ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.208
Committed: Sun Dec 5 11:41:45 2010 UTC (13 years, 6 months ago) by root
Branch: MAIN
CVS Tags: rel-5_29
Changes since 1.207: +80 -0 lines
Log Message:
5.29

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119     attempted, but after the file handle has been created. It could be used to
120     prepare the file handle with parameters required for the actual connect
121     (as opposed to settings that can be changed when the connection is already
122     established).
123    
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.159 parameters, together with a retry callback.
134    
135 root 1.198 If, for some reason, the handle is not acceptable, calling C<$retry>
136     will continue with the next connection target (in case of multi-homed
137     hosts or SRV records there can be multiple connection endpoints). At the
138     time it is called the read and write queues, eof status, tls status and
139     similar properties of the handle will have been reset.
140 root 1.159
141 root 1.198 In most cases, you should ignore the C<$retry> parameter.
142 root 1.158
143 root 1.159 =item on_connect_error => $cb->($handle, $message)
144 root 1.10
145 root 1.186 This callback is called when the connection could not be
146 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
147     message describing it (usually the same as C<"$!">).
148 root 1.8
149 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
150     fatal error instead.
151 root 1.82
152 root 1.159 =back
153 root 1.80
154 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
155 root 1.10
156 root 1.52 This is the error callback, which is called when, well, some error
157     occured, such as not being able to resolve the hostname, failure to
158 root 1.198 connect, or a read error.
159 root 1.52
160     Some errors are fatal (which is indicated by C<$fatal> being true). On
161 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
162     destroy >>) after invoking the error callback (which means you are free to
163     examine the handle object). Examples of fatal errors are an EOF condition
164 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
165 root 1.198 cases where the other side can close the connection at will, it is
166 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
167 root 1.82
168 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
169     against, but in some cases (TLS errors), this does not work well. It is
170     recommended to always output the C<$message> argument in human-readable
171     error messages (it's usually the same as C<"$!">).
172    
173 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
174 root 1.82 to simply ignore this parameter and instead abondon the handle object
175     when this callback is invoked. Examples of non-fatal errors are timeouts
176     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
177 root 1.8
178 root 1.198 On entry to the callback, the value of C<$!> contains the operating
179     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
180 root 1.133 C<EPROTO>).
181 root 1.8
182 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
183 root 1.198 you will not be notified of errors otherwise. The default just calls
184 root 1.52 C<croak>.
185 root 1.8
186 root 1.40 =item on_read => $cb->($handle)
187 root 1.8
188     This sets the default read callback, which is called when data arrives
189 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
190     callback will only be called when at least one octet of data is in the
191     read buffer).
192 root 1.8
193     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
194 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
195 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
196     the beginning from it.
197 root 1.8
198 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
199     modifies the read queue. Or do both. Or ...
200    
201 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
202 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
203     calling the C<on_eof> callback. If no progress can be made, then a fatal
204     error will be raised (with C<$!> set to C<EPIPE>).
205 elmex 1.1
206 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
207     doesn't mean you I<require> some data: if there is an EOF and there
208     are outstanding read requests then an error will be flagged. With an
209     C<on_read> callback, the C<on_eof> callback will be invoked.
210    
211 root 1.159 =item on_eof => $cb->($handle)
212    
213     Set the callback to be called when an end-of-file condition is detected,
214     i.e. in the case of a socket, when the other side has closed the
215     connection cleanly, and there are no outstanding read requests in the
216     queue (if there are read requests, then an EOF counts as an unexpected
217     connection close and will be flagged as an error).
218    
219     For sockets, this just means that the other side has stopped sending data,
220     you can still try to write data, and, in fact, one can return from the EOF
221     callback and continue writing data, as only the read part has been shut
222     down.
223    
224     If an EOF condition has been detected but no C<on_eof> callback has been
225     set, then a fatal error will be raised with C<$!> set to <0>.
226    
227 root 1.40 =item on_drain => $cb->($handle)
228 elmex 1.1
229 root 1.8 This sets the callback that is called when the write buffer becomes empty
230 root 1.198 (or immediately if the buffer is empty already).
231 elmex 1.1
232 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
233 elmex 1.2
234 root 1.69 This callback is useful when you don't want to put all of your write data
235     into the queue at once, for example, when you want to write the contents
236     of some file to the socket you might not want to read the whole file into
237     memory and push it into the queue, but instead only read more data from
238     the file when the write queue becomes empty.
239    
240 root 1.43 =item timeout => $fractional_seconds
241    
242 root 1.176 =item rtimeout => $fractional_seconds
243    
244     =item wtimeout => $fractional_seconds
245    
246     If non-zero, then these enables an "inactivity" timeout: whenever this
247     many seconds pass without a successful read or write on the underlying
248     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
249     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
250     error will be raised).
251    
252 root 1.198 There are three variants of the timeouts that work independently
253 root 1.176 of each other, for both read and write, just read, and just write:
254     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
255     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
256     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
257 root 1.43
258 root 1.198 Note that timeout processing is active even when you do not have
259 root 1.43 any outstanding read or write requests: If you plan to keep the connection
260 root 1.198 idle then you should disable the timeout temporarily or ignore the timeout
261 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
262     restart the timeout.
263 root 1.43
264     Zero (the default) disables this timeout.
265    
266     =item on_timeout => $cb->($handle)
267    
268     Called whenever the inactivity timeout passes. If you return from this
269     callback, then the timeout will be reset as if some activity had happened,
270     so this condition is not fatal in any way.
271    
272 root 1.8 =item rbuf_max => <bytes>
273 elmex 1.2
274 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
275     when the read buffer ever (strictly) exceeds this size. This is useful to
276 root 1.88 avoid some forms of denial-of-service attacks.
277 elmex 1.2
278 root 1.8 For example, a server accepting connections from untrusted sources should
279     be configured to accept only so-and-so much data that it cannot act on
280     (for example, when expecting a line, an attacker could send an unlimited
281     amount of data without a callback ever being called as long as the line
282     isn't finished).
283 elmex 1.2
284 root 1.70 =item autocork => <boolean>
285    
286 root 1.198 When disabled (the default), C<push_write> will try to immediately
287     write the data to the handle if possible. This avoids having to register
288 root 1.88 a write watcher and wait for the next event loop iteration, but can
289     be inefficient if you write multiple small chunks (on the wire, this
290     disadvantage is usually avoided by your kernel's nagle algorithm, see
291     C<no_delay>, but this option can save costly syscalls).
292 root 1.70
293 root 1.198 When enabled, writes will always be queued till the next event loop
294 root 1.70 iteration. This is efficient when you do many small writes per iteration,
295 root 1.88 but less efficient when you do a single write only per iteration (or when
296     the write buffer often is full). It also increases write latency.
297 root 1.70
298     =item no_delay => <boolean>
299    
300     When doing small writes on sockets, your operating system kernel might
301     wait a bit for more data before actually sending it out. This is called
302     the Nagle algorithm, and usually it is beneficial.
303    
304 root 1.88 In some situations you want as low a delay as possible, which can be
305     accomplishd by setting this option to a true value.
306 root 1.70
307 root 1.198 The default is your operating system's default behaviour (most likely
308     enabled). This option explicitly enables or disables it, if possible.
309 root 1.70
310 root 1.182 =item keepalive => <boolean>
311    
312     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
313     normally, TCP connections have no time-out once established, so TCP
314 root 1.186 connections, once established, can stay alive forever even when the other
315 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
316 root 1.198 TCP connections when the other side becomes unreachable. While the default
317 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
318     and, if the other side doesn't reply, take down the TCP connection some 10
319     to 15 minutes later.
320    
321     It is harmless to specify this option for file handles that do not support
322     keepalives, and enabling it on connections that are potentially long-lived
323     is usually a good idea.
324    
325     =item oobinline => <boolean>
326    
327     BSD majorly fucked up the implementation of TCP urgent data. The result
328     is that almost no OS implements TCP according to the specs, and every OS
329     implements it slightly differently.
330    
331 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
332     is enabled) gives you the most portable way of getting urgent data, by
333     putting it into the stream.
334    
335     Since BSD emulation of OOB data on top of TCP's urgent data can have
336     security implications, AnyEvent::Handle sets this flag automatically
337 root 1.184 unless explicitly specified. Note that setting this flag after
338     establishing a connection I<may> be a bit too late (data loss could
339     already have occured on BSD systems), but at least it will protect you
340     from most attacks.
341 root 1.182
342 root 1.8 =item read_size => <bytes>
343 elmex 1.2
344 root 1.203 The initial read block size, the number of bytes this module will try to
345     read during each loop iteration. Each handle object will consume at least
346     this amount of memory for the read buffer as well, so when handling many
347     connections requirements). See also C<max_read_size>. Default: C<2048>.
348    
349     =item max_read_size => <bytes>
350    
351     The maximum read buffer size used by the dynamic adjustment
352     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
353     one go it will double C<read_size> up to the maximum given by this
354     option. Default: C<131072> or C<read_size>, whichever is higher.
