ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.222
Committed: Thu Aug 25 03:08:48 2011 UTC (12 years, 9 months ago) by root
Branch: MAIN
CVS Tags: rel-6_02, rel-6_01
Changes since 1.221: +4 -4 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16 root 1.222 AE::log warn => "got error $msg\n";
17 root 1.151 $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27 root 1.222 AE::log warn => "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119 root 1.210 attempted, but after the file handle has been created (you can access that
120     file handle via C<< $handle->{fh} >>). It could be used to prepare the
121     file handle with parameters required for the actual connect (as opposed to
122     settings that can be changed when the connection is already established).
123 root 1.159
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.159 parameters, together with a retry callback.
134    
135 root 1.198 If, for some reason, the handle is not acceptable, calling C<$retry>
136     will continue with the next connection target (in case of multi-homed
137     hosts or SRV records there can be multiple connection endpoints). At the
138     time it is called the read and write queues, eof status, tls status and
139     similar properties of the handle will have been reset.
140 root 1.159
141 root 1.198 In most cases, you should ignore the C<$retry> parameter.
142 root 1.158
143 root 1.159 =item on_connect_error => $cb->($handle, $message)
144 root 1.10
145 root 1.186 This callback is called when the connection could not be
146 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
147     message describing it (usually the same as C<"$!">).
148 root 1.8
149 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
150     fatal error instead.
151 root 1.82
152 root 1.159 =back
153 root 1.80
154 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
155 root 1.10
156 root 1.52 This is the error callback, which is called when, well, some error
157     occured, such as not being able to resolve the hostname, failure to
158 root 1.198 connect, or a read error.
159 root 1.52
160     Some errors are fatal (which is indicated by C<$fatal> being true). On
161 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
162     destroy >>) after invoking the error callback (which means you are free to
163     examine the handle object). Examples of fatal errors are an EOF condition
164 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
165 root 1.198 cases where the other side can close the connection at will, it is
166 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
167 root 1.82
168 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
169     against, but in some cases (TLS errors), this does not work well. It is
170     recommended to always output the C<$message> argument in human-readable
171     error messages (it's usually the same as C<"$!">).
172    
173 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
174 root 1.82 to simply ignore this parameter and instead abondon the handle object
175     when this callback is invoked. Examples of non-fatal errors are timeouts
176     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
177 root 1.8
178 root 1.198 On entry to the callback, the value of C<$!> contains the operating
179     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
180 root 1.133 C<EPROTO>).
181 root 1.8
182 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
183 root 1.198 you will not be notified of errors otherwise. The default just calls
184 root 1.52 C<croak>.
185 root 1.8
186 root 1.40 =item on_read => $cb->($handle)
187 root 1.8
188     This sets the default read callback, which is called when data arrives
189 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
190     callback will only be called when at least one octet of data is in the
191     read buffer).
192 root 1.8
193     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
194 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
195 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
196     the beginning from it.
197 root 1.8
198 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
199     modifies the read queue. Or do both. Or ...
200    
201 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
202 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
203     calling the C<on_eof> callback. If no progress can be made, then a fatal
204     error will be raised (with C<$!> set to C<EPIPE>).
205 elmex 1.1
206 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
207     doesn't mean you I<require> some data: if there is an EOF and there
208     are outstanding read requests then an error will be flagged. With an
209     C<on_read> callback, the C<on_eof> callback will be invoked.
210    
211 root 1.159 =item on_eof => $cb->($handle)
212    
213     Set the callback to be called when an end-of-file condition is detected,
214     i.e. in the case of a socket, when the other side has closed the
215     connection cleanly, and there are no outstanding read requests in the
216     queue (if there are read requests, then an EOF counts as an unexpected
217     connection close and will be flagged as an error).
218    
219     For sockets, this just means that the other side has stopped sending data,
220     you can still try to write data, and, in fact, one can return from the EOF
221     callback and continue writing data, as only the read part has been shut
222     down.
223    
224     If an EOF condition has been detected but no C<on_eof> callback has been
225     set, then a fatal error will be raised with C<$!> set to <0>.
226    
227 root 1.40 =item on_drain => $cb->($handle)
228 elmex 1.1
229 root 1.8 This sets the callback that is called when the write buffer becomes empty
230 root 1.198 (or immediately if the buffer is empty already).
231 elmex 1.1
232 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
233 elmex 1.2
234 root 1.69 This callback is useful when you don't want to put all of your write data
235     into the queue at once, for example, when you want to write the contents
236     of some file to the socket you might not want to read the whole file into
237     memory and push it into the queue, but instead only read more data from
238     the file when the write queue becomes empty.
239    
240 root 1.43 =item timeout => $fractional_seconds
241    
242 root 1.176 =item rtimeout => $fractional_seconds
243    
244     =item wtimeout => $fractional_seconds
245    
246     If non-zero, then these enables an "inactivity" timeout: whenever this
247     many seconds pass without a successful read or write on the underlying
248     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
249     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
250     error will be raised).
251    
252 root 1.218 There are three variants of the timeouts that work independently of each
253     other, for both read and write (triggered when nothing was read I<OR>
254     written), just read (triggered when nothing was read), and just write:
255 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
256     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
257     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
258 root 1.43
259 root 1.218 Note that timeout processing is active even when you do not have any
260     outstanding read or write requests: If you plan to keep the connection
261     idle then you should disable the timeout temporarily or ignore the
262     timeout in the corresponding C<on_timeout> callback, in which case
263     AnyEvent::Handle will simply restart the timeout.
264 root 1.43
265 root 1.218 Zero (the default) disables the corresponding timeout.
266 root 1.43
267     =item on_timeout => $cb->($handle)
268    
269 root 1.218 =item on_rtimeout => $cb->($handle)
270    
271     =item on_wtimeout => $cb->($handle)
272    
273 root 1.43 Called whenever the inactivity timeout passes. If you return from this
274     callback, then the timeout will be reset as if some activity had happened,
275     so this condition is not fatal in any way.
276    
277 root 1.8 =item rbuf_max => <bytes>
278 elmex 1.2
279 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
280     when the read buffer ever (strictly) exceeds this size. This is useful to
281 root 1.88 avoid some forms of denial-of-service attacks.
282 elmex 1.2
283 root 1.8 For example, a server accepting connections from untrusted sources should
284     be configured to accept only so-and-so much data that it cannot act on
285     (for example, when expecting a line, an attacker could send an unlimited
286     amount of data without a callback ever being called as long as the line
287     isn't finished).
288 elmex 1.2
289 root 1.209 =item wbuf_max => <bytes>
290    
291     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
292     when the write buffer ever (strictly) exceeds this size. This is useful to
293     avoid some forms of denial-of-service attacks.
294    
295     Although the units of this parameter is bytes, this is the I<raw> number
296     of bytes not yet accepted by the kernel. This can make a difference when
297     you e.g. use TLS, as TLS typically makes your write data larger (but it
298     can also make it smaller due to compression).
299    
300     As an example of when this limit is useful, take a chat server that sends
301     chat messages to a client. If the client does not read those in a timely
302     manner then the send buffer in the server would grow unbounded.
303    
304 root 1.70 =item autocork => <boolean>
305    
306 root 1.198 When disabled (the default), C<push_write> will try to immediately
307     write the data to the handle if possible. This avoids having to register
308 root 1.88 a write watcher and wait for the next event loop iteration, but can
309     be inefficient if you write multiple small chunks (on the wire, this
310     disadvantage is usually avoided by your kernel's nagle algorithm, see
311     C<no_delay>, but this option can save costly syscalls).
312 root 1.70
313 root 1.198 When enabled, writes will always be queued till the next event loop
314 root 1.70 iteration. This is efficient when you do many small writes per iteration,
315 root 1.88 but less efficient when you do a single write only per iteration (or when
316     the write buffer often is full). It also increases write latency.
317 root 1.70
318     =item no_delay => <boolean>
319    
320     When doing small writes on sockets, your operating system kernel might
321     wait a bit for more data before actually sending it out. This is called
322     the Nagle algorithm, and usually it is beneficial.
323    
324 root 1.88 In some situations you want as low a delay as possible, which can be
325     accomplishd by setting this option to a true value.
326 root 1.70
327 root 1.198 The default is your operating system's default behaviour (most likely
328     enabled). This option explicitly enables or disables it, if possible.
329 root 1.70
330 root 1.182 =item keepalive => <boolean>
331    
332     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
333     normally, TCP connections have no time-out once established, so TCP
334 root 1.186 connections, once established, can stay alive forever even when the other
335 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
336 root 1.198 TCP connections when the other side becomes unreachable. While the default
337 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
338     and, if the other side doesn't reply, take down the TCP connection some 10
339     to 15 minutes later.
340    
341     It is harmless to specify this option for file handles that do not support
342     keepalives, and enabling it on connections that are potentially long-lived
343     is usually a good idea.
344    
345     =item oobinline => <boolean>
346    
347     BSD majorly fucked up the implementation of TCP urgent data. The result
348     is that almost no OS implements TCP according to the specs, and every OS
349     implements it slightly differently.
350    
351 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
352     is enabled) gives you the most portable way of getting urgent data, by
353     putting it into the stream.
354    
355     Since BSD emulation of OOB data on top of TCP's urgent data can have
356     security implications, AnyEvent::Handle sets this flag automatically
357 root 1.184 unless explicitly specified. Note that setting this flag after
358     establishing a connection I<may> be a bit too late (data loss could
359     already have occured on BSD systems), but at least it will protect you
360     from most attacks.
