ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.237
Committed: Tue Jul 30 23:14:32 2013 UTC (10 years, 10 months ago) by root
Branch: MAIN
CVS Tags: rel-7_05
Changes since 1.236: +5 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16 root 1.233 AE::log error => $msg;
17 root 1.151 $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27 root 1.225 say "got line <$line>";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119 root 1.210 attempted, but after the file handle has been created (you can access that
120     file handle via C<< $handle->{fh} >>). It could be used to prepare the
121     file handle with parameters required for the actual connect (as opposed to
122     settings that can be changed when the connection is already established).
123 root 1.159
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.228 parameters, together with a retry callback. At the time it is called the
134     read and write queues, EOF status, TLS status and similar properties of
135     the handle will have been reset.
136    
137     It is not allowed to use the read or write queues while the handle object
138     is connecting.
139    
140     If, for some reason, the handle is not acceptable, calling C<$retry> will
141     continue with the next connection target (in case of multi-homed hosts or
142     SRV records there can be multiple connection endpoints). The C<$retry>
143     callback can be invoked after the connect callback returns, i.e. one can
144     start a handshake and then decide to retry with the next host if the
145     handshake fails.
146 root 1.159
147 root 1.198 In most cases, you should ignore the C<$retry> parameter.
148 root 1.158
149 root 1.159 =item on_connect_error => $cb->($handle, $message)
150 root 1.10
151 root 1.186 This callback is called when the connection could not be
152 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
153     message describing it (usually the same as C<"$!">).
154 root 1.8
155 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
156     fatal error instead.
157 root 1.82
158 root 1.159 =back
159 root 1.80
160 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
161 root 1.10
162 root 1.52 This is the error callback, which is called when, well, some error
163     occured, such as not being able to resolve the hostname, failure to
164 root 1.198 connect, or a read error.
165 root 1.52
166     Some errors are fatal (which is indicated by C<$fatal> being true). On
167 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
168     destroy >>) after invoking the error callback (which means you are free to
169     examine the handle object). Examples of fatal errors are an EOF condition
170 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
171 root 1.198 cases where the other side can close the connection at will, it is
172 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
173 root 1.82
174 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
175 root 1.233 against, but in some cases (TLS errors), this does not work well.
176    
177     If you report the error to the user, it is recommended to always output
178     the C<$message> argument in human-readable error messages (you don't need
179     to report C<"$!"> if you report C<$message>).
180    
181     If you want to react programmatically to the error, then looking at C<$!>
182     and comparing it against some of the documented C<Errno> values is usually
183     better than looking at the C<$message>.
184 root 1.133
185 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
186 root 1.82 to simply ignore this parameter and instead abondon the handle object
187     when this callback is invoked. Examples of non-fatal errors are timeouts
188     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
189 root 1.8
190 root 1.198 On entry to the callback, the value of C<$!> contains the operating
191     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
192 root 1.133 C<EPROTO>).
193 root 1.8
194 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
195 root 1.198 you will not be notified of errors otherwise. The default just calls
196 root 1.52 C<croak>.
197 root 1.8
198 root 1.40 =item on_read => $cb->($handle)
199 root 1.8
200     This sets the default read callback, which is called when data arrives
201 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
202     callback will only be called when at least one octet of data is in the
203     read buffer).
204 root 1.8
205     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
206 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
207 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
208     the beginning from it.
209 root 1.8
210 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
211     modifies the read queue. Or do both. Or ...
212    
213 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
214 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
215     calling the C<on_eof> callback. If no progress can be made, then a fatal
216     error will be raised (with C<$!> set to C<EPIPE>).
217 elmex 1.1
218 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
219     doesn't mean you I<require> some data: if there is an EOF and there
220     are outstanding read requests then an error will be flagged. With an
221     C<on_read> callback, the C<on_eof> callback will be invoked.
222    
223 root 1.159 =item on_eof => $cb->($handle)
224    
225     Set the callback to be called when an end-of-file condition is detected,
226     i.e. in the case of a socket, when the other side has closed the
227     connection cleanly, and there are no outstanding read requests in the
228     queue (if there are read requests, then an EOF counts as an unexpected
229     connection close and will be flagged as an error).
230    
231     For sockets, this just means that the other side has stopped sending data,
232     you can still try to write data, and, in fact, one can return from the EOF
233     callback and continue writing data, as only the read part has been shut
234     down.
235    
236     If an EOF condition has been detected but no C<on_eof> callback has been
237     set, then a fatal error will be raised with C<$!> set to <0>.
238    
239 root 1.40 =item on_drain => $cb->($handle)
240 elmex 1.1
241 root 1.229 This sets the callback that is called once when the write buffer becomes
242     empty (and immediately when the handle object is created).
243 elmex 1.1
244 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
245 elmex 1.2
246 root 1.69 This callback is useful when you don't want to put all of your write data
247     into the queue at once, for example, when you want to write the contents
248     of some file to the socket you might not want to read the whole file into
249     memory and push it into the queue, but instead only read more data from
250     the file when the write queue becomes empty.
251    
252 root 1.43 =item timeout => $fractional_seconds
253    
254 root 1.176 =item rtimeout => $fractional_seconds
255    
256     =item wtimeout => $fractional_seconds
257    
258     If non-zero, then these enables an "inactivity" timeout: whenever this
259     many seconds pass without a successful read or write on the underlying
260     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
261     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
262     error will be raised).
263    
264 root 1.218 There are three variants of the timeouts that work independently of each
265     other, for both read and write (triggered when nothing was read I<OR>
266     written), just read (triggered when nothing was read), and just write:
267 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
268     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
269     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
270 root 1.43
271 root 1.218 Note that timeout processing is active even when you do not have any
272     outstanding read or write requests: If you plan to keep the connection
273     idle then you should disable the timeout temporarily or ignore the
274     timeout in the corresponding C<on_timeout> callback, in which case
275     AnyEvent::Handle will simply restart the timeout.
276 root 1.43
277 root 1.218 Zero (the default) disables the corresponding timeout.
278 root 1.43
279     =item on_timeout => $cb->($handle)
280    
281 root 1.218 =item on_rtimeout => $cb->($handle)
282    
283     =item on_wtimeout => $cb->($handle)
284    
285 root 1.43 Called whenever the inactivity timeout passes. If you return from this
286     callback, then the timeout will be reset as if some activity had happened,
287     so this condition is not fatal in any way.
288    
289 root 1.8 =item rbuf_max => <bytes>
290 elmex 1.2
291 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
292     when the read buffer ever (strictly) exceeds this size. This is useful to
293 root 1.88 avoid some forms of denial-of-service attacks.
294 elmex 1.2
295 root 1.8 For example, a server accepting connections from untrusted sources should
296     be configured to accept only so-and-so much data that it cannot act on
297     (for example, when expecting a line, an attacker could send an unlimited
298     amount of data without a callback ever being called as long as the line
299     isn't finished).
300 elmex 1.2
301 root 1.209 =item wbuf_max => <bytes>
302    
303     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
304     when the write buffer ever (strictly) exceeds this size. This is useful to
305     avoid some forms of denial-of-service attacks.
306    
307     Although the units of this parameter is bytes, this is the I<raw> number
308     of bytes not yet accepted by the kernel. This can make a difference when
309     you e.g. use TLS, as TLS typically makes your write data larger (but it
310     can also make it smaller due to compression).
311    
312     As an example of when this limit is useful, take a chat server that sends
313     chat messages to a client. If the client does not read those in a timely
314     manner then the send buffer in the server would grow unbounded.
315    
316 root 1.70 =item autocork => <boolean>
317    
318 root 1.198 When disabled (the default), C<push_write> will try to immediately
319     write the data to the handle if possible. This avoids having to register
320 root 1.88 a write watcher and wait for the next event loop iteration, but can
321     be inefficient if you write multiple small chunks (on the wire, this
322     disadvantage is usually avoided by your kernel's nagle algorithm, see
323     C<no_delay>, but this option can save costly syscalls).
324 root 1.70
325 root 1.198 When enabled, writes will always be queued till the next event loop
326 root 1.70 iteration. This is efficient when you do many small writes per iteration,
327 root 1.88 but less efficient when you do a single write only per iteration (or when
328     the write buffer often is full). It also increases write latency.
329 root 1.70
330     =item no_delay => <boolean>
331    
332     When doing small writes on sockets, your operating system kernel might
333     wait a bit for more data before actually sending it out. This is called
334     the Nagle algorithm, and usually it is beneficial.
335    
336 root 1.88 In some situations you want as low a delay as possible, which can be
337     accomplishd by setting this option to a true value.
338 root 1.70
339 root 1.198 The default is your operating system's default behaviour (most likely
340     enabled). This option explicitly enables or disables it, if possible.
341 root 1.70
342 root 1.182 =item keepalive => <boolean>
343    
344     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
345     normally, TCP connections have no time-out once established, so TCP
346 root 1.186 connections, once established, can stay alive forever even when the other
347 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
348 root 1.198 TCP connections when the other side becomes unreachable. While the default
349 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
350     and, if the other side doesn't reply, take down the TCP connection some 10
351     to 15 minutes later.
352    
353     It is harmless to specify this option for file handles that do not support
354     keepalives, and enabling it on connections that are potentially long-lived
355     is usually a good idea.
356    
357     =item oobinline => <boolean>
358    
359     BSD majorly fucked up the implementation of TCP urgent data. The result
360     is that almost no OS implements TCP according to the specs, and every OS
361     implements it slightly differently.
362    
363 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
364     is enabled) gives you the most portable way of getting urgent data, by
365     putting it into the stream.
366    
367     Since BSD emulation of OOB data on top of TCP's urgent data can have
368     security implications, AnyEvent::Handle sets this flag automatically
369 root 1.184 unless explicitly specified. Note that setting this flag after
370     establishing a connection I<may> be a bit too late (data loss could
371     already have occured on BSD systems), but at least it will protect you
372     from most attacks.