355 root 1.8
356     =item low_water_mark => <bytes>
357    
358 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
359     buffer: If the buffer reaches this size or gets even samller it is
360 root 1.8 considered empty.
361 elmex 1.2
362 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
363     the write buffer before it is fully drained, but this is a rare case, as
364     the operating system kernel usually buffers data as well, so the default
365     is good in almost all cases.
366    
367 root 1.62 =item linger => <seconds>
368    
369 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
370 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
371     write data and will install a watcher that will write this data to the
372     socket. No errors will be reported (this mostly matches how the operating
373     system treats outstanding data at socket close time).
374 root 1.62
375 root 1.88 This will not work for partial TLS data that could not be encoded
376 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
377     help.
378 root 1.62
379 root 1.133 =item peername => $string
380    
381 root 1.134 A string used to identify the remote site - usually the DNS hostname
382     (I<not> IDN!) used to create the connection, rarely the IP address.
383 root 1.131
384 root 1.133 Apart from being useful in error messages, this string is also used in TLS
385 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
386 root 1.198 verification will be skipped when C<peername> is not specified or is
387 root 1.144 C<undef>.
388 root 1.131
389 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
390    
391 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
392 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
393 root 1.88 established and will transparently encrypt/decrypt data afterwards.
394 root 1.19
395 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
396     appropriate error message.
397    
398 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
399 root 1.88 automatically when you try to create a TLS handle): this module doesn't
400     have a dependency on that module, so if your module requires it, you have
401     to add the dependency yourself.
402 root 1.26
403 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
404     C<accept>, and for the TLS client side of a connection, use C<connect>
405     mode.
406 root 1.19
407     You can also provide your own TLS connection object, but you have
408     to make sure that you call either C<Net::SSLeay::set_connect_state>
409     or C<Net::SSLeay::set_accept_state> on it before you pass it to
410 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
411     object.
412    
413     At some future point, AnyEvent::Handle might switch to another TLS
414     implementation, then the option to use your own session object will go
415     away.
416 root 1.19
417 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
418     passing in the wrong integer will lead to certain crash. This most often
419     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
420     segmentation fault.
421    
422 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
423 root 1.26
424 root 1.131 =item tls_ctx => $anyevent_tls
425 root 1.19
426 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
427 root 1.207 (unless a connection object was specified directly). If this
428     parameter is missing (or C<undef>), then AnyEvent::Handle will use
429     C<AnyEvent::Handle::TLS_CTX>.
430 root 1.19
431 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
432     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
433     new TLS context object.
434    
435 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
436 root 1.142
437     This callback will be invoked when the TLS/SSL handshake has finished. If
438     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
439     (C<on_stoptls> will not be called in this case).
440    
441     The session in C<< $handle->{tls} >> can still be examined in this
442     callback, even when the handshake was not successful.
443    
444 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
445     callback is in effect, instead, the error message will be passed to C<on_starttls>.
446    
447     Without this callback, handshake failures lead to C<on_error> being
448 root 1.198 called as usual.
449 root 1.143
450 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
451 root 1.143 need to do that, start an zero-second timer instead whose callback can
452     then call C<< ->starttls >> again.
453    
454 root 1.142 =item on_stoptls => $cb->($handle)
455    
456     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
457     set, then it will be invoked after freeing the TLS session. If it is not,
458     then a TLS shutdown condition will be treated like a normal EOF condition
459     on the handle.
460    
461     The session in C<< $handle->{tls} >> can still be examined in this
462     callback.
463    
464     This callback will only be called on TLS shutdowns, not when the
465     underlying handle signals EOF.
466    
467 root 1.40 =item json => JSON or JSON::XS object
468    
469     This is the json coder object used by the C<json> read and write types.
470    
471 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
472 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
473     texts.
474 root 1.40
475     Note that you are responsible to depend on the JSON module if you want to
476     use this functionality, as AnyEvent does not have a dependency itself.
477    
478 elmex 1.1 =back
479    
480     =cut
481    
482     sub new {
483 root 1.8 my $class = shift;
484     my $self = bless { @_ }, $class;
485    
486 root 1.159 if ($self->{fh}) {
487     $self->_start;
488     return unless $self->{fh}; # could be gone by now
489    
490     } elsif ($self->{connect}) {
491     require AnyEvent::Socket;
492    
493     $self->{peername} = $self->{connect}[0]
494     unless exists $self->{peername};
495    
496     $self->{_skip_drain_rbuf} = 1;
497    
498     {
499     Scalar::Util::weaken (my $self = $self);
500    
501     $self->{_connect} =
502     AnyEvent::Socket::tcp_connect (
503     $self->{connect}[0],
504     $self->{connect}[1],
505     sub {
506     my ($fh, $host, $port, $retry) = @_;
507    
508 root 1.206 delete $self->{_connect}; # no longer needed
509 root 1.205
510 root 1.159 if ($fh) {
511     $self->{fh} = $fh;
512    
513     delete $self->{_skip_drain_rbuf};
514     $self->_start;
515    
516     $self->{on_connect}
517     and $self->{on_connect}($self, $host, $port, sub {
518 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
519 root 1.159 $self->{_skip_drain_rbuf} = 1;
520     &$retry;
521     });
522    
523     } else {
524     if ($self->{on_connect_error}) {
525     $self->{on_connect_error}($self, "$!");
526     $self->destroy;
527     } else {
528 root 1.161 $self->_error ($!, 1);
529 root 1.159 }
530     }
531     },
532     sub {
533     local $self->{fh} = $_[0];
534    
535 root 1.161 $self->{on_prepare}
536     ? $self->{on_prepare}->($self)
537     : ()
538 root 1.159 }
539     );
540     }
541    
542     } else {
543     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
544     }
545    
546     $self
547     }
548    
549     sub _start {
550     my ($self) = @_;
551 root 1.8
552 root 1.194 # too many clueless people try to use udp and similar sockets
553     # with AnyEvent::Handle, do them a favour.
554 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
555     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
556 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
557 root 1.194
558 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
559 elmex 1.1
560 root 1.176 $self->{_activity} =
561     $self->{_ractivity} =
562     $self->{_wactivity} = AE::now;
563    
564 root 1.203 $self->{read_size} ||= 2048;
565     $self->{max_read_size} = $self->{read_size}
566     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
567    
568 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
569     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
570     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
571    
572 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
573     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
574    
575     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
576 root 1.131
577 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
578 root 1.94 if $self->{tls};
579 root 1.19
580 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
581 root 1.10
582 root 1.66 $self->start_read
583 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
584 root 1.160
585     $self->_drain_wbuf;
586 root 1.8 }
587 elmex 1.2
588 root 1.52 sub _error {
589 root 1.133 my ($self, $errno, $fatal, $message) = @_;
590 root 1.8
591 root 1.52 $! = $errno;
592 root 1.133 $message ||= "$!";
593 root 1.37
594 root 1.52 if ($self->{on_error}) {
595 root 1.133 $self->{on_error}($self, $fatal, $message);
596 root 1.151 $self->destroy if $fatal;
597 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
598 root 1.149 $self->destroy;
599 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
600 root 1.52 }
601 elmex 1.1 }
602    
603 root 1.8 =item $fh = $handle->fh
604 elmex 1.1
605 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
606 elmex 1.1
607     =cut
608    
609 root 1.38 sub fh { $_[0]{fh} }
610 elmex 1.1
611 root 1.8 =item $handle->on_error ($cb)
612 elmex 1.1
613 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
614 elmex 1.1
615 root 1.8 =cut
616    
617     sub on_error {
618     $_[0]{on_error} = $_[1];
619     }
620    
621     =item $handle->on_eof ($cb)
622    
623     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
624 elmex 1.1
625     =cut
626    
627 root 1.8 sub on_eof {
628     $_[0]{on_eof} = $_[1];
629     }
630    
631 root 1.43 =item $handle->on_timeout ($cb)
632    
633 root 1.176 =item $handle->on_rtimeout ($cb)
634    
635     =item $handle->on_wtimeout ($cb)
636    
637     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
638     callback, or disables the callback (but not the timeout) if C<$cb> =
639     C<undef>. See the C<timeout> constructor argument and method.
640 root 1.43
641     =cut
642    
643 root 1.176 # see below
644 root 1.43
645 root 1.70 =item $handle->autocork ($boolean)
646    
647     Enables or disables the current autocork behaviour (see C<autocork>
648 root 1.105 constructor argument). Changes will only take effect on the next write.
649 root 1.70
650     =cut
651    
652 root 1.105 sub autocork {
653     $_[0]{autocork} = $_[1];
654     }
655    
656 root 1.70 =item $handle->no_delay ($boolean)
657    
658     Enables or disables the C<no_delay> setting (see constructor argument of
659     the same name for details).
660    
661     =cut
662    
663     sub no_delay {
664     $_[0]{no_delay} = $_[1];
665    
666 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
667     if $_[0]{fh};
668 root 1.182 }
669    
670     =item $handle->keepalive ($boolean)
671    
672     Enables or disables the C<keepalive> setting (see constructor argument of
673     the same name for details).
