ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.240
Committed: Tue Dec 17 16:43:15 2013 UTC (10 years, 6 months ago) by root
Branch: MAIN
CVS Tags: rel-7_07
Changes since 1.239: +6 -11 lines
Log Message:
json_pp

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16 root 1.233 AE::log error => $msg;
17 root 1.151 $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27 root 1.225 say "got line <$line>";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119 root 1.210 attempted, but after the file handle has been created (you can access that
120     file handle via C<< $handle->{fh} >>). It could be used to prepare the
121     file handle with parameters required for the actual connect (as opposed to
122     settings that can be changed when the connection is already established).
123 root 1.159
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.228 parameters, together with a retry callback. At the time it is called the
134     read and write queues, EOF status, TLS status and similar properties of
135     the handle will have been reset.
136    
137     It is not allowed to use the read or write queues while the handle object
138     is connecting.
139    
140     If, for some reason, the handle is not acceptable, calling C<$retry> will
141     continue with the next connection target (in case of multi-homed hosts or
142     SRV records there can be multiple connection endpoints). The C<$retry>
143     callback can be invoked after the connect callback returns, i.e. one can
144     start a handshake and then decide to retry with the next host if the
145     handshake fails.
146 root 1.159
147 root 1.198 In most cases, you should ignore the C<$retry> parameter.
148 root 1.158
149 root 1.159 =item on_connect_error => $cb->($handle, $message)
150 root 1.10
151 root 1.186 This callback is called when the connection could not be
152 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
153     message describing it (usually the same as C<"$!">).
154 root 1.8
155 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
156     fatal error instead.
157 root 1.82
158 root 1.159 =back
159 root 1.80
160 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
161 root 1.10
162 root 1.52 This is the error callback, which is called when, well, some error
163     occured, such as not being able to resolve the hostname, failure to
164 root 1.198 connect, or a read error.
165 root 1.52
166     Some errors are fatal (which is indicated by C<$fatal> being true). On
167 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
168     destroy >>) after invoking the error callback (which means you are free to
169     examine the handle object). Examples of fatal errors are an EOF condition
170 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
171 root 1.198 cases where the other side can close the connection at will, it is
172 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
173 root 1.82
174 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
175 root 1.233 against, but in some cases (TLS errors), this does not work well.
176    
177     If you report the error to the user, it is recommended to always output
178     the C<$message> argument in human-readable error messages (you don't need
179     to report C<"$!"> if you report C<$message>).
180    
181     If you want to react programmatically to the error, then looking at C<$!>
182     and comparing it against some of the documented C<Errno> values is usually
183     better than looking at the C<$message>.
184 root 1.133
185 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
186 root 1.82 to simply ignore this parameter and instead abondon the handle object
187     when this callback is invoked. Examples of non-fatal errors are timeouts
188     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
189 root 1.8
190 root 1.198 On entry to the callback, the value of C<$!> contains the operating
191     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
192 root 1.133 C<EPROTO>).
193 root 1.8
194 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
195 root 1.198 you will not be notified of errors otherwise. The default just calls
196 root 1.52 C<croak>.
197 root 1.8
198 root 1.40 =item on_read => $cb->($handle)
199 root 1.8
200     This sets the default read callback, which is called when data arrives
201 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
202     callback will only be called when at least one octet of data is in the
203     read buffer).
204 root 1.8
205     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
206 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
207 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
208     the beginning from it.
209 root 1.8
210 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
211     modifies the read queue. Or do both. Or ...
212    
213 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
214 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
215     calling the C<on_eof> callback. If no progress can be made, then a fatal
216     error will be raised (with C<$!> set to C<EPIPE>).
217 elmex 1.1
218 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
219     doesn't mean you I<require> some data: if there is an EOF and there
220     are outstanding read requests then an error will be flagged. With an
221     C<on_read> callback, the C<on_eof> callback will be invoked.
222    
223 root 1.159 =item on_eof => $cb->($handle)
224    
225     Set the callback to be called when an end-of-file condition is detected,
226     i.e. in the case of a socket, when the other side has closed the
227     connection cleanly, and there are no outstanding read requests in the
228     queue (if there are read requests, then an EOF counts as an unexpected
229     connection close and will be flagged as an error).
230    
231     For sockets, this just means that the other side has stopped sending data,
232     you can still try to write data, and, in fact, one can return from the EOF
233     callback and continue writing data, as only the read part has been shut
234     down.
235    
236     If an EOF condition has been detected but no C<on_eof> callback has been
237     set, then a fatal error will be raised with C<$!> set to <0>.
238    
239 root 1.40 =item on_drain => $cb->($handle)
240 elmex 1.1
241 root 1.229 This sets the callback that is called once when the write buffer becomes
242     empty (and immediately when the handle object is created).
243 elmex 1.1
244 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
245 elmex 1.2
246 root 1.69 This callback is useful when you don't want to put all of your write data
247     into the queue at once, for example, when you want to write the contents
248     of some file to the socket you might not want to read the whole file into
249     memory and push it into the queue, but instead only read more data from
250     the file when the write queue becomes empty.
251    
252 root 1.43 =item timeout => $fractional_seconds
253    
254 root 1.176 =item rtimeout => $fractional_seconds
255    
256     =item wtimeout => $fractional_seconds
257    
258     If non-zero, then these enables an "inactivity" timeout: whenever this
259     many seconds pass without a successful read or write on the underlying
260     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
261     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
262     error will be raised).
263    
264 root 1.218 There are three variants of the timeouts that work independently of each
265     other, for both read and write (triggered when nothing was read I<OR>
266     written), just read (triggered when nothing was read), and just write:
267 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
268     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
269     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
270 root 1.43
271 root 1.218 Note that timeout processing is active even when you do not have any
272     outstanding read or write requests: If you plan to keep the connection
273     idle then you should disable the timeout temporarily or ignore the
274     timeout in the corresponding C<on_timeout> callback, in which case
275     AnyEvent::Handle will simply restart the timeout.
276 root 1.43
277 root 1.218 Zero (the default) disables the corresponding timeout.
278 root 1.43
279     =item on_timeout => $cb->($handle)
280    
281 root 1.218 =item on_rtimeout => $cb->($handle)
282    
283     =item on_wtimeout => $cb->($handle)
284    
285 root 1.43 Called whenever the inactivity timeout passes. If you return from this
286     callback, then the timeout will be reset as if some activity had happened,
287     so this condition is not fatal in any way.
288    
289 root 1.8 =item rbuf_max => <bytes>
290 elmex 1.2
291 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
292     when the read buffer ever (strictly) exceeds this size. This is useful to
293 root 1.88 avoid some forms of denial-of-service attacks.
294 elmex 1.2
295 root 1.8 For example, a server accepting connections from untrusted sources should
296     be configured to accept only so-and-so much data that it cannot act on
297     (for example, when expecting a line, an attacker could send an unlimited
298     amount of data without a callback ever being called as long as the line
299     isn't finished).
300 elmex 1.2
301 root 1.209 =item wbuf_max => <bytes>
302    
303     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
304     when the write buffer ever (strictly) exceeds this size. This is useful to
305     avoid some forms of denial-of-service attacks.
306    
307     Although the units of this parameter is bytes, this is the I<raw> number
308     of bytes not yet accepted by the kernel. This can make a difference when
309     you e.g. use TLS, as TLS typically makes your write data larger (but it
310     can also make it smaller due to compression).
311    
312     As an example of when this limit is useful, take a chat server that sends
313     chat messages to a client. If the client does not read those in a timely
314     manner then the send buffer in the server would grow unbounded.
315    
316 root 1.70 =item autocork => <boolean>
317    
318 root 1.198 When disabled (the default), C<push_write> will try to immediately
319     write the data to the handle if possible. This avoids having to register
320 root 1.88 a write watcher and wait for the next event loop iteration, but can
321     be inefficient if you write multiple small chunks (on the wire, this
322     disadvantage is usually avoided by your kernel's nagle algorithm, see
323     C<no_delay>, but this option can save costly syscalls).
324 root 1.70
325 root 1.198 When enabled, writes will always be queued till the next event loop
326 root 1.70 iteration. This is efficient when you do many small writes per iteration,
327 root 1.88 but less efficient when you do a single write only per iteration (or when
328     the write buffer often is full). It also increases write latency.
329 root 1.70
330     =item no_delay => <boolean>
331    
332     When doing small writes on sockets, your operating system kernel might
333     wait a bit for more data before actually sending it out. This is called
334     the Nagle algorithm, and usually it is beneficial.
335    
336 root 1.88 In some situations you want as low a delay as possible, which can be
337     accomplishd by setting this option to a true value.
338 root 1.70
339 root 1.198 The default is your operating system's default behaviour (most likely
340     enabled). This option explicitly enables or disables it, if possible.
341 root 1.70
342 root 1.182 =item keepalive => <boolean>
343    
344     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
345     normally, TCP connections have no time-out once established, so TCP
346 root 1.186 connections, once established, can stay alive forever even when the other
347 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
348 root 1.198 TCP connections when the other side becomes unreachable. While the default
349 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
350     and, if the other side doesn't reply, take down the TCP connection some 10
351     to 15 minutes later.
352    
353     It is harmless to specify this option for file handles that do not support
354     keepalives, and enabling it on connections that are potentially long-lived
355     is usually a good idea.
356    
357     =item oobinline => <boolean>
358    
359     BSD majorly fucked up the implementation of TCP urgent data. The result
360     is that almost no OS implements TCP according to the specs, and every OS
361     implements it slightly differently.
362    
363 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
364     is enabled) gives you the most portable way of getting urgent data, by
365     putting it into the stream.
366    
367     Since BSD emulation of OOB data on top of TCP's urgent data can have
368     security implications, AnyEvent::Handle sets this flag automatically
369 root 1.184 unless explicitly specified. Note that setting this flag after
370     establishing a connection I<may> be a bit too late (data loss could
371     already have occured on BSD systems), but at least it will protect you
372     from most attacks.
373 root 1.182
374 root 1.8 =item read_size => <bytes>
375 elmex 1.2
376 root 1.221 The initial read block size, the number of bytes this module will try
377     to read during each loop iteration. Each handle object will consume
378     at least this amount of memory for the read buffer as well, so when
379     handling many connections watch out for memory requirements). See also
380     C<max_read_size>. Default: C<2048>.
381 root 1.203
382     =item max_read_size => <bytes>
383    
384     The maximum read buffer size used by the dynamic adjustment
385     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
386     one go it will double C<read_size> up to the maximum given by this
387     option. Default: C<131072> or C<read_size>, whichever is higher.