361 root 1.182
362 root 1.8 =item read_size => <bytes>
363 elmex 1.2
364 root 1.221 The initial read block size, the number of bytes this module will try
365     to read during each loop iteration. Each handle object will consume
366     at least this amount of memory for the read buffer as well, so when
367     handling many connections watch out for memory requirements). See also
368     C<max_read_size>. Default: C<2048>.
369 root 1.203
370     =item max_read_size => <bytes>
371    
372     The maximum read buffer size used by the dynamic adjustment
373     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
374     one go it will double C<read_size> up to the maximum given by this
375     option. Default: C<131072> or C<read_size>, whichever is higher.
376 root 1.8
377     =item low_water_mark => <bytes>
378    
379 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
380     buffer: If the buffer reaches this size or gets even samller it is
381 root 1.8 considered empty.
382 elmex 1.2
383 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
384     the write buffer before it is fully drained, but this is a rare case, as
385     the operating system kernel usually buffers data as well, so the default
386     is good in almost all cases.
387    
388 root 1.62 =item linger => <seconds>
389    
390 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
391 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
392     write data and will install a watcher that will write this data to the
393     socket. No errors will be reported (this mostly matches how the operating
394     system treats outstanding data at socket close time).
395 root 1.62
396 root 1.88 This will not work for partial TLS data that could not be encoded
397 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
398     help.
399 root 1.62
400 root 1.133 =item peername => $string
401    
402 root 1.134 A string used to identify the remote site - usually the DNS hostname
403     (I<not> IDN!) used to create the connection, rarely the IP address.
404 root 1.131
405 root 1.133 Apart from being useful in error messages, this string is also used in TLS
406 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
407 root 1.198 verification will be skipped when C<peername> is not specified or is
408 root 1.144 C<undef>.
409 root 1.131
410 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
411    
412 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
413 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
414 root 1.88 established and will transparently encrypt/decrypt data afterwards.
415 root 1.19
416 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
417     appropriate error message.
418    
419 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
420 root 1.88 automatically when you try to create a TLS handle): this module doesn't
421     have a dependency on that module, so if your module requires it, you have
422     to add the dependency yourself.
423 root 1.26
424 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
425     C<accept>, and for the TLS client side of a connection, use C<connect>
426     mode.
427 root 1.19
428     You can also provide your own TLS connection object, but you have
429     to make sure that you call either C<Net::SSLeay::set_connect_state>
430     or C<Net::SSLeay::set_accept_state> on it before you pass it to
431 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
432     object.
433    
434     At some future point, AnyEvent::Handle might switch to another TLS
435     implementation, then the option to use your own session object will go
436     away.
437 root 1.19
438 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
439     passing in the wrong integer will lead to certain crash. This most often
440     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
441     segmentation fault.
442    
443 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
444 root 1.26
445 root 1.131 =item tls_ctx => $anyevent_tls
446 root 1.19
447 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
448 root 1.207 (unless a connection object was specified directly). If this
449     parameter is missing (or C<undef>), then AnyEvent::Handle will use
450     C<AnyEvent::Handle::TLS_CTX>.
451 root 1.19
452 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
453     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
454     new TLS context object.
455    
456 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
457 root 1.142
458     This callback will be invoked when the TLS/SSL handshake has finished. If
459     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
460     (C<on_stoptls> will not be called in this case).
461    
462     The session in C<< $handle->{tls} >> can still be examined in this
463     callback, even when the handshake was not successful.
464    
465 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
466     callback is in effect, instead, the error message will be passed to C<on_starttls>.
467    
468     Without this callback, handshake failures lead to C<on_error> being
469 root 1.198 called as usual.
470 root 1.143
471 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
472 root 1.143 need to do that, start an zero-second timer instead whose callback can
473     then call C<< ->starttls >> again.
474    
475 root 1.142 =item on_stoptls => $cb->($handle)
476    
477     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
478     set, then it will be invoked after freeing the TLS session. If it is not,
479     then a TLS shutdown condition will be treated like a normal EOF condition
480     on the handle.
481    
482     The session in C<< $handle->{tls} >> can still be examined in this
483     callback.
484    
485     This callback will only be called on TLS shutdowns, not when the
486     underlying handle signals EOF.
487    
488 root 1.40 =item json => JSON or JSON::XS object
489    
490     This is the json coder object used by the C<json> read and write types.
491    
492 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
493 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
494     texts.
495 root 1.40
496     Note that you are responsible to depend on the JSON module if you want to
497     use this functionality, as AnyEvent does not have a dependency itself.
498    
499 elmex 1.1 =back
500    
501     =cut
502    
503     sub new {
504 root 1.8 my $class = shift;
505     my $self = bless { @_ }, $class;
506    
507 root 1.159 if ($self->{fh}) {
508     $self->_start;
509     return unless $self->{fh}; # could be gone by now
510    
511     } elsif ($self->{connect}) {
512     require AnyEvent::Socket;
513    
514     $self->{peername} = $self->{connect}[0]
515     unless exists $self->{peername};
516    
517     $self->{_skip_drain_rbuf} = 1;
518    
519     {
520     Scalar::Util::weaken (my $self = $self);
521    
522     $self->{_connect} =
523     AnyEvent::Socket::tcp_connect (
524     $self->{connect}[0],
525     $self->{connect}[1],
526     sub {
527     my ($fh, $host, $port, $retry) = @_;
528    
529 root 1.206 delete $self->{_connect}; # no longer needed
530 root 1.205
531 root 1.159 if ($fh) {
532     $self->{fh} = $fh;
533    
534     delete $self->{_skip_drain_rbuf};
535     $self->_start;
536    
537     $self->{on_connect}
538     and $self->{on_connect}($self, $host, $port, sub {
539 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
540 root 1.159 $self->{_skip_drain_rbuf} = 1;
541     &$retry;
542     });
543    
544     } else {
545     if ($self->{on_connect_error}) {
546     $self->{on_connect_error}($self, "$!");
547 root 1.217 $self->destroy if $self;
548 root 1.159 } else {
549 root 1.161 $self->_error ($!, 1);
550 root 1.159 }
551     }
552     },
553     sub {
554     local $self->{fh} = $_[0];
555    
556 root 1.161 $self->{on_prepare}
557 root 1.210 ? $self->{on_prepare}->($self)
558 root 1.161 : ()
559 root 1.159 }
560     );
561     }
562    
563     } else {
564     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
565     }
566    
567     $self
568     }
569    
570     sub _start {
571     my ($self) = @_;
572 root 1.8
573 root 1.194 # too many clueless people try to use udp and similar sockets
574     # with AnyEvent::Handle, do them a favour.
575 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
576     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
577 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
578 root 1.194
579 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
580 elmex 1.1
581 root 1.176 $self->{_activity} =
582     $self->{_ractivity} =
583     $self->{_wactivity} = AE::now;
584    
585 root 1.203 $self->{read_size} ||= 2048;
586     $self->{max_read_size} = $self->{read_size}
587     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
588    
589 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
590     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
591     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
592    
593 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
594     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
595    
596     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
597 root 1.131
598 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
599 root 1.94 if $self->{tls};
600 root 1.19
601 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
602 root 1.10
603 root 1.66 $self->start_read
604 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
605 root 1.160
606     $self->_drain_wbuf;
607 root 1.8 }
608 elmex 1.2
609 root 1.52 sub _error {
610 root 1.133 my ($self, $errno, $fatal, $message) = @_;
611 root 1.8
612 root 1.52 $! = $errno;
613 root 1.133 $message ||= "$!";
614 root 1.37
615 root 1.52 if ($self->{on_error}) {
616 root 1.133 $self->{on_error}($self, $fatal, $message);
617 root 1.151 $self->destroy if $fatal;
618 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
619 root 1.149 $self->destroy;
620 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
621 root 1.52 }
622 elmex 1.1 }
623    
624 root 1.8 =item $fh = $handle->fh
625 elmex 1.1
626 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
627 elmex 1.1
628     =cut
629    
630 root 1.38 sub fh { $_[0]{fh} }
631 elmex 1.1
632 root 1.8 =item $handle->on_error ($cb)
633 elmex 1.1
634 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
635 elmex 1.1
636 root 1.8 =cut
637    
638     sub on_error {
639     $_[0]{on_error} = $_[1];
640     }
641    
642     =item $handle->on_eof ($cb)
643    
644     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
645 elmex 1.1
646     =cut
647    
648 root 1.8 sub on_eof {
649     $_[0]{on_eof} = $_[1];
650     }
651    
652 root 1.43 =item $handle->on_timeout ($cb)
653    
654 root 1.176 =item $handle->on_rtimeout ($cb)
655    
656     =item $handle->on_wtimeout ($cb)
657    
658     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
659     callback, or disables the callback (but not the timeout) if C<$cb> =
660     C<undef>. See the C<timeout> constructor argument and method.
661 root 1.43
662     =cut
663    
664 root 1.176 # see below
665 root 1.43
666 root 1.70 =item $handle->autocork ($boolean)
667    
668     Enables or disables the current autocork behaviour (see C<autocork>
669 root 1.105 constructor argument). Changes will only take effect on the next write.
670 root 1.70
671     =cut
672    
673 root 1.105 sub autocork {
674     $_[0]{autocork} = $_[1];
675     }
676    
677 root 1.70 =item $handle->no_delay ($boolean)
678    
679     Enables or disables the C<no_delay> setting (see constructor argument of
680     the same name for details).
