Committed: Mon Nov 15 17:11:00 2010 UTC (13 years, 6 months ago) by root
Branch: MAIN
Changes since 1.204: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119     attempted, but after the file handle has been created. It could be used to
120     prepare the file handle with parameters required for the actual connect
121     (as opposed to settings that can be changed when the connection is already
122     established).
123    
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.159 parameters, together with a retry callback.
134    
135 root 1.198 If, for some reason, the handle is not acceptable, calling C<$retry>
136     will continue with the next connection target (in case of multi-homed
137     hosts or SRV records there can be multiple connection endpoints). At the
138     time it is called the read and write queues, eof status, tls status and
139     similar properties of the handle will have been reset.
140 root 1.159
141 root 1.198 In most cases, you should ignore the C<$retry> parameter.
142 root 1.158
143 root 1.159 =item on_connect_error => $cb->($handle, $message)
144 root 1.10
145 root 1.186 This callback is called when the connection could not be
146 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
147     message describing it (usually the same as C<"$!">).
148 root 1.8
149 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
150     fatal error instead.
151 root 1.82
152 root 1.159 =back
153 root 1.80
154 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
155 root 1.10
156 root 1.52 This is the error callback, which is called when, well, some error
157     occured, such as not being able to resolve the hostname, failure to
158 root 1.198 connect, or a read error.
159 root 1.52
160     Some errors are fatal (which is indicated by C<$fatal> being true). On
161 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
162     destroy >>) after invoking the error callback (which means you are free to
163     examine the handle object). Examples of fatal errors are an EOF condition
164 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
165 root 1.198 cases where the other side can close the connection at will, it is
166 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
167 root 1.82
168 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
169     against, but in some cases (TLS errors), this does not work well. It is
170     recommended to always output the C<$message> argument in human-readable
171     error messages (it's usually the same as C<"$!">).
172    
173 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
174 root 1.82 to simply ignore this parameter and instead abondon the handle object
175     when this callback is invoked. Examples of non-fatal errors are timeouts
176     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
177 root 1.8
178 root 1.198 On entry to the callback, the value of C<$!> contains the operating
179     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
180 root 1.133 C<EPROTO>).
181 root 1.8
182 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
183 root 1.198 you will not be notified of errors otherwise. The default just calls
184 root 1.52 C<croak>.
185 root 1.8
186 root 1.40 =item on_read => $cb->($handle)
187 root 1.8
188     This sets the default read callback, which is called when data arrives
189 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
190     callback will only be called when at least one octet of data is in the
191     read buffer).
192 root 1.8
193     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
194 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
195 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
196     the beginning from it.
197 root 1.8
198 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
199     modifies the read queue. Or do both. Or ...
200    
201 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
202 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
203     calling the C<on_eof> callback. If no progress can be made, then a fatal
204     error will be raised (with C<$!> set to C<EPIPE>).
205 elmex 1.1
206 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
207     doesn't mean you I<require> some data: if there is an EOF and there
208     are outstanding read requests then an error will be flagged. With an
209     C<on_read> callback, the C<on_eof> callback will be invoked.
210    
211 root 1.159 =item on_eof => $cb->($handle)
212    
213     Set the callback to be called when an end-of-file condition is detected,
214     i.e. in the case of a socket, when the other side has closed the
215     connection cleanly, and there are no outstanding read requests in the
216     queue (if there are read requests, then an EOF counts as an unexpected
217     connection close and will be flagged as an error).
218    
219     For sockets, this just means that the other side has stopped sending data,
220     you can still try to write data, and, in fact, one can return from the EOF
221     callback and continue writing data, as only the read part has been shut
222     down.
223    
224     If an EOF condition has been detected but no C<on_eof> callback has been
225     set, then a fatal error will be raised with C<$!> set to <0>.
226    
227 root 1.40 =item on_drain => $cb->($handle)
228 elmex 1.1
229 root 1.8 This sets the callback that is called when the write buffer becomes empty
230 root 1.198 (or immediately if the buffer is empty already).
231 elmex 1.1
232 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
233 elmex 1.2
234 root 1.69 This callback is useful when you don't want to put all of your write data
235     into the queue at once, for example, when you want to write the contents
236     of some file to the socket you might not want to read the whole file into
237     memory and push it into the queue, but instead only read more data from
238     the file when the write queue becomes empty.
239    
240 root 1.43 =item timeout => $fractional_seconds
241    
242 root 1.176 =item rtimeout => $fractional_seconds
243    
244     =item wtimeout => $fractional_seconds
245    
246     If non-zero, then these enables an "inactivity" timeout: whenever this
247     many seconds pass without a successful read or write on the underlying
248     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
249     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
250     error will be raised).
251    
252 root 1.198 There are three variants of the timeouts that work independently
253 root 1.176 of each other, for both read and write, just read, and just write:
254     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
255     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
256     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
257 root 1.43
258 root 1.198 Note that timeout processing is active even when you do not have
259 root 1.43 any outstanding read or write requests: If you plan to keep the connection
260 root 1.198 idle then you should disable the timeout temporarily or ignore the timeout
261 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
262     restart the timeout.
263 root 1.43
264     Zero (the default) disables this timeout.
265    
266     =item on_timeout => $cb->($handle)
267    
268     Called whenever the inactivity timeout passes. If you return from this
269     callback, then the timeout will be reset as if some activity had happened,
270     so this condition is not fatal in any way.
271    
272 root 1.8 =item rbuf_max => <bytes>
273 elmex 1.2
274 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
275     when the read buffer ever (strictly) exceeds this size. This is useful to
276 root 1.88 avoid some forms of denial-of-service attacks.
277 elmex 1.2
278 root 1.8 For example, a server accepting connections from untrusted sources should
279     be configured to accept only so-and-so much data that it cannot act on
280     (for example, when expecting a line, an attacker could send an unlimited
281     amount of data without a callback ever being called as long as the line
282     isn't finished).
283 elmex 1.2
284 root 1.70 =item autocork => <boolean>
285    
286 root 1.198 When disabled (the default), C<push_write> will try to immediately
287     write the data to the handle if possible. This avoids having to register
288 root 1.88 a write watcher and wait for the next event loop iteration, but can
289     be inefficient if you write multiple small chunks (on the wire, this
290     disadvantage is usually avoided by your kernel's nagle algorithm, see
291     C<no_delay>, but this option can save costly syscalls).
292 root 1.70
293 root 1.198 When enabled, writes will always be queued till the next event loop
294 root 1.70 iteration. This is efficient when you do many small writes per iteration,
295 root 1.88 but less efficient when you do a single write only per iteration (or when
296     the write buffer often is full). It also increases write latency.
297 root 1.70
298     =item no_delay => <boolean>
299    
300     When doing small writes on sockets, your operating system kernel might
301     wait a bit for more data before actually sending it out. This is called
302     the Nagle algorithm, and usually it is beneficial.
303    
304 root 1.88 In some situations you want as low a delay as possible, which can be
305     accomplishd by setting this option to a true value.
306 root 1.70
307 root 1.198 The default is your operating system's default behaviour (most likely
308     enabled). This option explicitly enables or disables it, if possible.
309 root 1.70
310 root 1.182 =item keepalive => <boolean>
311    
312     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
313     normally, TCP connections have no time-out once established, so TCP
314 root 1.186 connections, once established, can stay alive forever even when the other
315 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
316 root 1.198 TCP connections when the other side becomes unreachable. While the default
317 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
318     and, if the other side doesn't reply, take down the TCP connection some 10
319     to 15 minutes later.
320    
321     It is harmless to specify this option for file handles that do not support
322     keepalives, and enabling it on connections that are potentially long-lived
323     is usually a good idea.
324    
325     =item oobinline => <boolean>
326    
327     BSD majorly fucked up the implementation of TCP urgent data. The result
328     is that almost no OS implements TCP according to the specs, and every OS
329     implements it slightly differently.
330    
331 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
332     is enabled) gives you the most portable way of getting urgent data, by
333     putting it into the stream.
334    
335     Since BSD emulation of OOB data on top of TCP's urgent data can have
336     security implications, AnyEvent::Handle sets this flag automatically
337 root 1.184 unless explicitly specified. Note that setting this flag after
338     establishing a connection I<may> be a bit too late (data loss could
339     already have occured on BSD systems), but at least it will protect you
340     from most attacks.
341 root 1.182
342 root 1.8 =item read_size => <bytes>
343 elmex 1.2
344 root 1.203 The initial read block size, the number of bytes this module will try to
345     read during each loop iteration. Each handle object will consume at least
346     this amount of memory for the read buffer as well, so when handling many
347     connections requirements). See also C<max_read_size>. Default: C<2048>.