388 root 1.8
389     =item low_water_mark => <bytes>
390    
391 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
392     buffer: If the buffer reaches this size or gets even samller it is
393 root 1.8 considered empty.
394 elmex 1.2
395 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
396     the write buffer before it is fully drained, but this is a rare case, as
397     the operating system kernel usually buffers data as well, so the default
398     is good in almost all cases.
399    
400 root 1.62 =item linger => <seconds>
401    
402 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
403 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
404     write data and will install a watcher that will write this data to the
405     socket. No errors will be reported (this mostly matches how the operating
406     system treats outstanding data at socket close time).
407 root 1.62
408 root 1.88 This will not work for partial TLS data that could not be encoded
409 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
410     help.
411 root 1.62
412 root 1.133 =item peername => $string
413    
414 root 1.134 A string used to identify the remote site - usually the DNS hostname
415     (I<not> IDN!) used to create the connection, rarely the IP address.
416 root 1.131
417 root 1.133 Apart from being useful in error messages, this string is also used in TLS
418 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
419 root 1.198 verification will be skipped when C<peername> is not specified or is
420 root 1.144 C<undef>.
421 root 1.131
422 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
423    
424 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
425 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
426 root 1.88 established and will transparently encrypt/decrypt data afterwards.
427 root 1.19
428 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
429     appropriate error message.
430    
431 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
432 root 1.88 automatically when you try to create a TLS handle): this module doesn't
433     have a dependency on that module, so if your module requires it, you have
434 root 1.234 to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
435     old, you get an C<EPROTO> error.
436 root 1.26
437 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
438     C<accept>, and for the TLS client side of a connection, use C<connect>
439     mode.
440 root 1.19
441     You can also provide your own TLS connection object, but you have
442     to make sure that you call either C<Net::SSLeay::set_connect_state>
443     or C<Net::SSLeay::set_accept_state> on it before you pass it to
444 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
445     object.
446    
447     At some future point, AnyEvent::Handle might switch to another TLS
448     implementation, then the option to use your own session object will go
449     away.
450 root 1.19
451 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
452     passing in the wrong integer will lead to certain crash. This most often
453     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
454     segmentation fault.
455    
456 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
457 root 1.26
458 root 1.131 =item tls_ctx => $anyevent_tls
459 root 1.19
460 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
461 root 1.207 (unless a connection object was specified directly). If this
462     parameter is missing (or C<undef>), then AnyEvent::Handle will use
463     C<AnyEvent::Handle::TLS_CTX>.
464 root 1.19
465 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
466     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
467     new TLS context object.
468    
469 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
470 root 1.142
471     This callback will be invoked when the TLS/SSL handshake has finished. If
472     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
473     (C<on_stoptls> will not be called in this case).
474    
475     The session in C<< $handle->{tls} >> can still be examined in this
476     callback, even when the handshake was not successful.
477    
478 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
479     callback is in effect, instead, the error message will be passed to C<on_starttls>.
480    
481     Without this callback, handshake failures lead to C<on_error> being
482 root 1.198 called as usual.
483 root 1.143
484 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
485 root 1.143 need to do that, start an zero-second timer instead whose callback can
486     then call C<< ->starttls >> again.
487    
488 root 1.142 =item on_stoptls => $cb->($handle)
489    
490     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
491     set, then it will be invoked after freeing the TLS session. If it is not,
492     then a TLS shutdown condition will be treated like a normal EOF condition
493     on the handle.
494    
495     The session in C<< $handle->{tls} >> can still be examined in this
496     callback.
497    
498     This callback will only be called on TLS shutdowns, not when the
499     underlying handle signals EOF.
500    
501 root 1.240 =item json => L<JSON>, L<JSON::PP> or L<JSON::XS> object
502 root 1.40
503     This is the json coder object used by the C<json> read and write types.
504    
505 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
506 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
507     texts.
508 root 1.40
509 root 1.238 =item cbor => L<CBOR::XS> object
510    
511     This is the cbor coder object used by the C<cbor> read and write types.
512    
513     If you don't supply it, then AnyEvent::Handle will create and use a
514     suitable one (on demand), which will write CBOR without using extensions,
515     if possible. texts.
516    
517     Note that you are responsible to depend on the L<CBOR::XS> module if you
518     want to use this functionality, as AnyEvent does not have a dependency on
519     it itself.
520 root 1.40
521 elmex 1.1 =back
522    
523     =cut
524    
525     sub new {
526 root 1.8 my $class = shift;
527     my $self = bless { @_ }, $class;
528    
529 root 1.159 if ($self->{fh}) {
530     $self->_start;
531     return unless $self->{fh}; # could be gone by now
532    
533     } elsif ($self->{connect}) {
534     require AnyEvent::Socket;
535    
536     $self->{peername} = $self->{connect}[0]
537     unless exists $self->{peername};
538    
539     $self->{_skip_drain_rbuf} = 1;
540    
541     {
542     Scalar::Util::weaken (my $self = $self);
543    
544     $self->{_connect} =
545     AnyEvent::Socket::tcp_connect (
546     $self->{connect}[0],
547     $self->{connect}[1],
548     sub {
549     my ($fh, $host, $port, $retry) = @_;
550    
551 root 1.206 delete $self->{_connect}; # no longer needed
552 root 1.205
553 root 1.159 if ($fh) {
554     $self->{fh} = $fh;
555    
556     delete $self->{_skip_drain_rbuf};
557     $self->_start;
558    
559     $self->{on_connect}
560     and $self->{on_connect}($self, $host, $port, sub {
561 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
562 root 1.159 $self->{_skip_drain_rbuf} = 1;
563     &$retry;
564     });
565    
566     } else {
567     if ($self->{on_connect_error}) {
568     $self->{on_connect_error}($self, "$!");
569 root 1.217 $self->destroy if $self;
570 root 1.159 } else {
571 root 1.161 $self->_error ($!, 1);
572 root 1.159 }
573     }
574     },
575     sub {
576     local $self->{fh} = $_[0];
577    
578 root 1.161 $self->{on_prepare}
579 root 1.210 ? $self->{on_prepare}->($self)
580 root 1.161 : ()
581 root 1.159 }
582     );
583     }
584    
585     } else {
586     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
587     }
588    
589     $self
590     }
591    
592     sub _start {
593     my ($self) = @_;
594 root 1.8
595 root 1.194 # too many clueless people try to use udp and similar sockets
596     # with AnyEvent::Handle, do them a favour.
597 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
598     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
599 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
600 root 1.194
601 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
602 elmex 1.1
603 root 1.176 $self->{_activity} =
604     $self->{_ractivity} =
605     $self->{_wactivity} = AE::now;
606    
607 root 1.203 $self->{read_size} ||= 2048;
608     $self->{max_read_size} = $self->{read_size}
609     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
610    
611 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
612     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
613     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
614    
615 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
616     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
617    
618     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
619 root 1.131
620 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
621 root 1.94 if $self->{tls};
622 root 1.19
623 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
624 root 1.10
625 root 1.66 $self->start_read
626 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
627 root 1.160
628     $self->_drain_wbuf;
629 root 1.8 }
630 elmex 1.2
631 root 1.52 sub _error {
632 root 1.133 my ($self, $errno, $fatal, $message) = @_;
633 root 1.8
634 root 1.52 $! = $errno;
635 root 1.133 $message ||= "$!";
636 root 1.37
637 root 1.52 if ($self->{on_error}) {
638 root 1.133 $self->{on_error}($self, $fatal, $message);
639 root 1.151 $self->destroy if $fatal;
640 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
641 root 1.149 $self->destroy;
642 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
643 root 1.52 }
644 elmex 1.1 }
645    
646 root 1.8 =item $fh = $handle->fh
647 elmex 1.1
648 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
649 elmex 1.1
650     =cut
651    
652 root 1.38 sub fh { $_[0]{fh} }
653 elmex 1.1
654 root 1.8 =item $handle->on_error ($cb)
655 elmex 1.1
656 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
657 elmex 1.1
658 root 1.8 =cut
659    
660     sub on_error {
661     $_[0]{on_error} = $_[1];
662     }
663    
664     =item $handle->on_eof ($cb)
665    
666     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
667 elmex 1.1
668     =cut
669    
670 root 1.8 sub on_eof {
671     $_[0]{on_eof} = $_[1];
672     }
673    
674 root 1.43 =item $handle->on_timeout ($cb)
675    
676 root 1.176 =item $handle->on_rtimeout ($cb)
677    
678     =item $handle->on_wtimeout ($cb)
679    
680     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
681     callback, or disables the callback (but not the timeout) if C<$cb> =
682     C<undef>. See the C<timeout> constructor argument and method.
683 root 1.43
684     =cut
685    
686 root 1.176 # see below
687 root 1.43
688 root 1.70 =item $handle->autocork ($boolean)
689    
690     Enables or disables the current autocork behaviour (see C<autocork>
691 root 1.105 constructor argument). Changes will only take effect on the next write.
692 root 1.70
693     =cut
694    
695 root 1.105 sub autocork {
696     $_[0]{autocork} = $_[1];
697     }
698    
699 root 1.70 =item $handle->no_delay ($boolean)
700    
701     Enables or disables the C<no_delay> setting (see constructor argument of
702     the same name for details).
703    
704     =cut
705    
706     sub no_delay {
707     $_[0]{no_delay} = $_[1];
708    
709 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
710     if $_[0]{fh};
711 root 1.182 }
712    
713     =item $handle->keepalive ($boolean)
714    
715     Enables or disables the C<keepalive> setting (see constructor argument of
716     the same name for details).
717    
718     =cut
719    
720     sub keepalive {
721     $_[0]{keepalive} = $_[1];
722    
723     eval {
724     local $SIG{__DIE__};
725     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
726     if $_[0]{fh};
727     };
728     }
729    
730     =item $handle->oobinline ($boolean)
731    
732     Enables or disables the C<oobinline> setting (see constructor argument of
733     the same name for details).
734    
735     =cut
736    
737     sub oobinline {
738     $_[0]{oobinline} = $_[1];
739    
740     eval {
741     local $SIG{__DIE__};
742     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
743     if $_[0]{fh};
744     };
745     }
746    
747     =item $handle->keepalive ($boolean)
748    
749     Enables or disables the C<keepalive> setting (see constructor argument of
750     the same name for details).
