ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.241
Committed: Fri Sep 5 22:17:26 2014 UTC (9 years, 9 months ago) by root
Branch: MAIN
Changes since 1.240: +33 -10 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16 root 1.233 AE::log error => $msg;
17 root 1.151 $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27 root 1.225 say "got line <$line>";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119 root 1.210 attempted, but after the file handle has been created (you can access that
120     file handle via C<< $handle->{fh} >>). It could be used to prepare the
121     file handle with parameters required for the actual connect (as opposed to
122     settings that can be changed when the connection is already established).
123 root 1.159
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.228 parameters, together with a retry callback. At the time it is called the
134     read and write queues, EOF status, TLS status and similar properties of
135     the handle will have been reset.
136    
137     It is not allowed to use the read or write queues while the handle object
138     is connecting.
139    
140     If, for some reason, the handle is not acceptable, calling C<$retry> will
141     continue with the next connection target (in case of multi-homed hosts or
142     SRV records there can be multiple connection endpoints). The C<$retry>
143     callback can be invoked after the connect callback returns, i.e. one can
144     start a handshake and then decide to retry with the next host if the
145     handshake fails.
146 root 1.159
147 root 1.198 In most cases, you should ignore the C<$retry> parameter.
148 root 1.158
149 root 1.159 =item on_connect_error => $cb->($handle, $message)
150 root 1.10
151 root 1.186 This callback is called when the connection could not be
152 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
153     message describing it (usually the same as C<"$!">).
154 root 1.8
155 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
156     fatal error instead.
157 root 1.82
158 root 1.159 =back
159 root 1.80
160 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
161 root 1.10
162 root 1.52 This is the error callback, which is called when, well, some error
163     occured, such as not being able to resolve the hostname, failure to
164 root 1.198 connect, or a read error.
165 root 1.52
166     Some errors are fatal (which is indicated by C<$fatal> being true). On
167 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
168     destroy >>) after invoking the error callback (which means you are free to
169     examine the handle object). Examples of fatal errors are an EOF condition
170 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
171 root 1.198 cases where the other side can close the connection at will, it is
172 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
173 root 1.82
174 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
175 root 1.233 against, but in some cases (TLS errors), this does not work well.
176    
177     If you report the error to the user, it is recommended to always output
178     the C<$message> argument in human-readable error messages (you don't need
179     to report C<"$!"> if you report C<$message>).
180    
181     If you want to react programmatically to the error, then looking at C<$!>
182     and comparing it against some of the documented C<Errno> values is usually
183     better than looking at the C<$message>.
184 root 1.133
185 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
186 root 1.82 to simply ignore this parameter and instead abondon the handle object
187     when this callback is invoked. Examples of non-fatal errors are timeouts
188     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
189 root 1.8
190 root 1.198 On entry to the callback, the value of C<$!> contains the operating
191     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
192 root 1.133 C<EPROTO>).
193 root 1.8
194 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
195 root 1.198 you will not be notified of errors otherwise. The default just calls
196 root 1.52 C<croak>.
197 root 1.8
198 root 1.40 =item on_read => $cb->($handle)
199 root 1.8
200     This sets the default read callback, which is called when data arrives
201 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
202     callback will only be called when at least one octet of data is in the
203     read buffer).
204 root 1.8
205     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
206 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
207 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
208     the beginning from it.
209 root 1.8
210 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
211     modifies the read queue. Or do both. Or ...
212    
213 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
214 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
215     calling the C<on_eof> callback. If no progress can be made, then a fatal
216     error will be raised (with C<$!> set to C<EPIPE>).
217 elmex 1.1
218 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
219     doesn't mean you I<require> some data: if there is an EOF and there
220     are outstanding read requests then an error will be flagged. With an
221     C<on_read> callback, the C<on_eof> callback will be invoked.
222    
223 root 1.159 =item on_eof => $cb->($handle)
224    
225     Set the callback to be called when an end-of-file condition is detected,
226     i.e. in the case of a socket, when the other side has closed the
227     connection cleanly, and there are no outstanding read requests in the
228     queue (if there are read requests, then an EOF counts as an unexpected
229     connection close and will be flagged as an error).
230    
231     For sockets, this just means that the other side has stopped sending data,
232     you can still try to write data, and, in fact, one can return from the EOF
233     callback and continue writing data, as only the read part has been shut
234     down.
235    
236     If an EOF condition has been detected but no C<on_eof> callback has been
237     set, then a fatal error will be raised with C<$!> set to <0>.
238    
239 root 1.40 =item on_drain => $cb->($handle)
240 elmex 1.1
241 root 1.229 This sets the callback that is called once when the write buffer becomes
242     empty (and immediately when the handle object is created).
243 elmex 1.1
244 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
245 elmex 1.2
246 root 1.69 This callback is useful when you don't want to put all of your write data
247     into the queue at once, for example, when you want to write the contents
248     of some file to the socket you might not want to read the whole file into
249     memory and push it into the queue, but instead only read more data from
250     the file when the write queue becomes empty.
251    
252 root 1.43 =item timeout => $fractional_seconds
253    
254 root 1.176 =item rtimeout => $fractional_seconds
255    
256     =item wtimeout => $fractional_seconds
257    
258     If non-zero, then these enables an "inactivity" timeout: whenever this
259     many seconds pass without a successful read or write on the underlying
260     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
261     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
262     error will be raised).
263    
264 root 1.218 There are three variants of the timeouts that work independently of each
265     other, for both read and write (triggered when nothing was read I<OR>
266     written), just read (triggered when nothing was read), and just write:
267 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
268     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
269     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
270 root 1.43
271 root 1.218 Note that timeout processing is active even when you do not have any
272     outstanding read or write requests: If you plan to keep the connection
273     idle then you should disable the timeout temporarily or ignore the
274     timeout in the corresponding C<on_timeout> callback, in which case
275     AnyEvent::Handle will simply restart the timeout.
276 root 1.43
277 root 1.218 Zero (the default) disables the corresponding timeout.
278 root 1.43
279     =item on_timeout => $cb->($handle)
280    
281 root 1.218 =item on_rtimeout => $cb->($handle)
282    
283     =item on_wtimeout => $cb->($handle)
284    
285 root 1.43 Called whenever the inactivity timeout passes. If you return from this
286     callback, then the timeout will be reset as if some activity had happened,
287     so this condition is not fatal in any way.
288    
289 root 1.8 =item rbuf_max => <bytes>
290 elmex 1.2
291 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
292     when the read buffer ever (strictly) exceeds this size. This is useful to
293 root 1.88 avoid some forms of denial-of-service attacks.
294 elmex 1.2
295 root 1.8 For example, a server accepting connections from untrusted sources should
296     be configured to accept only so-and-so much data that it cannot act on
297     (for example, when expecting a line, an attacker could send an unlimited
298     amount of data without a callback ever being called as long as the line
299     isn't finished).
300 elmex 1.2
301 root 1.209 =item wbuf_max => <bytes>
302    
303     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
304     when the write buffer ever (strictly) exceeds this size. This is useful to
305     avoid some forms of denial-of-service attacks.
306    
307     Although the units of this parameter is bytes, this is the I<raw> number
308     of bytes not yet accepted by the kernel. This can make a difference when
309     you e.g. use TLS, as TLS typically makes your write data larger (but it
310     can also make it smaller due to compression).
311    
312     As an example of when this limit is useful, take a chat server that sends
313     chat messages to a client. If the client does not read those in a timely
314     manner then the send buffer in the server would grow unbounded.
315    
316 root 1.70 =item autocork => <boolean>
317    
318 root 1.198 When disabled (the default), C<push_write> will try to immediately
319     write the data to the handle if possible. This avoids having to register
320 root 1.88 a write watcher and wait for the next event loop iteration, but can
321     be inefficient if you write multiple small chunks (on the wire, this
322     disadvantage is usually avoided by your kernel's nagle algorithm, see
323     C<no_delay>, but this option can save costly syscalls).
324 root 1.70
325 root 1.198 When enabled, writes will always be queued till the next event loop
326 root 1.70 iteration. This is efficient when you do many small writes per iteration,
327 root 1.88 but less efficient when you do a single write only per iteration (or when
328     the write buffer often is full). It also increases write latency.
329 root 1.70
330     =item no_delay => <boolean>
331    
332     When doing small writes on sockets, your operating system kernel might
333     wait a bit for more data before actually sending it out. This is called
334     the Nagle algorithm, and usually it is beneficial.
335    
336 root 1.88 In some situations you want as low a delay as possible, which can be
337     accomplishd by setting this option to a true value.