348    
349     =item max_read_size => <bytes>
350    
351     The maximum read buffer size used by the dynamic adjustment
352     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
353     one go it will double C<read_size> up to the maximum given by this
354     option. Default: C<131072> or C<read_size>, whichever is higher.
355 root 1.8
356     =item low_water_mark => <bytes>
357    
358 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
359     buffer: If the buffer reaches this size or gets even samller it is
360 root 1.8 considered empty.
361 elmex 1.2
362 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
363     the write buffer before it is fully drained, but this is a rare case, as
364     the operating system kernel usually buffers data as well, so the default
365     is good in almost all cases.
366    
367 root 1.62 =item linger => <seconds>
368    
369 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
370 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
371     write data and will install a watcher that will write this data to the
372     socket. No errors will be reported (this mostly matches how the operating
373     system treats outstanding data at socket close time).
374 root 1.62
375 root 1.88 This will not work for partial TLS data that could not be encoded
376 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
377     help.
378 root 1.62
379 root 1.133 =item peername => $string
380    
381 root 1.134 A string used to identify the remote site - usually the DNS hostname
382     (I<not> IDN!) used to create the connection, rarely the IP address.
383 root 1.131
384 root 1.133 Apart from being useful in error messages, this string is also used in TLS
385 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
386 root 1.198 verification will be skipped when C<peername> is not specified or is
387 root 1.144 C<undef>.
388 root 1.131
389 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
390    
391 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
392 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
393 root 1.88 established and will transparently encrypt/decrypt data afterwards.
394 root 1.19
395 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
396     appropriate error message.
397    
398 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
399 root 1.88 automatically when you try to create a TLS handle): this module doesn't
400     have a dependency on that module, so if your module requires it, you have
401     to add the dependency yourself.
402 root 1.26
403 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
404     C<accept>, and for the TLS client side of a connection, use C<connect>
405     mode.
406 root 1.19
407     You can also provide your own TLS connection object, but you have
408     to make sure that you call either C<Net::SSLeay::set_connect_state>
409     or C<Net::SSLeay::set_accept_state> on it before you pass it to
410 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
411     object.
412    
413     At some future point, AnyEvent::Handle might switch to another TLS
414     implementation, then the option to use your own session object will go
415     away.
416 root 1.19
417 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
418     passing in the wrong integer will lead to certain crash. This most often
419     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
420     segmentation fault.
421    
422 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
423 root 1.26
424 root 1.131 =item tls_ctx => $anyevent_tls
425 root 1.19
426 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
427 root 1.19 (unless a connection object was specified directly). If this parameter is
428     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
429    
430 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
431     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
432     new TLS context object.
433    
434 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
435 root 1.142
436     This callback will be invoked when the TLS/SSL handshake has finished. If
437     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
438     (C<on_stoptls> will not be called in this case).
439    
440     The session in C<< $handle->{tls} >> can still be examined in this
441     callback, even when the handshake was not successful.
442    
443 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
444     callback is in effect, instead, the error message will be passed to C<on_starttls>.
445    
446     Without this callback, handshake failures lead to C<on_error> being
447 root 1.198 called as usual.
448 root 1.143
449 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
450 root 1.143 need to do that, start an zero-second timer instead whose callback can
451     then call C<< ->starttls >> again.
452    
453 root 1.142 =item on_stoptls => $cb->($handle)
454    
455     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
456     set, then it will be invoked after freeing the TLS session. If it is not,
457     then a TLS shutdown condition will be treated like a normal EOF condition
458     on the handle.
459    
460     The session in C<< $handle->{tls} >> can still be examined in this
461     callback.
462    
463     This callback will only be called on TLS shutdowns, not when the
464     underlying handle signals EOF.
465    
466 root 1.40 =item json => JSON or JSON::XS object
467    
468     This is the json coder object used by the C<json> read and write types.
469    
470 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
471 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
472     texts.
473 root 1.40
474     Note that you are responsible to depend on the JSON module if you want to
475     use this functionality, as AnyEvent does not have a dependency itself.
476    
477 elmex 1.1 =back
478    
479     =cut
480    
481     sub new {
482 root 1.8 my $class = shift;
483     my $self = bless { @_ }, $class;
484    
485 root 1.159 if ($self->{fh}) {
486     $self->_start;
487     return unless $self->{fh}; # could be gone by now
488    
489     } elsif ($self->{connect}) {
490     require AnyEvent::Socket;
491    
492     $self->{peername} = $self->{connect}[0]
493     unless exists $self->{peername};
494    
495     $self->{_skip_drain_rbuf} = 1;
496    
497     {
498     Scalar::Util::weaken (my $self = $self);
499    
500     $self->{_connect} =
501     AnyEvent::Socket::tcp_connect (
502     $self->{connect}[0],
503     $self->{connect}[1],
504     sub {
505     my ($fh, $host, $port, $retry) = @_;
506    
507 root 1.205 delete $self->{_connect};
508    
509 root 1.159 if ($fh) {
510     $self->{fh} = $fh;
511    
512     delete $self->{_skip_drain_rbuf};
513     $self->_start;
514    
515     $self->{on_connect}
516     and $self->{on_connect}($self, $host, $port, sub {
517 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
518 root 1.159 $self->{_skip_drain_rbuf} = 1;
519     &$retry;
520     });
521    
522     } else {
523     if ($self->{on_connect_error}) {
524     $self->{on_connect_error}($self, "$!");
525     $self->destroy;
526     } else {
527 root 1.161 $self->_error ($!, 1);
528 root 1.159 }
529     }
530     },
531     sub {
532     local $self->{fh} = $_[0];
533    
534 root 1.161 $self->{on_prepare}
535     ? $self->{on_prepare}->($self)
536     : ()
537 root 1.159 }
538     );
539     }
540    
541     } else {
542     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
543     }
544    
545     $self
546     }
547    
548     sub _start {
549     my ($self) = @_;
550 root 1.8
551 root 1.194 # too many clueless people try to use udp and similar sockets
552     # with AnyEvent::Handle, do them a favour.
553 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
554     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
555 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
556 root 1.194
557 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
558 elmex 1.1
559 root 1.176 $self->{_activity} =
560     $self->{_ractivity} =
561     $self->{_wactivity} = AE::now;
562    
563 root 1.203 $self->{read_size} ||= 2048;
564     $self->{max_read_size} = $self->{read_size}
565     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
566    
567 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
568     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
569     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
570    
571 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
572     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
573    
574     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
575 root 1.131
576 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
577 root 1.94 if $self->{tls};
578 root 1.19
579 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
580 root 1.10
581 root 1.66 $self->start_read
582 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
583 root 1.160
584     $self->_drain_wbuf;
585 root 1.8 }
586 elmex 1.2
587 root 1.52 sub _error {
588 root 1.133 my ($self, $errno, $fatal, $message) = @_;
589 root 1.8
590 root 1.52 $! = $errno;
591 root 1.133 $message ||= "$!";
592 root 1.37
593 root 1.52 if ($self->{on_error}) {
594 root 1.133 $self->{on_error}($self, $fatal, $message);
595 root 1.151 $self->destroy if $fatal;
596 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
597 root 1.149 $self->destroy;
598 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
599 root 1.52 }
600 elmex 1.1 }
601    
602 root 1.8 =item $fh = $handle->fh
603 elmex 1.1
604 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
605 elmex 1.1
606     =cut
607    
608 root 1.38 sub fh { $_[0]{fh} }
609 elmex 1.1
610 root 1.8 =item $handle->on_error ($cb)
611 elmex 1.1
612 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
613 elmex 1.1
614 root 1.8 =cut
615    
616     sub on_error {
617     $_[0]{on_error} = $_[1];
618     }
619    
620     =item $handle->on_eof ($cb)
621    
622     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
623 elmex 1.1
624     =cut
625    
626 root 1.8 sub on_eof {
627     $_[0]{on_eof} = $_[1];
628     }
629    
630 root 1.43 =item $handle->on_timeout ($cb)
631    
632 root 1.176 =item $handle->on_rtimeout ($cb)
633    
634     =item $handle->on_wtimeout ($cb)
635    
636     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
637     callback, or disables the callback (but not the timeout) if C<$cb> =
638     C<undef>. See the C<timeout> constructor argument and method.
639 root 1.43
640     =cut
641    
642 root 1.176 # see below
643 root 1.43
644 root 1.70 =item $handle->autocork ($boolean)
645    
646     Enables or disables the current autocork behaviour (see C<autocork>
647 root 1.105 constructor argument). Changes will only take effect on the next write.