751    
752     =cut
753    
754     sub keepalive {
755     $_[0]{keepalive} = $_[1];
756    
757     eval {
758     local $SIG{__DIE__};
759     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
760 root 1.159 if $_[0]{fh};
761 root 1.70 };
762     }
763    
764 root 1.142 =item $handle->on_starttls ($cb)
765    
766     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
767    
768     =cut
769    
770     sub on_starttls {
771     $_[0]{on_starttls} = $_[1];
772     }
773    
774     =item $handle->on_stoptls ($cb)
775    
776     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
777    
778     =cut
779    
780 root 1.189 sub on_stoptls {
781 root 1.142 $_[0]{on_stoptls} = $_[1];
782     }
783    
784 root 1.168 =item $handle->rbuf_max ($max_octets)
785    
786     Configures the C<rbuf_max> setting (C<undef> disables it).
787    
788 root 1.209 =item $handle->wbuf_max ($max_octets)
789    
790     Configures the C<wbuf_max> setting (C<undef> disables it).
791    
792 root 1.168 =cut
793    
794     sub rbuf_max {
795     $_[0]{rbuf_max} = $_[1];
796     }
797    
798 root 1.215 sub wbuf_max {
799 root 1.209 $_[0]{wbuf_max} = $_[1];
800     }
801    
802 root 1.43 #############################################################################
803    
804     =item $handle->timeout ($seconds)
805    
806 root 1.176 =item $handle->rtimeout ($seconds)
807    
808     =item $handle->wtimeout ($seconds)
809    
810 root 1.43 Configures (or disables) the inactivity timeout.
811    
812 root 1.218 The timeout will be checked instantly, so this method might destroy the
813     handle before it returns.
814    
815 root 1.176 =item $handle->timeout_reset
816    
817     =item $handle->rtimeout_reset
818    
819     =item $handle->wtimeout_reset
820    
821     Reset the activity timeout, as if data was received or sent.
822    
823     These methods are cheap to call.
824    
825 root 1.43 =cut
826    
827 root 1.176 for my $dir ("", "r", "w") {
828     my $timeout = "${dir}timeout";
829     my $tw = "_${dir}tw";
830     my $on_timeout = "on_${dir}timeout";
831     my $activity = "_${dir}activity";
832     my $cb;
833    
834     *$on_timeout = sub {
835     $_[0]{$on_timeout} = $_[1];
836     };
837    
838     *$timeout = sub {
839     my ($self, $new_value) = @_;
840 root 1.43
841 root 1.201 $new_value >= 0
842     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
843    
844 root 1.176 $self->{$timeout} = $new_value;
845     delete $self->{$tw}; &$cb;
846     };
847 root 1.43
848 root 1.176 *{"${dir}timeout_reset"} = sub {
849     $_[0]{$activity} = AE::now;
850     };
851 root 1.43
852 root 1.176 # main workhorse:
853     # reset the timeout watcher, as neccessary
854     # also check for time-outs
855     $cb = sub {
856     my ($self) = @_;
857    
858     if ($self->{$timeout} && $self->{fh}) {
859     my $NOW = AE::now;
860    
861     # when would the timeout trigger?
862     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
863    
864     # now or in the past already?
865     if ($after <= 0) {
866     $self->{$activity} = $NOW;
867 root 1.43
868 root 1.176 if ($self->{$on_timeout}) {
869     $self->{$on_timeout}($self);
870     } else {
871     $self->_error (Errno::ETIMEDOUT);
872     }
873 root 1.43
874 root 1.176 # callback could have changed timeout value, optimise
875     return unless $self->{$timeout};
876 root 1.43
877 root 1.176 # calculate new after
878     $after = $self->{$timeout};
879 root 1.43 }
880    
881 root 1.176 Scalar::Util::weaken $self;
882     return unless $self; # ->error could have destroyed $self
883 root 1.43
884 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
885     delete $self->{$tw};
886     $cb->($self);
887     };
888     } else {
889     delete $self->{$tw};
890 root 1.43 }
891     }
892     }
893    
894 root 1.9 #############################################################################
895    
896     =back
897    
898     =head2 WRITE QUEUE
899    
900     AnyEvent::Handle manages two queues per handle, one for writing and one
901     for reading.
902    
903     The write queue is very simple: you can add data to its end, and
904     AnyEvent::Handle will automatically try to get rid of it for you.
905    
906 elmex 1.20 When data could be written and the write buffer is shorter then the low
907 root 1.229 water mark, the C<on_drain> callback will be invoked once.
908 root 1.9
909     =over 4
910    
911 root 1.8 =item $handle->on_drain ($cb)
912    
913     Sets the C<on_drain> callback or clears it (see the description of
914     C<on_drain> in the constructor).
915    
916 root 1.193 This method may invoke callbacks (and therefore the handle might be
917     destroyed after it returns).
918    
919 root 1.8 =cut
920    
921     sub on_drain {
922 elmex 1.1 my ($self, $cb) = @_;
923    
924 root 1.8 $self->{on_drain} = $cb;
925    
926     $cb->($self)
927 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
928 root 1.8 }
929    
930     =item $handle->push_write ($data)
931    
932 root 1.209 Queues the given scalar to be written. You can push as much data as
933     you want (only limited by the available memory and C<wbuf_max>), as
934     C<AnyEvent::Handle> buffers it independently of the kernel.
935 root 1.8
936 root 1.193 This method may invoke callbacks (and therefore the handle might be
937     destroyed after it returns).
938    
939 root 1.8 =cut
940    
941 root 1.17 sub _drain_wbuf {
942     my ($self) = @_;
943 root 1.8
944 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
945 root 1.35
946 root 1.8 Scalar::Util::weaken $self;
947 root 1.35
948 root 1.8 my $cb = sub {
949     my $len = syswrite $self->{fh}, $self->{wbuf};
950    
951 root 1.146 if (defined $len) {
952 root 1.8 substr $self->{wbuf}, 0, $len, "";
953    
954 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
955 root 1.43
956 root 1.8 $self->{on_drain}($self)
957 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
958 root 1.8 && $self->{on_drain};
959    
960 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
961 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
962 root 1.52 $self->_error ($!, 1);
963 elmex 1.1 }
964 root 1.8 };
965    
966 root 1.35 # try to write data immediately
967 root 1.70 $cb->() unless $self->{autocork};
968 root 1.8
969 root 1.35 # if still data left in wbuf, we need to poll
970 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
971 root 1.35 if length $self->{wbuf};
972 root 1.209
973     if (
974     defined $self->{wbuf_max}
975     && $self->{wbuf_max} < length $self->{wbuf}
976     ) {
977     $self->_error (Errno::ENOSPC, 1), return;
978     }
979 root 1.8 };
980     }
981    
982 root 1.30 our %WH;
983    
984 root 1.185 # deprecated
985 root 1.30 sub register_write_type($$) {
986     $WH{$_[0]} = $_[1];
987     }
988    
989 root 1.17 sub push_write {
990     my $self = shift;
991    
992 root 1.29 if (@_ > 1) {
993     my $type = shift;
994    
995 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
996     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
997 root 1.29 ->($self, @_);
998     }
999    
1000 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
1001     # and diagnose the problem earlier and better.
1002    
1003 root 1.93 if ($self->{tls}) {
1004 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
1005 root 1.160 &_dotls ($self) if $self->{fh};
1006 root 1.17 } else {
1007 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
1008 root 1.159 $self->_drain_wbuf if $self->{fh};
1009 root 1.17 }
1010     }
1011    
1012 root 1.29 =item $handle->push_write (type => @args)
1013    
1014 root 1.185 Instead of formatting your data yourself, you can also let this module
1015     do the job by specifying a type and type-specific arguments. You
1016     can also specify the (fully qualified) name of a package, in which
1017     case AnyEvent tries to load the package and then expects to find the
1018 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
1019 root 1.29
1020 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1021     drop by and tell us):
1022 root 1.29
1023     =over 4
1024    
1025     =item netstring => $string
1026    
1027     Formats the given value as netstring
1028     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1029    
1030     =cut
1031    
1032     register_write_type netstring => sub {
1033     my ($self, $string) = @_;
1034    
1035 root 1.96 (length $string) . ":$string,"
1036 root 1.29 };
1037    
1038 root 1.61 =item packstring => $format, $data
1039    
1040     An octet string prefixed with an encoded length. The encoding C<$format>
1041     uses the same format as a Perl C<pack> format, but must specify a single
1042     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1043     optional C<!>, C<< < >> or C<< > >> modifier).
1044    
1045     =cut
1046    
1047     register_write_type packstring => sub {
1048     my ($self, $format, $string) = @_;
1049    
1050 root 1.65 pack "$format/a*", $string
1051 root 1.61 };
1052    
1053 root 1.39 =item json => $array_or_hashref
1054    
1055 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1056     provide your own JSON object, this means it will be encoded to JSON text
1057     in UTF-8.
1058    
1059     JSON objects (and arrays) are self-delimiting, so you can write JSON at
1060     one end of a handle and read them at the other end without using any
1061     additional framing.
1062    
1063 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
1064     this module doesn't need delimiters after or between JSON texts to be
1065     able to read them, many other languages depend on that.
1066    
1067 root 1.238 A simple RPC protocol that interoperates easily with other languages is
1068     to send JSON arrays (or objects, although arrays are usually the better
1069     choice as they mimic how function argument passing works) and a newline
1070     after each JSON text:
1071 root 1.41
1072     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1073     $handle->push_write ("\012");
1074    
1075     An AnyEvent::Handle receiver would simply use the C<json> read type and
1076     rely on the fact that the newline will be skipped as leading whitespace:
1077    
1078     $handle->push_read (json => sub { my $array = $_[1]; ... });
1079    
1080     Other languages could read single lines terminated by a newline and pass
1081     this line into their JSON decoder of choice.
1082    
1083 root 1.238 =item cbor => $perl_scalar
1084    
1085     Encodes the given scalar into a CBOR value. Unless you provide your own
1086     L<CBOR::XS> object, this means it will be encoded to a CBOR string not
1087     using any extensions, if possible.
1088    
1089     CBOR values are self-delimiting, so you can write CBOR at one end of
1090     a handle and read them at the other end without using any additional
1091     framing.