373 root 1.182
374 root 1.8 =item read_size => <bytes>
375 elmex 1.2
376 root 1.221 The initial read block size, the number of bytes this module will try
377     to read during each loop iteration. Each handle object will consume
378     at least this amount of memory for the read buffer as well, so when
379     handling many connections watch out for memory requirements). See also
380     C<max_read_size>. Default: C<2048>.
381 root 1.203
382     =item max_read_size => <bytes>
383    
384     The maximum read buffer size used by the dynamic adjustment
385     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
386     one go it will double C<read_size> up to the maximum given by this
387     option. Default: C<131072> or C<read_size>, whichever is higher.
388 root 1.8
389     =item low_water_mark => <bytes>
390    
391 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
392     buffer: If the buffer reaches this size or gets even samller it is
393 root 1.8 considered empty.
394 elmex 1.2
395 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
396     the write buffer before it is fully drained, but this is a rare case, as
397     the operating system kernel usually buffers data as well, so the default
398     is good in almost all cases.
399    
400 root 1.62 =item linger => <seconds>
401    
402 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
403 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
404     write data and will install a watcher that will write this data to the
405     socket. No errors will be reported (this mostly matches how the operating
406     system treats outstanding data at socket close time).
407 root 1.62
408 root 1.88 This will not work for partial TLS data that could not be encoded
409 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
410     help.
411 root 1.62
412 root 1.133 =item peername => $string
413    
414 root 1.134 A string used to identify the remote site - usually the DNS hostname
415     (I<not> IDN!) used to create the connection, rarely the IP address.
416 root 1.131
417 root 1.133 Apart from being useful in error messages, this string is also used in TLS
418 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
419 root 1.198 verification will be skipped when C<peername> is not specified or is
420 root 1.144 C<undef>.
421 root 1.131
422 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
423    
424 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
425 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
426 root 1.88 established and will transparently encrypt/decrypt data afterwards.
427 root 1.19
428 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
429     appropriate error message.
430    
431 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
432 root 1.88 automatically when you try to create a TLS handle): this module doesn't
433     have a dependency on that module, so if your module requires it, you have
434 root 1.234 to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
435     old, you get an C<EPROTO> error.
436 root 1.26
437 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
438     C<accept>, and for the TLS client side of a connection, use C<connect>
439     mode.
440 root 1.19
441     You can also provide your own TLS connection object, but you have
442     to make sure that you call either C<Net::SSLeay::set_connect_state>
443     or C<Net::SSLeay::set_accept_state> on it before you pass it to
444 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
445     object.
446    
447     At some future point, AnyEvent::Handle might switch to another TLS
448     implementation, then the option to use your own session object will go
449     away.
450 root 1.19
451 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
452     passing in the wrong integer will lead to certain crash. This most often
453     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
454     segmentation fault.
455    
456 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
457 root 1.26
458 root 1.131 =item tls_ctx => $anyevent_tls
459 root 1.19
460 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
461 root 1.207 (unless a connection object was specified directly). If this
462     parameter is missing (or C<undef>), then AnyEvent::Handle will use
463     C<AnyEvent::Handle::TLS_CTX>.
464 root 1.19
465 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
466     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
467     new TLS context object.
468    
469 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
470 root 1.142
471     This callback will be invoked when the TLS/SSL handshake has finished. If
472     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
473     (C<on_stoptls> will not be called in this case).
474    
475     The session in C<< $handle->{tls} >> can still be examined in this
476     callback, even when the handshake was not successful.
477    
478 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
479     callback is in effect, instead, the error message will be passed to C<on_starttls>.
480    
481     Without this callback, handshake failures lead to C<on_error> being
482 root 1.198 called as usual.
483 root 1.143
484 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
485 root 1.143 need to do that, start an zero-second timer instead whose callback can
486     then call C<< ->starttls >> again.
487    
488 root 1.142 =item on_stoptls => $cb->($handle)
489    
490     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
491     set, then it will be invoked after freeing the TLS session. If it is not,
492     then a TLS shutdown condition will be treated like a normal EOF condition
493     on the handle.
494    
495     The session in C<< $handle->{tls} >> can still be examined in this
496     callback.
497    
498     This callback will only be called on TLS shutdowns, not when the
499     underlying handle signals EOF.
500    
501 root 1.40 =item json => JSON or JSON::XS object
502    
503     This is the json coder object used by the C<json> read and write types.
504    
505 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
506 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
507     texts.
508 root 1.40
509     Note that you are responsible to depend on the JSON module if you want to
510     use this functionality, as AnyEvent does not have a dependency itself.
511    
512 elmex 1.1 =back
513    
514     =cut
515    
516     sub new {
517 root 1.8 my $class = shift;
518     my $self = bless { @_ }, $class;
519    
520 root 1.159 if ($self->{fh}) {
521     $self->_start;
522     return unless $self->{fh}; # could be gone by now
523    
524     } elsif ($self->{connect}) {
525     require AnyEvent::Socket;
526    
527     $self->{peername} = $self->{connect}[0]
528     unless exists $self->{peername};
529    
530     $self->{_skip_drain_rbuf} = 1;
531    
532     {
533     Scalar::Util::weaken (my $self = $self);
534    
535     $self->{_connect} =
536     AnyEvent::Socket::tcp_connect (
537     $self->{connect}[0],
538     $self->{connect}[1],
539     sub {
540     my ($fh, $host, $port, $retry) = @_;
541    
542 root 1.206 delete $self->{_connect}; # no longer needed
543 root 1.205
544 root 1.159 if ($fh) {
545     $self->{fh} = $fh;
546    
547     delete $self->{_skip_drain_rbuf};
548     $self->_start;
549    
550     $self->{on_connect}
551     and $self->{on_connect}($self, $host, $port, sub {
552 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
553 root 1.159 $self->{_skip_drain_rbuf} = 1;
554     &$retry;
555     });
556    
557     } else {
558     if ($self->{on_connect_error}) {
559     $self->{on_connect_error}($self, "$!");
560 root 1.217 $self->destroy if $self;
561 root 1.159 } else {
562 root 1.161 $self->_error ($!, 1);
563 root 1.159 }
564     }
565     },
566     sub {
567     local $self->{fh} = $_[0];
568    
569 root 1.161 $self->{on_prepare}
570 root 1.210 ? $self->{on_prepare}->($self)
571 root 1.161 : ()
572 root 1.159 }
573     );
574     }
575    
576     } else {
577     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
578     }
579    
580     $self
581     }
582    
583     sub _start {
584     my ($self) = @_;
585 root 1.8
586 root 1.194 # too many clueless people try to use udp and similar sockets
587     # with AnyEvent::Handle, do them a favour.
588 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
589     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
590 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
591 root 1.194
592 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
593 elmex 1.1
594 root 1.176 $self->{_activity} =
595     $self->{_ractivity} =
596     $self->{_wactivity} = AE::now;
597    
598 root 1.203 $self->{read_size} ||= 2048;
599     $self->{max_read_size} = $self->{read_size}
600     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
601    
602 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
603     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
604     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
605    
606 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
607     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
608    
609     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
610 root 1.131
611 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
612 root 1.94 if $self->{tls};
613 root 1.19
614 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
615 root 1.10
616 root 1.66 $self->start_read
617 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
618 root 1.160
619     $self->_drain_wbuf;
620 root 1.8 }
621 elmex 1.2
622 root 1.52 sub _error {
623 root 1.133 my ($self, $errno, $fatal, $message) = @_;
624 root 1.8
625 root 1.52 $! = $errno;
626 root 1.133 $message ||= "$!";
627 root 1.37
628 root 1.52 if ($self->{on_error}) {
629 root 1.133 $self->{on_error}($self, $fatal, $message);
630 root 1.151 $self->destroy if $fatal;
631 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
632 root 1.149 $self->destroy;
633 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
634 root 1.52 }
635 elmex 1.1 }
636    
637 root 1.8 =item $fh = $handle->fh
638 elmex 1.1
639 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
640 elmex 1.1
641     =cut
642    
643 root 1.38 sub fh { $_[0]{fh} }
644 elmex 1.1
645 root 1.8 =item $handle->on_error ($cb)
646 elmex 1.1
647 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
648 elmex 1.1
649 root 1.8 =cut
650    
651     sub on_error {
652     $_[0]{on_error} = $_[1];
653     }
654    
655     =item $handle->on_eof ($cb)
656    
657     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
658 elmex 1.1
659     =cut
660    
661 root 1.8 sub on_eof {
662     $_[0]{on_eof} = $_[1];
663     }
664    
665 root 1.43 =item $handle->on_timeout ($cb)
666    
667 root 1.176 =item $handle->on_rtimeout ($cb)
668    
669     =item $handle->on_wtimeout ($cb)
670    
671     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
672     callback, or disables the callback (but not the timeout) if C<$cb> =
673     C<undef>. See the C<timeout> constructor argument and method.
674 root 1.43
675     =cut
676    
677 root 1.176 # see below
678 root 1.43
679 root 1.70 =item $handle->autocork ($boolean)
680    
681     Enables or disables the current autocork behaviour (see C<autocork>
682 root 1.105 constructor argument). Changes will only take effect on the next write.
683 root 1.70
684     =cut
685    
686 root 1.105 sub autocork {
687     $_[0]{autocork} = $_[1];
688     }
689    
690 root 1.70 =item $handle->no_delay ($boolean)
691    
692     Enables or disables the C<no_delay> setting (see constructor argument of
693     the same name for details).
694    
695     =cut
696    
697     sub no_delay {
698     $_[0]{no_delay} = $_[1];
699    
700 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
701     if $_[0]{fh};
702 root 1.182 }
703    
704     =item $handle->keepalive ($boolean)
705    
706     Enables or disables the C<keepalive> setting (see constructor argument of
707     the same name for details).