648 root 1.70
649     =cut
650    
651 root 1.105 sub autocork {
652     $_[0]{autocork} = $_[1];
653     }
654    
655 root 1.70 =item $handle->no_delay ($boolean)
656    
657     Enables or disables the C<no_delay> setting (see constructor argument of
658     the same name for details).
659    
660     =cut
661    
662     sub no_delay {
663     $_[0]{no_delay} = $_[1];
664    
665 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
666     if $_[0]{fh};
667 root 1.182 }
668    
669     =item $handle->keepalive ($boolean)
670    
671     Enables or disables the C<keepalive> setting (see constructor argument of
672     the same name for details).
673    
674     =cut
675    
676     sub keepalive {
677     $_[0]{keepalive} = $_[1];
678    
679     eval {
680     local $SIG{__DIE__};
681     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
682     if $_[0]{fh};
683     };
684     }
685    
686     =item $handle->oobinline ($boolean)
687    
688     Enables or disables the C<oobinline> setting (see constructor argument of
689     the same name for details).
690    
691     =cut
692    
693     sub oobinline {
694     $_[0]{oobinline} = $_[1];
695    
696     eval {
697     local $SIG{__DIE__};
698     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
699     if $_[0]{fh};
700     };
701     }
702    
703     =item $handle->keepalive ($boolean)
704    
705     Enables or disables the C<keepalive> setting (see constructor argument of
706     the same name for details).
707    
708     =cut
709    
710     sub keepalive {
711     $_[0]{keepalive} = $_[1];
712    
713     eval {
714     local $SIG{__DIE__};
715     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
716 root 1.159 if $_[0]{fh};
717 root 1.70 };
718     }
719    
720 root 1.142 =item $handle->on_starttls ($cb)
721    
722     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
723    
724     =cut
725    
726     sub on_starttls {
727     $_[0]{on_starttls} = $_[1];
728     }
729    
730     =item $handle->on_stoptls ($cb)
731    
732     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
733    
734     =cut
735    
736 root 1.189 sub on_stoptls {
737 root 1.142 $_[0]{on_stoptls} = $_[1];
738     }
739    
740 root 1.168 =item $handle->rbuf_max ($max_octets)
741    
742     Configures the C<rbuf_max> setting (C<undef> disables it).
743    
744     =cut
745    
746     sub rbuf_max {
747     $_[0]{rbuf_max} = $_[1];
748     }
749    
750 root 1.43 #############################################################################
751    
752     =item $handle->timeout ($seconds)
753    
754 root 1.176 =item $handle->rtimeout ($seconds)
755    
756     =item $handle->wtimeout ($seconds)
757    
758 root 1.43 Configures (or disables) the inactivity timeout.
759    
760 root 1.176 =item $handle->timeout_reset
761    
762     =item $handle->rtimeout_reset
763    
764     =item $handle->wtimeout_reset
765    
766     Reset the activity timeout, as if data was received or sent.
767    
768     These methods are cheap to call.
769    
770 root 1.43 =cut
771    
772 root 1.176 for my $dir ("", "r", "w") {
773     my $timeout = "${dir}timeout";
774     my $tw = "_${dir}tw";
775     my $on_timeout = "on_${dir}timeout";
776     my $activity = "_${dir}activity";
777     my $cb;
778    
779     *$on_timeout = sub {
780     $_[0]{$on_timeout} = $_[1];
781     };
782    
783     *$timeout = sub {
784     my ($self, $new_value) = @_;
785 root 1.43
786 root 1.201 $new_value >= 0
787     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
788    
789 root 1.176 $self->{$timeout} = $new_value;
790     delete $self->{$tw}; &$cb;
791     };
792 root 1.43
793 root 1.176 *{"${dir}timeout_reset"} = sub {
794     $_[0]{$activity} = AE::now;
795     };
796 root 1.43
797 root 1.176 # main workhorse:
798     # reset the timeout watcher, as neccessary
799     # also check for time-outs
800     $cb = sub {
801     my ($self) = @_;
802    
803     if ($self->{$timeout} && $self->{fh}) {
804     my $NOW = AE::now;
805    
806     # when would the timeout trigger?
807     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
808    
809     # now or in the past already?
810     if ($after <= 0) {
811     $self->{$activity} = $NOW;
812 root 1.43
813 root 1.176 if ($self->{$on_timeout}) {
814     $self->{$on_timeout}($self);
815     } else {
816     $self->_error (Errno::ETIMEDOUT);
817     }
818 root 1.43
819 root 1.176 # callback could have changed timeout value, optimise
820     return unless $self->{$timeout};
821 root 1.43
822 root 1.176 # calculate new after
823     $after = $self->{$timeout};
824 root 1.43 }
825    
826 root 1.176 Scalar::Util::weaken $self;
827     return unless $self; # ->error could have destroyed $self
828 root 1.43
829 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
830     delete $self->{$tw};
831     $cb->($self);
832     };
833     } else {
834     delete $self->{$tw};
835 root 1.43 }
836     }
837     }
838    
839 root 1.9 #############################################################################
840    
841     =back
842    
843     =head2 WRITE QUEUE
844    
845     AnyEvent::Handle manages two queues per handle, one for writing and one
846     for reading.
847    
848     The write queue is very simple: you can add data to its end, and
849     AnyEvent::Handle will automatically try to get rid of it for you.
850    
851 elmex 1.20 When data could be written and the write buffer is shorter then the low
852 root 1.9 water mark, the C<on_drain> callback will be invoked.
853    
854     =over 4
855    
856 root 1.8 =item $handle->on_drain ($cb)
857    
858     Sets the C<on_drain> callback or clears it (see the description of
859     C<on_drain> in the constructor).
860    
861 root 1.193 This method may invoke callbacks (and therefore the handle might be
862     destroyed after it returns).
863    
864 root 1.8 =cut
865    
866     sub on_drain {
867 elmex 1.1 my ($self, $cb) = @_;
868    
869 root 1.8 $self->{on_drain} = $cb;
870    
871     $cb->($self)
872 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
873 root 1.8 }
874    
875     =item $handle->push_write ($data)
876    
877     Queues the given scalar to be written. You can push as much data as you
878     want (only limited by the available memory), as C<AnyEvent::Handle>
879     buffers it independently of the kernel.
880    
881 root 1.193 This method may invoke callbacks (and therefore the handle might be
882     destroyed after it returns).
883    
884 root 1.8 =cut
885    
886 root 1.17 sub _drain_wbuf {
887     my ($self) = @_;
888 root 1.8
889 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
890 root 1.35
891 root 1.8 Scalar::Util::weaken $self;
892 root 1.35
893 root 1.8 my $cb = sub {
894     my $len = syswrite $self->{fh}, $self->{wbuf};
895    
896 root 1.146 if (defined $len) {
897 root 1.8 substr $self->{wbuf}, 0, $len, "";
898    
899 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
900 root 1.43
901 root 1.8 $self->{on_drain}($self)
902 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
903 root 1.8 && $self->{on_drain};
904    
905 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
906 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
907 root 1.52 $self->_error ($!, 1);
908 elmex 1.1 }
909 root 1.8 };
910    
911 root 1.35 # try to write data immediately
912 root 1.70 $cb->() unless $self->{autocork};
913 root 1.8
914 root 1.35 # if still data left in wbuf, we need to poll
915 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
916 root 1.35 if length $self->{wbuf};
917 root 1.8 };
918     }
919    
920 root 1.30 our %WH;
921    
922 root 1.185 # deprecated
923 root 1.30 sub register_write_type($$) {
924     $WH{$_[0]} = $_[1];
925     }
926    
927 root 1.17 sub push_write {
928     my $self = shift;
929    
930 root 1.29 if (@_ > 1) {
931     my $type = shift;
932    
933 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
934     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
935 root 1.29 ->($self, @_);
936     }
937    
938 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
939     # and diagnose the problem earlier and better.
940    
941 root 1.93 if ($self->{tls}) {
942 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
943 root 1.160 &_dotls ($self) if $self->{fh};
944 root 1.17 } else {
945 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
946 root 1.159 $self->_drain_wbuf if $self->{fh};
947 root 1.17 }
948     }
949    
950 root 1.29 =item $handle->push_write (type => @args)
951    
952 root 1.185 Instead of formatting your data yourself, you can also let this module
953     do the job by specifying a type and type-specific arguments. You
954     can also specify the (fully qualified) name of a package, in which
955     case AnyEvent tries to load the package and then expects to find the
956 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
957 root 1.29
958 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
959     drop by and tell us):
960 root 1.29
961     =over 4
962    
963     =item netstring => $string
964    
965     Formats the given value as netstring
966     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
967    
968     =cut
969    
970     register_write_type netstring => sub {
971     my ($self, $string) = @_;
972    
973 root 1.96 (length $string) . ":$string,"
974 root 1.29 };
975    
976 root 1.61 =item packstring => $format, $data
977    
978     An octet string prefixed with an encoded length. The encoding C<$format>
979     uses the same format as a Perl C<pack> format, but must specify a single
980     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
981     optional C<!>, C<< < >> or C<< > >> modifier).