1092    
1093     A simple nd very very fast RPC protocol that interoperates with
1094     other languages is to send CBOR and receive CBOR values (arrays are
1095     recommended):
1096    
1097     $handle->push_write (cbor => ["method", "arg1", "arg2"]); # whatever
1098    
1099     An AnyEvent::Handle receiver would simply use the C<cbor> read type:
1100    
1101     $handle->push_read (cbor => sub { my $array = $_[1]; ... });
1102    
1103 root 1.40 =cut
1104    
1105 root 1.179 sub json_coder() {
1106     eval { require JSON::XS; JSON::XS->new->utf8 }
1107 root 1.240 || do { require JSON::PP; JSON::PP->new->utf8 }
1108 root 1.179 }
1109    
1110 root 1.40 register_write_type json => sub {
1111     my ($self, $ref) = @_;
1112    
1113 root 1.238 ($self->{json} ||= json_coder)
1114     ->encode ($ref)
1115     };
1116    
1117     sub cbor_coder() {
1118     require CBOR::XS;
1119     CBOR::XS->new
1120     }
1121    
1122     register_write_type cbor => sub {
1123     my ($self, $scalar) = @_;
1124 root 1.40
1125 root 1.238 ($self->{cbor} ||= cbor_coder)
1126     ->encode ($scalar)
1127 root 1.40 };
1128    
1129 root 1.63 =item storable => $reference
1130    
1131     Freezes the given reference using L<Storable> and writes it to the
1132     handle. Uses the C<nfreeze> format.
1133    
1134     =cut
1135    
1136     register_write_type storable => sub {
1137     my ($self, $ref) = @_;
1138    
1139 root 1.224 require Storable unless $Storable::VERSION;
1140 root 1.63
1141 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1142 root 1.63 };
1143    
1144 root 1.53 =back
1145    
1146 root 1.133 =item $handle->push_shutdown
1147    
1148     Sometimes you know you want to close the socket after writing your data
1149     before it was actually written. One way to do that is to replace your
1150 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1151     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1152     replaces the C<on_drain> callback with:
1153 root 1.133
1154 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1155 root 1.133
1156     This simply shuts down the write side and signals an EOF condition to the
1157     the peer.
1158    
1159     You can rely on the normal read queue and C<on_eof> handling
1160     afterwards. This is the cleanest way to close a connection.
1161    
1162 root 1.193 This method may invoke callbacks (and therefore the handle might be
1163     destroyed after it returns).
1164    
1165 root 1.133 =cut
1166    
1167     sub push_shutdown {
1168 root 1.142 my ($self) = @_;
1169    
1170     delete $self->{low_water_mark};
1171     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1172 root 1.133 }
1173    
1174 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1175    
1176     Instead of one of the predefined types, you can also specify the name of
1177     a package. AnyEvent will try to load the package and then expects to find
1178     a function named C<anyevent_write_type> inside. If it isn't found, it
1179     progressively tries to load the parent package until it either finds the
1180     function (good) or runs out of packages (bad).
1181    
1182     Whenever the given C<type> is used, C<push_write> will the function with
1183     the handle object and the remaining arguments.
1184    
1185     The function is supposed to return a single octet string that will be
1186 root 1.223 appended to the write buffer, so you can mentally treat this function as a
1187 root 1.185 "arguments to on-the-wire-format" converter.
1188 root 1.30
1189 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1190     arguments using the first one.
1191 root 1.29
1192 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1193 root 1.29
1194 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1195     # the "My" modules to be auto-loaded, or just about anywhere when the
1196     # My::Type::anyevent_write_type is defined before invoking it.
1197    
1198     package My::Type;
1199    
1200     sub anyevent_write_type {
1201     my ($handle, $delim, @args) = @_;
1202    
1203     join $delim, @args
1204     }
1205 root 1.29
1206 root 1.30 =cut
1207 root 1.29
1208 root 1.8 #############################################################################
1209    
1210 root 1.9 =back
1211    
1212     =head2 READ QUEUE
1213    
1214     AnyEvent::Handle manages two queues per handle, one for writing and one
1215     for reading.
1216    
1217     The read queue is more complex than the write queue. It can be used in two
1218     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1219     a queue.
1220    
1221     In the simple case, you just install an C<on_read> callback and whenever
1222     new data arrives, it will be called. You can then remove some data (if
1223 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1224 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1225 root 1.197 partial message has been received so far), or change the read queue with
1226     e.g. C<push_read>.
1227 root 1.9
1228     In the more complex case, you want to queue multiple callbacks. In this
1229     case, AnyEvent::Handle will call the first queued callback each time new
1230 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1231 root 1.61 done its job (see C<push_read>, below).
1232 root 1.9
1233     This way you can, for example, push three line-reads, followed by reading
1234     a chunk of data, and AnyEvent::Handle will execute them in order.
1235    
1236     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1237     the specified number of bytes which give an XML datagram.
1238    
1239     # in the default state, expect some header bytes
1240     $handle->on_read (sub {
1241     # some data is here, now queue the length-header-read (4 octets)
1242 root 1.52 shift->unshift_read (chunk => 4, sub {
1243 root 1.9 # header arrived, decode
1244     my $len = unpack "N", $_[1];
1245    
1246     # now read the payload
1247 root 1.52 shift->unshift_read (chunk => $len, sub {
1248 root 1.9 my $xml = $_[1];
1249     # handle xml
1250     });
1251     });
1252     });
1253    
1254 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1255     and another line or "ERROR" for the first request that is sent, and 64
1256     bytes for the second request. Due to the availability of a queue, we can
1257     just pipeline sending both requests and manipulate the queue as necessary
1258     in the callbacks.
1259    
1260     When the first callback is called and sees an "OK" response, it will
1261     C<unshift> another line-read. This line-read will be queued I<before> the
1262     64-byte chunk callback.
1263 root 1.9
1264 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1265 root 1.9 $handle->push_write ("request 1\015\012");
1266    
1267     # we expect "ERROR" or "OK" as response, so push a line read
1268 root 1.52 $handle->push_read (line => sub {
1269 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1270     # so it will be read before the second request reads its 64 bytes
1271     # which are already in the queue when this callback is called
1272     # we don't do this in case we got an error
1273     if ($_[1] eq "OK") {
1274 root 1.52 $_[0]->unshift_read (line => sub {
1275 root 1.9 my $response = $_[1];
1276     ...
1277     });
1278     }
1279     });
1280    
1281 root 1.69 # request two, simply returns 64 octets
1282 root 1.9 $handle->push_write ("request 2\015\012");
1283    
1284     # simply read 64 bytes, always
1285 root 1.52 $handle->push_read (chunk => 64, sub {
1286 root 1.9 my $response = $_[1];
1287     ...
1288     });
1289    
1290     =over 4
1291    
1292 root 1.10 =cut
1293    
1294 root 1.8 sub _drain_rbuf {
1295     my ($self) = @_;
1296 elmex 1.1
1297 root 1.159 # avoid recursion
1298 root 1.167 return if $self->{_skip_drain_rbuf};
1299 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1300 root 1.59
1301     while () {
1302 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1303     # we are draining the buffer, and this can only happen with TLS.
1304 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1305     if exists $self->{_tls_rbuf};
1306 root 1.115
1307 root 1.59 my $len = length $self->{rbuf};
1308 elmex 1.1
1309 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1310 root 1.29 unless ($cb->($self)) {
1311 root 1.163 # no progress can be made
1312     # (not enough data and no data forthcoming)
1313     $self->_error (Errno::EPIPE, 1), return
1314     if $self->{_eof};
1315 root 1.10
1316 root 1.38 unshift @{ $self->{_queue} }, $cb;
1317 root 1.55 last;
1318 root 1.8 }
1319     } elsif ($self->{on_read}) {
1320 root 1.61 last unless $len;
1321    
1322 root 1.8 $self->{on_read}($self);
1323    
1324     if (
1325 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1326     && !@{ $self->{_queue} } # and the queue is still empty
1327     && $self->{on_read} # but we still have on_read
1328 root 1.8 ) {
1329 root 1.55 # no further data will arrive
1330     # so no progress can be made
1331 root 1.150 $self->_error (Errno::EPIPE, 1), return
1332 root 1.55 if $self->{_eof};
1333    
1334     last; # more data might arrive
1335 elmex 1.1 }
1336 root 1.8 } else {
1337     # read side becomes idle
1338 root 1.93 delete $self->{_rw} unless $self->{tls};
1339 root 1.55 last;
1340 root 1.8 }
1341     }
1342    
1343 root 1.80 if ($self->{_eof}) {
1344 root 1.163 $self->{on_eof}
1345     ? $self->{on_eof}($self)
1346     : $self->_error (0, 1, "Unexpected end-of-file");
1347    
1348     return;
1349 root 1.80 }
1350 root 1.55
1351 root 1.169 if (
1352     defined $self->{rbuf_max}
1353     && $self->{rbuf_max} < length $self->{rbuf}
1354     ) {
1355     $self->_error (Errno::ENOSPC, 1), return;
1356     }
1357    
1358 root 1.55 # may need to restart read watcher
1359     unless ($self->{_rw}) {
1360     $self->start_read
1361     if $self->{on_read} || @{ $self->{_queue} };
1362     }
1363 elmex 1.1 }
1364    
1365 root 1.8 =item $handle->on_read ($cb)
1366 elmex 1.1
1367 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1368     the new callback is C<undef>). See the description of C<on_read> in the
1369     constructor.
1370 elmex 1.1
1371 root 1.193 This method may invoke callbacks (and therefore the handle might be
1372     destroyed after it returns).
1373    
1374 root 1.8 =cut
1375    
1376     sub on_read {
1377     my ($self, $cb) = @_;
1378 elmex 1.1
1379 root 1.8 $self->{on_read} = $cb;
1380 root 1.159 $self->_drain_rbuf if $cb;
1381 elmex 1.1 }
1382    
1383 root 1.8 =item $handle->rbuf
1384    
1385 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1386     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1387     much faster, and no less clean).
1388    
1389     The only operation allowed on the read buffer (apart from looking at it)
1390     is removing data from its beginning. Otherwise modifying or appending to
1391     it is not allowed and will lead to hard-to-track-down bugs.