708    
709     =cut
710    
711     sub keepalive {
712     $_[0]{keepalive} = $_[1];
713    
714     eval {
715     local $SIG{__DIE__};
716     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
717     if $_[0]{fh};
718     };
719     }
720    
721     =item $handle->oobinline ($boolean)
722    
723     Enables or disables the C<oobinline> setting (see constructor argument of
724     the same name for details).
725    
726     =cut
727    
728     sub oobinline {
729     $_[0]{oobinline} = $_[1];
730    
731     eval {
732     local $SIG{__DIE__};
733     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
734     if $_[0]{fh};
735     };
736     }
737    
738     =item $handle->keepalive ($boolean)
739    
740     Enables or disables the C<keepalive> setting (see constructor argument of
741     the same name for details).
742    
743     =cut
744    
745     sub keepalive {
746     $_[0]{keepalive} = $_[1];
747    
748     eval {
749     local $SIG{__DIE__};
750     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
751 root 1.159 if $_[0]{fh};
752 root 1.70 };
753     }
754    
755 root 1.142 =item $handle->on_starttls ($cb)
756    
757     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
758    
759     =cut
760    
761     sub on_starttls {
762     $_[0]{on_starttls} = $_[1];
763     }
764    
765     =item $handle->on_stoptls ($cb)
766    
767     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
768    
769     =cut
770    
771 root 1.189 sub on_stoptls {
772 root 1.142 $_[0]{on_stoptls} = $_[1];
773     }
774    
775 root 1.168 =item $handle->rbuf_max ($max_octets)
776    
777     Configures the C<rbuf_max> setting (C<undef> disables it).
778    
779 root 1.209 =item $handle->wbuf_max ($max_octets)
780    
781     Configures the C<wbuf_max> setting (C<undef> disables it).
782    
783 root 1.168 =cut
784    
785     sub rbuf_max {
786     $_[0]{rbuf_max} = $_[1];
787     }
788    
789 root 1.215 sub wbuf_max {
790 root 1.209 $_[0]{wbuf_max} = $_[1];
791     }
792    
793 root 1.43 #############################################################################
794    
795     =item $handle->timeout ($seconds)
796    
797 root 1.176 =item $handle->rtimeout ($seconds)
798    
799     =item $handle->wtimeout ($seconds)
800    
801 root 1.43 Configures (or disables) the inactivity timeout.
802    
803 root 1.218 The timeout will be checked instantly, so this method might destroy the
804     handle before it returns.
805    
806 root 1.176 =item $handle->timeout_reset
807    
808     =item $handle->rtimeout_reset
809    
810     =item $handle->wtimeout_reset
811    
812     Reset the activity timeout, as if data was received or sent.
813    
814     These methods are cheap to call.
815    
816 root 1.43 =cut
817    
818 root 1.176 for my $dir ("", "r", "w") {
819     my $timeout = "${dir}timeout";
820     my $tw = "_${dir}tw";
821     my $on_timeout = "on_${dir}timeout";
822     my $activity = "_${dir}activity";
823     my $cb;
824    
825     *$on_timeout = sub {
826     $_[0]{$on_timeout} = $_[1];
827     };
828    
829     *$timeout = sub {
830     my ($self, $new_value) = @_;
831 root 1.43
832 root 1.201 $new_value >= 0
833     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
834    
835 root 1.176 $self->{$timeout} = $new_value;
836     delete $self->{$tw}; &$cb;
837     };
838 root 1.43
839 root 1.176 *{"${dir}timeout_reset"} = sub {
840     $_[0]{$activity} = AE::now;
841     };
842 root 1.43
843 root 1.176 # main workhorse:
844     # reset the timeout watcher, as neccessary
845     # also check for time-outs
846     $cb = sub {
847     my ($self) = @_;
848    
849     if ($self->{$timeout} && $self->{fh}) {
850     my $NOW = AE::now;
851    
852     # when would the timeout trigger?
853     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
854    
855     # now or in the past already?
856     if ($after <= 0) {
857     $self->{$activity} = $NOW;
858 root 1.43
859 root 1.176 if ($self->{$on_timeout}) {
860     $self->{$on_timeout}($self);
861     } else {
862     $self->_error (Errno::ETIMEDOUT);
863     }
864 root 1.43
865 root 1.176 # callback could have changed timeout value, optimise
866     return unless $self->{$timeout};
867 root 1.43
868 root 1.176 # calculate new after
869     $after = $self->{$timeout};
870 root 1.43 }
871    
872 root 1.176 Scalar::Util::weaken $self;
873     return unless $self; # ->error could have destroyed $self
874 root 1.43
875 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
876     delete $self->{$tw};
877     $cb->($self);
878     };
879     } else {
880     delete $self->{$tw};
881 root 1.43 }
882     }
883     }
884    
885 root 1.9 #############################################################################
886    
887     =back
888    
889     =head2 WRITE QUEUE
890    
891     AnyEvent::Handle manages two queues per handle, one for writing and one
892     for reading.
893    
894     The write queue is very simple: you can add data to its end, and
895     AnyEvent::Handle will automatically try to get rid of it for you.
896    
897 elmex 1.20 When data could be written and the write buffer is shorter then the low
898 root 1.229 water mark, the C<on_drain> callback will be invoked once.
899 root 1.9
900     =over 4
901    
902 root 1.8 =item $handle->on_drain ($cb)
903    
904     Sets the C<on_drain> callback or clears it (see the description of
905     C<on_drain> in the constructor).
906    
907 root 1.193 This method may invoke callbacks (and therefore the handle might be
908     destroyed after it returns).
909    
910 root 1.8 =cut
911    
912     sub on_drain {
913 elmex 1.1 my ($self, $cb) = @_;
914    
915 root 1.8 $self->{on_drain} = $cb;
916    
917     $cb->($self)
918 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
919 root 1.8 }
920    
921     =item $handle->push_write ($data)
922    
923 root 1.209 Queues the given scalar to be written. You can push as much data as
924     you want (only limited by the available memory and C<wbuf_max>), as
925     C<AnyEvent::Handle> buffers it independently of the kernel.
926 root 1.8
927 root 1.193 This method may invoke callbacks (and therefore the handle might be
928     destroyed after it returns).
929    
930 root 1.8 =cut
931    
932 root 1.17 sub _drain_wbuf {
933     my ($self) = @_;
934 root 1.8
935 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
936 root 1.35
937 root 1.8 Scalar::Util::weaken $self;
938 root 1.35
939 root 1.8 my $cb = sub {
940     my $len = syswrite $self->{fh}, $self->{wbuf};
941    
942 root 1.146 if (defined $len) {
943 root 1.8 substr $self->{wbuf}, 0, $len, "";
944    
945 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
946 root 1.43
947 root 1.8 $self->{on_drain}($self)
948 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
949 root 1.8 && $self->{on_drain};
950    
951 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
952 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
953 root 1.52 $self->_error ($!, 1);
954 elmex 1.1 }
955 root 1.8 };
956    
957 root 1.35 # try to write data immediately
958 root 1.70 $cb->() unless $self->{autocork};
959 root 1.8
960 root 1.35 # if still data left in wbuf, we need to poll
961 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
962 root 1.35 if length $self->{wbuf};
963 root 1.209
964     if (
965     defined $self->{wbuf_max}
966     && $self->{wbuf_max} < length $self->{wbuf}
967     ) {
968     $self->_error (Errno::ENOSPC, 1), return;
969     }
970 root 1.8 };
971     }
972    
973 root 1.30 our %WH;
974    
975 root 1.185 # deprecated
976 root 1.30 sub register_write_type($$) {
977     $WH{$_[0]} = $_[1];
978     }
979    
980 root 1.17 sub push_write {
981     my $self = shift;
982    
983 root 1.29 if (@_ > 1) {
984     my $type = shift;
985    
986 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
987     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
988 root 1.29 ->($self, @_);
989     }
990    
991 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
992     # and diagnose the problem earlier and better.
993    
994 root 1.93 if ($self->{tls}) {
995 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
996 root 1.160 &_dotls ($self) if $self->{fh};
997 root 1.17 } else {
998 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
999 root 1.159 $self->_drain_wbuf if $self->{fh};
1000 root 1.17 }
1001     }
1002    
1003 root 1.29 =item $handle->push_write (type => @args)
1004    
1005 root 1.185 Instead of formatting your data yourself, you can also let this module
1006     do the job by specifying a type and type-specific arguments. You
1007     can also specify the (fully qualified) name of a package, in which
1008     case AnyEvent tries to load the package and then expects to find the
1009 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
1010 root 1.29
1011 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1012     drop by and tell us):
1013 root 1.29
1014     =over 4
1015    
1016     =item netstring => $string
1017    
1018     Formats the given value as netstring
1019     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1020    
1021     =cut
1022    
1023     register_write_type netstring => sub {
1024     my ($self, $string) = @_;
1025    
1026 root 1.96 (length $string) . ":$string,"
1027 root 1.29 };
1028    
1029 root 1.61 =item packstring => $format, $data
1030    
1031     An octet string prefixed with an encoded length. The encoding C<$format>
1032     uses the same format as a Perl C<pack> format, but must specify a single
1033     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1034     optional C<!>, C<< < >> or C<< > >> modifier).
1035    
1036     =cut
1037    
1038     register_write_type packstring => sub {
1039     my ($self, $format, $string) = @_;
1040    
1041 root 1.65 pack "$format/a*", $string
1042 root 1.61 };
1043    
1044 root 1.39 =item json => $array_or_hashref
1045    
1046 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1047     provide your own JSON object, this means it will be encoded to JSON text
1048     in UTF-8.
1049    
1050     JSON objects (and arrays) are self-delimiting, so you can write JSON at
1051     one end of a handle and read them at the other end without using any
1052     additional framing.
1053    
1054 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
1055     this module doesn't need delimiters after or between JSON texts to be
1056     able to read them, many other languages depend on that.