982    
983     =cut
984    
985     register_write_type packstring => sub {
986     my ($self, $format, $string) = @_;
987    
988 root 1.65 pack "$format/a*", $string
989 root 1.61 };
990    
991 root 1.39 =item json => $array_or_hashref
992    
993 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
994     provide your own JSON object, this means it will be encoded to JSON text
995     in UTF-8.
996    
997     JSON objects (and arrays) are self-delimiting, so you can write JSON at
998     one end of a handle and read them at the other end without using any
999     additional framing.
1000    
1001 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
1002     this module doesn't need delimiters after or between JSON texts to be
1003     able to read them, many other languages depend on that.
1004    
1005     A simple RPC protocol that interoperates easily with others is to send
1006     JSON arrays (or objects, although arrays are usually the better choice as
1007     they mimic how function argument passing works) and a newline after each
1008     JSON text:
1009    
1010     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1011     $handle->push_write ("\012");
1012    
1013     An AnyEvent::Handle receiver would simply use the C<json> read type and
1014     rely on the fact that the newline will be skipped as leading whitespace:
1015    
1016     $handle->push_read (json => sub { my $array = $_[1]; ... });
1017    
1018     Other languages could read single lines terminated by a newline and pass
1019     this line into their JSON decoder of choice.
1020    
1021 root 1.40 =cut
1022    
1023 root 1.179 sub json_coder() {
1024     eval { require JSON::XS; JSON::XS->new->utf8 }
1025     || do { require JSON; JSON->new->utf8 }
1026     }
1027    
1028 root 1.40 register_write_type json => sub {
1029     my ($self, $ref) = @_;
1030    
1031 root 1.179 my $json = $self->{json} ||= json_coder;
1032 root 1.40
1033 root 1.179 $json->encode ($ref)
1034 root 1.40 };
1035    
1036 root 1.63 =item storable => $reference
1037    
1038     Freezes the given reference using L<Storable> and writes it to the
1039     handle. Uses the C<nfreeze> format.
1040    
1041     =cut
1042    
1043     register_write_type storable => sub {
1044     my ($self, $ref) = @_;
1045    
1046     require Storable;
1047    
1048 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1049 root 1.63 };
1050    
1051 root 1.53 =back
1052    
1053 root 1.133 =item $handle->push_shutdown
1054    
1055     Sometimes you know you want to close the socket after writing your data
1056     before it was actually written. One way to do that is to replace your
1057 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1058     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1059     replaces the C<on_drain> callback with:
1060 root 1.133
1061     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1062    
1063     This simply shuts down the write side and signals an EOF condition to the
1064     the peer.
1065    
1066     You can rely on the normal read queue and C<on_eof> handling
1067     afterwards. This is the cleanest way to close a connection.
1068    
1069 root 1.193 This method may invoke callbacks (and therefore the handle might be
1070     destroyed after it returns).
1071    
1072 root 1.133 =cut
1073    
1074     sub push_shutdown {
1075 root 1.142 my ($self) = @_;
1076    
1077     delete $self->{low_water_mark};
1078     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1079 root 1.133 }
1080    
1081 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1082    
1083     Instead of one of the predefined types, you can also specify the name of
1084     a package. AnyEvent will try to load the package and then expects to find
1085     a function named C<anyevent_write_type> inside. If it isn't found, it
1086     progressively tries to load the parent package until it either finds the
1087     function (good) or runs out of packages (bad).
1088    
1089     Whenever the given C<type> is used, C<push_write> will the function with
1090     the handle object and the remaining arguments.
1091    
1092     The function is supposed to return a single octet string that will be
1093     appended to the write buffer, so you cna mentally treat this function as a
1094     "arguments to on-the-wire-format" converter.
1095 root 1.30
1096 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1097     arguments using the first one.
1098 root 1.29
1099 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1100 root 1.29
1101 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1102     # the "My" modules to be auto-loaded, or just about anywhere when the
1103     # My::Type::anyevent_write_type is defined before invoking it.
1104    
1105     package My::Type;
1106    
1107     sub anyevent_write_type {
1108     my ($handle, $delim, @args) = @_;
1109    
1110     join $delim, @args
1111     }
1112 root 1.29
1113 root 1.30 =cut
1114 root 1.29
1115 root 1.8 #############################################################################
1116    
1117 root 1.9 =back
1118    
1119     =head2 READ QUEUE
1120    
1121     AnyEvent::Handle manages two queues per handle, one for writing and one
1122     for reading.
1123    
1124     The read queue is more complex than the write queue. It can be used in two
1125     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1126     a queue.
1127    
1128     In the simple case, you just install an C<on_read> callback and whenever
1129     new data arrives, it will be called. You can then remove some data (if
1130 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1131 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1132 root 1.197 partial message has been received so far), or change the read queue with
1133     e.g. C<push_read>.
1134 root 1.9
1135     In the more complex case, you want to queue multiple callbacks. In this
1136     case, AnyEvent::Handle will call the first queued callback each time new
1137 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1138 root 1.61 done its job (see C<push_read>, below).
1139 root 1.9
1140     This way you can, for example, push three line-reads, followed by reading
1141     a chunk of data, and AnyEvent::Handle will execute them in order.
1142    
1143     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1144     the specified number of bytes which give an XML datagram.
1145    
1146     # in the default state, expect some header bytes
1147     $handle->on_read (sub {
1148     # some data is here, now queue the length-header-read (4 octets)
1149 root 1.52 shift->unshift_read (chunk => 4, sub {
1150 root 1.9 # header arrived, decode
1151     my $len = unpack "N", $_[1];
1152    
1153     # now read the payload
1154 root 1.52 shift->unshift_read (chunk => $len, sub {
1155 root 1.9 my $xml = $_[1];
1156     # handle xml
1157     });
1158     });
1159     });
1160    
1161 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1162     and another line or "ERROR" for the first request that is sent, and 64
1163     bytes for the second request. Due to the availability of a queue, we can
1164     just pipeline sending both requests and manipulate the queue as necessary
1165     in the callbacks.
1166    
1167     When the first callback is called and sees an "OK" response, it will
1168     C<unshift> another line-read. This line-read will be queued I<before> the
1169     64-byte chunk callback.
1170 root 1.9
1171 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1172 root 1.9 $handle->push_write ("request 1\015\012");
1173    
1174     # we expect "ERROR" or "OK" as response, so push a line read
1175 root 1.52 $handle->push_read (line => sub {
1176 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1177     # so it will be read before the second request reads its 64 bytes
1178     # which are already in the queue when this callback is called
1179     # we don't do this in case we got an error
1180     if ($_[1] eq "OK") {
1181 root 1.52 $_[0]->unshift_read (line => sub {
1182 root 1.9 my $response = $_[1];
1183     ...
1184     });
1185     }
1186     });
1187    
1188 root 1.69 # request two, simply returns 64 octets
1189 root 1.9 $handle->push_write ("request 2\015\012");
1190    
1191     # simply read 64 bytes, always
1192 root 1.52 $handle->push_read (chunk => 64, sub {
1193 root 1.9 my $response = $_[1];
1194     ...
1195     });
1196    
1197     =over 4
1198    
1199 root 1.10 =cut
1200    
1201 root 1.8 sub _drain_rbuf {
1202     my ($self) = @_;
1203 elmex 1.1
1204 root 1.159 # avoid recursion
1205 root 1.167 return if $self->{_skip_drain_rbuf};
1206 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1207 root 1.59
1208     while () {
1209 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1210     # we are draining the buffer, and this can only happen with TLS.