338 root 1.70
339 root 1.198 The default is your operating system's default behaviour (most likely
340     enabled). This option explicitly enables or disables it, if possible.
341 root 1.70
342 root 1.182 =item keepalive => <boolean>
343    
344     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
345     normally, TCP connections have no time-out once established, so TCP
346 root 1.186 connections, once established, can stay alive forever even when the other
347 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
348 root 1.198 TCP connections when the other side becomes unreachable. While the default
349 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
350     and, if the other side doesn't reply, take down the TCP connection some 10
351     to 15 minutes later.
352    
353     It is harmless to specify this option for file handles that do not support
354     keepalives, and enabling it on connections that are potentially long-lived
355     is usually a good idea.
356    
357     =item oobinline => <boolean>
358    
359     BSD majorly fucked up the implementation of TCP urgent data. The result
360     is that almost no OS implements TCP according to the specs, and every OS
361     implements it slightly differently.
362    
363 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
364     is enabled) gives you the most portable way of getting urgent data, by
365     putting it into the stream.
366    
367     Since BSD emulation of OOB data on top of TCP's urgent data can have
368     security implications, AnyEvent::Handle sets this flag automatically
369 root 1.184 unless explicitly specified. Note that setting this flag after
370     establishing a connection I<may> be a bit too late (data loss could
371     already have occured on BSD systems), but at least it will protect you
372     from most attacks.
373 root 1.182
374 root 1.8 =item read_size => <bytes>
375 elmex 1.2
376 root 1.221 The initial read block size, the number of bytes this module will try
377     to read during each loop iteration. Each handle object will consume
378     at least this amount of memory for the read buffer as well, so when
379     handling many connections watch out for memory requirements). See also
380     C<max_read_size>. Default: C<2048>.
381 root 1.203
382     =item max_read_size => <bytes>
383    
384     The maximum read buffer size used by the dynamic adjustment
385     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
386     one go it will double C<read_size> up to the maximum given by this
387     option. Default: C<131072> or C<read_size>, whichever is higher.
388 root 1.8
389     =item low_water_mark => <bytes>
390    
391 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
392     buffer: If the buffer reaches this size or gets even samller it is
393 root 1.8 considered empty.
394 elmex 1.2
395 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
396     the write buffer before it is fully drained, but this is a rare case, as
397     the operating system kernel usually buffers data as well, so the default
398     is good in almost all cases.
399    
400 root 1.62 =item linger => <seconds>
401    
402 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
403 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
404     write data and will install a watcher that will write this data to the
405     socket. No errors will be reported (this mostly matches how the operating
406     system treats outstanding data at socket close time).
407 root 1.62
408 root 1.88 This will not work for partial TLS data that could not be encoded
409 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
410     help.
411 root 1.62
412 root 1.133 =item peername => $string
413    
414 root 1.134 A string used to identify the remote site - usually the DNS hostname
415     (I<not> IDN!) used to create the connection, rarely the IP address.
416 root 1.131
417 root 1.133 Apart from being useful in error messages, this string is also used in TLS
418 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
419 root 1.198 verification will be skipped when C<peername> is not specified or is
420 root 1.144 C<undef>.
421 root 1.131
422 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
423    
424 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
425 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
426 root 1.88 established and will transparently encrypt/decrypt data afterwards.
427 root 1.19
428 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
429     appropriate error message.
430    
431 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
432 root 1.88 automatically when you try to create a TLS handle): this module doesn't
433     have a dependency on that module, so if your module requires it, you have
434 root 1.234 to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
435     old, you get an C<EPROTO> error.
436 root 1.26
437 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
438     C<accept>, and for the TLS client side of a connection, use C<connect>
439     mode.
440 root 1.19
441     You can also provide your own TLS connection object, but you have
442     to make sure that you call either C<Net::SSLeay::set_connect_state>
443     or C<Net::SSLeay::set_accept_state> on it before you pass it to
444 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
445     object.
446    
447     At some future point, AnyEvent::Handle might switch to another TLS
448     implementation, then the option to use your own session object will go
449     away.
450 root 1.19
451 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
452     passing in the wrong integer will lead to certain crash. This most often
453     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
454     segmentation fault.
455    
456 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
457 root 1.26
458 root 1.131 =item tls_ctx => $anyevent_tls
459 root 1.19
460 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
461 root 1.207 (unless a connection object was specified directly). If this
462     parameter is missing (or C<undef>), then AnyEvent::Handle will use
463     C<AnyEvent::Handle::TLS_CTX>.
464 root 1.19
465 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
466     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
467     new TLS context object.
468    
469 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
470 root 1.142
471     This callback will be invoked when the TLS/SSL handshake has finished. If
472     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
473     (C<on_stoptls> will not be called in this case).
474    
475     The session in C<< $handle->{tls} >> can still be examined in this
476     callback, even when the handshake was not successful.
477    
478 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
479     callback is in effect, instead, the error message will be passed to C<on_starttls>.
480    
481     Without this callback, handshake failures lead to C<on_error> being
482 root 1.198 called as usual.
483 root 1.143
484 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
485 root 1.143 need to do that, start an zero-second timer instead whose callback can
486     then call C<< ->starttls >> again.
487    
488 root 1.142 =item on_stoptls => $cb->($handle)
489    
490     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
491     set, then it will be invoked after freeing the TLS session. If it is not,
492     then a TLS shutdown condition will be treated like a normal EOF condition
493     on the handle.
494    
495     The session in C<< $handle->{tls} >> can still be examined in this
496     callback.
497    
498     This callback will only be called on TLS shutdowns, not when the
499     underlying handle signals EOF.
500    
501 root 1.240 =item json => L<JSON>, L<JSON::PP> or L<JSON::XS> object
502 root 1.40
503     This is the json coder object used by the C<json> read and write types.
504    
505 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
506 root 1.241 suitable one (on demand), which will write and expect UTF-8 encoded
507     JSON texts (either using L<JSON::XS> or L<JSON>). The written texts are
508     guaranteed not to contain any newline character.
509    
510     For security reasons, this encoder will likely I<not> handle numbers and
511     strings, only arrays and objects/hashes. The reason is that originally
512     JSON was self-delimited, but Dougles Crockford thought it was a splendid
513     idea to redefine JSON incompatibly, so this is no longer true.
514    
515     For protocols that used back-to-back JSON texts, this might lead to
516     run-ins, where two or more JSON texts will be interpreted as one JSON
517     text.
518    
519     For this reason, if the default encoder uses L<JSON::XS>, it will default
520     to not allowing anything but arrays and objects/hashes, at least for the
521     forseeable future (it will change at some point). This might or might not
522     be true for the L<JSON> module, so this might cause a security issue.
523    
524     If you depend on either behaviour, you should create your own json object
525     and pass it in explicitly.
526 root 1.40
527 root 1.238 =item cbor => L<CBOR::XS> object
528    
529     This is the cbor coder object used by the C<cbor> read and write types.
530    
531     If you don't supply it, then AnyEvent::Handle will create and use a
532     suitable one (on demand), which will write CBOR without using extensions,
533 root 1.241 if possible.
534 root 1.238
535     Note that you are responsible to depend on the L<CBOR::XS> module if you
536     want to use this functionality, as AnyEvent does not have a dependency on
537     it itself.
538 root 1.40
539 elmex 1.1 =back
540    
541     =cut
542    
543     sub new {
544 root 1.8 my $class = shift;
545     my $self = bless { @_ }, $class;
546    
547 root 1.159 if ($self->{fh}) {
548     $self->_start;
549     return unless $self->{fh}; # could be gone by now
550    
551     } elsif ($self->{connect}) {
552     require AnyEvent::Socket;
553    
554     $self->{peername} = $self->{connect}[0]
555     unless exists $self->{peername};
556    
557     $self->{_skip_drain_rbuf} = 1;
558    
559     {
560     Scalar::Util::weaken (my $self = $self);
561    
562     $self->{_connect} =
563     AnyEvent::Socket::tcp_connect (
564     $self->{connect}[0],
565     $self->{connect}[1],
566     sub {
567     my ($fh, $host, $port, $retry) = @_;
568    
569 root 1.206 delete $self->{_connect}; # no longer needed
570 root 1.205
571 root 1.159 if ($fh) {
572     $self->{fh} = $fh;
573    
574     delete $self->{_skip_drain_rbuf};
575     $self->_start;
576    
577     $self->{on_connect}
578     and $self->{on_connect}($self, $host, $port, sub {
579 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
580 root 1.159 $self->{_skip_drain_rbuf} = 1;
581     &$retry;
582     });
583    
584     } else {
585     if ($self->{on_connect_error}) {
586     $self->{on_connect_error}($self, "$!");
587 root 1.217 $self->destroy if $self;
588 root 1.159 } else {
589 root 1.161 $self->_error ($!, 1);
590 root 1.159 }
591     }
592     },
593     sub {
594     local $self->{fh} = $_[0];
595    
596 root 1.161 $self->{on_prepare}
597 root 1.210 ? $self->{on_prepare}->($self)
598 root 1.161 : ()
599 root 1.159 }
600     );
601     }
602    
603     } else {
604     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
605     }
606    
607     $self
608     }
609    
610     sub _start {
611     my ($self) = @_;
612 root 1.8
613 root 1.194 # too many clueless people try to use udp and similar sockets
614     # with AnyEvent::Handle, do them a favour.