1057    
1058     A simple RPC protocol that interoperates easily with others is to send
1059     JSON arrays (or objects, although arrays are usually the better choice as
1060     they mimic how function argument passing works) and a newline after each
1061     JSON text:
1062    
1063     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1064     $handle->push_write ("\012");
1065    
1066     An AnyEvent::Handle receiver would simply use the C<json> read type and
1067     rely on the fact that the newline will be skipped as leading whitespace:
1068    
1069     $handle->push_read (json => sub { my $array = $_[1]; ... });
1070    
1071     Other languages could read single lines terminated by a newline and pass
1072     this line into their JSON decoder of choice.
1073    
1074 root 1.40 =cut
1075    
1076 root 1.179 sub json_coder() {
1077     eval { require JSON::XS; JSON::XS->new->utf8 }
1078     || do { require JSON; JSON->new->utf8 }
1079     }
1080    
1081 root 1.40 register_write_type json => sub {
1082     my ($self, $ref) = @_;
1083    
1084 root 1.179 my $json = $self->{json} ||= json_coder;
1085 root 1.40
1086 root 1.179 $json->encode ($ref)
1087 root 1.40 };
1088    
1089 root 1.63 =item storable => $reference
1090    
1091     Freezes the given reference using L<Storable> and writes it to the
1092     handle. Uses the C<nfreeze> format.
1093    
1094     =cut
1095    
1096     register_write_type storable => sub {
1097     my ($self, $ref) = @_;
1098    
1099 root 1.224 require Storable unless $Storable::VERSION;
1100 root 1.63
1101 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1102 root 1.63 };
1103    
1104 root 1.53 =back
1105    
1106 root 1.133 =item $handle->push_shutdown
1107    
1108     Sometimes you know you want to close the socket after writing your data
1109     before it was actually written. One way to do that is to replace your
1110 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1111     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1112     replaces the C<on_drain> callback with:
1113 root 1.133
1114 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1115 root 1.133
1116     This simply shuts down the write side and signals an EOF condition to the
1117     the peer.
1118    
1119     You can rely on the normal read queue and C<on_eof> handling
1120     afterwards. This is the cleanest way to close a connection.
1121    
1122 root 1.193 This method may invoke callbacks (and therefore the handle might be
1123     destroyed after it returns).
1124    
1125 root 1.133 =cut
1126    
1127     sub push_shutdown {
1128 root 1.142 my ($self) = @_;
1129    
1130     delete $self->{low_water_mark};
1131     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1132 root 1.133 }
1133    
1134 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1135    
1136     Instead of one of the predefined types, you can also specify the name of
1137     a package. AnyEvent will try to load the package and then expects to find
1138     a function named C<anyevent_write_type> inside. If it isn't found, it
1139     progressively tries to load the parent package until it either finds the
1140     function (good) or runs out of packages (bad).
1141    
1142     Whenever the given C<type> is used, C<push_write> will the function with
1143     the handle object and the remaining arguments.
1144    
1145     The function is supposed to return a single octet string that will be
1146 root 1.223 appended to the write buffer, so you can mentally treat this function as a
1147 root 1.185 "arguments to on-the-wire-format" converter.
1148 root 1.30
1149 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1150     arguments using the first one.
1151 root 1.29
1152 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1153 root 1.29
1154 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1155     # the "My" modules to be auto-loaded, or just about anywhere when the
1156     # My::Type::anyevent_write_type is defined before invoking it.
1157    
1158     package My::Type;
1159    
1160     sub anyevent_write_type {
1161     my ($handle, $delim, @args) = @_;
1162    
1163     join $delim, @args
1164     }
1165 root 1.29
1166 root 1.30 =cut
1167 root 1.29
1168 root 1.8 #############################################################################
1169    
1170 root 1.9 =back
1171    
1172     =head2 READ QUEUE
1173    
1174     AnyEvent::Handle manages two queues per handle, one for writing and one
1175     for reading.
1176    
1177     The read queue is more complex than the write queue. It can be used in two
1178     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1179     a queue.
1180    
1181     In the simple case, you just install an C<on_read> callback and whenever
1182     new data arrives, it will be called. You can then remove some data (if
1183 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1184 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1185 root 1.197 partial message has been received so far), or change the read queue with
1186     e.g. C<push_read>.
1187 root 1.9
1188     In the more complex case, you want to queue multiple callbacks. In this
1189     case, AnyEvent::Handle will call the first queued callback each time new
1190 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1191 root 1.61 done its job (see C<push_read>, below).
1192 root 1.9
1193     This way you can, for example, push three line-reads, followed by reading
1194     a chunk of data, and AnyEvent::Handle will execute them in order.
1195    
1196     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1197     the specified number of bytes which give an XML datagram.
1198    
1199     # in the default state, expect some header bytes
1200     $handle->on_read (sub {
1201     # some data is here, now queue the length-header-read (4 octets)
1202 root 1.52 shift->unshift_read (chunk => 4, sub {
1203 root 1.9 # header arrived, decode
1204     my $len = unpack "N", $_[1];
1205    
1206     # now read the payload
1207 root 1.52 shift->unshift_read (chunk => $len, sub {
1208 root 1.9 my $xml = $_[1];
1209     # handle xml
1210     });
1211     });
1212     });
1213    
1214 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1215     and another line or "ERROR" for the first request that is sent, and 64
1216     bytes for the second request. Due to the availability of a queue, we can
1217     just pipeline sending both requests and manipulate the queue as necessary
1218     in the callbacks.
1219    
1220     When the first callback is called and sees an "OK" response, it will
1221     C<unshift> another line-read. This line-read will be queued I<before> the
1222     64-byte chunk callback.
1223 root 1.9
1224 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1225 root 1.9 $handle->push_write ("request 1\015\012");
1226    
1227     # we expect "ERROR" or "OK" as response, so push a line read
1228 root 1.52 $handle->push_read (line => sub {
1229 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1230     # so it will be read before the second request reads its 64 bytes
1231     # which are already in the queue when this callback is called
1232     # we don't do this in case we got an error
1233     if ($_[1] eq "OK") {
1234 root 1.52 $_[0]->unshift_read (line => sub {
1235 root 1.9 my $response = $_[1];
1236     ...
1237     });
1238     }
1239     });
1240    
1241 root 1.69 # request two, simply returns 64 octets
1242 root 1.9 $handle->push_write ("request 2\015\012");
1243    
1244     # simply read 64 bytes, always
1245 root 1.52 $handle->push_read (chunk => 64, sub {
1246 root 1.9 my $response = $_[1];
1247     ...
1248     });
1249    
1250     =over 4
1251    
1252 root 1.10 =cut
1253    
1254 root 1.8 sub _drain_rbuf {
1255     my ($self) = @_;
1256 elmex 1.1
1257 root 1.159 # avoid recursion
1258 root 1.167 return if $self->{_skip_drain_rbuf};
1259 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1260 root 1.59
1261     while () {
1262 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1263     # we are draining the buffer, and this can only happen with TLS.
1264 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1265     if exists $self->{_tls_rbuf};
1266 root 1.115
1267 root 1.59 my $len = length $self->{rbuf};
1268 elmex 1.1
1269 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1270 root 1.29 unless ($cb->($self)) {
1271 root 1.163 # no progress can be made
1272     # (not enough data and no data forthcoming)
1273     $self->_error (Errno::EPIPE, 1), return
1274     if $self->{_eof};
1275 root 1.10
1276 root 1.38 unshift @{ $self->{_queue} }, $cb;
1277 root 1.55 last;
1278 root 1.8 }
1279     } elsif ($self->{on_read}) {
1280 root 1.61 last unless $len;
1281    
1282 root 1.8 $self->{on_read}($self);
1283    
1284     if (
1285 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1286     && !@{ $self->{_queue} } # and the queue is still empty
1287     && $self->{on_read} # but we still have on_read
1288 root 1.8 ) {
1289 root 1.55 # no further data will arrive
1290     # so no progress can be made
1291 root 1.150 $self->_error (Errno::EPIPE, 1), return
1292 root 1.55 if $self->{_eof};
1293    
1294     last; # more data might arrive
1295 elmex 1.1 }
1296 root 1.8 } else {
1297     # read side becomes idle
1298 root 1.93 delete $self->{_rw} unless $self->{tls};
1299 root 1.55 last;
1300 root 1.8 }
1301     }
1302    
1303 root 1.80 if ($self->{_eof}) {
1304 root 1.163 $self->{on_eof}
1305     ? $self->{on_eof}($self)
1306     : $self->_error (0, 1, "Unexpected end-of-file");
1307    
1308     return;
1309 root 1.80 }
1310 root 1.55
1311 root 1.169 if (
1312     defined $self->{rbuf_max}
1313     && $self->{rbuf_max} < length $self->{rbuf}
1314     ) {
1315     $self->_error (Errno::ENOSPC, 1), return;
1316     }
1317    
1318 root 1.55 # may need to restart read watcher
1319     unless ($self->{_rw}) {
1320     $self->start_read
1321     if $self->{on_read} || @{ $self->{_queue} };
1322     }
1323 elmex 1.1 }
1324    
1325 root 1.8 =item $handle->on_read ($cb)
1326 elmex 1.1
1327 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1328     the new callback is C<undef>). See the description of C<on_read> in the
1329     constructor.
1330 elmex 1.1
1331 root 1.193 This method may invoke callbacks (and therefore the handle might be
1332     destroyed after it returns).
1333    
1334 root 1.8 =cut
1335    
1336     sub on_read {
1337     my ($self, $cb) = @_;
1338 elmex 1.1
1339 root 1.8 $self->{on_read} = $cb;
1340 root 1.159 $self->_drain_rbuf if $cb;
1341 elmex 1.1 }
1342    
1343 root 1.8 =item $handle->rbuf
1344    
1345 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1346     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1347     much faster, and no less clean).
1348    
1349     The only operation allowed on the read buffer (apart from looking at it)
1350     is removing data from its beginning. Otherwise modifying or appending to
1351     it is not allowed and will lead to hard-to-track-down bugs.