681    
682     =cut
683    
684     sub no_delay {
685     $_[0]{no_delay} = $_[1];
686    
687 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
688     if $_[0]{fh};
689 root 1.182 }
690    
691     =item $handle->keepalive ($boolean)
692    
693     Enables or disables the C<keepalive> setting (see constructor argument of
694     the same name for details).
695    
696     =cut
697    
698     sub keepalive {
699     $_[0]{keepalive} = $_[1];
700    
701     eval {
702     local $SIG{__DIE__};
703     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
704     if $_[0]{fh};
705     };
706     }
707    
708     =item $handle->oobinline ($boolean)
709    
710     Enables or disables the C<oobinline> setting (see constructor argument of
711     the same name for details).
712    
713     =cut
714    
715     sub oobinline {
716     $_[0]{oobinline} = $_[1];
717    
718     eval {
719     local $SIG{__DIE__};
720     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
721     if $_[0]{fh};
722     };
723     }
724    
725     =item $handle->keepalive ($boolean)
726    
727     Enables or disables the C<keepalive> setting (see constructor argument of
728     the same name for details).
729    
730     =cut
731    
732     sub keepalive {
733     $_[0]{keepalive} = $_[1];
734    
735     eval {
736     local $SIG{__DIE__};
737     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
738 root 1.159 if $_[0]{fh};
739 root 1.70 };
740     }
741    
742 root 1.142 =item $handle->on_starttls ($cb)
743    
744     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
745    
746     =cut
747    
748     sub on_starttls {
749     $_[0]{on_starttls} = $_[1];
750     }
751    
752     =item $handle->on_stoptls ($cb)
753    
754     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
755    
756     =cut
757    
758 root 1.189 sub on_stoptls {
759 root 1.142 $_[0]{on_stoptls} = $_[1];
760     }
761    
762 root 1.168 =item $handle->rbuf_max ($max_octets)
763    
764     Configures the C<rbuf_max> setting (C<undef> disables it).
765    
766 root 1.209 =item $handle->wbuf_max ($max_octets)
767    
768     Configures the C<wbuf_max> setting (C<undef> disables it).
769    
770 root 1.168 =cut
771    
772     sub rbuf_max {
773     $_[0]{rbuf_max} = $_[1];
774     }
775    
776 root 1.215 sub wbuf_max {
777 root 1.209 $_[0]{wbuf_max} = $_[1];
778     }
779    
780 root 1.43 #############################################################################
781    
782     =item $handle->timeout ($seconds)
783    
784 root 1.176 =item $handle->rtimeout ($seconds)
785    
786     =item $handle->wtimeout ($seconds)
787    
788 root 1.43 Configures (or disables) the inactivity timeout.
789    
790 root 1.218 The timeout will be checked instantly, so this method might destroy the
791     handle before it returns.
792    
793 root 1.176 =item $handle->timeout_reset
794    
795     =item $handle->rtimeout_reset
796    
797     =item $handle->wtimeout_reset
798    
799     Reset the activity timeout, as if data was received or sent.
800    
801     These methods are cheap to call.
802    
803 root 1.43 =cut
804    
805 root 1.176 for my $dir ("", "r", "w") {
806     my $timeout = "${dir}timeout";
807     my $tw = "_${dir}tw";
808     my $on_timeout = "on_${dir}timeout";
809     my $activity = "_${dir}activity";
810     my $cb;
811    
812     *$on_timeout = sub {
813     $_[0]{$on_timeout} = $_[1];
814     };
815    
816     *$timeout = sub {
817     my ($self, $new_value) = @_;
818 root 1.43
819 root 1.201 $new_value >= 0
820     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
821    
822 root 1.176 $self->{$timeout} = $new_value;
823     delete $self->{$tw}; &$cb;
824     };
825 root 1.43
826 root 1.176 *{"${dir}timeout_reset"} = sub {
827     $_[0]{$activity} = AE::now;
828     };
829 root 1.43
830 root 1.176 # main workhorse:
831     # reset the timeout watcher, as neccessary
832     # also check for time-outs
833     $cb = sub {
834     my ($self) = @_;
835    
836     if ($self->{$timeout} && $self->{fh}) {
837     my $NOW = AE::now;
838    
839     # when would the timeout trigger?
840     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
841    
842     # now or in the past already?
843     if ($after <= 0) {
844     $self->{$activity} = $NOW;
845 root 1.43
846 root 1.176 if ($self->{$on_timeout}) {
847     $self->{$on_timeout}($self);
848     } else {
849     $self->_error (Errno::ETIMEDOUT);
850     }
851 root 1.43
852 root 1.176 # callback could have changed timeout value, optimise
853     return unless $self->{$timeout};
854 root 1.43
855 root 1.176 # calculate new after
856     $after = $self->{$timeout};
857 root 1.43 }
858    
859 root 1.176 Scalar::Util::weaken $self;
860     return unless $self; # ->error could have destroyed $self
861 root 1.43
862 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
863     delete $self->{$tw};
864     $cb->($self);
865     };
866     } else {
867     delete $self->{$tw};
868 root 1.43 }
869     }
870     }
871    
872 root 1.9 #############################################################################
873    
874     =back
875    
876     =head2 WRITE QUEUE
877    
878     AnyEvent::Handle manages two queues per handle, one for writing and one
879     for reading.
880    
881     The write queue is very simple: you can add data to its end, and
882     AnyEvent::Handle will automatically try to get rid of it for you.
883    
884 elmex 1.20 When data could be written and the write buffer is shorter then the low
885 root 1.9 water mark, the C<on_drain> callback will be invoked.
886    
887     =over 4
888    
889 root 1.8 =item $handle->on_drain ($cb)
890    
891     Sets the C<on_drain> callback or clears it (see the description of
892     C<on_drain> in the constructor).
893    
894 root 1.193 This method may invoke callbacks (and therefore the handle might be
895     destroyed after it returns).
896    
897 root 1.8 =cut
898    
899     sub on_drain {
900 elmex 1.1 my ($self, $cb) = @_;
901    
902 root 1.8 $self->{on_drain} = $cb;
903    
904     $cb->($self)
905 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
906 root 1.8 }
907    
908     =item $handle->push_write ($data)
909    
910 root 1.209 Queues the given scalar to be written. You can push as much data as
911     you want (only limited by the available memory and C<wbuf_max>), as
912     C<AnyEvent::Handle> buffers it independently of the kernel.
913 root 1.8
914 root 1.193 This method may invoke callbacks (and therefore the handle might be
915     destroyed after it returns).
916    
917 root 1.8 =cut
918    
919 root 1.17 sub _drain_wbuf {
920     my ($self) = @_;
921 root 1.8
922 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
923 root 1.35
924 root 1.8 Scalar::Util::weaken $self;
925 root 1.35
926 root 1.8 my $cb = sub {
927     my $len = syswrite $self->{fh}, $self->{wbuf};
928    
929 root 1.146 if (defined $len) {
930 root 1.8 substr $self->{wbuf}, 0, $len, "";
931    
932 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
933 root 1.43
934 root 1.8 $self->{on_drain}($self)
935 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
936 root 1.8 && $self->{on_drain};
937    
938 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
939 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
940 root 1.52 $self->_error ($!, 1);
941 elmex 1.1 }
942 root 1.8 };
943    
944 root 1.35 # try to write data immediately
945 root 1.70 $cb->() unless $self->{autocork};
946 root 1.8
947 root 1.35 # if still data left in wbuf, we need to poll
948 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
949 root 1.35 if length $self->{wbuf};
950 root 1.209
951     if (
952     defined $self->{wbuf_max}
953     && $self->{wbuf_max} < length $self->{wbuf}
954     ) {
955     $self->_error (Errno::ENOSPC, 1), return;
956     }
957 root 1.8 };
958     }
959    
960 root 1.30 our %WH;
961    
962 root 1.185 # deprecated
963 root 1.30 sub register_write_type($$) {
964     $WH{$_[0]} = $_[1];
965     }
966    
967 root 1.17 sub push_write {
968     my $self = shift;
969    
970 root 1.29 if (@_ > 1) {
971     my $type = shift;
972    
973 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
974     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
975 root 1.29 ->($self, @_);
976     }
977    
978 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
979     # and diagnose the problem earlier and better.
980    
981 root 1.93 if ($self->{tls}) {
982 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
983 root 1.160 &_dotls ($self) if $self->{fh};
984 root 1.17 } else {
985 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
986 root 1.159 $self->_drain_wbuf if $self->{fh};
987 root 1.17 }
988     }
989    
990 root 1.29 =item $handle->push_write (type => @args)
991    
992 root 1.185 Instead of formatting your data yourself, you can also let this module
993     do the job by specifying a type and type-specific arguments. You
994     can also specify the (fully qualified) name of a package, in which
995     case AnyEvent tries to load the package and then expects to find the
996 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
997 root 1.29
998 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
999     drop by and tell us):
1000 root 1.29
1001     =over 4
1002    
1003     =item netstring => $string
1004    
1005     Formats the given value as netstring
1006     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1007    
1008     =cut
1009    
1010     register_write_type netstring => sub {
1011     my ($self, $string) = @_;
1012    
1013 root 1.96 (length $string) . ":$string,"
1014 root 1.29 };
1015    
1016 root 1.61 =item packstring => $format, $data
1017    
1018     An octet string prefixed with an encoded length. The encoding C<$format>
1019     uses the same format as a Perl C<pack> format, but must specify a single
1020     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1021     optional C<!>, C<< < >> or C<< > >> modifier).