1211 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1212     if exists $self->{_tls_rbuf};
1213 root 1.115
1214 root 1.59 my $len = length $self->{rbuf};
1215 elmex 1.1
1216 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1217 root 1.29 unless ($cb->($self)) {
1218 root 1.163 # no progress can be made
1219     # (not enough data and no data forthcoming)
1220     $self->_error (Errno::EPIPE, 1), return
1221     if $self->{_eof};
1222 root 1.10
1223 root 1.38 unshift @{ $self->{_queue} }, $cb;
1224 root 1.55 last;
1225 root 1.8 }
1226     } elsif ($self->{on_read}) {
1227 root 1.61 last unless $len;
1228    
1229 root 1.8 $self->{on_read}($self);
1230    
1231     if (
1232 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1233     && !@{ $self->{_queue} } # and the queue is still empty
1234     && $self->{on_read} # but we still have on_read
1235 root 1.8 ) {
1236 root 1.55 # no further data will arrive
1237     # so no progress can be made
1238 root 1.150 $self->_error (Errno::EPIPE, 1), return
1239 root 1.55 if $self->{_eof};
1240    
1241     last; # more data might arrive
1242 elmex 1.1 }
1243 root 1.8 } else {
1244     # read side becomes idle
1245 root 1.93 delete $self->{_rw} unless $self->{tls};
1246 root 1.55 last;
1247 root 1.8 }
1248     }
1249    
1250 root 1.80 if ($self->{_eof}) {
1251 root 1.163 $self->{on_eof}
1252     ? $self->{on_eof}($self)
1253     : $self->_error (0, 1, "Unexpected end-of-file");
1254    
1255     return;
1256 root 1.80 }
1257 root 1.55
1258 root 1.169 if (
1259     defined $self->{rbuf_max}
1260     && $self->{rbuf_max} < length $self->{rbuf}
1261     ) {
1262     $self->_error (Errno::ENOSPC, 1), return;
1263     }
1264    
1265 root 1.55 # may need to restart read watcher
1266     unless ($self->{_rw}) {
1267     $self->start_read
1268     if $self->{on_read} || @{ $self->{_queue} };
1269     }
1270 elmex 1.1 }
1271    
1272 root 1.8 =item $handle->on_read ($cb)
1273 elmex 1.1
1274 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1275     the new callback is C<undef>). See the description of C<on_read> in the
1276     constructor.
1277 elmex 1.1
1278 root 1.193 This method may invoke callbacks (and therefore the handle might be
1279     destroyed after it returns).
1280    
1281 root 1.8 =cut
1282    
1283     sub on_read {
1284     my ($self, $cb) = @_;
1285 elmex 1.1
1286 root 1.8 $self->{on_read} = $cb;
1287 root 1.159 $self->_drain_rbuf if $cb;
1288 elmex 1.1 }
1289    
1290 root 1.8 =item $handle->rbuf
1291    
1292 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1293     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1294     much faster, and no less clean).
1295    
1296     The only operation allowed on the read buffer (apart from looking at it)
1297     is removing data from its beginning. Otherwise modifying or appending to
1298     it is not allowed and will lead to hard-to-track-down bugs.
1299    
1300     NOTE: The read buffer should only be used or modified in the C<on_read>
1301     callback or when C<push_read> or C<unshift_read> are used with a single
1302     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1303     will manage the read buffer on their own.
1304 elmex 1.1
1305     =cut
1306    
1307 elmex 1.2 sub rbuf : lvalue {
1308 root 1.8 $_[0]{rbuf}
1309 elmex 1.2 }
1310 elmex 1.1
1311 root 1.8 =item $handle->push_read ($cb)
1312    
1313     =item $handle->unshift_read ($cb)
1314    
1315     Append the given callback to the end of the queue (C<push_read>) or
1316     prepend it (C<unshift_read>).
1317    
1318     The callback is called each time some additional read data arrives.
1319 elmex 1.1
1320 elmex 1.20 It must check whether enough data is in the read buffer already.
1321 elmex 1.1
1322 root 1.8 If not enough data is available, it must return the empty list or a false
1323     value, in which case it will be called repeatedly until enough data is
1324     available (or an error condition is detected).
1325    
1326     If enough data was available, then the callback must remove all data it is
1327     interested in (which can be none at all) and return a true value. After returning
1328     true, it will be removed from the queue.
1329 elmex 1.1
1330 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1331     destroyed after it returns).
1332    
1333 elmex 1.1 =cut
1334    
1335 root 1.30 our %RH;
1336    
1337     sub register_read_type($$) {
1338     $RH{$_[0]} = $_[1];
1339     }
1340    
1341 root 1.8 sub push_read {
1342 root 1.28 my $self = shift;
1343     my $cb = pop;
1344    
1345     if (@_) {
1346     my $type = shift;
1347    
1348 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1349     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1350 root 1.28 ->($self, $cb, @_);
1351     }
1352 elmex 1.1
1353 root 1.38 push @{ $self->{_queue} }, $cb;
1354 root 1.159 $self->_drain_rbuf;
1355 elmex 1.1 }
1356    
1357 root 1.8 sub unshift_read {
1358 root 1.28 my $self = shift;
1359     my $cb = pop;
1360    
1361     if (@_) {
1362     my $type = shift;
1363    
1364 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1365     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1366 root 1.28 ->($self, $cb, @_);
1367     }
1368    
1369 root 1.38 unshift @{ $self->{_queue} }, $cb;
1370 root 1.159 $self->_drain_rbuf;
1371 root 1.8 }
1372 elmex 1.1
1373 root 1.28 =item $handle->push_read (type => @args, $cb)
1374 elmex 1.1
1375 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1376 elmex 1.1
1377 root 1.28 Instead of providing a callback that parses the data itself you can chose
1378     between a number of predefined parsing formats, for chunks of data, lines
1379 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1380     which case AnyEvent tries to load the package and then expects to find the
1381     C<anyevent_read_type> function inside (see "custom read types", below).
1382 elmex 1.1
1383 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1384     drop by and tell us):
1385 root 1.28
1386     =over 4
1387    
1388 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1389 root 1.28
1390     Invoke the callback only once C<$octets> bytes have been read. Pass the
1391     data read to the callback. The callback will never be called with less
1392     data.
1393    
1394     Example: read 2 bytes.
1395    
1396     $handle->push_read (chunk => 2, sub {
1397     warn "yay ", unpack "H*", $_[1];
1398     });
1399 elmex 1.1
1400     =cut
1401    
1402 root 1.28 register_read_type chunk => sub {
1403     my ($self, $cb, $len) = @_;
1404 elmex 1.1
1405 root 1.8 sub {
1406     $len <= length $_[0]{rbuf} or return;
1407 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1408 root 1.8 1
1409     }
1410 root 1.28 };
1411 root 1.8
1412 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1413 elmex 1.1
1414 root 1.8 The callback will be called only once a full line (including the end of
1415     line marker, C<$eol>) has been read. This line (excluding the end of line
1416     marker) will be passed to the callback as second argument (C<$line>), and
1417     the end of line marker as the third argument (C<$eol>).
1418 elmex 1.1
1419 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1420     will be interpreted as a fixed record end marker, or it can be a regex
1421     object (e.g. created by C<qr>), in which case it is interpreted as a
1422     regular expression.
1423 elmex 1.1
1424 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1425     undef), then C<qr|\015?\012|> is used (which is good for most internet
1426     protocols).
1427 elmex 1.1
1428 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1429     not marked by the end of line marker.
1430 elmex 1.1
1431 root 1.8 =cut
1432 elmex 1.1
1433 root 1.28 register_read_type line => sub {
1434     my ($self, $cb, $eol) = @_;
1435 elmex 1.1
1436 root 1.76 if (@_ < 3) {
1437     # this is more than twice as fast as the generic code below
1438     sub {
1439     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1440 elmex 1.1
1441 root 1.76 $cb->($_[0], $1, $2);
1442     1
1443     }
1444     } else {
1445     $eol = quotemeta $eol unless ref $eol;
1446     $eol = qr|^(.*?)($eol)|s;
1447    
1448     sub {
1449     $_[0]{rbuf} =~ s/$eol// or return;
1450 elmex 1.1
1451 root 1.76 $cb->($_[0], $1, $2);
1452     1
1453     }
1454 root 1.8 }
1455 root 1.28 };
1456 elmex 1.1
1457 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1458 root 1.36
1459     Makes a regex match against the regex object C<$accept> and returns
1460     everything up to and including the match.
1461    
1462     Example: read a single line terminated by '\n'.
1463    
1464     $handle->push_read (regex => qr<\n>, sub { ... });
1465    
1466     If C<$reject> is given and not undef, then it determines when the data is
1467     to be rejected: it is matched against the data when the C<$accept> regex
1468     does not match and generates an C<EBADMSG> error when it matches. This is
1469     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1470     receive buffer overflow).
1471    
1472     Example: expect a single decimal number followed by whitespace, reject
1473     anything else (not the use of an anchor).