674    
675     =cut
676    
677     sub keepalive {
678     $_[0]{keepalive} = $_[1];
679    
680     eval {
681     local $SIG{__DIE__};
682     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
683     if $_[0]{fh};
684     };
685     }
686    
687     =item $handle->oobinline ($boolean)
688    
689     Enables or disables the C<oobinline> setting (see constructor argument of
690     the same name for details).
691    
692     =cut
693    
694     sub oobinline {
695     $_[0]{oobinline} = $_[1];
696    
697     eval {
698     local $SIG{__DIE__};
699     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
700     if $_[0]{fh};
701     };
702     }
703    
704     =item $handle->keepalive ($boolean)
705    
706     Enables or disables the C<keepalive> setting (see constructor argument of
707     the same name for details).
708    
709     =cut
710    
711     sub keepalive {
712     $_[0]{keepalive} = $_[1];
713    
714     eval {
715     local $SIG{__DIE__};
716     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
717 root 1.159 if $_[0]{fh};
718 root 1.70 };
719     }
720    
721 root 1.142 =item $handle->on_starttls ($cb)
722    
723     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
724    
725     =cut
726    
727     sub on_starttls {
728     $_[0]{on_starttls} = $_[1];
729     }
730    
731     =item $handle->on_stoptls ($cb)
732    
733     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
734    
735     =cut
736    
737 root 1.189 sub on_stoptls {
738 root 1.142 $_[0]{on_stoptls} = $_[1];
739     }
740    
741 root 1.168 =item $handle->rbuf_max ($max_octets)
742    
743     Configures the C<rbuf_max> setting (C<undef> disables it).
744    
745     =cut
746    
747     sub rbuf_max {
748     $_[0]{rbuf_max} = $_[1];
749     }
750    
751 root 1.43 #############################################################################
752    
753     =item $handle->timeout ($seconds)
754    
755 root 1.176 =item $handle->rtimeout ($seconds)
756    
757     =item $handle->wtimeout ($seconds)
758    
759 root 1.43 Configures (or disables) the inactivity timeout.
760    
761 root 1.176 =item $handle->timeout_reset
762    
763     =item $handle->rtimeout_reset
764    
765     =item $handle->wtimeout_reset
766    
767     Reset the activity timeout, as if data was received or sent.
768    
769     These methods are cheap to call.
770    
771 root 1.43 =cut
772    
773 root 1.176 for my $dir ("", "r", "w") {
774     my $timeout = "${dir}timeout";
775     my $tw = "_${dir}tw";
776     my $on_timeout = "on_${dir}timeout";
777     my $activity = "_${dir}activity";
778     my $cb;
779    
780     *$on_timeout = sub {
781     $_[0]{$on_timeout} = $_[1];
782     };
783    
784     *$timeout = sub {
785     my ($self, $new_value) = @_;
786 root 1.43
787 root 1.201 $new_value >= 0
788     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
789    
790 root 1.176 $self->{$timeout} = $new_value;
791     delete $self->{$tw}; &$cb;
792     };
793 root 1.43
794 root 1.176 *{"${dir}timeout_reset"} = sub {
795     $_[0]{$activity} = AE::now;
796     };
797 root 1.43
798 root 1.176 # main workhorse:
799     # reset the timeout watcher, as neccessary
800     # also check for time-outs
801     $cb = sub {
802     my ($self) = @_;
803    
804     if ($self->{$timeout} && $self->{fh}) {
805     my $NOW = AE::now;
806    
807     # when would the timeout trigger?
808     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
809    
810     # now or in the past already?
811     if ($after <= 0) {
812     $self->{$activity} = $NOW;
813 root 1.43
814 root 1.176 if ($self->{$on_timeout}) {
815     $self->{$on_timeout}($self);
816     } else {
817     $self->_error (Errno::ETIMEDOUT);
818     }
819 root 1.43
820 root 1.176 # callback could have changed timeout value, optimise
821     return unless $self->{$timeout};
822 root 1.43
823 root 1.176 # calculate new after
824     $after = $self->{$timeout};
825 root 1.43 }
826    
827 root 1.176 Scalar::Util::weaken $self;
828     return unless $self; # ->error could have destroyed $self
829 root 1.43
830 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
831     delete $self->{$tw};
832     $cb->($self);
833     };
834     } else {
835     delete $self->{$tw};
836 root 1.43 }
837     }
838     }
839    
840 root 1.9 #############################################################################
841    
842     =back
843    
844     =head2 WRITE QUEUE
845    
846     AnyEvent::Handle manages two queues per handle, one for writing and one
847     for reading.
848    
849     The write queue is very simple: you can add data to its end, and
850     AnyEvent::Handle will automatically try to get rid of it for you.
851    
852 elmex 1.20 When data could be written and the write buffer is shorter then the low
853 root 1.9 water mark, the C<on_drain> callback will be invoked.
854    
855     =over 4
856    
857 root 1.8 =item $handle->on_drain ($cb)
858    
859     Sets the C<on_drain> callback or clears it (see the description of
860     C<on_drain> in the constructor).
861    
862 root 1.193 This method may invoke callbacks (and therefore the handle might be
863     destroyed after it returns).
864    
865 root 1.8 =cut
866    
867     sub on_drain {
868 elmex 1.1 my ($self, $cb) = @_;
869    
870 root 1.8 $self->{on_drain} = $cb;
871    
872     $cb->($self)
873 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
874 root 1.8 }
875    
876     =item $handle->push_write ($data)
877    
878     Queues the given scalar to be written. You can push as much data as you
879     want (only limited by the available memory), as C<AnyEvent::Handle>
880     buffers it independently of the kernel.
881    
882 root 1.193 This method may invoke callbacks (and therefore the handle might be
883     destroyed after it returns).
884    
885 root 1.8 =cut
886    
887 root 1.17 sub _drain_wbuf {
888     my ($self) = @_;
889 root 1.8
890 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
891 root 1.35
892 root 1.8 Scalar::Util::weaken $self;
893 root 1.35
894 root 1.8 my $cb = sub {
895     my $len = syswrite $self->{fh}, $self->{wbuf};
896    
897 root 1.146 if (defined $len) {
898 root 1.8 substr $self->{wbuf}, 0, $len, "";
899    
900 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
901 root 1.43
902 root 1.8 $self->{on_drain}($self)
903 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
904 root 1.8 && $self->{on_drain};
905    
906 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
907 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
908 root 1.52 $self->_error ($!, 1);
909 elmex 1.1 }
910 root 1.8 };
911    
912 root 1.35 # try to write data immediately
913 root 1.70 $cb->() unless $self->{autocork};
914 root 1.8
915 root 1.35 # if still data left in wbuf, we need to poll
916 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
917 root 1.35 if length $self->{wbuf};
918 root 1.8 };
919     }
920    
921 root 1.30 our %WH;
922    
923 root 1.185 # deprecated
924 root 1.30 sub register_write_type($$) {
925     $WH{$_[0]} = $_[1];
926     }
927    
928 root 1.17 sub push_write {
929     my $self = shift;
930    
931 root 1.29 if (@_ > 1) {
932     my $type = shift;
933    
934 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
935     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
936 root 1.29 ->($self, @_);
937     }
938    
939 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
940     # and diagnose the problem earlier and better.
941    
942 root 1.93 if ($self->{tls}) {
943 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
944 root 1.160 &_dotls ($self) if $self->{fh};
945 root 1.17 } else {
946 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
947 root 1.159 $self->_drain_wbuf if $self->{fh};
948 root 1.17 }
949     }
950    
951 root 1.29 =item $handle->push_write (type => @args)
952    
953 root 1.185 Instead of formatting your data yourself, you can also let this module
954     do the job by specifying a type and type-specific arguments. You
955     can also specify the (fully qualified) name of a package, in which
956     case AnyEvent tries to load the package and then expects to find the
957 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
958 root 1.29
959 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
960     drop by and tell us):
961 root 1.29
962     =over 4
963    
964     =item netstring => $string
965    
966     Formats the given value as netstring
967     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
968    
969     =cut
970    
971     register_write_type netstring => sub {
972     my ($self, $string) = @_;
973    
974 root 1.96 (length $string) . ":$string,"
975 root 1.29 };
976    
977 root 1.61 =item packstring => $format, $data
978    
979     An octet string prefixed with an encoded length. The encoding C<$format>
980     uses the same format as a Perl C<pack> format, but must specify a single
981     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
982     optional C<!>, C<< < >> or C<< > >> modifier).
983    
984     =cut
985    
986     register_write_type packstring => sub {
987     my ($self, $format, $string) = @_;
988    
989 root 1.65 pack "$format/a*", $string
990 root 1.61 };
991    
992 root 1.39 =item json => $array_or_hashref
993    
994 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
995     provide your own JSON object, this means it will be encoded to JSON text
996     in UTF-8.