615 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
616     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
617 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
618 root 1.194
619 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
620 elmex 1.1
621 root 1.176 $self->{_activity} =
622     $self->{_ractivity} =
623     $self->{_wactivity} = AE::now;
624    
625 root 1.203 $self->{read_size} ||= 2048;
626     $self->{max_read_size} = $self->{read_size}
627     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
628    
629 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
630     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
631     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
632    
633 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
634     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
635    
636     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
637 root 1.131
638 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
639 root 1.94 if $self->{tls};
640 root 1.19
641 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
642 root 1.10
643 root 1.66 $self->start_read
644 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
645 root 1.160
646     $self->_drain_wbuf;
647 root 1.8 }
648 elmex 1.2
649 root 1.52 sub _error {
650 root 1.133 my ($self, $errno, $fatal, $message) = @_;
651 root 1.8
652 root 1.52 $! = $errno;
653 root 1.133 $message ||= "$!";
654 root 1.37
655 root 1.52 if ($self->{on_error}) {
656 root 1.133 $self->{on_error}($self, $fatal, $message);
657 root 1.151 $self->destroy if $fatal;
658 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
659 root 1.149 $self->destroy;
660 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
661 root 1.52 }
662 elmex 1.1 }
663    
664 root 1.8 =item $fh = $handle->fh
665 elmex 1.1
666 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
667 elmex 1.1
668     =cut
669    
670 root 1.38 sub fh { $_[0]{fh} }
671 elmex 1.1
672 root 1.8 =item $handle->on_error ($cb)
673 elmex 1.1
674 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
675 elmex 1.1
676 root 1.8 =cut
677    
678     sub on_error {
679     $_[0]{on_error} = $_[1];
680     }
681    
682     =item $handle->on_eof ($cb)
683    
684     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
685 elmex 1.1
686     =cut
687    
688 root 1.8 sub on_eof {
689     $_[0]{on_eof} = $_[1];
690     }
691    
692 root 1.43 =item $handle->on_timeout ($cb)
693    
694 root 1.176 =item $handle->on_rtimeout ($cb)
695    
696     =item $handle->on_wtimeout ($cb)
697    
698     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
699     callback, or disables the callback (but not the timeout) if C<$cb> =
700     C<undef>. See the C<timeout> constructor argument and method.
701 root 1.43
702     =cut
703    
704 root 1.176 # see below
705 root 1.43
706 root 1.70 =item $handle->autocork ($boolean)
707    
708     Enables or disables the current autocork behaviour (see C<autocork>
709 root 1.105 constructor argument). Changes will only take effect on the next write.
710 root 1.70
711     =cut
712    
713 root 1.105 sub autocork {
714     $_[0]{autocork} = $_[1];
715     }
716    
717 root 1.70 =item $handle->no_delay ($boolean)
718    
719     Enables or disables the C<no_delay> setting (see constructor argument of
720     the same name for details).
721    
722     =cut
723    
724     sub no_delay {
725     $_[0]{no_delay} = $_[1];
726    
727 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
728     if $_[0]{fh};
729 root 1.182 }
730    
731     =item $handle->keepalive ($boolean)
732    
733     Enables or disables the C<keepalive> setting (see constructor argument of
734     the same name for details).
735    
736     =cut
737    
738     sub keepalive {
739     $_[0]{keepalive} = $_[1];
740    
741     eval {
742     local $SIG{__DIE__};
743     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
744     if $_[0]{fh};
745     };
746     }
747    
748     =item $handle->oobinline ($boolean)
749    
750     Enables or disables the C<oobinline> setting (see constructor argument of
751     the same name for details).
752    
753     =cut
754    
755     sub oobinline {
756     $_[0]{oobinline} = $_[1];
757    
758     eval {
759     local $SIG{__DIE__};
760     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
761     if $_[0]{fh};
762     };
763     }
764    
765     =item $handle->keepalive ($boolean)
766    
767     Enables or disables the C<keepalive> setting (see constructor argument of
768     the same name for details).
769    
770     =cut
771    
772     sub keepalive {
773     $_[0]{keepalive} = $_[1];
774    
775     eval {
776     local $SIG{__DIE__};
777     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
778 root 1.159 if $_[0]{fh};
779 root 1.70 };
780     }
781    
782 root 1.142 =item $handle->on_starttls ($cb)
783    
784     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
785    
786     =cut
787    
788     sub on_starttls {
789     $_[0]{on_starttls} = $_[1];
790     }
791    
792     =item $handle->on_stoptls ($cb)
793    
794     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
795    
796     =cut
797    
798 root 1.189 sub on_stoptls {
799 root 1.142 $_[0]{on_stoptls} = $_[1];
800     }
801    
802 root 1.168 =item $handle->rbuf_max ($max_octets)
803    
804     Configures the C<rbuf_max> setting (C<undef> disables it).
805    
806 root 1.209 =item $handle->wbuf_max ($max_octets)
807    
808     Configures the C<wbuf_max> setting (C<undef> disables it).
809    
810 root 1.168 =cut
811    
812     sub rbuf_max {
813     $_[0]{rbuf_max} = $_[1];
814     }
815    
816 root 1.215 sub wbuf_max {
817 root 1.209 $_[0]{wbuf_max} = $_[1];
818     }
819    
820 root 1.43 #############################################################################
821    
822     =item $handle->timeout ($seconds)
823    
824 root 1.176 =item $handle->rtimeout ($seconds)
825    
826     =item $handle->wtimeout ($seconds)
827    
828 root 1.43 Configures (or disables) the inactivity timeout.
829    
830 root 1.218 The timeout will be checked instantly, so this method might destroy the
831     handle before it returns.
832    
833 root 1.176 =item $handle->timeout_reset
834    
835     =item $handle->rtimeout_reset
836    
837     =item $handle->wtimeout_reset
838    
839     Reset the activity timeout, as if data was received or sent.
840    
841     These methods are cheap to call.
842    
843 root 1.43 =cut
844    
845 root 1.176 for my $dir ("", "r", "w") {
846     my $timeout = "${dir}timeout";
847     my $tw = "_${dir}tw";
848     my $on_timeout = "on_${dir}timeout";
849     my $activity = "_${dir}activity";
850     my $cb;
851    
852     *$on_timeout = sub {
853     $_[0]{$on_timeout} = $_[1];
854     };
855    
856     *$timeout = sub {
857     my ($self, $new_value) = @_;
858 root 1.43
859 root 1.201 $new_value >= 0
860     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
861    
862 root 1.176 $self->{$timeout} = $new_value;
863     delete $self->{$tw}; &$cb;
864     };
865 root 1.43
866 root 1.176 *{"${dir}timeout_reset"} = sub {
867     $_[0]{$activity} = AE::now;
868     };
869 root 1.43
870 root 1.176 # main workhorse:
871     # reset the timeout watcher, as neccessary
872     # also check for time-outs
873     $cb = sub {
874     my ($self) = @_;
875    
876     if ($self->{$timeout} && $self->{fh}) {
877     my $NOW = AE::now;
878    
879     # when would the timeout trigger?
880     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
881    
882     # now or in the past already?
883     if ($after <= 0) {
884     $self->{$activity} = $NOW;
885 root 1.43
886 root 1.176 if ($self->{$on_timeout}) {
887     $self->{$on_timeout}($self);
888     } else {
889     $self->_error (Errno::ETIMEDOUT);
890     }
891 root 1.43
892 root 1.176 # callback could have changed timeout value, optimise
893     return unless $self->{$timeout};
894 root 1.43
895 root 1.176 # calculate new after
896     $after = $self->{$timeout};
897 root 1.43 }
898    
899 root 1.176 Scalar::Util::weaken $self;
900     return unless $self; # ->error could have destroyed $self
901 root 1.43
902 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
903     delete $self->{$tw};
904     $cb->($self);
905     };
906     } else {
907     delete $self->{$tw};
908 root 1.43 }
909     }
910     }
911    
912 root 1.9 #############################################################################
913    
914     =back
915    
916     =head2 WRITE QUEUE
917    
918     AnyEvent::Handle manages two queues per handle, one for writing and one
919     for reading.