1022    
1023     =cut
1024    
1025     register_write_type packstring => sub {
1026     my ($self, $format, $string) = @_;
1027    
1028 root 1.65 pack "$format/a*", $string
1029 root 1.61 };
1030    
1031 root 1.39 =item json => $array_or_hashref
1032    
1033 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1034     provide your own JSON object, this means it will be encoded to JSON text
1035     in UTF-8.
1036    
1037     JSON objects (and arrays) are self-delimiting, so you can write JSON at
1038     one end of a handle and read them at the other end without using any
1039     additional framing.
1040    
1041 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
1042     this module doesn't need delimiters after or between JSON texts to be
1043     able to read them, many other languages depend on that.
1044    
1045     A simple RPC protocol that interoperates easily with others is to send
1046     JSON arrays (or objects, although arrays are usually the better choice as
1047     they mimic how function argument passing works) and a newline after each
1048     JSON text:
1049    
1050     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1051     $handle->push_write ("\012");
1052    
1053     An AnyEvent::Handle receiver would simply use the C<json> read type and
1054     rely on the fact that the newline will be skipped as leading whitespace:
1055    
1056     $handle->push_read (json => sub { my $array = $_[1]; ... });
1057    
1058     Other languages could read single lines terminated by a newline and pass
1059     this line into their JSON decoder of choice.
1060    
1061 root 1.40 =cut
1062    
1063 root 1.179 sub json_coder() {
1064     eval { require JSON::XS; JSON::XS->new->utf8 }
1065     || do { require JSON; JSON->new->utf8 }
1066     }
1067    
1068 root 1.40 register_write_type json => sub {
1069     my ($self, $ref) = @_;
1070    
1071 root 1.179 my $json = $self->{json} ||= json_coder;
1072 root 1.40
1073 root 1.179 $json->encode ($ref)
1074 root 1.40 };
1075    
1076 root 1.63 =item storable => $reference
1077    
1078     Freezes the given reference using L<Storable> and writes it to the
1079     handle. Uses the C<nfreeze> format.
1080    
1081     =cut
1082    
1083     register_write_type storable => sub {
1084     my ($self, $ref) = @_;
1085    
1086     require Storable;
1087    
1088 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1089 root 1.63 };
1090    
1091 root 1.53 =back
1092    
1093 root 1.133 =item $handle->push_shutdown
1094    
1095     Sometimes you know you want to close the socket after writing your data
1096     before it was actually written. One way to do that is to replace your
1097 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1098     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1099     replaces the C<on_drain> callback with:
1100 root 1.133
1101 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1102 root 1.133
1103     This simply shuts down the write side and signals an EOF condition to the
1104     the peer.
1105    
1106     You can rely on the normal read queue and C<on_eof> handling
1107     afterwards. This is the cleanest way to close a connection.
1108    
1109 root 1.193 This method may invoke callbacks (and therefore the handle might be
1110     destroyed after it returns).
1111    
1112 root 1.133 =cut
1113    
1114     sub push_shutdown {
1115 root 1.142 my ($self) = @_;
1116    
1117     delete $self->{low_water_mark};
1118     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1119 root 1.133 }
1120    
1121 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1122    
1123     Instead of one of the predefined types, you can also specify the name of
1124     a package. AnyEvent will try to load the package and then expects to find
1125     a function named C<anyevent_write_type> inside. If it isn't found, it
1126     progressively tries to load the parent package until it either finds the
1127     function (good) or runs out of packages (bad).
1128    
1129     Whenever the given C<type> is used, C<push_write> will the function with
1130     the handle object and the remaining arguments.
1131    
1132     The function is supposed to return a single octet string that will be
1133     appended to the write buffer, so you cna mentally treat this function as a
1134     "arguments to on-the-wire-format" converter.
1135 root 1.30
1136 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1137     arguments using the first one.
1138 root 1.29
1139 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1140 root 1.29
1141 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1142     # the "My" modules to be auto-loaded, or just about anywhere when the
1143     # My::Type::anyevent_write_type is defined before invoking it.
1144    
1145     package My::Type;
1146    
1147     sub anyevent_write_type {
1148     my ($handle, $delim, @args) = @_;
1149    
1150     join $delim, @args
1151     }
1152 root 1.29
1153 root 1.30 =cut
1154 root 1.29
1155 root 1.8 #############################################################################
1156    
1157 root 1.9 =back
1158    
1159     =head2 READ QUEUE
1160    
1161     AnyEvent::Handle manages two queues per handle, one for writing and one
1162     for reading.
1163    
1164     The read queue is more complex than the write queue. It can be used in two
1165     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1166     a queue.
1167    
1168     In the simple case, you just install an C<on_read> callback and whenever
1169     new data arrives, it will be called. You can then remove some data (if
1170 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1171 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1172 root 1.197 partial message has been received so far), or change the read queue with
1173     e.g. C<push_read>.
1174 root 1.9
1175     In the more complex case, you want to queue multiple callbacks. In this
1176     case, AnyEvent::Handle will call the first queued callback each time new
1177 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1178 root 1.61 done its job (see C<push_read>, below).
1179 root 1.9
1180     This way you can, for example, push three line-reads, followed by reading
1181     a chunk of data, and AnyEvent::Handle will execute them in order.
1182    
1183     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1184     the specified number of bytes which give an XML datagram.
1185    
1186     # in the default state, expect some header bytes
1187     $handle->on_read (sub {
1188     # some data is here, now queue the length-header-read (4 octets)
1189 root 1.52 shift->unshift_read (chunk => 4, sub {
1190 root 1.9 # header arrived, decode
1191     my $len = unpack "N", $_[1];
1192    
1193     # now read the payload
1194 root 1.52 shift->unshift_read (chunk => $len, sub {
1195 root 1.9 my $xml = $_[1];
1196     # handle xml
1197     });
1198     });
1199     });
1200    
1201 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1202     and another line or "ERROR" for the first request that is sent, and 64
1203     bytes for the second request. Due to the availability of a queue, we can
1204     just pipeline sending both requests and manipulate the queue as necessary
1205     in the callbacks.
1206    
1207     When the first callback is called and sees an "OK" response, it will
1208     C<unshift> another line-read. This line-read will be queued I<before> the
1209     64-byte chunk callback.
1210 root 1.9
1211 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1212 root 1.9 $handle->push_write ("request 1\015\012");
1213    
1214     # we expect "ERROR" or "OK" as response, so push a line read
1215 root 1.52 $handle->push_read (line => sub {
1216 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1217     # so it will be read before the second request reads its 64 bytes
1218     # which are already in the queue when this callback is called
1219     # we don't do this in case we got an error
1220     if ($_[1] eq "OK") {
1221 root 1.52 $_[0]->unshift_read (line => sub {
1222 root 1.9 my $response = $_[1];
1223     ...
1224     });
1225     }
1226     });
1227    
1228 root 1.69 # request two, simply returns 64 octets
1229 root 1.9 $handle->push_write ("request 2\015\012");
1230    
1231     # simply read 64 bytes, always
1232 root 1.52 $handle->push_read (chunk => 64, sub {
1233 root 1.9 my $response = $_[1];
1234     ...
1235     });
1236    
1237     =over 4
1238    
1239 root 1.10 =cut
1240    
1241 root 1.8 sub _drain_rbuf {
1242     my ($self) = @_;
1243 elmex 1.1
1244 root 1.159 # avoid recursion
1245 root 1.167 return if $self->{_skip_drain_rbuf};
1246 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1247 root 1.59
1248     while () {
1249 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1250     # we are draining the buffer, and this can only happen with TLS.
1251 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1252     if exists $self->{_tls_rbuf};
1253 root 1.115
1254 root 1.59 my $len = length $self->{rbuf};
1255 elmex 1.1
1256 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1257 root 1.29 unless ($cb->($self)) {
1258 root 1.163 # no progress can be made
1259     # (not enough data and no data forthcoming)
1260     $self->_error (Errno::EPIPE, 1), return
1261     if $self->{_eof};
1262 root 1.10
1263 root 1.38 unshift @{ $self->{_queue} }, $cb;
1264 root 1.55 last;
1265 root 1.8 }
1266     } elsif ($self->{on_read}) {
1267 root 1.61 last unless $len;
1268    
1269 root 1.8 $self->{on_read}($self);
1270    
1271     if (
1272 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1273     && !@{ $self->{_queue} } # and the queue is still empty
1274     && $self->{on_read} # but we still have on_read
1275 root 1.8 ) {
1276 root 1.55 # no further data will arrive
1277     # so no progress can be made
1278 root 1.150 $self->_error (Errno::EPIPE, 1), return
1279 root 1.55 if $self->{_eof};
1280    
1281     last; # more data might arrive
1282 elmex 1.1 }
1283 root 1.8 } else {
1284     # read side becomes idle
1285 root 1.93 delete $self->{_rw} unless $self->{tls};
1286 root 1.55 last;
1287 root 1.8 }
1288     }
1289    
1290 root 1.80 if ($self->{_eof}) {
1291 root 1.163 $self->{on_eof}
1292     ? $self->{on_eof}($self)
1293     : $self->_error (0, 1, "Unexpected end-of-file");
1294    
1295     return;
1296 root 1.80 }
1297 root 1.55
1298 root 1.169 if (
1299     defined $self->{rbuf_max}
1300     && $self->{rbuf_max} < length $self->{rbuf}
1301     ) {
1302     $self->_error (Errno::ENOSPC, 1), return;
1303     }
1304    
1305 root 1.55 # may need to restart read watcher
1306     unless ($self->{_rw}) {
1307     $self->start_read
1308     if $self->{on_read} || @{ $self->{_queue} };
1309     }
1310 elmex 1.1 }
1311    
1312 root 1.8 =item $handle->on_read ($cb)
1313 elmex 1.1
1314 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1315     the new callback is C<undef>). See the description of C<on_read> in the
1316     constructor.