1474    
1475     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1476    
1477     If C<$skip> is given and not C<undef>, then it will be matched against
1478     the receive buffer when neither C<$accept> nor C<$reject> match,
1479     and everything preceding and including the match will be accepted
1480     unconditionally. This is useful to skip large amounts of data that you
1481     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1482     have to start matching from the beginning. This is purely an optimisation
1483 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1484 root 1.36
1485     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1486 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1487 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1488     it only accepts something not ending in either \015 or \012, as these are
1489     required for the accept regex.
1490    
1491     $handle->push_read (regex =>
1492     qr<\015\012\015\012>,
1493     undef, # no reject
1494     qr<^.*[^\015\012]>,
1495     sub { ... });
1496    
1497     =cut
1498    
1499     register_read_type regex => sub {
1500     my ($self, $cb, $accept, $reject, $skip) = @_;
1501    
1502     my $data;
1503     my $rbuf = \$self->{rbuf};
1504    
1505     sub {
1506     # accept
1507     if ($$rbuf =~ $accept) {
1508     $data .= substr $$rbuf, 0, $+[0], "";
1509     $cb->($self, $data);
1510     return 1;
1511     }
1512    
1513     # reject
1514     if ($reject && $$rbuf =~ $reject) {
1515 root 1.150 $self->_error (Errno::EBADMSG);
1516 root 1.36 }
1517    
1518     # skip
1519     if ($skip && $$rbuf =~ $skip) {
1520     $data .= substr $$rbuf, 0, $+[0], "";
1521     }
1522    
1523     ()
1524     }
1525     };
1526    
1527 root 1.61 =item netstring => $cb->($handle, $string)
1528    
1529     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1530    
1531     Throws an error with C<$!> set to EBADMSG on format violations.
1532    
1533     =cut
1534    
1535     register_read_type netstring => sub {
1536     my ($self, $cb) = @_;
1537    
1538     sub {
1539     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1540     if ($_[0]{rbuf} =~ /[^0-9]/) {
1541 root 1.150 $self->_error (Errno::EBADMSG);
1542 root 1.61 }
1543     return;
1544     }
1545    
1546     my $len = $1;
1547    
1548     $self->unshift_read (chunk => $len, sub {
1549     my $string = $_[1];
1550     $_[0]->unshift_read (chunk => 1, sub {
1551     if ($_[1] eq ",") {
1552     $cb->($_[0], $string);
1553     } else {
1554 root 1.150 $self->_error (Errno::EBADMSG);
1555 root 1.61 }
1556     });
1557     });
1558    
1559     1
1560     }
1561     };
1562    
1563     =item packstring => $format, $cb->($handle, $string)
1564    
1565     An octet string prefixed with an encoded length. The encoding C<$format>
1566     uses the same format as a Perl C<pack> format, but must specify a single
1567     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1568     optional C<!>, C<< < >> or C<< > >> modifier).
1569    
1570 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1571     EPP uses a prefix of C<N> (4 octtes).
1572 root 1.61
1573     Example: read a block of data prefixed by its length in BER-encoded
1574     format (very efficient).
1575    
1576     $handle->push_read (packstring => "w", sub {
1577     my ($handle, $data) = @_;
1578     });
1579    
1580     =cut
1581    
1582     register_read_type packstring => sub {
1583     my ($self, $cb, $format) = @_;
1584    
1585     sub {
1586     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1587 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1588 root 1.61 or return;
1589    
1590 root 1.77 $format = length pack $format, $len;
1591 root 1.61
1592 root 1.77 # bypass unshift if we already have the remaining chunk
1593     if ($format + $len <= length $_[0]{rbuf}) {
1594     my $data = substr $_[0]{rbuf}, $format, $len;
1595     substr $_[0]{rbuf}, 0, $format + $len, "";
1596     $cb->($_[0], $data);
1597     } else {
1598     # remove prefix
1599     substr $_[0]{rbuf}, 0, $format, "";
1600    
1601     # read remaining chunk
1602     $_[0]->unshift_read (chunk => $len, $cb);
1603     }
1604 root 1.61
1605     1
1606     }
1607     };
1608    
1609 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1610    
1611 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1612     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1613 root 1.40
1614     If a C<json> object was passed to the constructor, then that will be used
1615     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1616    
1617     This read type uses the incremental parser available with JSON version
1618     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1619     dependency on your own: this module will load the JSON module, but
1620     AnyEvent does not depend on it itself.
1621    
1622     Since JSON texts are fully self-delimiting, the C<json> read and write
1623 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1624     the C<json> write type description, above, for an actual example.
1625 root 1.40
1626     =cut
1627    
1628     register_read_type json => sub {
1629 root 1.63 my ($self, $cb) = @_;
1630 root 1.40
1631 root 1.179 my $json = $self->{json} ||= json_coder;
1632 root 1.40
1633     my $data;
1634     my $rbuf = \$self->{rbuf};
1635    
1636     sub {
1637 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1638 root 1.110
1639 root 1.113 if ($ref) {
1640     $self->{rbuf} = $json->incr_text;
1641     $json->incr_text = "";
1642     $cb->($self, $ref);
1643 root 1.110
1644     1
1645 root 1.113 } elsif ($@) {
1646 root 1.111 # error case
1647 root 1.110 $json->incr_skip;
1648 root 1.40
1649     $self->{rbuf} = $json->incr_text;
1650     $json->incr_text = "";
1651    
1652 root 1.150 $self->_error (Errno::EBADMSG);
1653 root 1.114
1654 root 1.113 ()
1655     } else {
1656     $self->{rbuf} = "";
1657 root 1.114
1658 root 1.113 ()
1659     }
1660 root 1.40 }
1661     };
1662    
1663 root 1.63 =item storable => $cb->($handle, $ref)
1664    
1665     Deserialises a L<Storable> frozen representation as written by the
1666     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1667     data).
1668    
1669     Raises C<EBADMSG> error if the data could not be decoded.
1670    
1671     =cut
1672    
1673     register_read_type storable => sub {
1674     my ($self, $cb) = @_;
1675    
1676     require Storable;
1677    
1678     sub {
1679     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1680 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1681 root 1.63 or return;
1682    
1683 root 1.77 my $format = length pack "w", $len;
1684 root 1.63
1685 root 1.77 # bypass unshift if we already have the remaining chunk
1686     if ($format + $len <= length $_[0]{rbuf}) {
1687     my $data = substr $_[0]{rbuf}, $format, $len;
1688     substr $_[0]{rbuf}, 0, $format + $len, "";
1689     $cb->($_[0], Storable::thaw ($data));
1690     } else {
1691     # remove prefix
1692     substr $_[0]{rbuf}, 0, $format, "";
1693    
1694     # read remaining chunk
1695     $_[0]->unshift_read (chunk => $len, sub {
1696     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1697     $cb->($_[0], $ref);
1698     } else {
1699 root 1.150 $self->_error (Errno::EBADMSG);
1700 root 1.77 }
1701     });
1702     }
1703    
1704     1
1705 root 1.63 }
1706     };
1707    
1708 root 1.28 =back
1709    
1710 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1711 root 1.30
1712 root 1.185 Instead of one of the predefined types, you can also specify the name
1713     of a package. AnyEvent will try to load the package and then expects to
1714     find a function named C<anyevent_read_type> inside. If it isn't found, it
1715     progressively tries to load the parent package until it either finds the
1716     function (good) or runs out of packages (bad).
1717    
1718     Whenever this type is used, C<push_read> will invoke the function with the
1719     handle object, the original callback and the remaining arguments.
1720    
1721     The function is supposed to return a callback (usually a closure) that
1722     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1723     mentally treat the function as a "configurable read type to read callback"
1724     converter.
1725    
1726     It should invoke the original callback when it is done reading (remember
1727     to pass C<$handle> as first argument as all other callbacks do that,
1728     although there is no strict requirement on this).
1729 root 1.30
1730 root 1.185 For examples, see the source of this module (F<perldoc -m
1731     AnyEvent::Handle>, search for C<register_read_type>)).
1732 root 1.30
1733 root 1.10 =item $handle->stop_read
1734    
1735     =item $handle->start_read
1736    
1737 root 1.18 In rare cases you actually do not want to read anything from the
1738 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1739 root 1.22 any queued callbacks will be executed then. To start reading again, call
1740 root 1.10 C<start_read>.
1741    
1742 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1743     you change the C<on_read> callback or push/unshift a read callback, and it
1744     will automatically C<stop_read> for you when neither C<on_read> is set nor
1745     there are any read requests in the queue.
1746    
1747 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1748     half-duplex connections).