920    
921     The write queue is very simple: you can add data to its end, and
922     AnyEvent::Handle will automatically try to get rid of it for you.
923    
924 elmex 1.20 When data could be written and the write buffer is shorter then the low
925 root 1.229 water mark, the C<on_drain> callback will be invoked once.
926 root 1.9
927     =over 4
928    
929 root 1.8 =item $handle->on_drain ($cb)
930    
931     Sets the C<on_drain> callback or clears it (see the description of
932     C<on_drain> in the constructor).
933    
934 root 1.193 This method may invoke callbacks (and therefore the handle might be
935     destroyed after it returns).
936    
937 root 1.8 =cut
938    
939     sub on_drain {
940 elmex 1.1 my ($self, $cb) = @_;
941    
942 root 1.8 $self->{on_drain} = $cb;
943    
944     $cb->($self)
945 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
946 root 1.8 }
947    
948     =item $handle->push_write ($data)
949    
950 root 1.209 Queues the given scalar to be written. You can push as much data as
951     you want (only limited by the available memory and C<wbuf_max>), as
952     C<AnyEvent::Handle> buffers it independently of the kernel.
953 root 1.8
954 root 1.193 This method may invoke callbacks (and therefore the handle might be
955     destroyed after it returns).
956    
957 root 1.8 =cut
958    
959 root 1.17 sub _drain_wbuf {
960     my ($self) = @_;
961 root 1.8
962 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
963 root 1.35
964 root 1.8 Scalar::Util::weaken $self;
965 root 1.35
966 root 1.8 my $cb = sub {
967     my $len = syswrite $self->{fh}, $self->{wbuf};
968    
969 root 1.146 if (defined $len) {
970 root 1.8 substr $self->{wbuf}, 0, $len, "";
971    
972 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
973 root 1.43
974 root 1.8 $self->{on_drain}($self)
975 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
976 root 1.8 && $self->{on_drain};
977    
978 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
979 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
980 root 1.52 $self->_error ($!, 1);
981 elmex 1.1 }
982 root 1.8 };
983    
984 root 1.35 # try to write data immediately
985 root 1.70 $cb->() unless $self->{autocork};
986 root 1.8
987 root 1.35 # if still data left in wbuf, we need to poll
988 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
989 root 1.35 if length $self->{wbuf};
990 root 1.209
991     if (
992     defined $self->{wbuf_max}
993     && $self->{wbuf_max} < length $self->{wbuf}
994     ) {
995     $self->_error (Errno::ENOSPC, 1), return;
996     }
997 root 1.8 };
998     }
999    
1000 root 1.30 our %WH;
1001    
1002 root 1.185 # deprecated
1003 root 1.30 sub register_write_type($$) {
1004     $WH{$_[0]} = $_[1];
1005     }
1006    
1007 root 1.17 sub push_write {
1008     my $self = shift;
1009    
1010 root 1.29 if (@_ > 1) {
1011     my $type = shift;
1012    
1013 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
1014     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
1015 root 1.29 ->($self, @_);
1016     }
1017    
1018 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
1019     # and diagnose the problem earlier and better.
1020    
1021 root 1.93 if ($self->{tls}) {
1022 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
1023 root 1.160 &_dotls ($self) if $self->{fh};
1024 root 1.17 } else {
1025 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
1026 root 1.159 $self->_drain_wbuf if $self->{fh};
1027 root 1.17 }
1028     }
1029    
1030 root 1.29 =item $handle->push_write (type => @args)
1031    
1032 root 1.185 Instead of formatting your data yourself, you can also let this module
1033     do the job by specifying a type and type-specific arguments. You
1034     can also specify the (fully qualified) name of a package, in which
1035     case AnyEvent tries to load the package and then expects to find the
1036 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
1037 root 1.29
1038 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1039     drop by and tell us):
1040 root 1.29
1041     =over 4
1042    
1043     =item netstring => $string
1044    
1045     Formats the given value as netstring
1046     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1047    
1048     =cut
1049    
1050     register_write_type netstring => sub {
1051     my ($self, $string) = @_;
1052    
1053 root 1.96 (length $string) . ":$string,"
1054 root 1.29 };
1055    
1056 root 1.61 =item packstring => $format, $data
1057    
1058     An octet string prefixed with an encoded length. The encoding C<$format>
1059     uses the same format as a Perl C<pack> format, but must specify a single
1060     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1061     optional C<!>, C<< < >> or C<< > >> modifier).
1062    
1063     =cut
1064    
1065     register_write_type packstring => sub {
1066     my ($self, $format, $string) = @_;
1067    
1068 root 1.65 pack "$format/a*", $string
1069 root 1.61 };
1070    
1071 root 1.39 =item json => $array_or_hashref
1072    
1073 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1074     provide your own JSON object, this means it will be encoded to JSON text
1075     in UTF-8.
1076    
1077 root 1.241 The default encoder might or might not handle every type of JSON value -
1078     it might be limited to arrays and objects for security reasons. See the
1079     C<json> constructor attribute for more details.
1080    
1081     JSON objects (and arrays) are self-delimiting, so if you only use arrays
1082     and hashes, you can write JSON at one end of a handle and read them at the
1083     other end without using any additional framing.
1084    
1085     The JSON text generated by the default encoder is guaranteed not to
1086     contain any newlines: While this module doesn't need delimiters after or
1087     between JSON texts to be able to read them, many other languages depend on
1088     them.
1089 root 1.41
1090 root 1.238 A simple RPC protocol that interoperates easily with other languages is
1091     to send JSON arrays (or objects, although arrays are usually the better
1092     choice as they mimic how function argument passing works) and a newline
1093     after each JSON text:
1094 root 1.41
1095     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1096     $handle->push_write ("\012");
1097    
1098     An AnyEvent::Handle receiver would simply use the C<json> read type and
1099     rely on the fact that the newline will be skipped as leading whitespace:
1100    
1101     $handle->push_read (json => sub { my $array = $_[1]; ... });
1102    
1103     Other languages could read single lines terminated by a newline and pass
1104     this line into their JSON decoder of choice.
1105    
1106 root 1.238 =item cbor => $perl_scalar
1107    
1108     Encodes the given scalar into a CBOR value. Unless you provide your own
1109     L<CBOR::XS> object, this means it will be encoded to a CBOR string not
1110     using any extensions, if possible.
1111    
1112     CBOR values are self-delimiting, so you can write CBOR at one end of
1113     a handle and read them at the other end without using any additional
1114     framing.
1115    
1116     A simple nd very very fast RPC protocol that interoperates with
1117     other languages is to send CBOR and receive CBOR values (arrays are
1118     recommended):
1119    
1120     $handle->push_write (cbor => ["method", "arg1", "arg2"]); # whatever
1121    
1122     An AnyEvent::Handle receiver would simply use the C<cbor> read type:
1123    
1124     $handle->push_read (cbor => sub { my $array = $_[1]; ... });
1125    
1126 root 1.40 =cut
1127    
1128 root 1.179 sub json_coder() {
1129     eval { require JSON::XS; JSON::XS->new->utf8 }
1130 root 1.240 || do { require JSON::PP; JSON::PP->new->utf8 }
1131 root 1.179 }
1132    
1133 root 1.40 register_write_type json => sub {
1134     my ($self, $ref) = @_;
1135    
1136 root 1.238 ($self->{json} ||= json_coder)
1137     ->encode ($ref)
1138     };
1139    
1140     sub cbor_coder() {
1141     require CBOR::XS;
1142     CBOR::XS->new
1143     }
1144    
1145     register_write_type cbor => sub {
1146     my ($self, $scalar) = @_;
1147 root 1.40
1148 root 1.238 ($self->{cbor} ||= cbor_coder)
1149     ->encode ($scalar)
1150 root 1.40 };
1151    
1152 root 1.63 =item storable => $reference
1153    
1154     Freezes the given reference using L<Storable> and writes it to the
1155     handle. Uses the C<nfreeze> format.
1156    
1157     =cut
1158    
1159     register_write_type storable => sub {
1160     my ($self, $ref) = @_;
1161    
1162 root 1.224 require Storable unless $Storable::VERSION;
1163 root 1.63
1164 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1165 root 1.63 };
1166    
1167 root 1.53 =back
1168    
1169 root 1.133 =item $handle->push_shutdown
1170    
1171     Sometimes you know you want to close the socket after writing your data
1172     before it was actually written. One way to do that is to replace your
1173 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1174     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1175     replaces the C<on_drain> callback with:
1176 root 1.133
1177 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1178 root 1.133
1179     This simply shuts down the write side and signals an EOF condition to the
1180     the peer.