1317 elmex 1.1
1318 root 1.193 This method may invoke callbacks (and therefore the handle might be
1319     destroyed after it returns).
1320    
1321 root 1.8 =cut
1322    
1323     sub on_read {
1324     my ($self, $cb) = @_;
1325 elmex 1.1
1326 root 1.8 $self->{on_read} = $cb;
1327 root 1.159 $self->_drain_rbuf if $cb;
1328 elmex 1.1 }
1329    
1330 root 1.8 =item $handle->rbuf
1331    
1332 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1333     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1334     much faster, and no less clean).
1335    
1336     The only operation allowed on the read buffer (apart from looking at it)
1337     is removing data from its beginning. Otherwise modifying or appending to
1338     it is not allowed and will lead to hard-to-track-down bugs.
1339    
1340     NOTE: The read buffer should only be used or modified in the C<on_read>
1341     callback or when C<push_read> or C<unshift_read> are used with a single
1342     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1343     will manage the read buffer on their own.
1344 elmex 1.1
1345     =cut
1346    
1347 elmex 1.2 sub rbuf : lvalue {
1348 root 1.8 $_[0]{rbuf}
1349 elmex 1.2 }
1350 elmex 1.1
1351 root 1.8 =item $handle->push_read ($cb)
1352    
1353     =item $handle->unshift_read ($cb)
1354    
1355     Append the given callback to the end of the queue (C<push_read>) or
1356     prepend it (C<unshift_read>).
1357    
1358     The callback is called each time some additional read data arrives.
1359 elmex 1.1
1360 elmex 1.20 It must check whether enough data is in the read buffer already.
1361 elmex 1.1
1362 root 1.8 If not enough data is available, it must return the empty list or a false
1363     value, in which case it will be called repeatedly until enough data is
1364     available (or an error condition is detected).
1365    
1366     If enough data was available, then the callback must remove all data it is
1367     interested in (which can be none at all) and return a true value. After returning
1368     true, it will be removed from the queue.
1369 elmex 1.1
1370 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1371     destroyed after it returns).
1372    
1373 elmex 1.1 =cut
1374    
1375 root 1.30 our %RH;
1376    
1377     sub register_read_type($$) {
1378     $RH{$_[0]} = $_[1];
1379     }
1380    
1381 root 1.8 sub push_read {
1382 root 1.28 my $self = shift;
1383     my $cb = pop;
1384    
1385     if (@_) {
1386     my $type = shift;
1387    
1388 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1389     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1390 root 1.28 ->($self, $cb, @_);
1391     }
1392 elmex 1.1
1393 root 1.38 push @{ $self->{_queue} }, $cb;
1394 root 1.159 $self->_drain_rbuf;
1395 elmex 1.1 }
1396    
1397 root 1.8 sub unshift_read {
1398 root 1.28 my $self = shift;
1399     my $cb = pop;
1400    
1401     if (@_) {
1402     my $type = shift;
1403    
1404 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1405     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1406 root 1.28 ->($self, $cb, @_);
1407     }
1408    
1409 root 1.38 unshift @{ $self->{_queue} }, $cb;
1410 root 1.159 $self->_drain_rbuf;
1411 root 1.8 }
1412 elmex 1.1
1413 root 1.28 =item $handle->push_read (type => @args, $cb)
1414 elmex 1.1
1415 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1416 elmex 1.1
1417 root 1.28 Instead of providing a callback that parses the data itself you can chose
1418     between a number of predefined parsing formats, for chunks of data, lines
1419 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1420     which case AnyEvent tries to load the package and then expects to find the
1421     C<anyevent_read_type> function inside (see "custom read types", below).
1422 elmex 1.1
1423 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1424     drop by and tell us):
1425 root 1.28
1426     =over 4
1427    
1428 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1429 root 1.28
1430     Invoke the callback only once C<$octets> bytes have been read. Pass the
1431     data read to the callback. The callback will never be called with less
1432     data.
1433    
1434     Example: read 2 bytes.
1435    
1436     $handle->push_read (chunk => 2, sub {
1437 root 1.222 AE::log debug => "yay " . unpack "H*", $_[1];
1438 root 1.28 });
1439 elmex 1.1
1440     =cut
1441    
1442 root 1.28 register_read_type chunk => sub {
1443     my ($self, $cb, $len) = @_;
1444 elmex 1.1
1445 root 1.8 sub {
1446     $len <= length $_[0]{rbuf} or return;
1447 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1448 root 1.8 1
1449     }
1450 root 1.28 };
1451 root 1.8
1452 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1453 elmex 1.1
1454 root 1.8 The callback will be called only once a full line (including the end of
1455     line marker, C<$eol>) has been read. This line (excluding the end of line
1456     marker) will be passed to the callback as second argument (C<$line>), and
1457     the end of line marker as the third argument (C<$eol>).
1458 elmex 1.1
1459 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1460     will be interpreted as a fixed record end marker, or it can be a regex
1461     object (e.g. created by C<qr>), in which case it is interpreted as a
1462     regular expression.
1463 elmex 1.1
1464 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1465     undef), then C<qr|\015?\012|> is used (which is good for most internet
1466     protocols).
1467 elmex 1.1
1468 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1469     not marked by the end of line marker.
1470 elmex 1.1
1471 root 1.8 =cut
1472 elmex 1.1
1473 root 1.28 register_read_type line => sub {
1474     my ($self, $cb, $eol) = @_;
1475 elmex 1.1
1476 root 1.76 if (@_ < 3) {
1477     # this is more than twice as fast as the generic code below
1478     sub {
1479     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1480 elmex 1.1
1481 root 1.76 $cb->($_[0], $1, $2);
1482     1
1483     }
1484     } else {
1485     $eol = quotemeta $eol unless ref $eol;
1486     $eol = qr|^(.*?)($eol)|s;
1487    
1488     sub {
1489     $_[0]{rbuf} =~ s/$eol// or return;
1490 elmex 1.1
1491 root 1.76 $cb->($_[0], $1, $2);
1492     1
1493     }
1494 root 1.8 }
1495 root 1.28 };
1496 elmex 1.1
1497 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1498 root 1.36
1499     Makes a regex match against the regex object C<$accept> and returns
1500     everything up to and including the match.
1501    
1502     Example: read a single line terminated by '\n'.
1503    
1504     $handle->push_read (regex => qr<\n>, sub { ... });
1505    
1506     If C<$reject> is given and not undef, then it determines when the data is
1507     to be rejected: it is matched against the data when the C<$accept> regex
1508     does not match and generates an C<EBADMSG> error when it matches. This is
1509     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1510     receive buffer overflow).
1511    
1512     Example: expect a single decimal number followed by whitespace, reject
1513     anything else (not the use of an anchor).
1514    
1515     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1516    
1517     If C<$skip> is given and not C<undef>, then it will be matched against
1518     the receive buffer when neither C<$accept> nor C<$reject> match,
1519     and everything preceding and including the match will be accepted
1520     unconditionally. This is useful to skip large amounts of data that you
1521     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1522     have to start matching from the beginning. This is purely an optimisation
1523 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1524 root 1.36
1525     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1526 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1527 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1528     it only accepts something not ending in either \015 or \012, as these are
1529     required for the accept regex.
1530    
1531     $handle->push_read (regex =>
1532     qr<\015\012\015\012>,
1533     undef, # no reject
1534     qr<^.*[^\015\012]>,
1535     sub { ... });
1536    
1537     =cut
1538    
1539     register_read_type regex => sub {
1540     my ($self, $cb, $accept, $reject, $skip) = @_;
1541    
1542     my $data;
1543     my $rbuf = \$self->{rbuf};
1544    
1545     sub {
1546     # accept
1547     if ($$rbuf =~ $accept) {
1548     $data .= substr $$rbuf, 0, $+[0], "";
1549 root 1.220 $cb->($_[0], $data);
1550 root 1.36 return 1;
1551     }
1552    
1553     # reject
1554     if ($reject && $$rbuf =~ $reject) {
1555 root 1.220 $_[0]->_error (Errno::EBADMSG);
1556 root 1.36 }
1557    
1558     # skip
1559     if ($skip && $$rbuf =~ $skip) {
1560     $data .= substr $$rbuf, 0, $+[0], "";
1561     }
1562    
1563     ()
1564     }
1565     };
1566    
1567 root 1.61 =item netstring => $cb->($handle, $string)
1568    
1569     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1570    
1571     Throws an error with C<$!> set to EBADMSG on format violations.
1572    
1573     =cut
1574    
1575     register_read_type netstring => sub {
1576     my ($self, $cb) = @_;
1577    
1578     sub {
1579     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1580     if ($_[0]{rbuf} =~ /[^0-9]/) {
1581 root 1.220 $_[0]->_error (Errno::EBADMSG);
1582 root 1.61 }
1583     return;
1584     }
1585    
1586     my $len = $1;
1587    
1588 root 1.220 $_[0]->unshift_read (chunk => $len, sub {
1589 root 1.61 my $string = $_[1];
1590     $_[0]->unshift_read (chunk => 1, sub {
1591     if ($_[1] eq ",") {
1592     $cb->($_[0], $string);
1593     } else {
1594 root 1.220 $_[0]->_error (Errno::EBADMSG);
1595 root 1.61 }
1596     });
1597     });
1598    
1599     1
1600     }
1601     };
1602    
1603     =item packstring => $format, $cb->($handle, $string)
1604    
1605     An octet string prefixed with an encoded length. The encoding C<$format>
1606     uses the same format as a Perl C<pack> format, but must specify a single
1607     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1608     optional C<!>, C<< < >> or C<< > >> modifier).