1749    
1750 root 1.10 =cut
1751    
1752     sub stop_read {
1753     my ($self) = @_;
1754 elmex 1.1
1755 root 1.93 delete $self->{_rw} unless $self->{tls};
1756 root 1.8 }
1757 elmex 1.1
1758 root 1.10 sub start_read {
1759     my ($self) = @_;
1760    
1761 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1762 root 1.10 Scalar::Util::weaken $self;
1763    
1764 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1765 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1766 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
1767 root 1.10
1768     if ($len > 0) {
1769 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1770 root 1.43
1771 root 1.93 if ($self->{tls}) {
1772     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1773 root 1.97
1774 root 1.93 &_dotls ($self);
1775     } else {
1776 root 1.159 $self->_drain_rbuf;
1777 root 1.93 }
1778 root 1.10
1779 root 1.203 if ($len == $self->{read_size}) {
1780     $self->{read_size} *= 2;
1781     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
1782     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
1783     }
1784    
1785 root 1.10 } elsif (defined $len) {
1786 root 1.38 delete $self->{_rw};
1787     $self->{_eof} = 1;
1788 root 1.159 $self->_drain_rbuf;
1789 root 1.10
1790 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1791 root 1.52 return $self->_error ($!, 1);
1792 root 1.10 }
1793 root 1.175 };
1794 root 1.10 }
1795 elmex 1.1 }
1796    
1797 root 1.133 our $ERROR_SYSCALL;
1798     our $ERROR_WANT_READ;
1799    
1800     sub _tls_error {
1801     my ($self, $err) = @_;
1802    
1803     return $self->_error ($!, 1)
1804     if $err == Net::SSLeay::ERROR_SYSCALL ();
1805    
1806 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1807    
1808     # reduce error string to look less scary
1809     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1810    
1811 root 1.143 if ($self->{_on_starttls}) {
1812     (delete $self->{_on_starttls})->($self, undef, $err);
1813     &_freetls;
1814     } else {
1815     &_freetls;
1816 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1817 root 1.143 }
1818 root 1.133 }
1819    
1820 root 1.97 # poll the write BIO and send the data if applicable
1821 root 1.133 # also decode read data if possible
1822     # this is basiclaly our TLS state machine
1823     # more efficient implementations are possible with openssl,
1824     # but not with the buggy and incomplete Net::SSLeay.
1825 root 1.19 sub _dotls {
1826     my ($self) = @_;
1827    
1828 root 1.97 my $tmp;
1829 root 1.56
1830 root 1.38 if (length $self->{_tls_wbuf}) {
1831 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1832     substr $self->{_tls_wbuf}, 0, $tmp, "";
1833 root 1.22 }
1834 root 1.133
1835     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1836     return $self->_tls_error ($tmp)
1837     if $tmp != $ERROR_WANT_READ
1838 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1839 root 1.19 }
1840    
1841 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1842     unless (length $tmp) {
1843 root 1.143 $self->{_on_starttls}
1844     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1845 root 1.92 &_freetls;
1846 root 1.143
1847 root 1.142 if ($self->{on_stoptls}) {
1848     $self->{on_stoptls}($self);
1849     return;
1850     } else {
1851     # let's treat SSL-eof as we treat normal EOF
1852     delete $self->{_rw};
1853     $self->{_eof} = 1;
1854     }
1855 root 1.56 }
1856 root 1.91
1857 root 1.116 $self->{_tls_rbuf} .= $tmp;
1858 root 1.159 $self->_drain_rbuf;
1859 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1860 root 1.23 }
1861    
1862 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1863 root 1.133 return $self->_tls_error ($tmp)
1864     if $tmp != $ERROR_WANT_READ
1865 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1866 root 1.91
1867 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1868     $self->{wbuf} .= $tmp;
1869 root 1.91 $self->_drain_wbuf;
1870 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1871 root 1.91 }
1872 root 1.142
1873     $self->{_on_starttls}
1874     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1875 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1876 root 1.19 }
1877    
1878 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1879    
1880     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1881     object is created, you can also do that at a later time by calling
1882     C<starttls>.
1883    
1884 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1885     write data and then call C<< ->starttls >> then TLS negotiation will start
1886     immediately, after which the queued write data is then sent.
1887    
1888 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1889     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1890    
1891 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1892     when AnyEvent::Handle has to create its own TLS connection object, or
1893     a hash reference with C<< key => value >> pairs that will be used to
1894     construct a new context.
1895    
1896     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1897     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1898     changed to your liking. Note that the handshake might have already started
1899     when this function returns.
1900 root 1.38
1901 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1902 root 1.198 handshakes on the same stream. It is best to not attempt to use the
1903     stream after stopping TLS.
1904 root 1.92
1905 root 1.193 This method may invoke callbacks (and therefore the handle might be
1906     destroyed after it returns).
1907    
1908 root 1.25 =cut
1909    
1910 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1911    
1912 root 1.19 sub starttls {
1913 root 1.160 my ($self, $tls, $ctx) = @_;
1914    
1915     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1916     if $self->{tls};
1917    
1918     $self->{tls} = $tls;
1919     $self->{tls_ctx} = $ctx if @_ > 2;
1920    
1921     return unless $self->{fh};
1922 root 1.19
1923 root 1.94 require Net::SSLeay;
1924    
1925 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1926     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1927 root 1.133
1928 root 1.180 $tls = delete $self->{tls};
1929 root 1.160 $ctx = $self->{tls_ctx};
1930 root 1.131
1931 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1932    
1933 root 1.131 if ("HASH" eq ref $ctx) {
1934     require AnyEvent::TLS;
1935    
1936 root 1.137 if ($ctx->{cache}) {
1937     my $key = $ctx+0;
1938     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1939     } else {
1940     $ctx = new AnyEvent::TLS %$ctx;
1941     }
1942 root 1.131 }
1943 root 1.92
1944 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1945 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1946 root 1.19
1947 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1948     # but the openssl maintainers basically said: "trust us, it just works".
1949     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1950     # and mismaintained ssleay-module doesn't even offer them).
1951 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1952 root 1.87 #
1953     # in short: this is a mess.
1954     #
1955 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1956 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1957 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1958     # have identity issues in that area.
1959 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1960     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1961     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1962 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1963 root 1.21
1964 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1965     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1966 root 1.19
1967 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1968    
1969 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1970 root 1.19
1971 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1972 root 1.143 if $self->{on_starttls};
1973 root 1.142
1974 root 1.93 &_dotls; # need to trigger the initial handshake
1975     $self->start_read; # make sure we actually do read
1976 root 1.19 }
1977    
1978 root 1.25 =item $handle->stoptls
1979    
1980 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1981     sending a close notify to the other side, but since OpenSSL doesn't
1982 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
1983 root 1.160 the stream afterwards.
1984 root 1.25
1985 root 1.193 This method may invoke callbacks (and therefore the handle might be
1986     destroyed after it returns).
1987    
1988 root 1.25 =cut
1989    
1990     sub stoptls {
1991     my ($self) = @_;
1992    
1993 root 1.192 if ($self->{tls} && $self->{fh}) {
1994 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1995 root 1.92
1996     &_dotls;
1997    
1998 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1999     # # we, we... have to use openssl :/#d#
2000     # &_freetls;#d#
2001 root 1.92 }
2002     }
2003    
2004     sub _freetls {
2005     my ($self) = @_;
2006    
2007     return unless $self->{tls};
2008 root 1.38
2009 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2010 root 1.171 if $self->{tls} > 0;
2011 root 1.92
2012 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2013 root 1.25 }
2014    
2015 root 1.19 sub DESTROY {
2016 root 1.120 my ($self) = @_;
2017 root 1.19
2018 root 1.92 &_freetls;
2019 root 1.62
2020     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2021    
2022 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2023 root 1.62 my $fh = delete $self->{fh};
2024     my $wbuf = delete $self->{wbuf};
2025    
2026     my @linger;
2027    
2028 root 1.175 push @linger, AE::io $fh, 1, sub {
2029 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2030    
2031     if ($len > 0) {
2032     substr $wbuf, 0, $len, "";
2033 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2034 root 1.62 @linger = (); # end
2035     }
2036 root 1.175 };
2037     push @linger, AE::timer $linger, 0, sub {
2038 root 1.62 @linger = ();
2039 root 1.175 };
2040 root 1.62 }
2041 root 1.19 }
2042    
2043 root 1.99 =item $handle->destroy
2044    
2045 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2046 root 1.141 no further callbacks will be invoked and as many resources as possible
2047 root 1.165 will be freed. Any method you will call on the handle object after
2048     destroying it in this way will be silently ignored (and it will return the
2049     empty list).