1392    
1393     NOTE: The read buffer should only be used or modified in the C<on_read>
1394     callback or when C<push_read> or C<unshift_read> are used with a single
1395     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1396     will manage the read buffer on their own.
1397 elmex 1.1
1398     =cut
1399    
1400 elmex 1.2 sub rbuf : lvalue {
1401 root 1.8 $_[0]{rbuf}
1402 elmex 1.2 }
1403 elmex 1.1
1404 root 1.8 =item $handle->push_read ($cb)
1405    
1406     =item $handle->unshift_read ($cb)
1407    
1408     Append the given callback to the end of the queue (C<push_read>) or
1409     prepend it (C<unshift_read>).
1410    
1411     The callback is called each time some additional read data arrives.
1412 elmex 1.1
1413 elmex 1.20 It must check whether enough data is in the read buffer already.
1414 elmex 1.1
1415 root 1.8 If not enough data is available, it must return the empty list or a false
1416     value, in which case it will be called repeatedly until enough data is
1417     available (or an error condition is detected).
1418    
1419     If enough data was available, then the callback must remove all data it is
1420     interested in (which can be none at all) and return a true value. After returning
1421     true, it will be removed from the queue.
1422 elmex 1.1
1423 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1424     destroyed after it returns).
1425    
1426 elmex 1.1 =cut
1427    
1428 root 1.30 our %RH;
1429    
1430     sub register_read_type($$) {
1431     $RH{$_[0]} = $_[1];
1432     }
1433    
1434 root 1.8 sub push_read {
1435 root 1.28 my $self = shift;
1436     my $cb = pop;
1437    
1438     if (@_) {
1439     my $type = shift;
1440    
1441 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1442     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1443 root 1.28 ->($self, $cb, @_);
1444     }
1445 elmex 1.1
1446 root 1.38 push @{ $self->{_queue} }, $cb;
1447 root 1.159 $self->_drain_rbuf;
1448 elmex 1.1 }
1449    
1450 root 1.8 sub unshift_read {
1451 root 1.28 my $self = shift;
1452     my $cb = pop;
1453    
1454     if (@_) {
1455     my $type = shift;
1456    
1457 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1458     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1459 root 1.28 ->($self, $cb, @_);
1460     }
1461    
1462 root 1.38 unshift @{ $self->{_queue} }, $cb;
1463 root 1.159 $self->_drain_rbuf;
1464 root 1.8 }
1465 elmex 1.1
1466 root 1.28 =item $handle->push_read (type => @args, $cb)
1467 elmex 1.1
1468 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1469 elmex 1.1
1470 root 1.28 Instead of providing a callback that parses the data itself you can chose
1471     between a number of predefined parsing formats, for chunks of data, lines
1472 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1473     which case AnyEvent tries to load the package and then expects to find the
1474     C<anyevent_read_type> function inside (see "custom read types", below).
1475 elmex 1.1
1476 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1477     drop by and tell us):
1478 root 1.28
1479     =over 4
1480    
1481 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1482 root 1.28
1483     Invoke the callback only once C<$octets> bytes have been read. Pass the
1484     data read to the callback. The callback will never be called with less
1485     data.
1486    
1487     Example: read 2 bytes.
1488    
1489     $handle->push_read (chunk => 2, sub {
1490 root 1.225 say "yay " . unpack "H*", $_[1];
1491 root 1.28 });
1492 elmex 1.1
1493     =cut
1494    
1495 root 1.28 register_read_type chunk => sub {
1496     my ($self, $cb, $len) = @_;
1497 elmex 1.1
1498 root 1.8 sub {
1499     $len <= length $_[0]{rbuf} or return;
1500 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1501 root 1.8 1
1502     }
1503 root 1.28 };
1504 root 1.8
1505 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1506 elmex 1.1
1507 root 1.8 The callback will be called only once a full line (including the end of
1508     line marker, C<$eol>) has been read. This line (excluding the end of line
1509     marker) will be passed to the callback as second argument (C<$line>), and
1510     the end of line marker as the third argument (C<$eol>).
1511 elmex 1.1
1512 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1513     will be interpreted as a fixed record end marker, or it can be a regex
1514     object (e.g. created by C<qr>), in which case it is interpreted as a
1515     regular expression.
1516 elmex 1.1
1517 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1518     undef), then C<qr|\015?\012|> is used (which is good for most internet
1519     protocols).
1520 elmex 1.1
1521 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1522     not marked by the end of line marker.
1523 elmex 1.1
1524 root 1.8 =cut
1525 elmex 1.1
1526 root 1.28 register_read_type line => sub {
1527     my ($self, $cb, $eol) = @_;
1528 elmex 1.1
1529 root 1.76 if (@_ < 3) {
1530 root 1.237 # this is faster then the generic code below
1531 root 1.76 sub {
1532 root 1.237 (my $pos = index $_[0]{rbuf}, "\012") >= 0
1533     or return;
1534 elmex 1.1
1535 root 1.237 (my $str = substr $_[0]{rbuf}, 0, $pos + 1, "") =~ s/(\015?\012)\Z// or die;
1536     $cb->($_[0], $str, "$1");
1537 root 1.76 1
1538     }
1539     } else {
1540     $eol = quotemeta $eol unless ref $eol;
1541     $eol = qr|^(.*?)($eol)|s;
1542    
1543     sub {
1544     $_[0]{rbuf} =~ s/$eol// or return;
1545 elmex 1.1
1546 root 1.227 $cb->($_[0], "$1", "$2");
1547 root 1.76 1
1548     }
1549 root 1.8 }
1550 root 1.28 };
1551 elmex 1.1
1552 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1553 root 1.36
1554     Makes a regex match against the regex object C<$accept> and returns
1555     everything up to and including the match.
1556    
1557     Example: read a single line terminated by '\n'.
1558    
1559     $handle->push_read (regex => qr<\n>, sub { ... });
1560    
1561     If C<$reject> is given and not undef, then it determines when the data is
1562     to be rejected: it is matched against the data when the C<$accept> regex
1563     does not match and generates an C<EBADMSG> error when it matches. This is
1564     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1565     receive buffer overflow).
1566    
1567     Example: expect a single decimal number followed by whitespace, reject
1568     anything else (not the use of an anchor).
1569    
1570     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1571    
1572     If C<$skip> is given and not C<undef>, then it will be matched against
1573     the receive buffer when neither C<$accept> nor C<$reject> match,
1574     and everything preceding and including the match will be accepted
1575     unconditionally. This is useful to skip large amounts of data that you
1576     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1577     have to start matching from the beginning. This is purely an optimisation
1578 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1579 root 1.36
1580     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1581 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1582 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1583     it only accepts something not ending in either \015 or \012, as these are
1584     required for the accept regex.
1585    
1586     $handle->push_read (regex =>
1587     qr<\015\012\015\012>,
1588     undef, # no reject
1589     qr<^.*[^\015\012]>,
1590     sub { ... });
1591    
1592     =cut
1593    
1594     register_read_type regex => sub {
1595     my ($self, $cb, $accept, $reject, $skip) = @_;
1596    
1597     my $data;
1598     my $rbuf = \$self->{rbuf};
1599    
1600     sub {
1601     # accept
1602     if ($$rbuf =~ $accept) {
1603     $data .= substr $$rbuf, 0, $+[0], "";
1604 root 1.220 $cb->($_[0], $data);
1605 root 1.36 return 1;
1606     }
1607    
1608     # reject
1609     if ($reject && $$rbuf =~ $reject) {
1610 root 1.220 $_[0]->_error (Errno::EBADMSG);
1611 root 1.36 }
1612    
1613     # skip
1614     if ($skip && $$rbuf =~ $skip) {
1615     $data .= substr $$rbuf, 0, $+[0], "";
1616     }
1617    
1618     ()
1619     }
1620     };
1621    
1622 root 1.61 =item netstring => $cb->($handle, $string)
1623    
1624     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1625    
1626     Throws an error with C<$!> set to EBADMSG on format violations.
1627    
1628     =cut
1629    
1630     register_read_type netstring => sub {
1631     my ($self, $cb) = @_;
1632    
1633     sub {
1634     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1635     if ($_[0]{rbuf} =~ /[^0-9]/) {
1636 root 1.220 $_[0]->_error (Errno::EBADMSG);
1637 root 1.61 }
1638     return;
1639     }
1640    
1641     my $len = $1;
1642    
1643 root 1.220 $_[0]->unshift_read (chunk => $len, sub {
1644 root 1.61 my $string = $_[1];
1645     $_[0]->unshift_read (chunk => 1, sub {
1646     if ($_[1] eq ",") {
1647     $cb->($_[0], $string);
1648     } else {
1649 root 1.220 $_[0]->_error (Errno::EBADMSG);
1650 root 1.61 }
1651     });
1652     });
1653    
1654     1
1655     }
1656     };
1657    
1658     =item packstring => $format, $cb->($handle, $string)
1659    
1660     An octet string prefixed with an encoded length. The encoding C<$format>
1661     uses the same format as a Perl C<pack> format, but must specify a single
1662     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1663     optional C<!>, C<< < >> or C<< > >> modifier).
1664    
1665 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1666     EPP uses a prefix of C<N> (4 octtes).
1667 root 1.61
1668     Example: read a block of data prefixed by its length in BER-encoded
1669     format (very efficient).
1670    
1671     $handle->push_read (packstring => "w", sub {
1672     my ($handle, $data) = @_;
1673     });
1674    
1675     =cut
1676    
1677     register_read_type packstring => sub {
1678     my ($self, $cb, $format) = @_;
1679    
1680     sub {
1681     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1682 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1683 root 1.61 or return;
1684    
1685 root 1.77 $format = length pack $format, $len;
1686 root 1.61
1687 root 1.77 # bypass unshift if we already have the remaining chunk
1688     if ($format + $len <= length $_[0]{rbuf}) {
1689     my $data = substr $_[0]{rbuf}, $format, $len;
1690     substr $_[0]{rbuf}, 0, $format + $len, "";
1691     $cb->($_[0], $data);
1692     } else {
1693     # remove prefix
1694     substr $_[0]{rbuf}, 0, $format, "";
1695    
1696     # read remaining chunk
1697     $_[0]->unshift_read (chunk => $len, $cb);
1698     }
1699 root 1.61
1700     1
1701     }
1702     };
1703    
1704 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1705    
1706 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1707     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1708 root 1.40
1709 root 1.240 If a C<json> object was passed to the constructor, then that will be
1710     used for the final decode, otherwise it will create a L<JSON::XS> or
1711     L<JSON::PP> coder object expecting UTF-8.
1712 root 1.40
1713     This read type uses the incremental parser available with JSON version
1714 root 1.240 2.09 (and JSON::XS version 2.2) and above.