1609    
1610 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1611     EPP uses a prefix of C<N> (4 octtes).
1612 root 1.61
1613     Example: read a block of data prefixed by its length in BER-encoded
1614     format (very efficient).
1615    
1616     $handle->push_read (packstring => "w", sub {
1617     my ($handle, $data) = @_;
1618     });
1619    
1620     =cut
1621    
1622     register_read_type packstring => sub {
1623     my ($self, $cb, $format) = @_;
1624    
1625     sub {
1626     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1627 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1628 root 1.61 or return;
1629    
1630 root 1.77 $format = length pack $format, $len;
1631 root 1.61
1632 root 1.77 # bypass unshift if we already have the remaining chunk
1633     if ($format + $len <= length $_[0]{rbuf}) {
1634     my $data = substr $_[0]{rbuf}, $format, $len;
1635     substr $_[0]{rbuf}, 0, $format + $len, "";
1636     $cb->($_[0], $data);
1637     } else {
1638     # remove prefix
1639     substr $_[0]{rbuf}, 0, $format, "";
1640    
1641     # read remaining chunk
1642     $_[0]->unshift_read (chunk => $len, $cb);
1643     }
1644 root 1.61
1645     1
1646     }
1647     };
1648    
1649 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1650    
1651 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1652     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1653 root 1.40
1654     If a C<json> object was passed to the constructor, then that will be used
1655     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1656    
1657     This read type uses the incremental parser available with JSON version
1658     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1659     dependency on your own: this module will load the JSON module, but
1660     AnyEvent does not depend on it itself.
1661    
1662     Since JSON texts are fully self-delimiting, the C<json> read and write
1663 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1664     the C<json> write type description, above, for an actual example.
1665 root 1.40
1666     =cut
1667    
1668     register_read_type json => sub {
1669 root 1.63 my ($self, $cb) = @_;
1670 root 1.40
1671 root 1.179 my $json = $self->{json} ||= json_coder;
1672 root 1.40
1673     my $data;
1674     my $rbuf = \$self->{rbuf};
1675    
1676     sub {
1677 root 1.220 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1678 root 1.110
1679 root 1.113 if ($ref) {
1680 root 1.220 $_[0]{rbuf} = $json->incr_text;
1681 root 1.113 $json->incr_text = "";
1682 root 1.220 $cb->($_[0], $ref);
1683 root 1.110
1684     1
1685 root 1.113 } elsif ($@) {
1686 root 1.111 # error case
1687 root 1.110 $json->incr_skip;
1688 root 1.40
1689 root 1.220 $_[0]{rbuf} = $json->incr_text;
1690 root 1.40 $json->incr_text = "";
1691    
1692 root 1.220 $_[0]->_error (Errno::EBADMSG);
1693 root 1.114
1694 root 1.113 ()
1695     } else {
1696 root 1.220 $_[0]{rbuf} = "";
1697 root 1.114
1698 root 1.113 ()
1699     }
1700 root 1.40 }
1701     };
1702    
1703 root 1.63 =item storable => $cb->($handle, $ref)
1704    
1705     Deserialises a L<Storable> frozen representation as written by the
1706     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1707     data).
1708    
1709     Raises C<EBADMSG> error if the data could not be decoded.
1710    
1711     =cut
1712    
1713     register_read_type storable => sub {
1714     my ($self, $cb) = @_;
1715    
1716     require Storable;
1717    
1718     sub {
1719     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1720 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1721 root 1.63 or return;
1722    
1723 root 1.77 my $format = length pack "w", $len;
1724 root 1.63
1725 root 1.77 # bypass unshift if we already have the remaining chunk
1726     if ($format + $len <= length $_[0]{rbuf}) {
1727     my $data = substr $_[0]{rbuf}, $format, $len;
1728     substr $_[0]{rbuf}, 0, $format + $len, "";
1729     $cb->($_[0], Storable::thaw ($data));
1730     } else {
1731     # remove prefix
1732     substr $_[0]{rbuf}, 0, $format, "";
1733    
1734     # read remaining chunk
1735     $_[0]->unshift_read (chunk => $len, sub {
1736     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1737     $cb->($_[0], $ref);
1738     } else {
1739 root 1.220 $_[0]->_error (Errno::EBADMSG);
1740 root 1.77 }
1741     });
1742     }
1743    
1744     1
1745 root 1.63 }
1746     };
1747    
1748 root 1.28 =back
1749    
1750 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1751 root 1.30
1752 root 1.185 Instead of one of the predefined types, you can also specify the name
1753     of a package. AnyEvent will try to load the package and then expects to
1754     find a function named C<anyevent_read_type> inside. If it isn't found, it
1755     progressively tries to load the parent package until it either finds the
1756     function (good) or runs out of packages (bad).
1757    
1758     Whenever this type is used, C<push_read> will invoke the function with the
1759     handle object, the original callback and the remaining arguments.
1760    
1761     The function is supposed to return a callback (usually a closure) that
1762     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1763     mentally treat the function as a "configurable read type to read callback"
1764     converter.
1765    
1766     It should invoke the original callback when it is done reading (remember
1767     to pass C<$handle> as first argument as all other callbacks do that,
1768     although there is no strict requirement on this).
1769 root 1.30
1770 root 1.185 For examples, see the source of this module (F<perldoc -m
1771     AnyEvent::Handle>, search for C<register_read_type>)).
1772 root 1.30
1773 root 1.10 =item $handle->stop_read
1774    
1775     =item $handle->start_read
1776    
1777 root 1.18 In rare cases you actually do not want to read anything from the
1778 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1779 root 1.22 any queued callbacks will be executed then. To start reading again, call
1780 root 1.10 C<start_read>.
1781    
1782 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1783     you change the C<on_read> callback or push/unshift a read callback, and it
1784     will automatically C<stop_read> for you when neither C<on_read> is set nor
1785     there are any read requests in the queue.
1786    
1787 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1788     as TLS does not support half-duplex connections. In current versions they
1789     work as expected, as this behaviour is required to avoid certain resource
1790     attacks, where the program would be forced to read (and buffer) arbitrary
1791     amounts of data before being able to send some data. The drawback is that
1792     some readings of the the SSL/TLS specifications basically require this
1793     attack to be working, as SSL/TLS implementations might stall sending data
1794     during a rehandshake.
1795    
1796     As a guideline, during the initial handshake, you should not stop reading,
1797     and as a client, it might cause problems, depending on your applciation.
1798 root 1.93
1799 root 1.10 =cut
1800    
1801     sub stop_read {
1802     my ($self) = @_;
1803 elmex 1.1
1804 root 1.213 delete $self->{_rw};
1805 root 1.8 }
1806 elmex 1.1
1807 root 1.10 sub start_read {
1808     my ($self) = @_;
1809    
1810 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1811 root 1.10 Scalar::Util::weaken $self;
1812    
1813 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1814 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1815 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
1816 root 1.10
1817     if ($len > 0) {
1818 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1819 root 1.43
1820 root 1.93 if ($self->{tls}) {
1821     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1822 root 1.97
1823 root 1.93 &_dotls ($self);
1824     } else {
1825 root 1.159 $self->_drain_rbuf;
1826 root 1.93 }
1827 root 1.10
1828 root 1.203 if ($len == $self->{read_size}) {
1829     $self->{read_size} *= 2;
1830     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
1831     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
1832     }
1833    
1834 root 1.10 } elsif (defined $len) {
1835 root 1.38 delete $self->{_rw};
1836     $self->{_eof} = 1;
1837 root 1.159 $self->_drain_rbuf;
1838 root 1.10
1839 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1840 root 1.52 return $self->_error ($!, 1);
1841 root 1.10 }
1842 root 1.175 };
1843 root 1.10 }
1844 elmex 1.1 }
1845    
1846 root 1.133 our $ERROR_SYSCALL;
1847     our $ERROR_WANT_READ;
1848    
1849     sub _tls_error {
1850     my ($self, $err) = @_;
1851    
1852     return $self->_error ($!, 1)
1853     if $err == Net::SSLeay::ERROR_SYSCALL ();
1854    
1855 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1856    
1857     # reduce error string to look less scary
1858     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1859    
1860 root 1.143 if ($self->{_on_starttls}) {
1861     (delete $self->{_on_starttls})->($self, undef, $err);
1862     &_freetls;
1863     } else {
1864     &_freetls;
1865 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1866 root 1.143 }
1867 root 1.133 }
1868    
1869 root 1.97 # poll the write BIO and send the data if applicable
1870 root 1.133 # also decode read data if possible
1871     # this is basiclaly our TLS state machine
1872     # more efficient implementations are possible with openssl,
1873     # but not with the buggy and incomplete Net::SSLeay.