1181    
1182     You can rely on the normal read queue and C<on_eof> handling
1183     afterwards. This is the cleanest way to close a connection.
1184    
1185 root 1.193 This method may invoke callbacks (and therefore the handle might be
1186     destroyed after it returns).
1187    
1188 root 1.133 =cut
1189    
1190     sub push_shutdown {
1191 root 1.142 my ($self) = @_;
1192    
1193     delete $self->{low_water_mark};
1194     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1195 root 1.133 }
1196    
1197 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1198    
1199     Instead of one of the predefined types, you can also specify the name of
1200     a package. AnyEvent will try to load the package and then expects to find
1201     a function named C<anyevent_write_type> inside. If it isn't found, it
1202     progressively tries to load the parent package until it either finds the
1203     function (good) or runs out of packages (bad).
1204    
1205     Whenever the given C<type> is used, C<push_write> will the function with
1206     the handle object and the remaining arguments.
1207    
1208     The function is supposed to return a single octet string that will be
1209 root 1.223 appended to the write buffer, so you can mentally treat this function as a
1210 root 1.185 "arguments to on-the-wire-format" converter.
1211 root 1.30
1212 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1213     arguments using the first one.
1214 root 1.29
1215 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1216 root 1.29
1217 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1218     # the "My" modules to be auto-loaded, or just about anywhere when the
1219     # My::Type::anyevent_write_type is defined before invoking it.
1220    
1221     package My::Type;
1222    
1223     sub anyevent_write_type {
1224     my ($handle, $delim, @args) = @_;
1225    
1226     join $delim, @args
1227     }
1228 root 1.29
1229 root 1.30 =cut
1230 root 1.29
1231 root 1.8 #############################################################################
1232    
1233 root 1.9 =back
1234    
1235     =head2 READ QUEUE
1236    
1237     AnyEvent::Handle manages two queues per handle, one for writing and one
1238     for reading.
1239    
1240     The read queue is more complex than the write queue. It can be used in two
1241     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1242     a queue.
1243    
1244     In the simple case, you just install an C<on_read> callback and whenever
1245     new data arrives, it will be called. You can then remove some data (if
1246 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1247 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1248 root 1.197 partial message has been received so far), or change the read queue with
1249     e.g. C<push_read>.
1250 root 1.9
1251     In the more complex case, you want to queue multiple callbacks. In this
1252     case, AnyEvent::Handle will call the first queued callback each time new
1253 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1254 root 1.61 done its job (see C<push_read>, below).
1255 root 1.9
1256     This way you can, for example, push three line-reads, followed by reading
1257     a chunk of data, and AnyEvent::Handle will execute them in order.
1258    
1259     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1260     the specified number of bytes which give an XML datagram.
1261    
1262     # in the default state, expect some header bytes
1263     $handle->on_read (sub {
1264     # some data is here, now queue the length-header-read (4 octets)
1265 root 1.52 shift->unshift_read (chunk => 4, sub {
1266 root 1.9 # header arrived, decode
1267     my $len = unpack "N", $_[1];
1268    
1269     # now read the payload
1270 root 1.52 shift->unshift_read (chunk => $len, sub {
1271 root 1.9 my $xml = $_[1];
1272     # handle xml
1273     });
1274     });
1275     });
1276    
1277 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1278     and another line or "ERROR" for the first request that is sent, and 64
1279     bytes for the second request. Due to the availability of a queue, we can
1280     just pipeline sending both requests and manipulate the queue as necessary
1281     in the callbacks.
1282    
1283     When the first callback is called and sees an "OK" response, it will
1284     C<unshift> another line-read. This line-read will be queued I<before> the
1285     64-byte chunk callback.
1286 root 1.9
1287 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1288 root 1.9 $handle->push_write ("request 1\015\012");
1289    
1290     # we expect "ERROR" or "OK" as response, so push a line read
1291 root 1.52 $handle->push_read (line => sub {
1292 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1293     # so it will be read before the second request reads its 64 bytes
1294     # which are already in the queue when this callback is called
1295     # we don't do this in case we got an error
1296     if ($_[1] eq "OK") {
1297 root 1.52 $_[0]->unshift_read (line => sub {
1298 root 1.9 my $response = $_[1];
1299     ...
1300     });
1301     }
1302     });
1303    
1304 root 1.69 # request two, simply returns 64 octets
1305 root 1.9 $handle->push_write ("request 2\015\012");
1306    
1307     # simply read 64 bytes, always
1308 root 1.52 $handle->push_read (chunk => 64, sub {
1309 root 1.9 my $response = $_[1];
1310     ...
1311     });
1312    
1313     =over 4
1314    
1315 root 1.10 =cut
1316    
1317 root 1.8 sub _drain_rbuf {
1318     my ($self) = @_;
1319 elmex 1.1
1320 root 1.159 # avoid recursion
1321 root 1.167 return if $self->{_skip_drain_rbuf};
1322 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1323 root 1.59
1324     while () {
1325 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1326     # we are draining the buffer, and this can only happen with TLS.
1327 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1328     if exists $self->{_tls_rbuf};
1329 root 1.115
1330 root 1.59 my $len = length $self->{rbuf};
1331 elmex 1.1
1332 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1333 root 1.29 unless ($cb->($self)) {
1334 root 1.163 # no progress can be made
1335     # (not enough data and no data forthcoming)
1336     $self->_error (Errno::EPIPE, 1), return
1337     if $self->{_eof};
1338 root 1.10
1339 root 1.38 unshift @{ $self->{_queue} }, $cb;
1340 root 1.55 last;
1341 root 1.8 }
1342     } elsif ($self->{on_read}) {
1343 root 1.61 last unless $len;
1344    
1345 root 1.8 $self->{on_read}($self);
1346    
1347     if (
1348 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1349     && !@{ $self->{_queue} } # and the queue is still empty
1350     && $self->{on_read} # but we still have on_read
1351 root 1.8 ) {
1352 root 1.55 # no further data will arrive
1353     # so no progress can be made
1354 root 1.150 $self->_error (Errno::EPIPE, 1), return
1355 root 1.55 if $self->{_eof};
1356    
1357     last; # more data might arrive
1358 elmex 1.1 }
1359 root 1.8 } else {
1360     # read side becomes idle
1361 root 1.93 delete $self->{_rw} unless $self->{tls};
1362 root 1.55 last;
1363 root 1.8 }
1364     }
1365    
1366 root 1.80 if ($self->{_eof}) {
1367 root 1.163 $self->{on_eof}
1368     ? $self->{on_eof}($self)
1369     : $self->_error (0, 1, "Unexpected end-of-file");
1370    
1371     return;
1372 root 1.80 }
1373 root 1.55
1374 root 1.169 if (
1375     defined $self->{rbuf_max}
1376     && $self->{rbuf_max} < length $self->{rbuf}
1377     ) {
1378     $self->_error (Errno::ENOSPC, 1), return;
1379     }
1380    
1381 root 1.55 # may need to restart read watcher
1382     unless ($self->{_rw}) {
1383     $self->start_read
1384     if $self->{on_read} || @{ $self->{_queue} };
1385     }
1386 elmex 1.1 }
1387    
1388 root 1.8 =item $handle->on_read ($cb)
1389 elmex 1.1
1390 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1391     the new callback is C<undef>). See the description of C<on_read> in the
1392     constructor.
1393 elmex 1.1
1394 root 1.193 This method may invoke callbacks (and therefore the handle might be
1395     destroyed after it returns).
1396    
1397 root 1.8 =cut
1398    
1399     sub on_read {
1400     my ($self, $cb) = @_;
1401 elmex 1.1
1402 root 1.8 $self->{on_read} = $cb;
1403 root 1.159 $self->_drain_rbuf if $cb;
1404 elmex 1.1 }
1405    
1406 root 1.8 =item $handle->rbuf
1407    
1408 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1409     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1410     much faster, and no less clean).
1411    
1412     The only operation allowed on the read buffer (apart from looking at it)
1413     is removing data from its beginning. Otherwise modifying or appending to
1414     it is not allowed and will lead to hard-to-track-down bugs.
1415    
1416     NOTE: The read buffer should only be used or modified in the C<on_read>
1417     callback or when C<push_read> or C<unshift_read> are used with a single
1418     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1419     will manage the read buffer on their own.