1715 root 1.40
1716     Since JSON texts are fully self-delimiting, the C<json> read and write
1717 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1718     the C<json> write type description, above, for an actual example.
1719 root 1.40
1720     =cut
1721    
1722     register_read_type json => sub {
1723 root 1.63 my ($self, $cb) = @_;
1724 root 1.40
1725 root 1.179 my $json = $self->{json} ||= json_coder;
1726 root 1.40
1727     my $data;
1728    
1729     sub {
1730 root 1.220 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1731 root 1.110
1732 root 1.113 if ($ref) {
1733 root 1.220 $_[0]{rbuf} = $json->incr_text;
1734 root 1.113 $json->incr_text = "";
1735 root 1.220 $cb->($_[0], $ref);
1736 root 1.110
1737     1
1738 root 1.113 } elsif ($@) {
1739 root 1.111 # error case
1740 root 1.110 $json->incr_skip;
1741 root 1.40
1742 root 1.220 $_[0]{rbuf} = $json->incr_text;
1743 root 1.40 $json->incr_text = "";
1744    
1745 root 1.220 $_[0]->_error (Errno::EBADMSG);
1746 root 1.114
1747 root 1.113 ()
1748     } else {
1749 root 1.220 $_[0]{rbuf} = "";
1750 root 1.114
1751 root 1.113 ()
1752     }
1753 root 1.40 }
1754     };
1755    
1756 root 1.238 =item cbor => $cb->($handle, $scalar)
1757    
1758     Reads a CBOR value, decodes it and passes it to the callback. When a parse
1759     error occurs, an C<EBADMSG> error will be raised.
1760    
1761     If a L<CBOR::XS> object was passed to the constructor, then that will be
1762     used for the final decode, otherwise it will create a CBOR coder without
1763     enabling any options.
1764    
1765     You have to provide a dependency to L<CBOR::XS> on your own: this module
1766     will load the L<CBOR::XS> module, but AnyEvent does not depend on it
1767     itself.
1768    
1769     Since CBOR values are fully self-delimiting, the C<cbor> read and write
1770     types are an ideal simple RPC protocol: just exchange CBOR datagrams. See
1771     the C<cbor> write type description, above, for an actual example.
1772    
1773     =cut
1774    
1775     register_read_type cbor => sub {
1776     my ($self, $cb) = @_;
1777    
1778     my $cbor = $self->{cbor} ||= cbor_coder;
1779    
1780     my $data;
1781    
1782     sub {
1783     my (@value) = eval { $cbor->incr_parse ($_[0]{rbuf}) };
1784    
1785     if (@value) {
1786     $cb->($_[0], @value);
1787    
1788     1
1789     } elsif ($@) {
1790     # error case
1791     $cbor->incr_reset;
1792    
1793     $_[0]->_error (Errno::EBADMSG);
1794    
1795     ()
1796     } else {
1797     ()
1798     }
1799     }
1800     };
1801    
1802 root 1.63 =item storable => $cb->($handle, $ref)
1803    
1804     Deserialises a L<Storable> frozen representation as written by the
1805     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1806     data).
1807    
1808     Raises C<EBADMSG> error if the data could not be decoded.
1809    
1810     =cut
1811    
1812     register_read_type storable => sub {
1813     my ($self, $cb) = @_;
1814    
1815 root 1.224 require Storable unless $Storable::VERSION;
1816 root 1.63
1817     sub {
1818     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1819 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1820 root 1.63 or return;
1821    
1822 root 1.77 my $format = length pack "w", $len;
1823 root 1.63
1824 root 1.77 # bypass unshift if we already have the remaining chunk
1825     if ($format + $len <= length $_[0]{rbuf}) {
1826     my $data = substr $_[0]{rbuf}, $format, $len;
1827     substr $_[0]{rbuf}, 0, $format + $len, "";
1828 root 1.232
1829     eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1830     or return $_[0]->_error (Errno::EBADMSG);
1831 root 1.77 } else {
1832     # remove prefix
1833     substr $_[0]{rbuf}, 0, $format, "";
1834    
1835     # read remaining chunk
1836     $_[0]->unshift_read (chunk => $len, sub {
1837 root 1.232 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1838     or $_[0]->_error (Errno::EBADMSG);
1839 root 1.77 });
1840     }
1841    
1842     1
1843 root 1.63 }
1844     };
1845    
1846 root 1.236 =item tls_detect => $cb->($handle, $detect, $major, $minor)
1847    
1848     Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1849     record without consuming anything. Only SSL version 3 or higher
1850     is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1851     SSL2-compatible framing is supported).
1852    
1853     If it detects that the input data is likely TLS, it calls the callback
1854     with a true value for C<$detect> and the (on-wire) TLS version as second
1855     and third argument (C<$major> is C<3>, and C<$minor> is 0..3 for SSL
1856     3.0, TLS 1.0, 1.1 and 1.2, respectively). If it detects the input to
1857     be definitely not TLS, it calls the callback with a false value for
1858     C<$detect>.
1859    
1860     The callback could use this information to decide whether or not to start
1861     TLS negotiation.
1862    
1863     In all cases the data read so far is passed to the following read
1864     handlers.
1865    
1866     Usually you want to use the C<tls_autostart> read type instead.
1867    
1868     If you want to design a protocol that works in the presence of TLS
1869     dtection, make sure that any non-TLS data doesn't start with the octet 22
1870     (ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1871     read type does are a bit more strict, but might losen in the future to
1872     accomodate protocol changes.
1873    
1874     This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1875     L<Net::SSLeay>).
1876    
1877     =item tls_autostart => $tls[, $tls_ctx]
1878    
1879     Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1880     to start tls by calling C<starttls> with the given arguments.
1881    
1882     In practise, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1883     been configured to accept, as servers do not normally send a handshake on
1884     their own and ths cannot be detected in this way.
1885    
1886     See C<tls_detect> above for more details.
1887    
1888     Example: give the client a chance to start TLS before accepting a text
1889     line.
1890    
1891     $hdl->push_read (tls_detect => "accept");
1892     $hdl->push_read (line => sub {
1893     print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1894     });
1895    
1896     =cut
1897    
1898     register_read_type tls_detect => sub {
1899     my ($self, $cb) = @_;
1900    
1901     sub {
1902     # this regex matches a full or partial tls record
1903     if (
1904     # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1905     $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1906     # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1907     or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1908     ) {
1909     return if 3 != length $1; # partial match, can't decide yet
1910    
1911     # full match, valid TLS record
1912     my ($major, $minor) = unpack "CC", $1;
1913     $cb->($self, "accept", $major + $minor * 0.1);
1914     } else {
1915     # mismatch == guaranteed not TLS
1916     $cb->($self, undef);
1917     }
1918    
1919     1
1920     }
1921     };
1922    
1923     register_read_type tls_autostart => sub {
1924     my ($self, @tls) = @_;
1925    
1926     $RH{tls_detect}($self, sub {
1927     return unless $_[1];
1928     $_[0]->starttls (@tls);
1929     })
1930     };
1931    
1932 root 1.28 =back
1933    
1934 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1935 root 1.30
1936 root 1.185 Instead of one of the predefined types, you can also specify the name
1937     of a package. AnyEvent will try to load the package and then expects to
1938     find a function named C<anyevent_read_type> inside. If it isn't found, it
1939     progressively tries to load the parent package until it either finds the
1940     function (good) or runs out of packages (bad).
1941    
1942     Whenever this type is used, C<push_read> will invoke the function with the
1943     handle object, the original callback and the remaining arguments.
1944    
1945     The function is supposed to return a callback (usually a closure) that
1946     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1947     mentally treat the function as a "configurable read type to read callback"
1948     converter.
1949    
1950     It should invoke the original callback when it is done reading (remember
1951     to pass C<$handle> as first argument as all other callbacks do that,
1952     although there is no strict requirement on this).
1953 root 1.30
1954 root 1.185 For examples, see the source of this module (F<perldoc -m
1955     AnyEvent::Handle>, search for C<register_read_type>)).
1956 root 1.30
1957 root 1.10 =item $handle->stop_read
1958    
1959     =item $handle->start_read
1960    
1961 root 1.18 In rare cases you actually do not want to read anything from the
1962 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1963 root 1.22 any queued callbacks will be executed then. To start reading again, call
1964 root 1.10 C<start_read>.
1965    
1966 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1967     you change the C<on_read> callback or push/unshift a read callback, and it
1968     will automatically C<stop_read> for you when neither C<on_read> is set nor
1969     there are any read requests in the queue.
1970    
1971 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1972     as TLS does not support half-duplex connections. In current versions they
1973     work as expected, as this behaviour is required to avoid certain resource
1974     attacks, where the program would be forced to read (and buffer) arbitrary
1975     amounts of data before being able to send some data. The drawback is that
1976     some readings of the the SSL/TLS specifications basically require this
1977     attack to be working, as SSL/TLS implementations might stall sending data
1978     during a rehandshake.
1979    
1980     As a guideline, during the initial handshake, you should not stop reading,
1981 root 1.226 and as a client, it might cause problems, depending on your application.