1874 root 1.19 sub _dotls {
1875     my ($self) = @_;
1876    
1877 root 1.97 my $tmp;
1878 root 1.56
1879 root 1.38 if (length $self->{_tls_wbuf}) {
1880 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1881     substr $self->{_tls_wbuf}, 0, $tmp, "";
1882 root 1.22 }
1883 root 1.133
1884     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1885     return $self->_tls_error ($tmp)
1886     if $tmp != $ERROR_WANT_READ
1887 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1888 root 1.19 }
1889    
1890 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1891     unless (length $tmp) {
1892 root 1.143 $self->{_on_starttls}
1893     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1894 root 1.92 &_freetls;
1895 root 1.143
1896 root 1.142 if ($self->{on_stoptls}) {
1897     $self->{on_stoptls}($self);
1898     return;
1899     } else {
1900     # let's treat SSL-eof as we treat normal EOF
1901     delete $self->{_rw};
1902     $self->{_eof} = 1;
1903     }
1904 root 1.56 }
1905 root 1.91
1906 root 1.116 $self->{_tls_rbuf} .= $tmp;
1907 root 1.159 $self->_drain_rbuf;
1908 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1909 root 1.23 }
1910    
1911 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1912 root 1.133 return $self->_tls_error ($tmp)
1913     if $tmp != $ERROR_WANT_READ
1914 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1915 root 1.91
1916 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1917     $self->{wbuf} .= $tmp;
1918 root 1.91 $self->_drain_wbuf;
1919 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1920 root 1.91 }
1921 root 1.142
1922     $self->{_on_starttls}
1923     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1924 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1925 root 1.19 }
1926    
1927 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1928    
1929     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1930     object is created, you can also do that at a later time by calling
1931     C<starttls>.
1932    
1933 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1934     write data and then call C<< ->starttls >> then TLS negotiation will start
1935     immediately, after which the queued write data is then sent.
1936    
1937 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1938     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1939    
1940 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1941     when AnyEvent::Handle has to create its own TLS connection object, or
1942     a hash reference with C<< key => value >> pairs that will be used to
1943     construct a new context.
1944    
1945     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1946     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1947     changed to your liking. Note that the handshake might have already started
1948     when this function returns.
1949 root 1.38
1950 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1951 root 1.198 handshakes on the same stream. It is best to not attempt to use the
1952     stream after stopping TLS.
1953 root 1.92
1954 root 1.193 This method may invoke callbacks (and therefore the handle might be
1955     destroyed after it returns).
1956    
1957 root 1.25 =cut
1958    
1959 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1960    
1961 root 1.19 sub starttls {
1962 root 1.160 my ($self, $tls, $ctx) = @_;
1963    
1964     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1965     if $self->{tls};
1966    
1967     $self->{tls} = $tls;
1968     $self->{tls_ctx} = $ctx if @_ > 2;
1969    
1970     return unless $self->{fh};
1971 root 1.19
1972 root 1.94 require Net::SSLeay;
1973    
1974 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1975     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1976 root 1.133
1977 root 1.180 $tls = delete $self->{tls};
1978 root 1.160 $ctx = $self->{tls_ctx};
1979 root 1.131
1980 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1981    
1982 root 1.131 if ("HASH" eq ref $ctx) {
1983     require AnyEvent::TLS;
1984    
1985 root 1.137 if ($ctx->{cache}) {
1986     my $key = $ctx+0;
1987     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1988     } else {
1989     $ctx = new AnyEvent::TLS %$ctx;
1990     }
1991 root 1.131 }
1992 root 1.92
1993 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1994 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1995 root 1.19
1996 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1997     # but the openssl maintainers basically said: "trust us, it just works".
1998     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1999     # and mismaintained ssleay-module doesn't even offer them).
2000 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2001 root 1.87 #
2002     # in short: this is a mess.
2003     #
2004 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2005 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2006 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2007     # have identity issues in that area.
2008 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
2009     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2010     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2011 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
2012 root 1.21
2013 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2014     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2015 root 1.19
2016 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2017     $self->{rbuf} = "";
2018 root 1.172
2019 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2020 root 1.19
2021 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2022 root 1.143 if $self->{on_starttls};
2023 root 1.142
2024 root 1.93 &_dotls; # need to trigger the initial handshake
2025     $self->start_read; # make sure we actually do read
2026 root 1.19 }
2027    
2028 root 1.25 =item $handle->stoptls
2029    
2030 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2031     sending a close notify to the other side, but since OpenSSL doesn't
2032 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2033 root 1.160 the stream afterwards.
2034 root 1.25
2035 root 1.193 This method may invoke callbacks (and therefore the handle might be
2036     destroyed after it returns).
2037    
2038 root 1.25 =cut
2039    
2040     sub stoptls {
2041     my ($self) = @_;
2042    
2043 root 1.192 if ($self->{tls} && $self->{fh}) {
2044 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2045 root 1.92
2046     &_dotls;
2047    
2048 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2049     # # we, we... have to use openssl :/#d#
2050     # &_freetls;#d#
2051 root 1.92 }
2052     }
2053    
2054     sub _freetls {
2055     my ($self) = @_;
2056    
2057     return unless $self->{tls};
2058 root 1.38
2059 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2060 root 1.171 if $self->{tls} > 0;
2061 root 1.92
2062 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2063 root 1.25 }
2064    
2065 root 1.216 =item $handle->resettls
2066    
2067     This rarely-used method simply resets and TLS state on the handle, usually
2068     causing data loss.
2069    
2070     One case where it may be useful is when you want to skip over the data in
2071     the stream but you are not interested in interpreting it, so data loss is
2072     no concern.
2073    
2074     =cut
2075    
2076     *resettls = \&_freetls;
2077    
2078 root 1.19 sub DESTROY {
2079 root 1.120 my ($self) = @_;
2080 root 1.19
2081 root 1.92 &_freetls;
2082 root 1.62
2083     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2084    
2085 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2086 root 1.62 my $fh = delete $self->{fh};
2087     my $wbuf = delete $self->{wbuf};
2088    
2089     my @linger;
2090    
2091 root 1.175 push @linger, AE::io $fh, 1, sub {
2092 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2093    
2094     if ($len > 0) {
2095     substr $wbuf, 0, $len, "";
2096 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2097 root 1.62 @linger = (); # end
2098     }
2099 root 1.175 };
2100     push @linger, AE::timer $linger, 0, sub {
2101 root 1.62 @linger = ();
2102 root 1.175 };
2103 root 1.62 }
2104 root 1.19 }
2105    
2106 root 1.99 =item $handle->destroy
2107    
2108 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2109 root 1.141 no further callbacks will be invoked and as many resources as possible
2110 root 1.165 will be freed. Any method you will call on the handle object after
2111     destroying it in this way will be silently ignored (and it will return the
2112     empty list).
2113 root 1.99
2114 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2115     object and it will simply shut down. This works in fatal error and EOF
2116     callbacks, as well as code outside. It does I<NOT> work in a read or write
2117     callback, so when you want to destroy the AnyEvent::Handle object from
2118     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2119     that case.
2120    
2121 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2122     will be removed as well, so if those are the only reference holders (as
2123     is common), then one doesn't need to do anything special to break any
2124     reference cycles.
2125    
2126 root 1.99 The handle might still linger in the background and write out remaining
2127     data, as specified by the C<linger> option, however.
2128    
2129     =cut
2130    
2131     sub destroy {
2132     my ($self) = @_;
2133    
2134     $self->DESTROY;
2135     %$self = ();
2136 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2137     }
2138    
2139 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2140     #nop
2141 root 1.99 }
2142    
2143 root 1.192 =item $handle->destroyed
2144    
2145     Returns false as long as the handle hasn't been destroyed by a call to C<<
2146     ->destroy >>, true otherwise.
2147    
2148     Can be useful to decide whether the handle is still valid after some
2149     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2150     C<< ->starttls >> and other methods can call user callbacks, which in turn
2151     can destroy the handle, so work can be avoided by checking sometimes:
2152    
2153     $hdl->starttls ("accept");
2154     return if $hdl->destroyed;
2155     $hdl->push_write (...
2156    
2157     Note that the call to C<push_write> will silently be ignored if the handle
2158     has been destroyed, so often you can just ignore the possibility of the
2159     handle being destroyed.
2160    
2161     =cut
2162    
2163     sub destroyed { 0 }
2164     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2165    
2166 root 1.19 =item AnyEvent::Handle::TLS_CTX
2167    
2168 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2169     for TLS mode.
2170 root 1.19
2171 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2172 root 1.19
2173     =cut
2174    
2175     our $TLS_CTX;
2176    
2177     sub TLS_CTX() {
2178 root 1.131 $TLS_CTX ||= do {
2179     require AnyEvent::TLS;
2180 root 1.19
2181 root 1.131 new AnyEvent::TLS
2182 root 1.19 }
2183     }
2184    
2185 elmex 1.1 =back
2186    
2187 root 1.95
2188     =head1 NONFREQUENTLY ASKED QUESTIONS
2189    
2190     =over 4
2191    
2192 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2193     still get further invocations!
2194    
2195     That's because AnyEvent::Handle keeps a reference to itself when handling
2196     read or write callbacks.