997    
998     JSON objects (and arrays) are self-delimiting, so you can write JSON at
999     one end of a handle and read them at the other end without using any
1000     additional framing.
1001    
1002 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
1003     this module doesn't need delimiters after or between JSON texts to be
1004     able to read them, many other languages depend on that.
1005    
1006     A simple RPC protocol that interoperates easily with others is to send
1007     JSON arrays (or objects, although arrays are usually the better choice as
1008     they mimic how function argument passing works) and a newline after each
1009     JSON text:
1010    
1011     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1012     $handle->push_write ("\012");
1013    
1014     An AnyEvent::Handle receiver would simply use the C<json> read type and
1015     rely on the fact that the newline will be skipped as leading whitespace:
1016    
1017     $handle->push_read (json => sub { my $array = $_[1]; ... });
1018    
1019     Other languages could read single lines terminated by a newline and pass
1020     this line into their JSON decoder of choice.
1021    
1022 root 1.40 =cut
1023    
1024 root 1.179 sub json_coder() {
1025     eval { require JSON::XS; JSON::XS->new->utf8 }
1026     || do { require JSON; JSON->new->utf8 }
1027     }
1028    
1029 root 1.40 register_write_type json => sub {
1030     my ($self, $ref) = @_;
1031    
1032 root 1.179 my $json = $self->{json} ||= json_coder;
1033 root 1.40
1034 root 1.179 $json->encode ($ref)
1035 root 1.40 };
1036    
1037 root 1.63 =item storable => $reference
1038    
1039     Freezes the given reference using L<Storable> and writes it to the
1040     handle. Uses the C<nfreeze> format.
1041    
1042     =cut
1043    
1044     register_write_type storable => sub {
1045     my ($self, $ref) = @_;
1046    
1047     require Storable;
1048    
1049 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1050 root 1.63 };
1051    
1052 root 1.53 =back
1053    
1054 root 1.133 =item $handle->push_shutdown
1055    
1056     Sometimes you know you want to close the socket after writing your data
1057     before it was actually written. One way to do that is to replace your
1058 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1059     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1060     replaces the C<on_drain> callback with:
1061 root 1.133
1062     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1063    
1064     This simply shuts down the write side and signals an EOF condition to the
1065     the peer.
1066    
1067     You can rely on the normal read queue and C<on_eof> handling
1068     afterwards. This is the cleanest way to close a connection.
1069    
1070 root 1.193 This method may invoke callbacks (and therefore the handle might be
1071     destroyed after it returns).
1072    
1073 root 1.133 =cut
1074    
1075     sub push_shutdown {
1076 root 1.142 my ($self) = @_;
1077    
1078     delete $self->{low_water_mark};
1079     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1080 root 1.133 }
1081    
1082 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1083    
1084     Instead of one of the predefined types, you can also specify the name of
1085     a package. AnyEvent will try to load the package and then expects to find
1086     a function named C<anyevent_write_type> inside. If it isn't found, it
1087     progressively tries to load the parent package until it either finds the
1088     function (good) or runs out of packages (bad).
1089    
1090     Whenever the given C<type> is used, C<push_write> will the function with
1091     the handle object and the remaining arguments.
1092    
1093     The function is supposed to return a single octet string that will be
1094     appended to the write buffer, so you cna mentally treat this function as a
1095     "arguments to on-the-wire-format" converter.
1096 root 1.30
1097 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1098     arguments using the first one.
1099 root 1.29
1100 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1101 root 1.29
1102 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1103     # the "My" modules to be auto-loaded, or just about anywhere when the
1104     # My::Type::anyevent_write_type is defined before invoking it.
1105    
1106     package My::Type;
1107    
1108     sub anyevent_write_type {
1109     my ($handle, $delim, @args) = @_;
1110    
1111     join $delim, @args
1112     }
1113 root 1.29
1114 root 1.30 =cut
1115 root 1.29
1116 root 1.8 #############################################################################
1117    
1118 root 1.9 =back
1119    
1120     =head2 READ QUEUE
1121    
1122     AnyEvent::Handle manages two queues per handle, one for writing and one
1123     for reading.
1124    
1125     The read queue is more complex than the write queue. It can be used in two
1126     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1127     a queue.
1128    
1129     In the simple case, you just install an C<on_read> callback and whenever
1130     new data arrives, it will be called. You can then remove some data (if
1131 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1132 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1133 root 1.197 partial message has been received so far), or change the read queue with
1134     e.g. C<push_read>.
1135 root 1.9
1136     In the more complex case, you want to queue multiple callbacks. In this
1137     case, AnyEvent::Handle will call the first queued callback each time new
1138 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1139 root 1.61 done its job (see C<push_read>, below).
1140 root 1.9
1141     This way you can, for example, push three line-reads, followed by reading
1142     a chunk of data, and AnyEvent::Handle will execute them in order.
1143    
1144     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1145     the specified number of bytes which give an XML datagram.
1146    
1147     # in the default state, expect some header bytes
1148     $handle->on_read (sub {
1149     # some data is here, now queue the length-header-read (4 octets)
1150 root 1.52 shift->unshift_read (chunk => 4, sub {
1151 root 1.9 # header arrived, decode
1152     my $len = unpack "N", $_[1];
1153    
1154     # now read the payload
1155 root 1.52 shift->unshift_read (chunk => $len, sub {
1156 root 1.9 my $xml = $_[1];
1157     # handle xml
1158     });
1159     });
1160     });
1161    
1162 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1163     and another line or "ERROR" for the first request that is sent, and 64
1164     bytes for the second request. Due to the availability of a queue, we can
1165     just pipeline sending both requests and manipulate the queue as necessary
1166     in the callbacks.
1167    
1168     When the first callback is called and sees an "OK" response, it will
1169     C<unshift> another line-read. This line-read will be queued I<before> the
1170     64-byte chunk callback.
1171 root 1.9
1172 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1173 root 1.9 $handle->push_write ("request 1\015\012");
1174    
1175     # we expect "ERROR" or "OK" as response, so push a line read
1176 root 1.52 $handle->push_read (line => sub {
1177 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1178     # so it will be read before the second request reads its 64 bytes
1179     # which are already in the queue when this callback is called
1180     # we don't do this in case we got an error
1181     if ($_[1] eq "OK") {
1182 root 1.52 $_[0]->unshift_read (line => sub {
1183 root 1.9 my $response = $_[1];
1184     ...
1185     });
1186     }
1187     });
1188    
1189 root 1.69 # request two, simply returns 64 octets
1190 root 1.9 $handle->push_write ("request 2\015\012");
1191    
1192     # simply read 64 bytes, always
1193 root 1.52 $handle->push_read (chunk => 64, sub {
1194 root 1.9 my $response = $_[1];
1195     ...
1196     });
1197    
1198     =over 4
1199    
1200 root 1.10 =cut
1201    
1202 root 1.8 sub _drain_rbuf {
1203     my ($self) = @_;
1204 elmex 1.1
1205 root 1.159 # avoid recursion
1206 root 1.167 return if $self->{_skip_drain_rbuf};
1207 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1208 root 1.59
1209     while () {
1210 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1211     # we are draining the buffer, and this can only happen with TLS.
1212 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1213     if exists $self->{_tls_rbuf};
1214 root 1.115
1215 root 1.59 my $len = length $self->{rbuf};
1216 elmex 1.1
1217 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1218 root 1.29 unless ($cb->($self)) {
1219 root 1.163 # no progress can be made
1220     # (not enough data and no data forthcoming)
1221     $self->_error (Errno::EPIPE, 1), return
1222     if $self->{_eof};
1223 root 1.10
1224 root 1.38 unshift @{ $self->{_queue} }, $cb;
1225 root 1.55 last;
1226 root 1.8 }
1227     } elsif ($self->{on_read}) {
1228 root 1.61 last unless $len;
1229    
1230 root 1.8 $self->{on_read}($self);
1231    
1232     if (
1233 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1234     && !@{ $self->{_queue} } # and the queue is still empty
1235     && $self->{on_read} # but we still have on_read
1236 root 1.8 ) {
1237 root 1.55 # no further data will arrive
1238     # so no progress can be made
1239 root 1.150 $self->_error (Errno::EPIPE, 1), return
1240 root 1.55 if $self->{_eof};
1241    
1242     last; # more data might arrive
1243 elmex 1.1 }
1244 root 1.8 } else {
1245     # read side becomes idle
1246 root 1.93 delete $self->{_rw} unless $self->{tls};
1247 root 1.55 last;
1248 root 1.8 }
1249     }
1250    
1251 root 1.80 if ($self->{_eof}) {
1252 root 1.163 $self->{on_eof}
1253     ? $self->{on_eof}($self)
1254     : $self->_error (0, 1, "Unexpected end-of-file");
1255    
1256     return;
1257 root 1.80 }
1258 root 1.55
1259 root 1.169 if (
1260     defined $self->{rbuf_max}
1261     && $self->{rbuf_max} < length $self->{rbuf}
1262     ) {
1263     $self->_error (Errno::ENOSPC, 1), return;
1264     }
1265    
1266 root 1.55 # may need to restart read watcher
1267     unless ($self->{_rw}) {
1268     $self->start_read
1269     if $self->{on_read} || @{ $self->{_queue} };
1270     }
1271 elmex 1.1 }
1272    
1273 root 1.8 =item $handle->on_read ($cb)
1274 elmex 1.1
1275 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1276     the new callback is C<undef>). See the description of C<on_read> in the
1277     constructor.