1420 elmex 1.1
1421     =cut
1422    
1423 elmex 1.2 sub rbuf : lvalue {
1424 root 1.8 $_[0]{rbuf}
1425 elmex 1.2 }
1426 elmex 1.1
1427 root 1.8 =item $handle->push_read ($cb)
1428    
1429     =item $handle->unshift_read ($cb)
1430    
1431     Append the given callback to the end of the queue (C<push_read>) or
1432     prepend it (C<unshift_read>).
1433    
1434     The callback is called each time some additional read data arrives.
1435 elmex 1.1
1436 elmex 1.20 It must check whether enough data is in the read buffer already.
1437 elmex 1.1
1438 root 1.8 If not enough data is available, it must return the empty list or a false
1439     value, in which case it will be called repeatedly until enough data is
1440     available (or an error condition is detected).
1441    
1442     If enough data was available, then the callback must remove all data it is
1443     interested in (which can be none at all) and return a true value. After returning
1444     true, it will be removed from the queue.
1445 elmex 1.1
1446 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1447     destroyed after it returns).
1448    
1449 elmex 1.1 =cut
1450    
1451 root 1.30 our %RH;
1452    
1453     sub register_read_type($$) {
1454     $RH{$_[0]} = $_[1];
1455     }
1456    
1457 root 1.8 sub push_read {
1458 root 1.28 my $self = shift;
1459     my $cb = pop;
1460    
1461     if (@_) {
1462     my $type = shift;
1463    
1464 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1465     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1466 root 1.28 ->($self, $cb, @_);
1467     }
1468 elmex 1.1
1469 root 1.38 push @{ $self->{_queue} }, $cb;
1470 root 1.159 $self->_drain_rbuf;
1471 elmex 1.1 }
1472    
1473 root 1.8 sub unshift_read {
1474 root 1.28 my $self = shift;
1475     my $cb = pop;
1476    
1477     if (@_) {
1478     my $type = shift;
1479    
1480 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1481     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1482 root 1.28 ->($self, $cb, @_);
1483     }
1484    
1485 root 1.38 unshift @{ $self->{_queue} }, $cb;
1486 root 1.159 $self->_drain_rbuf;
1487 root 1.8 }
1488 elmex 1.1
1489 root 1.28 =item $handle->push_read (type => @args, $cb)
1490 elmex 1.1
1491 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1492 elmex 1.1
1493 root 1.28 Instead of providing a callback that parses the data itself you can chose
1494     between a number of predefined parsing formats, for chunks of data, lines
1495 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1496     which case AnyEvent tries to load the package and then expects to find the
1497     C<anyevent_read_type> function inside (see "custom read types", below).
1498 elmex 1.1
1499 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1500     drop by and tell us):
1501 root 1.28
1502     =over 4
1503    
1504 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1505 root 1.28
1506     Invoke the callback only once C<$octets> bytes have been read. Pass the
1507     data read to the callback. The callback will never be called with less
1508     data.
1509    
1510     Example: read 2 bytes.
1511    
1512     $handle->push_read (chunk => 2, sub {
1513 root 1.225 say "yay " . unpack "H*", $_[1];
1514 root 1.28 });
1515 elmex 1.1
1516     =cut
1517    
1518 root 1.28 register_read_type chunk => sub {
1519     my ($self, $cb, $len) = @_;
1520 elmex 1.1
1521 root 1.8 sub {
1522     $len <= length $_[0]{rbuf} or return;
1523 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1524 root 1.8 1
1525     }
1526 root 1.28 };
1527 root 1.8
1528 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1529 elmex 1.1
1530 root 1.8 The callback will be called only once a full line (including the end of
1531     line marker, C<$eol>) has been read. This line (excluding the end of line
1532     marker) will be passed to the callback as second argument (C<$line>), and
1533     the end of line marker as the third argument (C<$eol>).
1534 elmex 1.1
1535 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1536     will be interpreted as a fixed record end marker, or it can be a regex
1537     object (e.g. created by C<qr>), in which case it is interpreted as a
1538     regular expression.
1539 elmex 1.1
1540 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1541     undef), then C<qr|\015?\012|> is used (which is good for most internet
1542     protocols).
1543 elmex 1.1
1544 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1545     not marked by the end of line marker.
1546 elmex 1.1
1547 root 1.8 =cut
1548 elmex 1.1
1549 root 1.28 register_read_type line => sub {
1550     my ($self, $cb, $eol) = @_;
1551 elmex 1.1
1552 root 1.76 if (@_ < 3) {
1553 root 1.237 # this is faster then the generic code below
1554 root 1.76 sub {
1555 root 1.237 (my $pos = index $_[0]{rbuf}, "\012") >= 0
1556     or return;
1557 elmex 1.1
1558 root 1.237 (my $str = substr $_[0]{rbuf}, 0, $pos + 1, "") =~ s/(\015?\012)\Z// or die;
1559     $cb->($_[0], $str, "$1");
1560 root 1.76 1
1561     }
1562     } else {
1563     $eol = quotemeta $eol unless ref $eol;
1564     $eol = qr|^(.*?)($eol)|s;
1565    
1566     sub {
1567     $_[0]{rbuf} =~ s/$eol// or return;
1568 elmex 1.1
1569 root 1.227 $cb->($_[0], "$1", "$2");
1570 root 1.76 1
1571     }
1572 root 1.8 }
1573 root 1.28 };
1574 elmex 1.1
1575 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1576 root 1.36
1577     Makes a regex match against the regex object C<$accept> and returns
1578     everything up to and including the match.
1579    
1580     Example: read a single line terminated by '\n'.
1581    
1582     $handle->push_read (regex => qr<\n>, sub { ... });
1583    
1584     If C<$reject> is given and not undef, then it determines when the data is
1585     to be rejected: it is matched against the data when the C<$accept> regex
1586     does not match and generates an C<EBADMSG> error when it matches. This is
1587     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1588     receive buffer overflow).
1589    
1590     Example: expect a single decimal number followed by whitespace, reject
1591     anything else (not the use of an anchor).
1592    
1593     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1594    
1595     If C<$skip> is given and not C<undef>, then it will be matched against
1596     the receive buffer when neither C<$accept> nor C<$reject> match,
1597     and everything preceding and including the match will be accepted
1598     unconditionally. This is useful to skip large amounts of data that you
1599     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1600     have to start matching from the beginning. This is purely an optimisation
1601 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1602 root 1.36
1603     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1604 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1605 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1606     it only accepts something not ending in either \015 or \012, as these are
1607     required for the accept regex.
1608    
1609     $handle->push_read (regex =>
1610     qr<\015\012\015\012>,
1611     undef, # no reject
1612     qr<^.*[^\015\012]>,
1613     sub { ... });
1614    
1615     =cut
1616    
1617     register_read_type regex => sub {
1618     my ($self, $cb, $accept, $reject, $skip) = @_;
1619    
1620     my $data;
1621     my $rbuf = \$self->{rbuf};
1622    
1623     sub {
1624     # accept
1625     if ($$rbuf =~ $accept) {
1626     $data .= substr $$rbuf, 0, $+[0], "";
1627 root 1.220 $cb->($_[0], $data);
1628 root 1.36 return 1;
1629     }
1630    
1631     # reject
1632     if ($reject && $$rbuf =~ $reject) {
1633 root 1.220 $_[0]->_error (Errno::EBADMSG);
1634 root 1.36 }
1635    
1636     # skip
1637     if ($skip && $$rbuf =~ $skip) {
1638     $data .= substr $$rbuf, 0, $+[0], "";
1639     }
1640    
1641     ()
1642     }
1643     };
1644    
1645 root 1.61 =item netstring => $cb->($handle, $string)
1646    
1647     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1648    
1649     Throws an error with C<$!> set to EBADMSG on format violations.
1650    
1651     =cut
1652    
1653     register_read_type netstring => sub {
1654     my ($self, $cb) = @_;
1655    
1656     sub {
1657     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1658     if ($_[0]{rbuf} =~ /[^0-9]/) {
1659 root 1.220 $_[0]->_error (Errno::EBADMSG);
1660 root 1.61 }
1661     return;
1662     }
1663    
1664     my $len = $1;
1665    
1666 root 1.220 $_[0]->unshift_read (chunk => $len, sub {
1667 root 1.61 my $string = $_[1];
1668     $_[0]->unshift_read (chunk => 1, sub {
1669     if ($_[1] eq ",") {
1670     $cb->($_[0], $string);
1671     } else {
1672 root 1.220 $_[0]->_error (Errno::EBADMSG);
1673 root 1.61 }
1674     });
1675     });
1676    
1677     1
1678     }
1679     };
1680    
1681     =item packstring => $format, $cb->($handle, $string)
1682    
1683     An octet string prefixed with an encoded length. The encoding C<$format>
1684     uses the same format as a Perl C<pack> format, but must specify a single
1685     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1686     optional C<!>, C<< < >> or C<< > >> modifier).