2050 root 1.99
2051 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2052     object and it will simply shut down. This works in fatal error and EOF
2053     callbacks, as well as code outside. It does I<NOT> work in a read or write
2054     callback, so when you want to destroy the AnyEvent::Handle object from
2055     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2056     that case.
2057    
2058 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2059     will be removed as well, so if those are the only reference holders (as
2060     is common), then one doesn't need to do anything special to break any
2061     reference cycles.
2062    
2063 root 1.99 The handle might still linger in the background and write out remaining
2064     data, as specified by the C<linger> option, however.
2065    
2066     =cut
2067    
2068     sub destroy {
2069     my ($self) = @_;
2070    
2071     $self->DESTROY;
2072     %$self = ();
2073 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2074     }
2075    
2076 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2077     #nop
2078 root 1.99 }
2079    
2080 root 1.192 =item $handle->destroyed
2081    
2082     Returns false as long as the handle hasn't been destroyed by a call to C<<
2083     ->destroy >>, true otherwise.
2084    
2085     Can be useful to decide whether the handle is still valid after some
2086     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2087     C<< ->starttls >> and other methods can call user callbacks, which in turn
2088     can destroy the handle, so work can be avoided by checking sometimes:
2089    
2090     $hdl->starttls ("accept");
2091     return if $hdl->destroyed;
2092     $hdl->push_write (...
2093    
2094     Note that the call to C<push_write> will silently be ignored if the handle
2095     has been destroyed, so often you can just ignore the possibility of the
2096     handle being destroyed.
2097    
2098     =cut
2099    
2100     sub destroyed { 0 }
2101     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2102    
2103 root 1.19 =item AnyEvent::Handle::TLS_CTX
2104    
2105 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2106     for TLS mode.
2107 root 1.19
2108 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2109 root 1.19
2110     =cut
2111    
2112     our $TLS_CTX;
2113    
2114     sub TLS_CTX() {
2115 root 1.131 $TLS_CTX ||= do {
2116     require AnyEvent::TLS;
2117 root 1.19
2118 root 1.131 new AnyEvent::TLS
2119 root 1.19 }
2120     }
2121    
2122 elmex 1.1 =back
2123    
2124 root 1.95
2125     =head1 NONFREQUENTLY ASKED QUESTIONS
2126    
2127     =over 4
2128    
2129 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2130     still get further invocations!
2131    
2132     That's because AnyEvent::Handle keeps a reference to itself when handling
2133     read or write callbacks.
2134    
2135     It is only safe to "forget" the reference inside EOF or error callbacks,
2136     from within all other callbacks, you need to explicitly call the C<<
2137     ->destroy >> method.
2138    
2139     =item I get different callback invocations in TLS mode/Why can't I pause
2140     reading?
2141    
2142     Unlike, say, TCP, TLS connections do not consist of two independent
2143 root 1.198 communication channels, one for each direction. Or put differently, the
2144 root 1.101 read and write directions are not independent of each other: you cannot
2145     write data unless you are also prepared to read, and vice versa.
2146    
2147 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2148 root 1.101 callback invocations when you are not expecting any read data - the reason
2149     is that AnyEvent::Handle always reads in TLS mode.
2150    
2151     During the connection, you have to make sure that you always have a
2152     non-empty read-queue, or an C<on_read> watcher. At the end of the
2153     connection (or when you no longer want to use it) you can call the
2154     C<destroy> method.
2155    
2156 root 1.95 =item How do I read data until the other side closes the connection?
2157    
2158 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2159     to achieve this is by setting an C<on_read> callback that does nothing,
2160     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2161     will be in C<$_[0]{rbuf}>:
2162 root 1.95
2163     $handle->on_read (sub { });
2164     $handle->on_eof (undef);
2165     $handle->on_error (sub {
2166     my $data = delete $_[0]{rbuf};
2167     });
2168    
2169     The reason to use C<on_error> is that TCP connections, due to latencies
2170     and packets loss, might get closed quite violently with an error, when in
2171 root 1.198 fact all data has been received.
2172 root 1.95
2173 root 1.101 It is usually better to use acknowledgements when transferring data,
2174 root 1.95 to make sure the other side hasn't just died and you got the data
2175     intact. This is also one reason why so many internet protocols have an
2176     explicit QUIT command.
2177    
2178 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2179     all data has been written?
2180 root 1.95
2181     After writing your last bits of data, set the C<on_drain> callback
2182     and destroy the handle in there - with the default setting of
2183     C<low_water_mark> this will be called precisely when all data has been
2184     written to the socket:
2185    
2186     $handle->push_write (...);
2187     $handle->on_drain (sub {
2188     warn "all data submitted to the kernel\n";
2189     undef $handle;
2190     });
2191    
2192 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2193     consider using C<< ->push_shutdown >> instead.
2194    
2195     =item I want to contact a TLS/SSL server, I don't care about security.
2196    
2197     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2198 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2199 root 1.143 parameter:
2200    
2201 root 1.144 tcp_connect $host, $port, sub {
2202     my ($fh) = @_;
2203 root 1.143
2204 root 1.144 my $handle = new AnyEvent::Handle
2205     fh => $fh,
2206     tls => "connect",
2207     on_error => sub { ... };
2208    
2209     $handle->push_write (...);
2210     };
2211 root 1.143
2212     =item I want to contact a TLS/SSL server, I do care about security.
2213    
2214 root 1.144 Then you should additionally enable certificate verification, including
2215     peername verification, if the protocol you use supports it (see
2216     L<AnyEvent::TLS>, C<verify_peername>).
2217    
2218     E.g. for HTTPS:
2219    
2220     tcp_connect $host, $port, sub {
2221     my ($fh) = @_;
2222    
2223     my $handle = new AnyEvent::Handle
2224     fh => $fh,
2225     peername => $host,
2226     tls => "connect",
2227     tls_ctx => { verify => 1, verify_peername => "https" },
2228     ...
2229    
2230     Note that you must specify the hostname you connected to (or whatever
2231     "peername" the protocol needs) as the C<peername> argument, otherwise no
2232     peername verification will be done.
2233    
2234     The above will use the system-dependent default set of trusted CA
2235     certificates. If you want to check against a specific CA, add the
2236     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2237    
2238     tls_ctx => {
2239     verify => 1,
2240     verify_peername => "https",
2241     ca_file => "my-ca-cert.pem",
2242     },
2243    
2244     =item I want to create a TLS/SSL server, how do I do that?
2245    
2246     Well, you first need to get a server certificate and key. You have
2247     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2248     self-signed certificate (cheap. check the search engine of your choice,
2249     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2250     nice program for that purpose).
2251    
2252     Then create a file with your private key (in PEM format, see
2253     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2254     file should then look like this:
2255    
2256     -----BEGIN RSA PRIVATE KEY-----
2257     ...header data
2258     ... lots of base64'y-stuff
2259     -----END RSA PRIVATE KEY-----
2260    
2261     -----BEGIN CERTIFICATE-----
2262     ... lots of base64'y-stuff
2263     -----END CERTIFICATE-----
2264    
2265     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2266     specify this file as C<cert_file>:
2267    
2268     tcp_server undef, $port, sub {
2269     my ($fh) = @_;
2270    
2271     my $handle = new AnyEvent::Handle
2272     fh => $fh,
2273     tls => "accept",
2274     tls_ctx => { cert_file => "my-server-keycert.pem" },
2275     ...
2276 root 1.143
2277 root 1.144 When you have intermediate CA certificates that your clients might not
2278     know about, just append them to the C<cert_file>.
2279 root 1.143
2280 root 1.95 =back
2281    
2282    
2283 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2284    
2285     In many cases, you might want to subclass AnyEvent::Handle.
2286    
2287     To make this easier, a given version of AnyEvent::Handle uses these
2288     conventions:
2289    
2290     =over 4
2291    
2292     =item * all constructor arguments become object members.
2293    
2294     At least initially, when you pass a C<tls>-argument to the constructor it
2295 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2296 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2297    
2298     =item * other object member names are prefixed with an C<_>.
2299    
2300     All object members not explicitly documented (internal use) are prefixed
2301     with an underscore character, so the remaining non-C<_>-namespace is free
2302     for use for subclasses.
2303    
2304     =item * all members not documented here and not prefixed with an underscore
2305     are free to use in subclasses.
2306    
2307     Of course, new versions of AnyEvent::Handle may introduce more "public"
2308 root 1.198 member variables, but that's just life. At least it is documented.
2309 root 1.38
2310     =back
2311    
2312 elmex 1.1 =head1 AUTHOR
2313    
2314 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2315 elmex 1.1
2316     =cut
2317    
2318     1; # End of AnyEvent::Handle