1352    
1353     NOTE: The read buffer should only be used or modified in the C<on_read>
1354     callback or when C<push_read> or C<unshift_read> are used with a single
1355     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1356     will manage the read buffer on their own.
1357 elmex 1.1
1358     =cut
1359    
1360 elmex 1.2 sub rbuf : lvalue {
1361 root 1.8 $_[0]{rbuf}
1362 elmex 1.2 }
1363 elmex 1.1
1364 root 1.8 =item $handle->push_read ($cb)
1365    
1366     =item $handle->unshift_read ($cb)
1367    
1368     Append the given callback to the end of the queue (C<push_read>) or
1369     prepend it (C<unshift_read>).
1370    
1371     The callback is called each time some additional read data arrives.
1372 elmex 1.1
1373 elmex 1.20 It must check whether enough data is in the read buffer already.
1374 elmex 1.1
1375 root 1.8 If not enough data is available, it must return the empty list or a false
1376     value, in which case it will be called repeatedly until enough data is
1377     available (or an error condition is detected).
1378    
1379     If enough data was available, then the callback must remove all data it is
1380     interested in (which can be none at all) and return a true value. After returning
1381     true, it will be removed from the queue.
1382 elmex 1.1
1383 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1384     destroyed after it returns).
1385    
1386 elmex 1.1 =cut
1387    
1388 root 1.30 our %RH;
1389    
1390     sub register_read_type($$) {
1391     $RH{$_[0]} = $_[1];
1392     }
1393    
1394 root 1.8 sub push_read {
1395 root 1.28 my $self = shift;
1396     my $cb = pop;
1397    
1398     if (@_) {
1399     my $type = shift;
1400    
1401 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1402     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1403 root 1.28 ->($self, $cb, @_);
1404     }
1405 elmex 1.1
1406 root 1.38 push @{ $self->{_queue} }, $cb;
1407 root 1.159 $self->_drain_rbuf;
1408 elmex 1.1 }
1409    
1410 root 1.8 sub unshift_read {
1411 root 1.28 my $self = shift;
1412     my $cb = pop;
1413    
1414     if (@_) {
1415     my $type = shift;
1416    
1417 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1418     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1419 root 1.28 ->($self, $cb, @_);
1420     }
1421    
1422 root 1.38 unshift @{ $self->{_queue} }, $cb;
1423 root 1.159 $self->_drain_rbuf;
1424 root 1.8 }
1425 elmex 1.1
1426 root 1.28 =item $handle->push_read (type => @args, $cb)
1427 elmex 1.1
1428 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1429 elmex 1.1
1430 root 1.28 Instead of providing a callback that parses the data itself you can chose
1431     between a number of predefined parsing formats, for chunks of data, lines
1432 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1433     which case AnyEvent tries to load the package and then expects to find the
1434     C<anyevent_read_type> function inside (see "custom read types", below).
1435 elmex 1.1
1436 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1437     drop by and tell us):
1438 root 1.28
1439     =over 4
1440    
1441 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1442 root 1.28
1443     Invoke the callback only once C<$octets> bytes have been read. Pass the
1444     data read to the callback. The callback will never be called with less
1445     data.
1446    
1447     Example: read 2 bytes.
1448    
1449     $handle->push_read (chunk => 2, sub {
1450 root 1.225 say "yay " . unpack "H*", $_[1];
1451 root 1.28 });
1452 elmex 1.1
1453     =cut
1454    
1455 root 1.28 register_read_type chunk => sub {
1456     my ($self, $cb, $len) = @_;
1457 elmex 1.1
1458 root 1.8 sub {
1459     $len <= length $_[0]{rbuf} or return;
1460 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1461 root 1.8 1
1462     }
1463 root 1.28 };
1464 root 1.8
1465 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1466 elmex 1.1
1467 root 1.8 The callback will be called only once a full line (including the end of
1468     line marker, C<$eol>) has been read. This line (excluding the end of line
1469     marker) will be passed to the callback as second argument (C<$line>), and
1470     the end of line marker as the third argument (C<$eol>).
1471 elmex 1.1
1472 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1473     will be interpreted as a fixed record end marker, or it can be a regex
1474     object (e.g. created by C<qr>), in which case it is interpreted as a
1475     regular expression.
1476 elmex 1.1
1477 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1478     undef), then C<qr|\015?\012|> is used (which is good for most internet
1479     protocols).
1480 elmex 1.1
1481 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1482     not marked by the end of line marker.
1483 elmex 1.1
1484 root 1.8 =cut
1485 elmex 1.1
1486 root 1.28 register_read_type line => sub {
1487     my ($self, $cb, $eol) = @_;
1488 elmex 1.1
1489 root 1.76 if (@_ < 3) {
1490 root 1.237 # this is faster then the generic code below
1491 root 1.76 sub {
1492 root 1.237 (my $pos = index $_[0]{rbuf}, "\012") >= 0
1493     or return;
1494 elmex 1.1
1495 root 1.237 (my $str = substr $_[0]{rbuf}, 0, $pos + 1, "") =~ s/(\015?\012)\Z// or die;
1496     $cb->($_[0], $str, "$1");
1497 root 1.76 1
1498     }
1499     } else {
1500     $eol = quotemeta $eol unless ref $eol;
1501     $eol = qr|^(.*?)($eol)|s;
1502    
1503     sub {
1504     $_[0]{rbuf} =~ s/$eol// or return;
1505 elmex 1.1
1506 root 1.227 $cb->($_[0], "$1", "$2");
1507 root 1.76 1
1508     }
1509 root 1.8 }
1510 root 1.28 };
1511 elmex 1.1
1512 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1513 root 1.36
1514     Makes a regex match against the regex object C<$accept> and returns
1515     everything up to and including the match.
1516    
1517     Example: read a single line terminated by '\n'.
1518    
1519     $handle->push_read (regex => qr<\n>, sub { ... });
1520    
1521     If C<$reject> is given and not undef, then it determines when the data is
1522     to be rejected: it is matched against the data when the C<$accept> regex
1523     does not match and generates an C<EBADMSG> error when it matches. This is
1524     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1525     receive buffer overflow).
1526    
1527     Example: expect a single decimal number followed by whitespace, reject
1528     anything else (not the use of an anchor).
1529    
1530     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1531    
1532     If C<$skip> is given and not C<undef>, then it will be matched against
1533     the receive buffer when neither C<$accept> nor C<$reject> match,
1534     and everything preceding and including the match will be accepted
1535     unconditionally. This is useful to skip large amounts of data that you
1536     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1537     have to start matching from the beginning. This is purely an optimisation
1538 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1539 root 1.36
1540     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1541 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1542 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1543     it only accepts something not ending in either \015 or \012, as these are
1544     required for the accept regex.
1545    
1546     $handle->push_read (regex =>
1547     qr<\015\012\015\012>,
1548     undef, # no reject
1549     qr<^.*[^\015\012]>,
1550     sub { ... });
1551    
1552     =cut
1553    
1554     register_read_type regex => sub {
1555     my ($self, $cb, $accept, $reject, $skip) = @_;
1556    
1557     my $data;
1558     my $rbuf = \$self->{rbuf};
1559    
1560     sub {
1561     # accept
1562     if ($$rbuf =~ $accept) {
1563     $data .= substr $$rbuf, 0, $+[0], "";
1564 root 1.220 $cb->($_[0], $data);
1565 root 1.36 return 1;
1566     }
1567    
1568     # reject
1569     if ($reject && $$rbuf =~ $reject) {
1570 root 1.220 $_[0]->_error (Errno::EBADMSG);
1571 root 1.36 }
1572    
1573     # skip
1574     if ($skip && $$rbuf =~ $skip) {
1575     $data .= substr $$rbuf, 0, $+[0], "";
1576     }
1577    
1578     ()
1579     }
1580     };
1581    
1582 root 1.61 =item netstring => $cb->($handle, $string)
1583    
1584     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1585    
1586     Throws an error with C<$!> set to EBADMSG on format violations.
1587    
1588     =cut
1589    
1590     register_read_type netstring => sub {
1591     my ($self, $cb) = @_;
1592    
1593     sub {
1594     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1595     if ($_[0]{rbuf} =~ /[^0-9]/) {
1596 root 1.220 $_[0]->_error (Errno::EBADMSG);
1597 root 1.61 }
1598     return;
1599     }
1600    
1601     my $len = $1;
1602    
1603 root 1.220 $_[0]->unshift_read (chunk => $len, sub {
1604 root 1.61 my $string = $_[1];
1605     $_[0]->unshift_read (chunk => 1, sub {
1606     if ($_[1] eq ",") {
1607     $cb->($_[0], $string);
1608     } else {
1609 root 1.220 $_[0]->_error (Errno::EBADMSG);
1610 root 1.61 }
1611     });
1612     });
1613    
1614     1
1615     }
1616     };
1617    
1618     =item packstring => $format, $cb->($handle, $string)
1619    
1620     An octet string prefixed with an encoded length. The encoding C<$format>
1621     uses the same format as a Perl C<pack> format, but must specify a single
1622     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1623     optional C<!>, C<< < >> or C<< > >> modifier).
1624    
1625 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1626     EPP uses a prefix of C<N> (4 octtes).
1627 root 1.61
1628     Example: read a block of data prefixed by its length in BER-encoded
1629     format (very efficient).