1982 root 1.93
1983 root 1.10 =cut
1984    
1985     sub stop_read {
1986     my ($self) = @_;
1987 elmex 1.1
1988 root 1.213 delete $self->{_rw};
1989 root 1.8 }
1990 elmex 1.1
1991 root 1.10 sub start_read {
1992     my ($self) = @_;
1993    
1994 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1995 root 1.10 Scalar::Util::weaken $self;
1996    
1997 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1998 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1999 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
2000 root 1.10
2001     if ($len > 0) {
2002 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
2003 root 1.43
2004 root 1.93 if ($self->{tls}) {
2005     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
2006 root 1.97
2007 root 1.93 &_dotls ($self);
2008     } else {
2009 root 1.159 $self->_drain_rbuf;
2010 root 1.93 }
2011 root 1.10
2012 root 1.203 if ($len == $self->{read_size}) {
2013     $self->{read_size} *= 2;
2014     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
2015     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
2016     }
2017    
2018 root 1.10 } elsif (defined $len) {
2019 root 1.38 delete $self->{_rw};
2020     $self->{_eof} = 1;
2021 root 1.159 $self->_drain_rbuf;
2022 root 1.10
2023 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
2024 root 1.52 return $self->_error ($!, 1);
2025 root 1.10 }
2026 root 1.175 };
2027 root 1.10 }
2028 elmex 1.1 }
2029    
2030 root 1.133 our $ERROR_SYSCALL;
2031     our $ERROR_WANT_READ;
2032    
2033     sub _tls_error {
2034     my ($self, $err) = @_;
2035    
2036     return $self->_error ($!, 1)
2037     if $err == Net::SSLeay::ERROR_SYSCALL ();
2038    
2039 root 1.233 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
2040 root 1.137
2041     # reduce error string to look less scary
2042     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
2043    
2044 root 1.143 if ($self->{_on_starttls}) {
2045     (delete $self->{_on_starttls})->($self, undef, $err);
2046     &_freetls;
2047     } else {
2048     &_freetls;
2049 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
2050 root 1.143 }
2051 root 1.133 }
2052    
2053 root 1.97 # poll the write BIO and send the data if applicable
2054 root 1.133 # also decode read data if possible
2055     # this is basiclaly our TLS state machine
2056     # more efficient implementations are possible with openssl,
2057     # but not with the buggy and incomplete Net::SSLeay.
2058 root 1.19 sub _dotls {
2059     my ($self) = @_;
2060    
2061 root 1.97 my $tmp;
2062 root 1.56
2063 root 1.239 while (length $self->{_tls_wbuf}) {
2064     if (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) <= 0) {
2065     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
2066    
2067     return $self->_tls_error ($tmp)
2068     if $tmp != $ERROR_WANT_READ
2069     && ($tmp != $ERROR_SYSCALL || $!);
2070    
2071     last;
2072 root 1.22 }
2073 root 1.133
2074 root 1.239 substr $self->{_tls_wbuf}, 0, $tmp, "";
2075 root 1.19 }
2076    
2077 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
2078     unless (length $tmp) {
2079 root 1.143 $self->{_on_starttls}
2080     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
2081 root 1.92 &_freetls;
2082 root 1.143
2083 root 1.142 if ($self->{on_stoptls}) {
2084     $self->{on_stoptls}($self);
2085     return;
2086     } else {
2087     # let's treat SSL-eof as we treat normal EOF
2088     delete $self->{_rw};
2089     $self->{_eof} = 1;
2090     }
2091 root 1.56 }
2092 root 1.91
2093 root 1.116 $self->{_tls_rbuf} .= $tmp;
2094 root 1.159 $self->_drain_rbuf;
2095 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
2096 root 1.23 }
2097    
2098 root 1.239 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); # -1 is not neccessarily correct, but Net::SSLeay doesn't tell us
2099 root 1.133 return $self->_tls_error ($tmp)
2100     if $tmp != $ERROR_WANT_READ
2101 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
2102 root 1.91
2103 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
2104     $self->{wbuf} .= $tmp;
2105 root 1.91 $self->_drain_wbuf;
2106 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
2107 root 1.91 }
2108 root 1.142
2109     $self->{_on_starttls}
2110     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
2111 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
2112 root 1.19 }
2113    
2114 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
2115    
2116     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
2117     object is created, you can also do that at a later time by calling
2118 root 1.234 C<starttls>. See the C<tls> constructor argument for general info.
2119 root 1.25
2120 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
2121     write data and then call C<< ->starttls >> then TLS negotiation will start
2122 root 1.234 immediately, after which the queued write data is then sent. This might
2123     change in future versions, so best make sure you have no outstanding write
2124     data when calling this method.
2125 root 1.157
2126 root 1.25 The first argument is the same as the C<tls> constructor argument (either
2127     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
2128    
2129 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
2130     when AnyEvent::Handle has to create its own TLS connection object, or
2131     a hash reference with C<< key => value >> pairs that will be used to
2132     construct a new context.
2133    
2134     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
2135     context in C<< $handle->{tls_ctx} >> after this call and can be used or
2136     changed to your liking. Note that the handshake might have already started
2137     when this function returns.
2138 root 1.38
2139 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
2140 root 1.198 handshakes on the same stream. It is best to not attempt to use the
2141     stream after stopping TLS.
2142 root 1.92
2143 root 1.193 This method may invoke callbacks (and therefore the handle might be
2144     destroyed after it returns).
2145    
2146 root 1.25 =cut
2147    
2148 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
2149    
2150 root 1.19 sub starttls {
2151 root 1.160 my ($self, $tls, $ctx) = @_;
2152    
2153     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
2154     if $self->{tls};
2155    
2156 root 1.234 unless (defined $AnyEvent::TLS::VERSION) {
2157     eval {
2158     require Net::SSLeay;
2159     require AnyEvent::TLS;
2160     1
2161     } or return $self->_error (Errno::EPROTO, 1, "TLS support not available on this system");
2162     }
2163    
2164 root 1.160 $self->{tls} = $tls;
2165     $self->{tls_ctx} = $ctx if @_ > 2;
2166    
2167     return unless $self->{fh};
2168 root 1.19
2169 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
2170     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
2171 root 1.133
2172 root 1.180 $tls = delete $self->{tls};
2173 root 1.160 $ctx = $self->{tls_ctx};
2174 root 1.131
2175 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
2176    
2177 root 1.131 if ("HASH" eq ref $ctx) {
2178 root 1.137 if ($ctx->{cache}) {
2179     my $key = $ctx+0;
2180     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
2181     } else {
2182     $ctx = new AnyEvent::TLS %$ctx;
2183     }
2184 root 1.131 }
2185 root 1.92
2186 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
2187 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
2188 root 1.19
2189 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
2190     # but the openssl maintainers basically said: "trust us, it just works".
2191     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
2192     # and mismaintained ssleay-module doesn't even offer them).
2193 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2194 root 1.87 #
2195     # in short: this is a mess.
2196     #
2197 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2198 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2199 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2200     # have identity issues in that area.
2201 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
2202     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2203     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2204 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
2205 root 1.21
2206 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2207     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2208 root 1.19
2209 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2210     $self->{rbuf} = "";
2211 root 1.172
2212 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2213 root 1.19
2214 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2215 root 1.143 if $self->{on_starttls};
2216 root 1.142
2217 root 1.93 &_dotls; # need to trigger the initial handshake
2218     $self->start_read; # make sure we actually do read
2219 root 1.19 }
2220    
2221 root 1.25 =item $handle->stoptls
2222    
2223 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2224     sending a close notify to the other side, but since OpenSSL doesn't
2225 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2226 root 1.160 the stream afterwards.
2227 root 1.25
2228 root 1.193 This method may invoke callbacks (and therefore the handle might be
2229     destroyed after it returns).
2230    
2231 root 1.25 =cut
2232    
2233     sub stoptls {
2234     my ($self) = @_;
2235    
2236 root 1.192 if ($self->{tls} && $self->{fh}) {
2237 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2238 root 1.92
2239     &_dotls;
2240    
2241 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2242     # # we, we... have to use openssl :/#d#
2243     # &_freetls;#d#
2244 root 1.92 }
2245     }
2246    
2247     sub _freetls {
2248     my ($self) = @_;
2249    
2250     return unless $self->{tls};
2251 root 1.38
2252 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2253 root 1.171 if $self->{tls} > 0;
2254 root 1.92
2255 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2256 root 1.25 }
2257    
2258 root 1.216 =item $handle->resettls
2259    
2260     This rarely-used method simply resets and TLS state on the handle, usually
2261     causing data loss.
2262    
2263     One case where it may be useful is when you want to skip over the data in
2264     the stream but you are not interested in interpreting it, so data loss is
2265     no concern.
2266    
2267     =cut
2268    
2269     *resettls = \&_freetls;
2270    
2271 root 1.19 sub DESTROY {
2272 root 1.120 my ($self) = @_;
2273 root 1.19
2274 root 1.92 &_freetls;
2275 root 1.62
2276     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2277    
2278 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2279 root 1.62 my $fh = delete $self->{fh};
2280     my $wbuf = delete $self->{wbuf};
2281    
2282     my @linger;
2283    
2284 root 1.175 push @linger, AE::io $fh, 1, sub {
2285 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2286    
2287     if ($len > 0) {
2288     substr $wbuf, 0, $len, "";
2289 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2290 root 1.62 @linger = (); # end
2291     }
2292 root 1.175 };
2293     push @linger, AE::timer $linger, 0, sub {
2294 root 1.62 @linger = ();
2295 root 1.175 };
2296 root 1.62 }
2297 root 1.19 }
2298    
2299 root 1.99 =item $handle->destroy
2300    
2301 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2302 root 1.141 no further callbacks will be invoked and as many resources as possible
2303 root 1.165 will be freed. Any method you will call on the handle object after
2304     destroying it in this way will be silently ignored (and it will return the
2305     empty list).
2306 root 1.99
2307 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2308     object and it will simply shut down. This works in fatal error and EOF
2309     callbacks, as well as code outside. It does I<NOT> work in a read or write
2310     callback, so when you want to destroy the AnyEvent::Handle object from
2311     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2312     that case.
2313    
2314 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2315     will be removed as well, so if those are the only reference holders (as
2316     is common), then one doesn't need to do anything special to break any
2317     reference cycles.
2318    
2319 root 1.99 The handle might still linger in the background and write out remaining
2320     data, as specified by the C<linger> option, however.
2321    
2322     =cut
2323    
2324     sub destroy {
2325     my ($self) = @_;
2326    
2327     $self->DESTROY;
2328     %$self = ();
2329 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2330     }
2331    
2332 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2333     #nop
2334 root 1.99 }
2335    
2336 root 1.192 =item $handle->destroyed
2337    
2338     Returns false as long as the handle hasn't been destroyed by a call to C<<
2339     ->destroy >>, true otherwise.
2340    
2341     Can be useful to decide whether the handle is still valid after some
2342     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2343     C<< ->starttls >> and other methods can call user callbacks, which in turn
2344     can destroy the handle, so work can be avoided by checking sometimes:
2345    
2346     $hdl->starttls ("accept");
2347     return if $hdl->destroyed;
2348     $hdl->push_write (...
2349    
2350     Note that the call to C<push_write> will silently be ignored if the handle
2351     has been destroyed, so often you can just ignore the possibility of the
2352     handle being destroyed.