2197    
2198     It is only safe to "forget" the reference inside EOF or error callbacks,
2199     from within all other callbacks, you need to explicitly call the C<<
2200     ->destroy >> method.
2201    
2202 root 1.208 =item Why is my C<on_eof> callback never called?
2203    
2204     Probably because your C<on_error> callback is being called instead: When
2205     you have outstanding requests in your read queue, then an EOF is
2206     considered an error as you clearly expected some data.
2207    
2208     To avoid this, make sure you have an empty read queue whenever your handle
2209     is supposed to be "idle" (i.e. connection closes are O.K.). You cna set
2210     an C<on_read> handler that simply pushes the first read requests in the
2211     queue.
2212    
2213     See also the next question, which explains this in a bit more detail.
2214    
2215     =item How can I serve requests in a loop?
2216    
2217     Most protocols consist of some setup phase (authentication for example)
2218     followed by a request handling phase, where the server waits for requests
2219     and handles them, in a loop.
2220    
2221     There are two important variants: The first (traditional, better) variant
2222     handles requests until the server gets some QUIT command, causing it to
2223     close the connection first (highly desirable for a busy TCP server). A
2224     client dropping the connection is an error, which means this variant can
2225     detect an unexpected detection close.
2226    
2227     To handle this case, always make sure you have a on-empty read queue, by
2228     pushing the "read request start" handler on it:
2229    
2230     # we assume a request starts with a single line
2231     my @start_request; @start_request = (line => sub {
2232     my ($hdl, $line) = @_;
2233    
2234     ... handle request
2235    
2236     # push next request read, possibly from a nested callback
2237     $hdl->push_read (@start_request);
2238     });
2239    
2240     # auth done, now go into request handling loop
2241     # now push the first @start_request
2242     $hdl->push_read (@start_request);
2243    
2244     By always having an outstanding C<push_read>, the handle always expects
2245     some data and raises the C<EPIPE> error when the connction is dropped
2246     unexpectedly.
2247    
2248     The second variant is a protocol where the client can drop the connection
2249     at any time. For TCP, this means that the server machine may run out of
2250     sockets easier, and in general, it means you cnanot distinguish a protocl
2251     failure/client crash from a normal connection close. Nevertheless, these
2252     kinds of protocols are common (and sometimes even the best solution to the
2253     problem).
2254    
2255     Having an outstanding read request at all times is possible if you ignore
2256     C<EPIPE> errors, but this doesn't help with when the client drops the
2257     connection during a request, which would still be an error.
2258    
2259     A better solution is to push the initial request read in an C<on_read>
2260     callback. This avoids an error, as when the server doesn't expect data
2261     (i.e. is idly waiting for the next request, an EOF will not raise an
2262     error, but simply result in an C<on_eof> callback. It is also a bit slower
2263     and simpler:
2264    
2265     # auth done, now go into request handling loop
2266     $hdl->on_read (sub {
2267     my ($hdl) = @_;
2268    
2269     # called each time we receive data but the read queue is empty
2270     # simply start read the request
2271    
2272     $hdl->push_read (line => sub {
2273     my ($hdl, $line) = @_;
2274    
2275     ... handle request
2276    
2277     # do nothing special when the request has been handled, just
2278     # let the request queue go empty.
2279     });
2280     });
2281    
2282 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2283     reading?
2284    
2285     Unlike, say, TCP, TLS connections do not consist of two independent
2286 root 1.198 communication channels, one for each direction. Or put differently, the
2287 root 1.101 read and write directions are not independent of each other: you cannot
2288     write data unless you are also prepared to read, and vice versa.
2289    
2290 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2291 root 1.101 callback invocations when you are not expecting any read data - the reason
2292     is that AnyEvent::Handle always reads in TLS mode.
2293    
2294     During the connection, you have to make sure that you always have a
2295     non-empty read-queue, or an C<on_read> watcher. At the end of the
2296     connection (or when you no longer want to use it) you can call the
2297     C<destroy> method.
2298    
2299 root 1.95 =item How do I read data until the other side closes the connection?
2300    
2301 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2302     to achieve this is by setting an C<on_read> callback that does nothing,
2303     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2304     will be in C<$_[0]{rbuf}>:
2305 root 1.95
2306     $handle->on_read (sub { });
2307     $handle->on_eof (undef);
2308     $handle->on_error (sub {
2309     my $data = delete $_[0]{rbuf};
2310     });
2311    
2312 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2313     which is not normally allowed by the API. It is expressly permitted in
2314     this case only, as the handle object needs to be destroyed afterwards.
2315    
2316 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2317     and packets loss, might get closed quite violently with an error, when in
2318 root 1.198 fact all data has been received.
2319 root 1.95
2320 root 1.101 It is usually better to use acknowledgements when transferring data,
2321 root 1.95 to make sure the other side hasn't just died and you got the data
2322     intact. This is also one reason why so many internet protocols have an
2323     explicit QUIT command.
2324    
2325 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2326     all data has been written?
2327 root 1.95
2328     After writing your last bits of data, set the C<on_drain> callback
2329     and destroy the handle in there - with the default setting of
2330     C<low_water_mark> this will be called precisely when all data has been
2331     written to the socket:
2332    
2333     $handle->push_write (...);
2334     $handle->on_drain (sub {
2335 root 1.222 AE::log debug => "all data submitted to the kernel\n";
2336 root 1.95 undef $handle;
2337     });
2338    
2339 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2340     consider using C<< ->push_shutdown >> instead.
2341    
2342     =item I want to contact a TLS/SSL server, I don't care about security.
2343    
2344     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2345 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2346 root 1.143 parameter:
2347    
2348 root 1.144 tcp_connect $host, $port, sub {
2349     my ($fh) = @_;
2350 root 1.143
2351 root 1.144 my $handle = new AnyEvent::Handle
2352     fh => $fh,
2353     tls => "connect",
2354     on_error => sub { ... };
2355    
2356     $handle->push_write (...);
2357     };
2358 root 1.143
2359     =item I want to contact a TLS/SSL server, I do care about security.
2360    
2361 root 1.144 Then you should additionally enable certificate verification, including
2362     peername verification, if the protocol you use supports it (see
2363     L<AnyEvent::TLS>, C<verify_peername>).
2364    
2365     E.g. for HTTPS:
2366    
2367     tcp_connect $host, $port, sub {
2368     my ($fh) = @_;
2369    
2370     my $handle = new AnyEvent::Handle
2371     fh => $fh,
2372     peername => $host,
2373     tls => "connect",
2374     tls_ctx => { verify => 1, verify_peername => "https" },
2375     ...
2376    
2377     Note that you must specify the hostname you connected to (or whatever
2378     "peername" the protocol needs) as the C<peername> argument, otherwise no
2379     peername verification will be done.
2380    
2381     The above will use the system-dependent default set of trusted CA
2382     certificates. If you want to check against a specific CA, add the
2383     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2384    
2385     tls_ctx => {
2386     verify => 1,
2387     verify_peername => "https",
2388     ca_file => "my-ca-cert.pem",
2389     },
2390    
2391     =item I want to create a TLS/SSL server, how do I do that?
2392    
2393     Well, you first need to get a server certificate and key. You have
2394     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2395     self-signed certificate (cheap. check the search engine of your choice,
2396     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2397     nice program for that purpose).
2398    
2399     Then create a file with your private key (in PEM format, see
2400     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2401     file should then look like this:
2402    
2403     -----BEGIN RSA PRIVATE KEY-----
2404     ...header data
2405     ... lots of base64'y-stuff
2406     -----END RSA PRIVATE KEY-----
2407    
2408     -----BEGIN CERTIFICATE-----
2409     ... lots of base64'y-stuff
2410     -----END CERTIFICATE-----
2411    
2412     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2413     specify this file as C<cert_file>:
2414    
2415     tcp_server undef, $port, sub {
2416     my ($fh) = @_;
2417    
2418     my $handle = new AnyEvent::Handle
2419     fh => $fh,
2420     tls => "accept",
2421     tls_ctx => { cert_file => "my-server-keycert.pem" },
2422     ...
2423 root 1.143
2424 root 1.144 When you have intermediate CA certificates that your clients might not
2425     know about, just append them to the C<cert_file>.
2426 root 1.143
2427 root 1.95 =back
2428    
2429    
2430 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2431    
2432     In many cases, you might want to subclass AnyEvent::Handle.
2433    
2434     To make this easier, a given version of AnyEvent::Handle uses these
2435     conventions:
2436    
2437     =over 4
2438    
2439     =item * all constructor arguments become object members.
2440    
2441     At least initially, when you pass a C<tls>-argument to the constructor it
2442 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2443 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2444    
2445     =item * other object member names are prefixed with an C<_>.
2446    
2447     All object members not explicitly documented (internal use) are prefixed
2448     with an underscore character, so the remaining non-C<_>-namespace is free
2449     for use for subclasses.
2450    
2451     =item * all members not documented here and not prefixed with an underscore
2452     are free to use in subclasses.
2453    
2454     Of course, new versions of AnyEvent::Handle may introduce more "public"
2455 root 1.198 member variables, but that's just life. At least it is documented.
2456 root 1.38
2457     =back
2458    
2459 elmex 1.1 =head1 AUTHOR
2460    
2461 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2462 elmex 1.1
2463     =cut
2464    
2465     1; # End of AnyEvent::Handle