1687    
1688 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1689     EPP uses a prefix of C<N> (4 octtes).
1690 root 1.61
1691     Example: read a block of data prefixed by its length in BER-encoded
1692     format (very efficient).
1693    
1694     $handle->push_read (packstring => "w", sub {
1695     my ($handle, $data) = @_;
1696     });
1697    
1698     =cut
1699    
1700     register_read_type packstring => sub {
1701     my ($self, $cb, $format) = @_;
1702    
1703     sub {
1704     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1705 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1706 root 1.61 or return;
1707    
1708 root 1.77 $format = length pack $format, $len;
1709 root 1.61
1710 root 1.77 # bypass unshift if we already have the remaining chunk
1711     if ($format + $len <= length $_[0]{rbuf}) {
1712     my $data = substr $_[0]{rbuf}, $format, $len;
1713     substr $_[0]{rbuf}, 0, $format + $len, "";
1714     $cb->($_[0], $data);
1715     } else {
1716     # remove prefix
1717     substr $_[0]{rbuf}, 0, $format, "";
1718    
1719     # read remaining chunk
1720     $_[0]->unshift_read (chunk => $len, $cb);
1721     }
1722 root 1.61
1723     1
1724     }
1725     };
1726    
1727 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1728    
1729 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1730     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1731 root 1.40
1732 root 1.240 If a C<json> object was passed to the constructor, then that will be
1733     used for the final decode, otherwise it will create a L<JSON::XS> or
1734     L<JSON::PP> coder object expecting UTF-8.
1735 root 1.40
1736     This read type uses the incremental parser available with JSON version
1737 root 1.240 2.09 (and JSON::XS version 2.2) and above.
1738 root 1.40
1739     Since JSON texts are fully self-delimiting, the C<json> read and write
1740 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1741     the C<json> write type description, above, for an actual example.
1742 root 1.40
1743     =cut
1744    
1745     register_read_type json => sub {
1746 root 1.63 my ($self, $cb) = @_;
1747 root 1.40
1748 root 1.179 my $json = $self->{json} ||= json_coder;
1749 root 1.40
1750     my $data;
1751    
1752     sub {
1753 root 1.220 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1754 root 1.110
1755 root 1.113 if ($ref) {
1756 root 1.220 $_[0]{rbuf} = $json->incr_text;
1757 root 1.113 $json->incr_text = "";
1758 root 1.220 $cb->($_[0], $ref);
1759 root 1.110
1760     1
1761 root 1.113 } elsif ($@) {
1762 root 1.111 # error case
1763 root 1.110 $json->incr_skip;
1764 root 1.40
1765 root 1.220 $_[0]{rbuf} = $json->incr_text;
1766 root 1.40 $json->incr_text = "";
1767    
1768 root 1.220 $_[0]->_error (Errno::EBADMSG);
1769 root 1.114
1770 root 1.113 ()
1771     } else {
1772 root 1.220 $_[0]{rbuf} = "";
1773 root 1.114
1774 root 1.113 ()
1775     }
1776 root 1.40 }
1777     };
1778    
1779 root 1.238 =item cbor => $cb->($handle, $scalar)
1780    
1781     Reads a CBOR value, decodes it and passes it to the callback. When a parse
1782     error occurs, an C<EBADMSG> error will be raised.
1783    
1784     If a L<CBOR::XS> object was passed to the constructor, then that will be
1785     used for the final decode, otherwise it will create a CBOR coder without
1786     enabling any options.
1787    
1788     You have to provide a dependency to L<CBOR::XS> on your own: this module
1789     will load the L<CBOR::XS> module, but AnyEvent does not depend on it
1790     itself.
1791    
1792     Since CBOR values are fully self-delimiting, the C<cbor> read and write
1793     types are an ideal simple RPC protocol: just exchange CBOR datagrams. See
1794     the C<cbor> write type description, above, for an actual example.
1795    
1796     =cut
1797    
1798     register_read_type cbor => sub {
1799     my ($self, $cb) = @_;
1800    
1801     my $cbor = $self->{cbor} ||= cbor_coder;
1802    
1803     my $data;
1804    
1805     sub {
1806     my (@value) = eval { $cbor->incr_parse ($_[0]{rbuf}) };
1807    
1808     if (@value) {
1809     $cb->($_[0], @value);
1810    
1811     1
1812     } elsif ($@) {
1813     # error case
1814     $cbor->incr_reset;
1815    
1816     $_[0]->_error (Errno::EBADMSG);
1817    
1818     ()
1819     } else {
1820     ()
1821     }
1822     }
1823     };
1824    
1825 root 1.63 =item storable => $cb->($handle, $ref)
1826    
1827     Deserialises a L<Storable> frozen representation as written by the
1828     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1829     data).
1830    
1831     Raises C<EBADMSG> error if the data could not be decoded.
1832    
1833     =cut
1834    
1835     register_read_type storable => sub {
1836     my ($self, $cb) = @_;
1837    
1838 root 1.224 require Storable unless $Storable::VERSION;
1839 root 1.63
1840     sub {
1841     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1842 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1843 root 1.63 or return;
1844    
1845 root 1.77 my $format = length pack "w", $len;
1846 root 1.63
1847 root 1.77 # bypass unshift if we already have the remaining chunk
1848     if ($format + $len <= length $_[0]{rbuf}) {
1849     my $data = substr $_[0]{rbuf}, $format, $len;
1850     substr $_[0]{rbuf}, 0, $format + $len, "";
1851 root 1.232
1852     eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1853     or return $_[0]->_error (Errno::EBADMSG);
1854 root 1.77 } else {
1855     # remove prefix
1856     substr $_[0]{rbuf}, 0, $format, "";
1857    
1858     # read remaining chunk
1859     $_[0]->unshift_read (chunk => $len, sub {
1860 root 1.232 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1861     or $_[0]->_error (Errno::EBADMSG);
1862 root 1.77 });
1863     }
1864    
1865     1
1866 root 1.63 }
1867     };
1868    
1869 root 1.236 =item tls_detect => $cb->($handle, $detect, $major, $minor)
1870    
1871     Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1872     record without consuming anything. Only SSL version 3 or higher
1873     is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1874     SSL2-compatible framing is supported).
1875    
1876     If it detects that the input data is likely TLS, it calls the callback
1877     with a true value for C<$detect> and the (on-wire) TLS version as second
1878     and third argument (C<$major> is C<3>, and C<$minor> is 0..3 for SSL
1879     3.0, TLS 1.0, 1.1 and 1.2, respectively). If it detects the input to
1880     be definitely not TLS, it calls the callback with a false value for
1881     C<$detect>.
1882    
1883     The callback could use this information to decide whether or not to start
1884     TLS negotiation.
1885    
1886     In all cases the data read so far is passed to the following read
1887     handlers.
1888    
1889     Usually you want to use the C<tls_autostart> read type instead.
1890    
1891     If you want to design a protocol that works in the presence of TLS
1892     dtection, make sure that any non-TLS data doesn't start with the octet 22
1893     (ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1894     read type does are a bit more strict, but might losen in the future to
1895     accomodate protocol changes.
1896    
1897     This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1898     L<Net::SSLeay>).
1899    
1900     =item tls_autostart => $tls[, $tls_ctx]
1901    
1902     Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1903     to start tls by calling C<starttls> with the given arguments.
1904    
1905     In practise, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1906     been configured to accept, as servers do not normally send a handshake on
1907     their own and ths cannot be detected in this way.
1908    
1909     See C<tls_detect> above for more details.
1910    
1911     Example: give the client a chance to start TLS before accepting a text
1912     line.