1278 elmex 1.1
1279 root 1.193 This method may invoke callbacks (and therefore the handle might be
1280     destroyed after it returns).
1281    
1282 root 1.8 =cut
1283    
1284     sub on_read {
1285     my ($self, $cb) = @_;
1286 elmex 1.1
1287 root 1.8 $self->{on_read} = $cb;
1288 root 1.159 $self->_drain_rbuf if $cb;
1289 elmex 1.1 }
1290    
1291 root 1.8 =item $handle->rbuf
1292    
1293 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1294     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1295     much faster, and no less clean).
1296    
1297     The only operation allowed on the read buffer (apart from looking at it)
1298     is removing data from its beginning. Otherwise modifying or appending to
1299     it is not allowed and will lead to hard-to-track-down bugs.
1300    
1301     NOTE: The read buffer should only be used or modified in the C<on_read>
1302     callback or when C<push_read> or C<unshift_read> are used with a single
1303     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1304     will manage the read buffer on their own.
1305 elmex 1.1
1306     =cut
1307    
1308 elmex 1.2 sub rbuf : lvalue {
1309 root 1.8 $_[0]{rbuf}
1310 elmex 1.2 }
1311 elmex 1.1
1312 root 1.8 =item $handle->push_read ($cb)
1313    
1314     =item $handle->unshift_read ($cb)
1315    
1316     Append the given callback to the end of the queue (C<push_read>) or
1317     prepend it (C<unshift_read>).
1318    
1319     The callback is called each time some additional read data arrives.
1320 elmex 1.1
1321 elmex 1.20 It must check whether enough data is in the read buffer already.
1322 elmex 1.1
1323 root 1.8 If not enough data is available, it must return the empty list or a false
1324     value, in which case it will be called repeatedly until enough data is
1325     available (or an error condition is detected).
1326    
1327     If enough data was available, then the callback must remove all data it is
1328     interested in (which can be none at all) and return a true value. After returning
1329     true, it will be removed from the queue.
1330 elmex 1.1
1331 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1332     destroyed after it returns).
1333    
1334 elmex 1.1 =cut
1335    
1336 root 1.30 our %RH;
1337    
1338     sub register_read_type($$) {
1339     $RH{$_[0]} = $_[1];
1340     }
1341    
1342 root 1.8 sub push_read {
1343 root 1.28 my $self = shift;
1344     my $cb = pop;
1345    
1346     if (@_) {
1347     my $type = shift;
1348    
1349 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1350     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1351 root 1.28 ->($self, $cb, @_);
1352     }
1353 elmex 1.1
1354 root 1.38 push @{ $self->{_queue} }, $cb;
1355 root 1.159 $self->_drain_rbuf;
1356 elmex 1.1 }
1357    
1358 root 1.8 sub unshift_read {
1359 root 1.28 my $self = shift;
1360     my $cb = pop;
1361    
1362     if (@_) {
1363     my $type = shift;
1364    
1365 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1366     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1367 root 1.28 ->($self, $cb, @_);
1368     }
1369    
1370 root 1.38 unshift @{ $self->{_queue} }, $cb;
1371 root 1.159 $self->_drain_rbuf;
1372 root 1.8 }
1373 elmex 1.1
1374 root 1.28 =item $handle->push_read (type => @args, $cb)
1375 elmex 1.1
1376 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1377 elmex 1.1
1378 root 1.28 Instead of providing a callback that parses the data itself you can chose
1379     between a number of predefined parsing formats, for chunks of data, lines
1380 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1381     which case AnyEvent tries to load the package and then expects to find the
1382     C<anyevent_read_type> function inside (see "custom read types", below).
1383 elmex 1.1
1384 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1385     drop by and tell us):
1386 root 1.28
1387     =over 4
1388    
1389 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1390 root 1.28
1391     Invoke the callback only once C<$octets> bytes have been read. Pass the
1392     data read to the callback. The callback will never be called with less
1393     data.
1394    
1395     Example: read 2 bytes.
1396    
1397     $handle->push_read (chunk => 2, sub {
1398     warn "yay ", unpack "H*", $_[1];
1399     });
1400 elmex 1.1
1401     =cut
1402    
1403 root 1.28 register_read_type chunk => sub {
1404     my ($self, $cb, $len) = @_;
1405 elmex 1.1
1406 root 1.8 sub {
1407     $len <= length $_[0]{rbuf} or return;
1408 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1409 root 1.8 1
1410     }
1411 root 1.28 };
1412 root 1.8
1413 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1414 elmex 1.1
1415 root 1.8 The callback will be called only once a full line (including the end of
1416     line marker, C<$eol>) has been read. This line (excluding the end of line
1417     marker) will be passed to the callback as second argument (C<$line>), and
1418     the end of line marker as the third argument (C<$eol>).
1419 elmex 1.1
1420 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1421     will be interpreted as a fixed record end marker, or it can be a regex
1422     object (e.g. created by C<qr>), in which case it is interpreted as a
1423     regular expression.
1424 elmex 1.1
1425 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1426     undef), then C<qr|\015?\012|> is used (which is good for most internet
1427     protocols).
1428 elmex 1.1
1429 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1430     not marked by the end of line marker.
1431 elmex 1.1
1432 root 1.8 =cut
1433 elmex 1.1
1434 root 1.28 register_read_type line => sub {
1435     my ($self, $cb, $eol) = @_;
1436 elmex 1.1
1437 root 1.76 if (@_ < 3) {
1438     # this is more than twice as fast as the generic code below
1439     sub {
1440     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1441 elmex 1.1
1442 root 1.76 $cb->($_[0], $1, $2);
1443     1
1444     }
1445     } else {
1446     $eol = quotemeta $eol unless ref $eol;
1447     $eol = qr|^(.*?)($eol)|s;
1448    
1449     sub {
1450     $_[0]{rbuf} =~ s/$eol// or return;
1451 elmex 1.1
1452 root 1.76 $cb->($_[0], $1, $2);
1453     1
1454     }
1455 root 1.8 }
1456 root 1.28 };
1457 elmex 1.1
1458 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1459 root 1.36
1460     Makes a regex match against the regex object C<$accept> and returns
1461     everything up to and including the match.
1462    
1463     Example: read a single line terminated by '\n'.
1464    
1465     $handle->push_read (regex => qr<\n>, sub { ... });
1466    
1467     If C<$reject> is given and not undef, then it determines when the data is
1468     to be rejected: it is matched against the data when the C<$accept> regex
1469     does not match and generates an C<EBADMSG> error when it matches. This is
1470     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1471     receive buffer overflow).
1472    
1473     Example: expect a single decimal number followed by whitespace, reject
1474     anything else (not the use of an anchor).
1475    
1476     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1477    
1478     If C<$skip> is given and not C<undef>, then it will be matched against
1479     the receive buffer when neither C<$accept> nor C<$reject> match,
1480     and everything preceding and including the match will be accepted
1481     unconditionally. This is useful to skip large amounts of data that you
1482     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1483     have to start matching from the beginning. This is purely an optimisation
1484 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1485 root 1.36
1486     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1487 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1488 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1489     it only accepts something not ending in either \015 or \012, as these are
1490     required for the accept regex.
1491    
1492     $handle->push_read (regex =>
1493     qr<\015\012\015\012>,
1494     undef, # no reject
1495     qr<^.*[^\015\012]>,
1496     sub { ... });
1497    
1498     =cut
1499    
1500     register_read_type regex => sub {
1501     my ($self, $cb, $accept, $reject, $skip) = @_;
1502    
1503     my $data;
1504     my $rbuf = \$self->{rbuf};
1505    
1506     sub {
1507     # accept
1508     if ($$rbuf =~ $accept) {
1509     $data .= substr $$rbuf, 0, $+[0], "";
1510     $cb->($self, $data);
1511     return 1;
1512     }
1513    
1514     # reject
1515     if ($reject && $$rbuf =~ $reject) {
1516 root 1.150 $self->_error (Errno::EBADMSG);
1517 root 1.36 }
1518    
1519     # skip
1520     if ($skip && $$rbuf =~ $skip) {
1521     $data .= substr $$rbuf, 0, $+[0], "";
1522     }
1523    
1524     ()
1525     }
1526     };
1527    
1528 root 1.61 =item netstring => $cb->($handle, $string)
1529    
1530     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1531    
1532     Throws an error with C<$!> set to EBADMSG on format violations.
1533    
1534     =cut
1535    
1536     register_read_type netstring => sub {
1537     my ($self, $cb) = @_;
1538    
1539     sub {
1540     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1541     if ($_[0]{rbuf} =~ /[^0-9]/) {
1542 root 1.150 $self->_error (Errno::EBADMSG);
1543 root 1.61 }
1544     return;
1545     }
1546    
1547     my $len = $1;
1548    
1549     $self->unshift_read (chunk => $len, sub {
1550     my $string = $_[1];
1551     $_[0]->unshift_read (chunk => 1, sub {
1552     if ($_[1] eq ",") {
1553     $cb->($_[0], $string);
1554     } else {
1555 root 1.150 $self->_error (Errno::EBADMSG);
1556 root 1.61 }
1557     });
1558     });
1559    
1560     1
1561     }
1562     };
1563    
1564     =item packstring => $format, $cb->($handle, $string)
1565    
1566     An octet string prefixed with an encoded length. The encoding C<$format>
1567     uses the same format as a Perl C<pack> format, but must specify a single
1568     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1569     optional C<!>, C<< < >> or C<< > >> modifier).