1630    
1631     $handle->push_read (packstring => "w", sub {
1632     my ($handle, $data) = @_;
1633     });
1634    
1635     =cut
1636    
1637     register_read_type packstring => sub {
1638     my ($self, $cb, $format) = @_;
1639    
1640     sub {
1641     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1642 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1643 root 1.61 or return;
1644    
1645 root 1.77 $format = length pack $format, $len;
1646 root 1.61
1647 root 1.77 # bypass unshift if we already have the remaining chunk
1648     if ($format + $len <= length $_[0]{rbuf}) {
1649     my $data = substr $_[0]{rbuf}, $format, $len;
1650     substr $_[0]{rbuf}, 0, $format + $len, "";
1651     $cb->($_[0], $data);
1652     } else {
1653     # remove prefix
1654     substr $_[0]{rbuf}, 0, $format, "";
1655    
1656     # read remaining chunk
1657     $_[0]->unshift_read (chunk => $len, $cb);
1658     }
1659 root 1.61
1660     1
1661     }
1662     };
1663    
1664 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1665    
1666 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1667     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1668 root 1.40
1669     If a C<json> object was passed to the constructor, then that will be used
1670     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1671    
1672     This read type uses the incremental parser available with JSON version
1673     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1674     dependency on your own: this module will load the JSON module, but
1675     AnyEvent does not depend on it itself.
1676    
1677     Since JSON texts are fully self-delimiting, the C<json> read and write
1678 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1679     the C<json> write type description, above, for an actual example.
1680 root 1.40
1681     =cut
1682    
1683     register_read_type json => sub {
1684 root 1.63 my ($self, $cb) = @_;
1685 root 1.40
1686 root 1.179 my $json = $self->{json} ||= json_coder;
1687 root 1.40
1688     my $data;
1689     my $rbuf = \$self->{rbuf};
1690    
1691     sub {
1692 root 1.220 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1693 root 1.110
1694 root 1.113 if ($ref) {
1695 root 1.220 $_[0]{rbuf} = $json->incr_text;
1696 root 1.113 $json->incr_text = "";
1697 root 1.220 $cb->($_[0], $ref);
1698 root 1.110
1699     1
1700 root 1.113 } elsif ($@) {
1701 root 1.111 # error case
1702 root 1.110 $json->incr_skip;
1703 root 1.40
1704 root 1.220 $_[0]{rbuf} = $json->incr_text;
1705 root 1.40 $json->incr_text = "";
1706    
1707 root 1.220 $_[0]->_error (Errno::EBADMSG);
1708 root 1.114
1709 root 1.113 ()
1710     } else {
1711 root 1.220 $_[0]{rbuf} = "";
1712 root 1.114
1713 root 1.113 ()
1714     }
1715 root 1.40 }
1716     };
1717    
1718 root 1.63 =item storable => $cb->($handle, $ref)
1719    
1720     Deserialises a L<Storable> frozen representation as written by the
1721     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1722     data).
1723    
1724     Raises C<EBADMSG> error if the data could not be decoded.
1725    
1726     =cut
1727    
1728     register_read_type storable => sub {
1729     my ($self, $cb) = @_;
1730    
1731 root 1.224 require Storable unless $Storable::VERSION;
1732 root 1.63
1733     sub {
1734     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1735 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1736 root 1.63 or return;
1737    
1738 root 1.77 my $format = length pack "w", $len;
1739 root 1.63
1740 root 1.77 # bypass unshift if we already have the remaining chunk
1741     if ($format + $len <= length $_[0]{rbuf}) {
1742     my $data = substr $_[0]{rbuf}, $format, $len;
1743     substr $_[0]{rbuf}, 0, $format + $len, "";
1744 root 1.232
1745     eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1746     or return $_[0]->_error (Errno::EBADMSG);
1747 root 1.77 } else {
1748     # remove prefix
1749     substr $_[0]{rbuf}, 0, $format, "";
1750    
1751     # read remaining chunk
1752     $_[0]->unshift_read (chunk => $len, sub {
1753 root 1.232 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1754     or $_[0]->_error (Errno::EBADMSG);
1755 root 1.77 });
1756     }
1757    
1758     1
1759 root 1.63 }
1760     };
1761    
1762 root 1.236 =item tls_detect => $cb->($handle, $detect, $major, $minor)
1763    
1764     Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1765     record without consuming anything. Only SSL version 3 or higher
1766     is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1767     SSL2-compatible framing is supported).
1768    
1769     If it detects that the input data is likely TLS, it calls the callback
1770     with a true value for C<$detect> and the (on-wire) TLS version as second
1771     and third argument (C<$major> is C<3>, and C<$minor> is 0..3 for SSL
1772     3.0, TLS 1.0, 1.1 and 1.2, respectively). If it detects the input to
1773     be definitely not TLS, it calls the callback with a false value for
1774     C<$detect>.
1775    
1776     The callback could use this information to decide whether or not to start
1777     TLS negotiation.
1778    
1779     In all cases the data read so far is passed to the following read
1780     handlers.
1781    
1782     Usually you want to use the C<tls_autostart> read type instead.
1783    
1784     If you want to design a protocol that works in the presence of TLS
1785     dtection, make sure that any non-TLS data doesn't start with the octet 22
1786     (ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1787     read type does are a bit more strict, but might losen in the future to
1788     accomodate protocol changes.
1789    
1790     This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1791     L<Net::SSLeay>).
1792    
1793     =item tls_autostart => $tls[, $tls_ctx]
1794    
1795     Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1796     to start tls by calling C<starttls> with the given arguments.
1797    
1798     In practise, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1799     been configured to accept, as servers do not normally send a handshake on
1800     their own and ths cannot be detected in this way.
1801    
1802     See C<tls_detect> above for more details.
1803    
1804     Example: give the client a chance to start TLS before accepting a text
1805     line.
1806    
1807     $hdl->push_read (tls_detect => "accept");
1808     $hdl->push_read (line => sub {
1809     print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1810     });
1811    
1812     =cut
1813    
1814     register_read_type tls_detect => sub {
1815     my ($self, $cb) = @_;
1816    
1817     sub {
1818     # this regex matches a full or partial tls record
1819     if (
1820     # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1821     $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1822     # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1823     or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1824     ) {
1825     return if 3 != length $1; # partial match, can't decide yet
1826    
1827     # full match, valid TLS record
1828     my ($major, $minor) = unpack "CC", $1;
1829     $cb->($self, "accept", $major + $minor * 0.1);
1830     } else {
1831     # mismatch == guaranteed not TLS
1832     $cb->($self, undef);
1833     }
1834    
1835     1
1836     }
1837     };
1838    
1839     register_read_type tls_autostart => sub {
1840     my ($self, @tls) = @_;
1841    
1842     $RH{tls_detect}($self, sub {
1843     return unless $_[1];
1844     $_[0]->starttls (@tls);
1845     })
1846     };
1847    
1848 root 1.28 =back
1849    
1850 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1851 root 1.30
1852 root 1.185 Instead of one of the predefined types, you can also specify the name
1853     of a package. AnyEvent will try to load the package and then expects to
1854     find a function named C<anyevent_read_type> inside. If it isn't found, it
1855     progressively tries to load the parent package until it either finds the
1856     function (good) or runs out of packages (bad).
1857    
1858     Whenever this type is used, C<push_read> will invoke the function with the
1859     handle object, the original callback and the remaining arguments.
1860    
1861     The function is supposed to return a callback (usually a closure) that
1862     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1863     mentally treat the function as a "configurable read type to read callback"
1864     converter.
1865    
1866     It should invoke the original callback when it is done reading (remember
1867     to pass C<$handle> as first argument as all other callbacks do that,
1868     although there is no strict requirement on this).
1869 root 1.30
1870 root 1.185 For examples, see the source of this module (F<perldoc -m
1871     AnyEvent::Handle>, search for C<register_read_type>)).
1872 root 1.30
1873 root 1.10 =item $handle->stop_read
1874    
1875     =item $handle->start_read
1876    
1877 root 1.18 In rare cases you actually do not want to read anything from the
1878 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1879 root 1.22 any queued callbacks will be executed then. To start reading again, call
1880 root 1.10 C<start_read>.
1881    
1882 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1883     you change the C<on_read> callback or push/unshift a read callback, and it
1884     will automatically C<stop_read> for you when neither C<on_read> is set nor
1885     there are any read requests in the queue.
1886    
1887 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1888     as TLS does not support half-duplex connections. In current versions they
1889     work as expected, as this behaviour is required to avoid certain resource
1890     attacks, where the program would be forced to read (and buffer) arbitrary
1891     amounts of data before being able to send some data. The drawback is that
1892     some readings of the the SSL/TLS specifications basically require this
1893     attack to be working, as SSL/TLS implementations might stall sending data
1894     during a rehandshake.
1895    
1896     As a guideline, during the initial handshake, you should not stop reading,
1897 root 1.226 and as a client, it might cause problems, depending on your application.
1898 root 1.93
1899 root 1.10 =cut
1900    
1901     sub stop_read {
1902     my ($self) = @_;
1903 elmex 1.1
1904 root 1.213 delete $self->{_rw};
1905 root 1.8 }
1906 elmex 1.1
1907 root 1.10 sub start_read {
1908     my ($self) = @_;
1909    
1910 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1911 root 1.10 Scalar::Util::weaken $self;
1912    
1913 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1914 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1915 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
1916 root 1.10
1917     if ($len > 0) {
1918 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1919 root 1.43
1920 root 1.93 if ($self->{tls}) {
1921     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1922 root 1.97
1923 root 1.93 &_dotls ($self);
1924     } else {
1925 root 1.159 $self->_drain_rbuf;
1926 root 1.93 }
1927 root 1.10
1928 root 1.203 if ($len == $self->{read_size}) {
1929     $self->{read_size} *= 2;
1930     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
1931     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
1932     }
1933    
1934 root 1.10 } elsif (defined $len) {
1935 root 1.38 delete $self->{_rw};
1936     $self->{_eof} = 1;
1937 root 1.159 $self->_drain_rbuf;
1938 root 1.10
1939 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1940 root 1.52 return $self->_error ($!, 1);
1941 root 1.10 }
1942 root 1.175 };
1943 root 1.10 }
1944 elmex 1.1 }
1945    
1946 root 1.133 our $ERROR_SYSCALL;
1947     our $ERROR_WANT_READ;
1948    
1949     sub _tls_error {
1950     my ($self, $err) = @_;
1951    
1952     return $self->_error ($!, 1)
1953     if $err == Net::SSLeay::ERROR_SYSCALL ();
1954    
1955 root 1.233 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1956 root 1.137
1957     # reduce error string to look less scary
1958     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1959    
1960 root 1.143 if ($self->{_on_starttls}) {
1961     (delete $self->{_on_starttls})->($self, undef, $err);
1962     &_freetls;
1963     } else {
1964     &_freetls;
1965 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1966 root 1.143 }
1967 root 1.133 }
1968    
1969 root 1.97 # poll the write BIO and send the data if applicable
1970 root 1.133 # also decode read data if possible
1971     # this is basiclaly our TLS state machine
1972     # more efficient implementations are possible with openssl,
1973     # but not with the buggy and incomplete Net::SSLeay.