2353    
2354     =cut
2355    
2356     sub destroyed { 0 }
2357     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2358    
2359 root 1.19 =item AnyEvent::Handle::TLS_CTX
2360    
2361 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2362     for TLS mode.
2363 root 1.19
2364 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2365 root 1.19
2366     =cut
2367    
2368     our $TLS_CTX;
2369    
2370     sub TLS_CTX() {
2371 root 1.131 $TLS_CTX ||= do {
2372     require AnyEvent::TLS;
2373 root 1.19
2374 root 1.131 new AnyEvent::TLS
2375 root 1.19 }
2376     }
2377    
2378 elmex 1.1 =back
2379    
2380 root 1.95
2381     =head1 NONFREQUENTLY ASKED QUESTIONS
2382    
2383     =over 4
2384    
2385 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2386     still get further invocations!
2387    
2388     That's because AnyEvent::Handle keeps a reference to itself when handling
2389     read or write callbacks.
2390    
2391     It is only safe to "forget" the reference inside EOF or error callbacks,
2392     from within all other callbacks, you need to explicitly call the C<<
2393     ->destroy >> method.
2394    
2395 root 1.208 =item Why is my C<on_eof> callback never called?
2396    
2397     Probably because your C<on_error> callback is being called instead: When
2398     you have outstanding requests in your read queue, then an EOF is
2399     considered an error as you clearly expected some data.
2400    
2401     To avoid this, make sure you have an empty read queue whenever your handle
2402 root 1.223 is supposed to be "idle" (i.e. connection closes are O.K.). You can set
2403 root 1.208 an C<on_read> handler that simply pushes the first read requests in the
2404     queue.
2405    
2406     See also the next question, which explains this in a bit more detail.
2407    
2408     =item How can I serve requests in a loop?
2409    
2410     Most protocols consist of some setup phase (authentication for example)
2411     followed by a request handling phase, where the server waits for requests
2412     and handles them, in a loop.
2413    
2414     There are two important variants: The first (traditional, better) variant
2415     handles requests until the server gets some QUIT command, causing it to
2416     close the connection first (highly desirable for a busy TCP server). A
2417     client dropping the connection is an error, which means this variant can
2418     detect an unexpected detection close.
2419    
2420 root 1.235 To handle this case, always make sure you have a non-empty read queue, by
2421 root 1.208 pushing the "read request start" handler on it:
2422    
2423     # we assume a request starts with a single line
2424     my @start_request; @start_request = (line => sub {
2425     my ($hdl, $line) = @_;
2426    
2427     ... handle request
2428    
2429     # push next request read, possibly from a nested callback
2430     $hdl->push_read (@start_request);
2431     });
2432    
2433     # auth done, now go into request handling loop
2434     # now push the first @start_request
2435     $hdl->push_read (@start_request);
2436    
2437     By always having an outstanding C<push_read>, the handle always expects
2438     some data and raises the C<EPIPE> error when the connction is dropped
2439     unexpectedly.
2440    
2441     The second variant is a protocol where the client can drop the connection
2442     at any time. For TCP, this means that the server machine may run out of
2443 root 1.223 sockets easier, and in general, it means you cannot distinguish a protocl
2444 root 1.208 failure/client crash from a normal connection close. Nevertheless, these
2445     kinds of protocols are common (and sometimes even the best solution to the
2446     problem).
2447    
2448     Having an outstanding read request at all times is possible if you ignore
2449     C<EPIPE> errors, but this doesn't help with when the client drops the
2450     connection during a request, which would still be an error.
2451    
2452     A better solution is to push the initial request read in an C<on_read>
2453     callback. This avoids an error, as when the server doesn't expect data
2454     (i.e. is idly waiting for the next request, an EOF will not raise an
2455     error, but simply result in an C<on_eof> callback. It is also a bit slower
2456     and simpler:
2457    
2458     # auth done, now go into request handling loop
2459     $hdl->on_read (sub {
2460     my ($hdl) = @_;
2461    
2462     # called each time we receive data but the read queue is empty
2463     # simply start read the request
2464    
2465     $hdl->push_read (line => sub {
2466     my ($hdl, $line) = @_;
2467    
2468     ... handle request
2469    
2470     # do nothing special when the request has been handled, just
2471     # let the request queue go empty.
2472     });
2473     });
2474    
2475 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2476     reading?
2477    
2478     Unlike, say, TCP, TLS connections do not consist of two independent
2479 root 1.198 communication channels, one for each direction. Or put differently, the
2480 root 1.101 read and write directions are not independent of each other: you cannot
2481     write data unless you are also prepared to read, and vice versa.
2482    
2483 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2484 root 1.101 callback invocations when you are not expecting any read data - the reason
2485     is that AnyEvent::Handle always reads in TLS mode.
2486    
2487     During the connection, you have to make sure that you always have a
2488     non-empty read-queue, or an C<on_read> watcher. At the end of the
2489     connection (or when you no longer want to use it) you can call the
2490     C<destroy> method.
2491    
2492 root 1.95 =item How do I read data until the other side closes the connection?
2493    
2494 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2495     to achieve this is by setting an C<on_read> callback that does nothing,
2496     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2497     will be in C<$_[0]{rbuf}>:
2498 root 1.95
2499     $handle->on_read (sub { });
2500     $handle->on_eof (undef);
2501     $handle->on_error (sub {
2502     my $data = delete $_[0]{rbuf};
2503     });
2504    
2505 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2506     which is not normally allowed by the API. It is expressly permitted in
2507     this case only, as the handle object needs to be destroyed afterwards.
2508    
2509 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2510     and packets loss, might get closed quite violently with an error, when in
2511 root 1.198 fact all data has been received.
2512 root 1.95
2513 root 1.101 It is usually better to use acknowledgements when transferring data,
2514 root 1.95 to make sure the other side hasn't just died and you got the data
2515     intact. This is also one reason why so many internet protocols have an
2516     explicit QUIT command.
2517    
2518 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2519     all data has been written?
2520 root 1.95
2521     After writing your last bits of data, set the C<on_drain> callback
2522     and destroy the handle in there - with the default setting of
2523     C<low_water_mark> this will be called precisely when all data has been
2524     written to the socket:
2525    
2526     $handle->push_write (...);
2527     $handle->on_drain (sub {
2528 root 1.231 AE::log debug => "All data submitted to the kernel.";
2529 root 1.95 undef $handle;
2530     });
2531    
2532 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2533     consider using C<< ->push_shutdown >> instead.
2534    
2535     =item I want to contact a TLS/SSL server, I don't care about security.
2536    
2537     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2538 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2539 root 1.143 parameter:
2540    
2541 root 1.144 tcp_connect $host, $port, sub {
2542     my ($fh) = @_;
2543 root 1.143
2544 root 1.144 my $handle = new AnyEvent::Handle
2545     fh => $fh,
2546     tls => "connect",
2547     on_error => sub { ... };
2548    
2549     $handle->push_write (...);
2550     };
2551 root 1.143
2552     =item I want to contact a TLS/SSL server, I do care about security.
2553    
2554 root 1.144 Then you should additionally enable certificate verification, including
2555     peername verification, if the protocol you use supports it (see
2556     L<AnyEvent::TLS>, C<verify_peername>).
2557    
2558     E.g. for HTTPS:
2559    
2560     tcp_connect $host, $port, sub {
2561     my ($fh) = @_;
2562    
2563     my $handle = new AnyEvent::Handle
2564     fh => $fh,
2565     peername => $host,
2566     tls => "connect",
2567     tls_ctx => { verify => 1, verify_peername => "https" },
2568     ...
2569    
2570     Note that you must specify the hostname you connected to (or whatever
2571     "peername" the protocol needs) as the C<peername> argument, otherwise no
2572     peername verification will be done.
2573    
2574     The above will use the system-dependent default set of trusted CA
2575     certificates. If you want to check against a specific CA, add the
2576     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2577    
2578     tls_ctx => {
2579     verify => 1,
2580     verify_peername => "https",
2581     ca_file => "my-ca-cert.pem",
2582     },
2583    
2584     =item I want to create a TLS/SSL server, how do I do that?
2585    
2586     Well, you first need to get a server certificate and key. You have
2587     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2588     self-signed certificate (cheap. check the search engine of your choice,
2589     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2590     nice program for that purpose).
2591    
2592     Then create a file with your private key (in PEM format, see
2593     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2594     file should then look like this:
2595    
2596     -----BEGIN RSA PRIVATE KEY-----
2597     ...header data
2598     ... lots of base64'y-stuff
2599     -----END RSA PRIVATE KEY-----
2600    
2601     -----BEGIN CERTIFICATE-----
2602     ... lots of base64'y-stuff
2603     -----END CERTIFICATE-----
2604    
2605     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2606     specify this file as C<cert_file>:
2607    
2608     tcp_server undef, $port, sub {
2609     my ($fh) = @_;
2610    
2611     my $handle = new AnyEvent::Handle
2612     fh => $fh,
2613     tls => "accept",
2614     tls_ctx => { cert_file => "my-server-keycert.pem" },
2615     ...
2616 root 1.143
2617 root 1.144 When you have intermediate CA certificates that your clients might not
2618     know about, just append them to the C<cert_file>.
2619 root 1.143
2620 root 1.95 =back
2621    
2622 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2623    
2624     In many cases, you might want to subclass AnyEvent::Handle.
2625    
2626     To make this easier, a given version of AnyEvent::Handle uses these
2627     conventions:
2628    
2629     =over 4
2630    
2631     =item * all constructor arguments become object members.
2632    
2633     At least initially, when you pass a C<tls>-argument to the constructor it
2634 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2635 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2636    
2637     =item * other object member names are prefixed with an C<_>.
2638    
2639     All object members not explicitly documented (internal use) are prefixed
2640     with an underscore character, so the remaining non-C<_>-namespace is free
2641     for use for subclasses.
2642    
2643     =item * all members not documented here and not prefixed with an underscore
2644     are free to use in subclasses.
2645    
2646     Of course, new versions of AnyEvent::Handle may introduce more "public"
2647 root 1.198 member variables, but that's just life. At least it is documented.
2648 root 1.38
2649     =back
2650    
2651 elmex 1.1 =head1 AUTHOR
2652    
2653 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2654 elmex 1.1
2655     =cut
2656    
2657 root 1.230 1
2658