1570    
1571 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1572     EPP uses a prefix of C<N> (4 octtes).
1573 root 1.61
1574     Example: read a block of data prefixed by its length in BER-encoded
1575     format (very efficient).
1576    
1577     $handle->push_read (packstring => "w", sub {
1578     my ($handle, $data) = @_;
1579     });
1580    
1581     =cut
1582    
1583     register_read_type packstring => sub {
1584     my ($self, $cb, $format) = @_;
1585    
1586     sub {
1587     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1588 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1589 root 1.61 or return;
1590    
1591 root 1.77 $format = length pack $format, $len;
1592 root 1.61
1593 root 1.77 # bypass unshift if we already have the remaining chunk
1594     if ($format + $len <= length $_[0]{rbuf}) {
1595     my $data = substr $_[0]{rbuf}, $format, $len;
1596     substr $_[0]{rbuf}, 0, $format + $len, "";
1597     $cb->($_[0], $data);
1598     } else {
1599     # remove prefix
1600     substr $_[0]{rbuf}, 0, $format, "";
1601    
1602     # read remaining chunk
1603     $_[0]->unshift_read (chunk => $len, $cb);
1604     }
1605 root 1.61
1606     1
1607     }
1608     };
1609    
1610 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1611    
1612 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1613     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1614 root 1.40
1615     If a C<json> object was passed to the constructor, then that will be used
1616     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1617    
1618     This read type uses the incremental parser available with JSON version
1619     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1620     dependency on your own: this module will load the JSON module, but
1621     AnyEvent does not depend on it itself.
1622    
1623     Since JSON texts are fully self-delimiting, the C<json> read and write
1624 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1625     the C<json> write type description, above, for an actual example.
1626 root 1.40
1627     =cut
1628    
1629     register_read_type json => sub {
1630 root 1.63 my ($self, $cb) = @_;
1631 root 1.40
1632 root 1.179 my $json = $self->{json} ||= json_coder;
1633 root 1.40
1634     my $data;
1635     my $rbuf = \$self->{rbuf};
1636    
1637     sub {
1638 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1639 root 1.110
1640 root 1.113 if ($ref) {
1641     $self->{rbuf} = $json->incr_text;
1642     $json->incr_text = "";
1643     $cb->($self, $ref);
1644 root 1.110
1645     1
1646 root 1.113 } elsif ($@) {
1647 root 1.111 # error case
1648 root 1.110 $json->incr_skip;
1649 root 1.40
1650     $self->{rbuf} = $json->incr_text;
1651     $json->incr_text = "";
1652    
1653 root 1.150 $self->_error (Errno::EBADMSG);
1654 root 1.114
1655 root 1.113 ()
1656     } else {
1657     $self->{rbuf} = "";
1658 root 1.114
1659 root 1.113 ()
1660     }
1661 root 1.40 }
1662     };
1663    
1664 root 1.63 =item storable => $cb->($handle, $ref)
1665    
1666     Deserialises a L<Storable> frozen representation as written by the
1667     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1668     data).
1669    
1670     Raises C<EBADMSG> error if the data could not be decoded.
1671    
1672     =cut
1673    
1674     register_read_type storable => sub {
1675     my ($self, $cb) = @_;
1676    
1677     require Storable;
1678    
1679     sub {
1680     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1681 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1682 root 1.63 or return;
1683    
1684 root 1.77 my $format = length pack "w", $len;
1685 root 1.63
1686 root 1.77 # bypass unshift if we already have the remaining chunk
1687     if ($format + $len <= length $_[0]{rbuf}) {
1688     my $data = substr $_[0]{rbuf}, $format, $len;
1689     substr $_[0]{rbuf}, 0, $format + $len, "";
1690     $cb->($_[0], Storable::thaw ($data));
1691     } else {
1692     # remove prefix
1693     substr $_[0]{rbuf}, 0, $format, "";
1694    
1695     # read remaining chunk
1696     $_[0]->unshift_read (chunk => $len, sub {
1697     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1698     $cb->($_[0], $ref);
1699     } else {
1700 root 1.150 $self->_error (Errno::EBADMSG);
1701 root 1.77 }
1702     });
1703     }
1704    
1705     1
1706 root 1.63 }
1707     };
1708    
1709 root 1.28 =back
1710    
1711 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1712 root 1.30
1713 root 1.185 Instead of one of the predefined types, you can also specify the name
1714     of a package. AnyEvent will try to load the package and then expects to
1715     find a function named C<anyevent_read_type> inside. If it isn't found, it
1716     progressively tries to load the parent package until it either finds the
1717     function (good) or runs out of packages (bad).
1718    
1719     Whenever this type is used, C<push_read> will invoke the function with the
1720     handle object, the original callback and the remaining arguments.
1721    
1722     The function is supposed to return a callback (usually a closure) that
1723     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1724     mentally treat the function as a "configurable read type to read callback"
1725     converter.
1726    
1727     It should invoke the original callback when it is done reading (remember
1728     to pass C<$handle> as first argument as all other callbacks do that,
1729     although there is no strict requirement on this).
1730 root 1.30
1731 root 1.185 For examples, see the source of this module (F<perldoc -m
1732     AnyEvent::Handle>, search for C<register_read_type>)).
1733 root 1.30
1734 root 1.10 =item $handle->stop_read
1735    
1736     =item $handle->start_read
1737    
1738 root 1.18 In rare cases you actually do not want to read anything from the
1739 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1740 root 1.22 any queued callbacks will be executed then. To start reading again, call
1741 root 1.10 C<start_read>.
1742    
1743 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1744     you change the C<on_read> callback or push/unshift a read callback, and it
1745     will automatically C<stop_read> for you when neither C<on_read> is set nor
1746     there are any read requests in the queue.
1747    
1748 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1749     half-duplex connections).
1750    
1751 root 1.10 =cut
1752    
1753     sub stop_read {
1754     my ($self) = @_;
1755 elmex 1.1
1756 root 1.93 delete $self->{_rw} unless $self->{tls};
1757 root 1.8 }
1758 elmex 1.1
1759 root 1.10 sub start_read {
1760     my ($self) = @_;
1761    
1762 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1763 root 1.10 Scalar::Util::weaken $self;
1764    
1765 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1766 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1767 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
1768 root 1.10
1769     if ($len > 0) {
1770 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1771 root 1.43
1772 root 1.93 if ($self->{tls}) {
1773     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1774 root 1.97
1775 root 1.93 &_dotls ($self);
1776     } else {
1777 root 1.159 $self->_drain_rbuf;
1778 root 1.93 }
1779 root 1.10
1780 root 1.203 if ($len == $self->{read_size}) {
1781     $self->{read_size} *= 2;
1782     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
1783     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
1784     }
1785    
1786 root 1.10 } elsif (defined $len) {
1787 root 1.38 delete $self->{_rw};
1788     $self->{_eof} = 1;
1789 root 1.159 $self->_drain_rbuf;
1790 root 1.10
1791 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1792 root 1.52 return $self->_error ($!, 1);
1793 root 1.10 }
1794 root 1.175 };
1795 root 1.10 }
1796 elmex 1.1 }
1797    
1798 root 1.133 our $ERROR_SYSCALL;
1799     our $ERROR_WANT_READ;
1800    
1801     sub _tls_error {
1802     my ($self, $err) = @_;
1803    
1804     return $self->_error ($!, 1)
1805     if $err == Net::SSLeay::ERROR_SYSCALL ();
1806    
1807 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1808    
1809     # reduce error string to look less scary
1810     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1811    
1812 root 1.143 if ($self->{_on_starttls}) {
1813     (delete $self->{_on_starttls})->($self, undef, $err);
1814     &_freetls;
1815     } else {
1816     &_freetls;
1817 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1818 root 1.143 }
1819 root 1.133 }
1820    
1821 root 1.97 # poll the write BIO and send the data if applicable
1822 root 1.133 # also decode read data if possible
1823     # this is basiclaly our TLS state machine
1824     # more efficient implementations are possible with openssl,
1825     # but not with the buggy and incomplete Net::SSLeay.