1974 root 1.19 sub _dotls {
1975     my ($self) = @_;
1976    
1977 root 1.97 my $tmp;
1978 root 1.56
1979 root 1.38 if (length $self->{_tls_wbuf}) {
1980 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1981     substr $self->{_tls_wbuf}, 0, $tmp, "";
1982 root 1.22 }
1983 root 1.133
1984     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1985     return $self->_tls_error ($tmp)
1986     if $tmp != $ERROR_WANT_READ
1987 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1988 root 1.19 }
1989    
1990 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1991     unless (length $tmp) {
1992 root 1.143 $self->{_on_starttls}
1993     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1994 root 1.92 &_freetls;
1995 root 1.143
1996 root 1.142 if ($self->{on_stoptls}) {
1997     $self->{on_stoptls}($self);
1998     return;
1999     } else {
2000     # let's treat SSL-eof as we treat normal EOF
2001     delete $self->{_rw};
2002     $self->{_eof} = 1;
2003     }
2004 root 1.56 }
2005 root 1.91
2006 root 1.116 $self->{_tls_rbuf} .= $tmp;
2007 root 1.159 $self->_drain_rbuf;
2008 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
2009 root 1.23 }
2010    
2011 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
2012 root 1.133 return $self->_tls_error ($tmp)
2013     if $tmp != $ERROR_WANT_READ
2014 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
2015 root 1.91
2016 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
2017     $self->{wbuf} .= $tmp;
2018 root 1.91 $self->_drain_wbuf;
2019 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
2020 root 1.91 }
2021 root 1.142
2022     $self->{_on_starttls}
2023     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
2024 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
2025 root 1.19 }
2026    
2027 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
2028    
2029     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
2030     object is created, you can also do that at a later time by calling
2031 root 1.234 C<starttls>. See the C<tls> constructor argument for general info.
2032 root 1.25
2033 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
2034     write data and then call C<< ->starttls >> then TLS negotiation will start
2035 root 1.234 immediately, after which the queued write data is then sent. This might
2036     change in future versions, so best make sure you have no outstanding write
2037     data when calling this method.
2038 root 1.157
2039 root 1.25 The first argument is the same as the C<tls> constructor argument (either
2040     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
2041    
2042 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
2043     when AnyEvent::Handle has to create its own TLS connection object, or
2044     a hash reference with C<< key => value >> pairs that will be used to
2045     construct a new context.
2046    
2047     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
2048     context in C<< $handle->{tls_ctx} >> after this call and can be used or
2049     changed to your liking. Note that the handshake might have already started
2050     when this function returns.
2051 root 1.38
2052 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
2053 root 1.198 handshakes on the same stream. It is best to not attempt to use the
2054     stream after stopping TLS.
2055 root 1.92
2056 root 1.193 This method may invoke callbacks (and therefore the handle might be
2057     destroyed after it returns).
2058    
2059 root 1.25 =cut
2060    
2061 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
2062    
2063 root 1.19 sub starttls {
2064 root 1.160 my ($self, $tls, $ctx) = @_;
2065    
2066     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
2067     if $self->{tls};
2068    
2069 root 1.234 unless (defined $AnyEvent::TLS::VERSION) {
2070     eval {
2071     require Net::SSLeay;
2072     require AnyEvent::TLS;
2073     1
2074     } or return $self->_error (Errno::EPROTO, 1, "TLS support not available on this system");
2075     }
2076    
2077 root 1.160 $self->{tls} = $tls;
2078     $self->{tls_ctx} = $ctx if @_ > 2;
2079    
2080     return unless $self->{fh};
2081 root 1.19
2082 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
2083     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
2084 root 1.133
2085 root 1.180 $tls = delete $self->{tls};
2086 root 1.160 $ctx = $self->{tls_ctx};
2087 root 1.131
2088 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
2089    
2090 root 1.131 if ("HASH" eq ref $ctx) {
2091 root 1.137 if ($ctx->{cache}) {
2092     my $key = $ctx+0;
2093     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
2094     } else {
2095     $ctx = new AnyEvent::TLS %$ctx;
2096     }
2097 root 1.131 }
2098 root 1.92
2099 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
2100 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
2101 root 1.19
2102 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
2103     # but the openssl maintainers basically said: "trust us, it just works".
2104     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
2105     # and mismaintained ssleay-module doesn't even offer them).
2106 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2107 root 1.87 #
2108     # in short: this is a mess.
2109     #
2110 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2111 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2112 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2113     # have identity issues in that area.
2114 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
2115     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2116     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2117 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
2118 root 1.21
2119 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2120     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2121 root 1.19
2122 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2123     $self->{rbuf} = "";
2124 root 1.172
2125 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2126 root 1.19
2127 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2128 root 1.143 if $self->{on_starttls};
2129 root 1.142
2130 root 1.93 &_dotls; # need to trigger the initial handshake
2131     $self->start_read; # make sure we actually do read
2132 root 1.19 }
2133    
2134 root 1.25 =item $handle->stoptls
2135    
2136 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2137     sending a close notify to the other side, but since OpenSSL doesn't
2138 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2139 root 1.160 the stream afterwards.
2140 root 1.25
2141 root 1.193 This method may invoke callbacks (and therefore the handle might be
2142     destroyed after it returns).
2143    
2144 root 1.25 =cut
2145    
2146     sub stoptls {
2147     my ($self) = @_;
2148    
2149 root 1.192 if ($self->{tls} && $self->{fh}) {
2150 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2151 root 1.92
2152     &_dotls;
2153    
2154 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2155     # # we, we... have to use openssl :/#d#
2156     # &_freetls;#d#
2157 root 1.92 }
2158     }
2159    
2160     sub _freetls {
2161     my ($self) = @_;
2162    
2163     return unless $self->{tls};
2164 root 1.38
2165 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2166 root 1.171 if $self->{tls} > 0;
2167 root 1.92
2168 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2169 root 1.25 }
2170    
2171 root 1.216 =item $handle->resettls
2172    
2173     This rarely-used method simply resets and TLS state on the handle, usually
2174     causing data loss.
2175    
2176     One case where it may be useful is when you want to skip over the data in
2177     the stream but you are not interested in interpreting it, so data loss is
2178     no concern.
2179    
2180     =cut
2181    
2182     *resettls = \&_freetls;
2183    
2184 root 1.19 sub DESTROY {
2185 root 1.120 my ($self) = @_;
2186 root 1.19
2187 root 1.92 &_freetls;
2188 root 1.62
2189     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2190    
2191 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2192 root 1.62 my $fh = delete $self->{fh};
2193     my $wbuf = delete $self->{wbuf};
2194    
2195     my @linger;
2196    
2197 root 1.175 push @linger, AE::io $fh, 1, sub {
2198 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2199    
2200     if ($len > 0) {
2201     substr $wbuf, 0, $len, "";
2202 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2203 root 1.62 @linger = (); # end
2204     }
2205 root 1.175 };
2206     push @linger, AE::timer $linger, 0, sub {
2207 root 1.62 @linger = ();
2208 root 1.175 };
2209 root 1.62 }
2210 root 1.19 }
2211    
2212 root 1.99 =item $handle->destroy
2213    
2214 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2215 root 1.141 no further callbacks will be invoked and as many resources as possible
2216 root 1.165 will be freed. Any method you will call on the handle object after
2217     destroying it in this way will be silently ignored (and it will return the
2218     empty list).
2219 root 1.99
2220 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2221     object and it will simply shut down. This works in fatal error and EOF
2222     callbacks, as well as code outside. It does I<NOT> work in a read or write
2223     callback, so when you want to destroy the AnyEvent::Handle object from
2224     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2225     that case.
2226    
2227 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2228     will be removed as well, so if those are the only reference holders (as
2229     is common), then one doesn't need to do anything special to break any
2230     reference cycles.
2231    
2232 root 1.99 The handle might still linger in the background and write out remaining
2233     data, as specified by the C<linger> option, however.
2234    
2235     =cut
2236    
2237     sub destroy {
2238     my ($self) = @_;
2239    
2240     $self->DESTROY;
2241     %$self = ();
2242 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2243     }
2244    
2245 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2246     #nop
2247 root 1.99 }
2248    
2249 root 1.192 =item $handle->destroyed
2250    
2251     Returns false as long as the handle hasn't been destroyed by a call to C<<
2252     ->destroy >>, true otherwise.
2253    
2254     Can be useful to decide whether the handle is still valid after some
2255     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2256     C<< ->starttls >> and other methods can call user callbacks, which in turn
2257     can destroy the handle, so work can be avoided by checking sometimes:
2258    
2259     $hdl->starttls ("accept");
2260     return if $hdl->destroyed;
2261     $hdl->push_write (...
2262    
2263     Note that the call to C<push_write> will silently be ignored if the handle
2264     has been destroyed, so often you can just ignore the possibility of the
2265     handle being destroyed.
2266    
2267     =cut
2268    
2269     sub destroyed { 0 }
2270     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2271    
2272 root 1.19 =item AnyEvent::Handle::TLS_CTX
2273    
2274 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2275     for TLS mode.