1826 root 1.19 sub _dotls {
1827     my ($self) = @_;
1828    
1829 root 1.97 my $tmp;
1830 root 1.56
1831 root 1.38 if (length $self->{_tls_wbuf}) {
1832 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1833     substr $self->{_tls_wbuf}, 0, $tmp, "";
1834 root 1.22 }
1835 root 1.133
1836     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1837     return $self->_tls_error ($tmp)
1838     if $tmp != $ERROR_WANT_READ
1839 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1840 root 1.19 }
1841    
1842 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1843     unless (length $tmp) {
1844 root 1.143 $self->{_on_starttls}
1845     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1846 root 1.92 &_freetls;
1847 root 1.143
1848 root 1.142 if ($self->{on_stoptls}) {
1849     $self->{on_stoptls}($self);
1850     return;
1851     } else {
1852     # let's treat SSL-eof as we treat normal EOF
1853     delete $self->{_rw};
1854     $self->{_eof} = 1;
1855     }
1856 root 1.56 }
1857 root 1.91
1858 root 1.116 $self->{_tls_rbuf} .= $tmp;
1859 root 1.159 $self->_drain_rbuf;
1860 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1861 root 1.23 }
1862    
1863 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1864 root 1.133 return $self->_tls_error ($tmp)
1865     if $tmp != $ERROR_WANT_READ
1866 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1867 root 1.91
1868 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1869     $self->{wbuf} .= $tmp;
1870 root 1.91 $self->_drain_wbuf;
1871 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1872 root 1.91 }
1873 root 1.142
1874     $self->{_on_starttls}
1875     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1876 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1877 root 1.19 }
1878    
1879 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1880    
1881     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1882     object is created, you can also do that at a later time by calling
1883     C<starttls>.
1884    
1885 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1886     write data and then call C<< ->starttls >> then TLS negotiation will start
1887     immediately, after which the queued write data is then sent.
1888    
1889 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1890     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1891    
1892 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1893     when AnyEvent::Handle has to create its own TLS connection object, or
1894     a hash reference with C<< key => value >> pairs that will be used to
1895     construct a new context.
1896    
1897     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1898     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1899     changed to your liking. Note that the handshake might have already started
1900     when this function returns.
1901 root 1.38
1902 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1903 root 1.198 handshakes on the same stream. It is best to not attempt to use the
1904     stream after stopping TLS.
1905 root 1.92
1906 root 1.193 This method may invoke callbacks (and therefore the handle might be
1907     destroyed after it returns).
1908    
1909 root 1.25 =cut
1910    
1911 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1912    
1913 root 1.19 sub starttls {
1914 root 1.160 my ($self, $tls, $ctx) = @_;
1915    
1916     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1917     if $self->{tls};
1918    
1919     $self->{tls} = $tls;
1920     $self->{tls_ctx} = $ctx if @_ > 2;
1921    
1922     return unless $self->{fh};
1923 root 1.19
1924 root 1.94 require Net::SSLeay;
1925    
1926 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1927     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1928 root 1.133
1929 root 1.180 $tls = delete $self->{tls};
1930 root 1.160 $ctx = $self->{tls_ctx};
1931 root 1.131
1932 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1933    
1934 root 1.131 if ("HASH" eq ref $ctx) {
1935     require AnyEvent::TLS;
1936    
1937 root 1.137 if ($ctx->{cache}) {
1938     my $key = $ctx+0;
1939     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1940     } else {
1941     $ctx = new AnyEvent::TLS %$ctx;
1942     }
1943 root 1.131 }
1944 root 1.92
1945 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1946 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1947 root 1.19
1948 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1949     # but the openssl maintainers basically said: "trust us, it just works".
1950     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1951     # and mismaintained ssleay-module doesn't even offer them).
1952 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1953 root 1.87 #
1954     # in short: this is a mess.
1955     #
1956 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1957 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1958 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1959     # have identity issues in that area.
1960 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1961     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1962     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1963 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1964 root 1.21
1965 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1966     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1967 root 1.19
1968 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1969    
1970 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1971 root 1.19
1972 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1973 root 1.143 if $self->{on_starttls};
1974 root 1.142
1975 root 1.93 &_dotls; # need to trigger the initial handshake
1976     $self->start_read; # make sure we actually do read
1977 root 1.19 }
1978    
1979 root 1.25 =item $handle->stoptls
1980    
1981 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1982     sending a close notify to the other side, but since OpenSSL doesn't
1983 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
1984 root 1.160 the stream afterwards.
1985 root 1.25
1986 root 1.193 This method may invoke callbacks (and therefore the handle might be
1987     destroyed after it returns).
1988    
1989 root 1.25 =cut
1990    
1991     sub stoptls {
1992     my ($self) = @_;
1993    
1994 root 1.192 if ($self->{tls} && $self->{fh}) {
1995 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1996 root 1.92
1997     &_dotls;
1998    
1999 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2000     # # we, we... have to use openssl :/#d#
2001     # &_freetls;#d#
2002 root 1.92 }
2003     }
2004    
2005     sub _freetls {
2006     my ($self) = @_;
2007    
2008     return unless $self->{tls};
2009 root 1.38
2010 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2011 root 1.171 if $self->{tls} > 0;
2012 root 1.92
2013 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2014 root 1.25 }
2015    
2016 root 1.19 sub DESTROY {
2017 root 1.120 my ($self) = @_;
2018 root 1.19
2019 root 1.92 &_freetls;
2020 root 1.62
2021     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2022    
2023 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2024 root 1.62 my $fh = delete $self->{fh};
2025     my $wbuf = delete $self->{wbuf};
2026    
2027     my @linger;
2028    
2029 root 1.175 push @linger, AE::io $fh, 1, sub {
2030 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2031    
2032     if ($len > 0) {
2033     substr $wbuf, 0, $len, "";
2034 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2035 root 1.62 @linger = (); # end
2036     }
2037 root 1.175 };
2038     push @linger, AE::timer $linger, 0, sub {
2039 root 1.62 @linger = ();
2040 root 1.175 };
2041 root 1.62 }
2042 root 1.19 }
2043    
2044 root 1.99 =item $handle->destroy
2045    
2046 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2047 root 1.141 no further callbacks will be invoked and as many resources as possible
2048 root 1.165 will be freed. Any method you will call on the handle object after
2049     destroying it in this way will be silently ignored (and it will return the
2050     empty list).
2051 root 1.99
2052 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2053     object and it will simply shut down. This works in fatal error and EOF
2054     callbacks, as well as code outside. It does I<NOT> work in a read or write
2055     callback, so when you want to destroy the AnyEvent::Handle object from
2056     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2057     that case.
2058    
2059 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2060     will be removed as well, so if those are the only reference holders (as
2061     is common), then one doesn't need to do anything special to break any
2062     reference cycles.
2063    
2064 root 1.99 The handle might still linger in the background and write out remaining
2065     data, as specified by the C<linger> option, however.
2066    
2067     =cut
2068    
2069     sub destroy {
2070     my ($self) = @_;
2071    
2072     $self->DESTROY;
2073     %$self = ();
2074 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2075     }
2076    
2077 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2078     #nop
2079 root 1.99 }
2080    
2081 root 1.192 =item $handle->destroyed
2082    
2083     Returns false as long as the handle hasn't been destroyed by a call to C<<
2084     ->destroy >>, true otherwise.
2085    
2086     Can be useful to decide whether the handle is still valid after some
2087     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2088     C<< ->starttls >> and other methods can call user callbacks, which in turn
2089     can destroy the handle, so work can be avoided by checking sometimes:
2090    
2091     $hdl->starttls ("accept");
2092     return if $hdl->destroyed;
2093     $hdl->push_write (...
2094    
2095     Note that the call to C<push_write> will silently be ignored if the handle
2096     has been destroyed, so often you can just ignore the possibility of the
2097     handle being destroyed.
2098    
2099     =cut
2100    
2101     sub destroyed { 0 }
2102     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2103    
2104 root 1.19 =item AnyEvent::Handle::TLS_CTX
2105    
2106 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2107     for TLS mode.
2108 root 1.19
2109 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2110 root 1.19
2111     =cut
2112    
2113     our $TLS_CTX;
2114    
2115     sub TLS_CTX() {
2116 root 1.131 $TLS_CTX ||= do {
2117     require AnyEvent::TLS;
2118 root 1.19
2119 root 1.131 new AnyEvent::TLS
2120 root 1.19 }
2121     }
2122    
2123 elmex 1.1 =back
2124    
2125 root 1.95
2126     =head1 NONFREQUENTLY ASKED QUESTIONS
2127    
2128     =over 4
2129    
2130 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2131     still get further invocations!
2132    
2133     That's because AnyEvent::Handle keeps a reference to itself when handling
2134     read or write callbacks.
2135    
2136     It is only safe to "forget" the reference inside EOF or error callbacks,
2137     from within all other callbacks, you need to explicitly call the C<<
2138     ->destroy >> method.
2139    
2140 root 1.208 =item Why is my C<on_eof> callback never called?