2276 root 1.19
2277 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2278 root 1.19
2279     =cut
2280    
2281     our $TLS_CTX;
2282    
2283     sub TLS_CTX() {
2284 root 1.131 $TLS_CTX ||= do {
2285     require AnyEvent::TLS;
2286 root 1.19
2287 root 1.131 new AnyEvent::TLS
2288 root 1.19 }
2289     }
2290    
2291 elmex 1.1 =back
2292    
2293 root 1.95
2294     =head1 NONFREQUENTLY ASKED QUESTIONS
2295    
2296     =over 4
2297    
2298 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2299     still get further invocations!
2300    
2301     That's because AnyEvent::Handle keeps a reference to itself when handling
2302     read or write callbacks.
2303    
2304     It is only safe to "forget" the reference inside EOF or error callbacks,
2305     from within all other callbacks, you need to explicitly call the C<<
2306     ->destroy >> method.
2307    
2308 root 1.208 =item Why is my C<on_eof> callback never called?
2309    
2310     Probably because your C<on_error> callback is being called instead: When
2311     you have outstanding requests in your read queue, then an EOF is
2312     considered an error as you clearly expected some data.
2313    
2314     To avoid this, make sure you have an empty read queue whenever your handle
2315 root 1.223 is supposed to be "idle" (i.e. connection closes are O.K.). You can set
2316 root 1.208 an C<on_read> handler that simply pushes the first read requests in the
2317     queue.
2318    
2319     See also the next question, which explains this in a bit more detail.
2320    
2321     =item How can I serve requests in a loop?
2322    
2323     Most protocols consist of some setup phase (authentication for example)
2324     followed by a request handling phase, where the server waits for requests
2325     and handles them, in a loop.
2326    
2327     There are two important variants: The first (traditional, better) variant
2328     handles requests until the server gets some QUIT command, causing it to
2329     close the connection first (highly desirable for a busy TCP server). A
2330     client dropping the connection is an error, which means this variant can
2331     detect an unexpected detection close.
2332    
2333 root 1.235 To handle this case, always make sure you have a non-empty read queue, by
2334 root 1.208 pushing the "read request start" handler on it:
2335    
2336     # we assume a request starts with a single line
2337     my @start_request; @start_request = (line => sub {
2338     my ($hdl, $line) = @_;
2339    
2340     ... handle request
2341    
2342     # push next request read, possibly from a nested callback
2343     $hdl->push_read (@start_request);
2344     });
2345    
2346     # auth done, now go into request handling loop
2347     # now push the first @start_request
2348     $hdl->push_read (@start_request);
2349    
2350     By always having an outstanding C<push_read>, the handle always expects
2351     some data and raises the C<EPIPE> error when the connction is dropped
2352     unexpectedly.
2353    
2354     The second variant is a protocol where the client can drop the connection
2355     at any time. For TCP, this means that the server machine may run out of
2356 root 1.223 sockets easier, and in general, it means you cannot distinguish a protocl
2357 root 1.208 failure/client crash from a normal connection close. Nevertheless, these
2358     kinds of protocols are common (and sometimes even the best solution to the
2359     problem).
2360    
2361     Having an outstanding read request at all times is possible if you ignore
2362     C<EPIPE> errors, but this doesn't help with when the client drops the
2363     connection during a request, which would still be an error.
2364    
2365     A better solution is to push the initial request read in an C<on_read>
2366     callback. This avoids an error, as when the server doesn't expect data
2367     (i.e. is idly waiting for the next request, an EOF will not raise an
2368     error, but simply result in an C<on_eof> callback. It is also a bit slower
2369     and simpler:
2370    
2371     # auth done, now go into request handling loop
2372     $hdl->on_read (sub {
2373     my ($hdl) = @_;
2374    
2375     # called each time we receive data but the read queue is empty
2376     # simply start read the request
2377    
2378     $hdl->push_read (line => sub {
2379     my ($hdl, $line) = @_;
2380    
2381     ... handle request
2382    
2383     # do nothing special when the request has been handled, just
2384     # let the request queue go empty.
2385     });
2386     });
2387    
2388 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2389     reading?
2390    
2391     Unlike, say, TCP, TLS connections do not consist of two independent
2392 root 1.198 communication channels, one for each direction. Or put differently, the
2393 root 1.101 read and write directions are not independent of each other: you cannot
2394     write data unless you are also prepared to read, and vice versa.
2395    
2396 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2397 root 1.101 callback invocations when you are not expecting any read data - the reason
2398     is that AnyEvent::Handle always reads in TLS mode.
2399    
2400     During the connection, you have to make sure that you always have a
2401     non-empty read-queue, or an C<on_read> watcher. At the end of the
2402     connection (or when you no longer want to use it) you can call the
2403     C<destroy> method.
2404    
2405 root 1.95 =item How do I read data until the other side closes the connection?
2406    
2407 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2408     to achieve this is by setting an C<on_read> callback that does nothing,
2409     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2410     will be in C<$_[0]{rbuf}>:
2411 root 1.95
2412     $handle->on_read (sub { });
2413     $handle->on_eof (undef);
2414     $handle->on_error (sub {
2415     my $data = delete $_[0]{rbuf};
2416     });
2417    
2418 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2419     which is not normally allowed by the API. It is expressly permitted in
2420     this case only, as the handle object needs to be destroyed afterwards.
2421    
2422 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2423     and packets loss, might get closed quite violently with an error, when in
2424 root 1.198 fact all data has been received.
2425 root 1.95
2426 root 1.101 It is usually better to use acknowledgements when transferring data,
2427 root 1.95 to make sure the other side hasn't just died and you got the data
2428     intact. This is also one reason why so many internet protocols have an
2429     explicit QUIT command.
2430    
2431 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2432     all data has been written?
2433 root 1.95
2434     After writing your last bits of data, set the C<on_drain> callback
2435     and destroy the handle in there - with the default setting of
2436     C<low_water_mark> this will be called precisely when all data has been
2437     written to the socket:
2438    
2439     $handle->push_write (...);
2440     $handle->on_drain (sub {
2441 root 1.231 AE::log debug => "All data submitted to the kernel.";
2442 root 1.95 undef $handle;
2443     });
2444    
2445 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2446     consider using C<< ->push_shutdown >> instead.
2447    
2448     =item I want to contact a TLS/SSL server, I don't care about security.
2449    
2450     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2451 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2452 root 1.143 parameter:
2453    
2454 root 1.144 tcp_connect $host, $port, sub {
2455     my ($fh) = @_;
2456 root 1.143
2457 root 1.144 my $handle = new AnyEvent::Handle
2458     fh => $fh,
2459     tls => "connect",
2460     on_error => sub { ... };
2461    
2462     $handle->push_write (...);
2463     };
2464 root 1.143
2465     =item I want to contact a TLS/SSL server, I do care about security.
2466    
2467 root 1.144 Then you should additionally enable certificate verification, including
2468     peername verification, if the protocol you use supports it (see
2469     L<AnyEvent::TLS>, C<verify_peername>).
2470    
2471     E.g. for HTTPS:
2472    
2473     tcp_connect $host, $port, sub {
2474     my ($fh) = @_;
2475    
2476     my $handle = new AnyEvent::Handle
2477     fh => $fh,
2478     peername => $host,
2479     tls => "connect",
2480     tls_ctx => { verify => 1, verify_peername => "https" },
2481     ...
2482    
2483     Note that you must specify the hostname you connected to (or whatever
2484     "peername" the protocol needs) as the C<peername> argument, otherwise no
2485     peername verification will be done.
2486    
2487     The above will use the system-dependent default set of trusted CA
2488     certificates. If you want to check against a specific CA, add the
2489     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2490    
2491     tls_ctx => {
2492     verify => 1,
2493     verify_peername => "https",
2494     ca_file => "my-ca-cert.pem",
2495     },
2496    
2497     =item I want to create a TLS/SSL server, how do I do that?
2498    
2499     Well, you first need to get a server certificate and key. You have
2500     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2501     self-signed certificate (cheap. check the search engine of your choice,
2502     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2503     nice program for that purpose).
2504    
2505     Then create a file with your private key (in PEM format, see
2506     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2507     file should then look like this:
2508    
2509     -----BEGIN RSA PRIVATE KEY-----
2510     ...header data
2511     ... lots of base64'y-stuff
2512     -----END RSA PRIVATE KEY-----
2513    
2514     -----BEGIN CERTIFICATE-----
2515     ... lots of base64'y-stuff
2516     -----END CERTIFICATE-----
2517    
2518     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2519     specify this file as C<cert_file>:
2520    
2521     tcp_server undef, $port, sub {
2522     my ($fh) = @_;
2523    
2524     my $handle = new AnyEvent::Handle
2525     fh => $fh,
2526     tls => "accept",
2527     tls_ctx => { cert_file => "my-server-keycert.pem" },
2528     ...
2529 root 1.143
2530 root 1.144 When you have intermediate CA certificates that your clients might not
2531     know about, just append them to the C<cert_file>.
2532 root 1.143
2533 root 1.95 =back
2534    
2535 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2536    
2537     In many cases, you might want to subclass AnyEvent::Handle.
2538    
2539     To make this easier, a given version of AnyEvent::Handle uses these
2540     conventions:
2541    
2542     =over 4
2543    
2544     =item * all constructor arguments become object members.
2545    
2546     At least initially, when you pass a C<tls>-argument to the constructor it
2547 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2548 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2549    
2550     =item * other object member names are prefixed with an C<_>.
2551    
2552     All object members not explicitly documented (internal use) are prefixed
2553     with an underscore character, so the remaining non-C<_>-namespace is free
2554     for use for subclasses.
2555    
2556     =item * all members not documented here and not prefixed with an underscore
2557     are free to use in subclasses.
2558    
2559     Of course, new versions of AnyEvent::Handle may introduce more "public"
2560 root 1.198 member variables, but that's just life. At least it is documented.
2561 root 1.38
2562     =back
2563    
2564 elmex 1.1 =head1 AUTHOR
2565    
2566 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2567 elmex 1.1
2568     =cut
2569    
2570 root 1.230 1
2571