2141    
2142     Probably because your C<on_error> callback is being called instead: When
2143     you have outstanding requests in your read queue, then an EOF is
2144     considered an error as you clearly expected some data.
2145    
2146     To avoid this, make sure you have an empty read queue whenever your handle
2147     is supposed to be "idle" (i.e. connection closes are O.K.). You cna set
2148     an C<on_read> handler that simply pushes the first read requests in the
2149     queue.
2150    
2151     See also the next question, which explains this in a bit more detail.
2152    
2153     =item How can I serve requests in a loop?
2154    
2155     Most protocols consist of some setup phase (authentication for example)
2156     followed by a request handling phase, where the server waits for requests
2157     and handles them, in a loop.
2158    
2159     There are two important variants: The first (traditional, better) variant
2160     handles requests until the server gets some QUIT command, causing it to
2161     close the connection first (highly desirable for a busy TCP server). A
2162     client dropping the connection is an error, which means this variant can
2163     detect an unexpected detection close.
2164    
2165     To handle this case, always make sure you have a on-empty read queue, by
2166     pushing the "read request start" handler on it:
2167    
2168     # we assume a request starts with a single line
2169     my @start_request; @start_request = (line => sub {
2170     my ($hdl, $line) = @_;
2171    
2172     ... handle request
2173    
2174     # push next request read, possibly from a nested callback
2175     $hdl->push_read (@start_request);
2176     });
2177    
2178     # auth done, now go into request handling loop
2179     # now push the first @start_request
2180     $hdl->push_read (@start_request);
2181    
2182     By always having an outstanding C<push_read>, the handle always expects
2183     some data and raises the C<EPIPE> error when the connction is dropped
2184     unexpectedly.
2185    
2186     The second variant is a protocol where the client can drop the connection
2187     at any time. For TCP, this means that the server machine may run out of
2188     sockets easier, and in general, it means you cnanot distinguish a protocl
2189     failure/client crash from a normal connection close. Nevertheless, these
2190     kinds of protocols are common (and sometimes even the best solution to the
2191     problem).
2192    
2193     Having an outstanding read request at all times is possible if you ignore
2194     C<EPIPE> errors, but this doesn't help with when the client drops the
2195     connection during a request, which would still be an error.
2196    
2197     A better solution is to push the initial request read in an C<on_read>
2198     callback. This avoids an error, as when the server doesn't expect data
2199     (i.e. is idly waiting for the next request, an EOF will not raise an
2200     error, but simply result in an C<on_eof> callback. It is also a bit slower
2201     and simpler:
2202    
2203     # auth done, now go into request handling loop
2204     $hdl->on_read (sub {
2205     my ($hdl) = @_;
2206    
2207     # called each time we receive data but the read queue is empty
2208     # simply start read the request
2209    
2210     $hdl->push_read (line => sub {
2211     my ($hdl, $line) = @_;
2212    
2213     ... handle request
2214    
2215     # do nothing special when the request has been handled, just
2216     # let the request queue go empty.
2217     });
2218     });
2219    
2220 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2221     reading?
2222    
2223     Unlike, say, TCP, TLS connections do not consist of two independent
2224 root 1.198 communication channels, one for each direction. Or put differently, the
2225 root 1.101 read and write directions are not independent of each other: you cannot
2226     write data unless you are also prepared to read, and vice versa.
2227    
2228 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2229 root 1.101 callback invocations when you are not expecting any read data - the reason
2230     is that AnyEvent::Handle always reads in TLS mode.
2231    
2232     During the connection, you have to make sure that you always have a
2233     non-empty read-queue, or an C<on_read> watcher. At the end of the
2234     connection (or when you no longer want to use it) you can call the
2235     C<destroy> method.
2236    
2237 root 1.95 =item How do I read data until the other side closes the connection?
2238    
2239 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2240     to achieve this is by setting an C<on_read> callback that does nothing,
2241     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2242     will be in C<$_[0]{rbuf}>:
2243 root 1.95
2244     $handle->on_read (sub { });
2245     $handle->on_eof (undef);
2246     $handle->on_error (sub {
2247     my $data = delete $_[0]{rbuf};
2248     });
2249    
2250     The reason to use C<on_error> is that TCP connections, due to latencies
2251     and packets loss, might get closed quite violently with an error, when in
2252 root 1.198 fact all data has been received.
2253 root 1.95
2254 root 1.101 It is usually better to use acknowledgements when transferring data,
2255 root 1.95 to make sure the other side hasn't just died and you got the data
2256     intact. This is also one reason why so many internet protocols have an
2257     explicit QUIT command.
2258    
2259 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2260     all data has been written?
2261 root 1.95
2262     After writing your last bits of data, set the C<on_drain> callback
2263     and destroy the handle in there - with the default setting of
2264     C<low_water_mark> this will be called precisely when all data has been
2265     written to the socket:
2266    
2267     $handle->push_write (...);
2268     $handle->on_drain (sub {
2269     warn "all data submitted to the kernel\n";
2270     undef $handle;
2271     });
2272    
2273 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2274     consider using C<< ->push_shutdown >> instead.
2275    
2276     =item I want to contact a TLS/SSL server, I don't care about security.
2277    
2278     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2279 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2280 root 1.143 parameter:
2281    
2282 root 1.144 tcp_connect $host, $port, sub {
2283     my ($fh) = @_;
2284 root 1.143
2285 root 1.144 my $handle = new AnyEvent::Handle
2286     fh => $fh,
2287     tls => "connect",
2288     on_error => sub { ... };
2289    
2290     $handle->push_write (...);
2291     };
2292 root 1.143
2293     =item I want to contact a TLS/SSL server, I do care about security.
2294    
2295 root 1.144 Then you should additionally enable certificate verification, including
2296     peername verification, if the protocol you use supports it (see
2297     L<AnyEvent::TLS>, C<verify_peername>).
2298    
2299     E.g. for HTTPS:
2300    
2301     tcp_connect $host, $port, sub {
2302     my ($fh) = @_;
2303    
2304     my $handle = new AnyEvent::Handle
2305     fh => $fh,
2306     peername => $host,
2307     tls => "connect",
2308     tls_ctx => { verify => 1, verify_peername => "https" },
2309     ...
2310    
2311     Note that you must specify the hostname you connected to (or whatever
2312     "peername" the protocol needs) as the C<peername> argument, otherwise no
2313     peername verification will be done.
2314    
2315     The above will use the system-dependent default set of trusted CA
2316     certificates. If you want to check against a specific CA, add the
2317     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2318    
2319     tls_ctx => {
2320     verify => 1,
2321     verify_peername => "https",
2322     ca_file => "my-ca-cert.pem",
2323     },
2324    
2325     =item I want to create a TLS/SSL server, how do I do that?
2326    
2327     Well, you first need to get a server certificate and key. You have
2328     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2329     self-signed certificate (cheap. check the search engine of your choice,
2330     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2331     nice program for that purpose).
2332    
2333     Then create a file with your private key (in PEM format, see
2334     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2335     file should then look like this:
2336    
2337     -----BEGIN RSA PRIVATE KEY-----
2338     ...header data
2339     ... lots of base64'y-stuff
2340     -----END RSA PRIVATE KEY-----
2341    
2342     -----BEGIN CERTIFICATE-----
2343     ... lots of base64'y-stuff
2344     -----END CERTIFICATE-----
2345    
2346     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2347     specify this file as C<cert_file>:
2348    
2349     tcp_server undef, $port, sub {
2350     my ($fh) = @_;
2351    
2352     my $handle = new AnyEvent::Handle
2353     fh => $fh,
2354     tls => "accept",
2355     tls_ctx => { cert_file => "my-server-keycert.pem" },
2356     ...
2357 root 1.143
2358 root 1.144 When you have intermediate CA certificates that your clients might not
2359     know about, just append them to the C<cert_file>.
2360 root 1.143
2361 root 1.95 =back
2362    
2363    
2364 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2365    
2366     In many cases, you might want to subclass AnyEvent::Handle.
2367    
2368     To make this easier, a given version of AnyEvent::Handle uses these
2369     conventions:
2370    
2371     =over 4
2372    
2373     =item * all constructor arguments become object members.
2374    
2375     At least initially, when you pass a C<tls>-argument to the constructor it
2376 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2377 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2378    
2379     =item * other object member names are prefixed with an C<_>.
2380    
2381     All object members not explicitly documented (internal use) are prefixed
2382     with an underscore character, so the remaining non-C<_>-namespace is free
2383     for use for subclasses.
2384    
2385     =item * all members not documented here and not prefixed with an underscore
2386     are free to use in subclasses.
2387    
2388     Of course, new versions of AnyEvent::Handle may introduce more "public"
2389 root 1.198 member variables, but that's just life. At least it is documented.
2390 root 1.38
2391     =back
2392    
2393 elmex 1.1 =head1 AUTHOR
2394    
2395 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2396 elmex 1.1
2397     =cut
2398    
2399     1; # End of AnyEvent::Handle