1913    
1914     $hdl->push_read (tls_detect => "accept");
1915     $hdl->push_read (line => sub {
1916     print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1917     });
1918    
1919     =cut
1920    
1921     register_read_type tls_detect => sub {
1922     my ($self, $cb) = @_;
1923    
1924     sub {
1925     # this regex matches a full or partial tls record
1926     if (
1927     # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1928     $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1929     # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1930     or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1931     ) {
1932     return if 3 != length $1; # partial match, can't decide yet
1933    
1934     # full match, valid TLS record
1935     my ($major, $minor) = unpack "CC", $1;
1936     $cb->($self, "accept", $major + $minor * 0.1);
1937     } else {
1938     # mismatch == guaranteed not TLS
1939     $cb->($self, undef);
1940     }
1941    
1942     1
1943     }
1944     };
1945    
1946     register_read_type tls_autostart => sub {
1947     my ($self, @tls) = @_;
1948    
1949     $RH{tls_detect}($self, sub {
1950     return unless $_[1];
1951     $_[0]->starttls (@tls);
1952     })
1953     };
1954    
1955 root 1.28 =back
1956    
1957 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1958 root 1.30
1959 root 1.185 Instead of one of the predefined types, you can also specify the name
1960     of a package. AnyEvent will try to load the package and then expects to
1961     find a function named C<anyevent_read_type> inside. If it isn't found, it
1962     progressively tries to load the parent package until it either finds the
1963     function (good) or runs out of packages (bad).
1964    
1965     Whenever this type is used, C<push_read> will invoke the function with the
1966     handle object, the original callback and the remaining arguments.
1967    
1968     The function is supposed to return a callback (usually a closure) that
1969     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1970     mentally treat the function as a "configurable read type to read callback"
1971     converter.
1972    
1973     It should invoke the original callback when it is done reading (remember
1974     to pass C<$handle> as first argument as all other callbacks do that,
1975     although there is no strict requirement on this).
1976 root 1.30
1977 root 1.185 For examples, see the source of this module (F<perldoc -m
1978     AnyEvent::Handle>, search for C<register_read_type>)).
1979 root 1.30
1980 root 1.10 =item $handle->stop_read
1981    
1982     =item $handle->start_read
1983    
1984 root 1.18 In rare cases you actually do not want to read anything from the
1985 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1986 root 1.22 any queued callbacks will be executed then. To start reading again, call
1987 root 1.10 C<start_read>.
1988    
1989 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1990     you change the C<on_read> callback or push/unshift a read callback, and it
1991     will automatically C<stop_read> for you when neither C<on_read> is set nor
1992     there are any read requests in the queue.
1993    
1994 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1995     as TLS does not support half-duplex connections. In current versions they
1996     work as expected, as this behaviour is required to avoid certain resource
1997     attacks, where the program would be forced to read (and buffer) arbitrary
1998     amounts of data before being able to send some data. The drawback is that
1999     some readings of the the SSL/TLS specifications basically require this
2000     attack to be working, as SSL/TLS implementations might stall sending data
2001     during a rehandshake.
2002    
2003     As a guideline, during the initial handshake, you should not stop reading,
2004 root 1.226 and as a client, it might cause problems, depending on your application.
2005 root 1.93
2006 root 1.10 =cut
2007    
2008     sub stop_read {
2009     my ($self) = @_;
2010 elmex 1.1
2011 root 1.213 delete $self->{_rw};
2012 root 1.8 }
2013 elmex 1.1
2014 root 1.10 sub start_read {
2015     my ($self) = @_;
2016    
2017 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
2018 root 1.10 Scalar::Util::weaken $self;
2019    
2020 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
2021 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
2022 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
2023 root 1.10
2024     if ($len > 0) {
2025 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
2026 root 1.43
2027 root 1.93 if ($self->{tls}) {
2028     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
2029 root 1.97
2030 root 1.93 &_dotls ($self);
2031     } else {
2032 root 1.159 $self->_drain_rbuf;
2033 root 1.93 }
2034 root 1.10
2035 root 1.203 if ($len == $self->{read_size}) {
2036     $self->{read_size} *= 2;
2037     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
2038     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
2039     }
2040    
2041 root 1.10 } elsif (defined $len) {
2042 root 1.38 delete $self->{_rw};
2043     $self->{_eof} = 1;
2044 root 1.159 $self->_drain_rbuf;
2045 root 1.10
2046 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
2047 root 1.52 return $self->_error ($!, 1);
2048 root 1.10 }
2049 root 1.175 };
2050 root 1.10 }
2051 elmex 1.1 }
2052    
2053 root 1.133 our $ERROR_SYSCALL;
2054     our $ERROR_WANT_READ;
2055    
2056     sub _tls_error {
2057     my ($self, $err) = @_;
2058    
2059     return $self->_error ($!, 1)
2060     if $err == Net::SSLeay::ERROR_SYSCALL ();
2061    
2062 root 1.233 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
2063 root 1.137
2064     # reduce error string to look less scary
2065     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
2066    
2067 root 1.143 if ($self->{_on_starttls}) {
2068     (delete $self->{_on_starttls})->($self, undef, $err);
2069     &_freetls;
2070     } else {
2071     &_freetls;
2072 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
2073 root 1.143 }
2074 root 1.133 }
2075    
2076 root 1.97 # poll the write BIO and send the data if applicable
2077 root 1.133 # also decode read data if possible
2078     # this is basiclaly our TLS state machine
2079     # more efficient implementations are possible with openssl,
2080     # but not with the buggy and incomplete Net::SSLeay.
2081 root 1.19 sub _dotls {
2082     my ($self) = @_;
2083    
2084 root 1.97 my $tmp;
2085 root 1.56
2086 root 1.239 while (length $self->{_tls_wbuf}) {
2087     if (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) <= 0) {
2088     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
2089    
2090     return $self->_tls_error ($tmp)
2091     if $tmp != $ERROR_WANT_READ
2092     && ($tmp != $ERROR_SYSCALL || $!);
2093    
2094     last;
2095 root 1.22 }
2096 root 1.133
2097 root 1.239 substr $self->{_tls_wbuf}, 0, $tmp, "";
2098 root 1.19 }
2099    
2100 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
2101     unless (length $tmp) {
2102 root 1.143 $self->{_on_starttls}
2103     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
2104 root 1.92 &_freetls;
2105 root 1.143
2106 root 1.142 if ($self->{on_stoptls}) {
2107     $self->{on_stoptls}($self);
2108     return;
2109     } else {
2110     # let's treat SSL-eof as we treat normal EOF
2111     delete $self->{_rw};
2112     $self->{_eof} = 1;
2113     }
2114 root 1.56 }
2115 root 1.91
2116 root 1.116 $self->{_tls_rbuf} .= $tmp;
2117 root 1.159 $self->_drain_rbuf;
2118 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
2119 root 1.23 }
2120    
2121 root 1.239 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); # -1 is not neccessarily correct, but Net::SSLeay doesn't tell us
2122 root 1.133 return $self->_tls_error ($tmp)
2123     if $tmp != $ERROR_WANT_READ
2124 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
2125 root 1.91
2126 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
2127     $self->{wbuf} .= $tmp;
2128 root 1.91 $self->_drain_wbuf;
2129 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
2130 root 1.91 }
2131 root 1.142
2132     $self->{_on_starttls}
2133     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
2134 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
2135 root 1.19 }
2136    
2137 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
2138    
2139     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
2140     object is created, you can also do that at a later time by calling
2141 root 1.234 C<starttls>. See the C<tls> constructor argument for general info.
2142 root 1.25
2143 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
2144     write data and then call C<< ->starttls >> then TLS negotiation will start
2145 root 1.234 immediately, after which the queued write data is then sent. This might
2146     change in future versions, so best make sure you have no outstanding write
2147     data when calling this method.
2148 root 1.157
2149 root 1.25 The first argument is the same as the C<tls> constructor argument (either
2150     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
2151    
2152 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
2153     when AnyEvent::Handle has to create its own TLS connection object, or
2154     a hash reference with C<< key => value >> pairs that will be used to
2155     construct a new context.
2156    
2157     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
2158     context in C<< $handle->{tls_ctx} >> after this call and can be used or
2159     changed to your liking. Note that the handshake might have already started
2160     when this function returns.
2161 root 1.38
2162 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
2163 root 1.198 handshakes on the same stream. It is best to not attempt to use the
2164     stream after stopping TLS.
2165 root 1.92
2166 root 1.193 This method may invoke callbacks (and therefore the handle might be
2167     destroyed after it returns).
2168    
2169 root 1.25 =cut
2170    
2171 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
2172    
2173 root 1.19 sub starttls {
2174 root 1.160 my ($self, $tls, $ctx) = @_;
2175    
2176     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
2177     if $self->{tls};
2178    
2179 root 1.234 unless (defined $AnyEvent::TLS::VERSION) {
2180     eval {
2181     require Net::SSLeay;
2182     require AnyEvent::TLS;
2183     1
2184     } or return $self->_error (Errno::EPROTO, 1, "TLS support not available on this system");
2185     }
2186    
2187 root 1.160 $self->{tls} = $tls;
2188     $self->{tls_ctx} = $ctx if @_ > 2;
2189    
2190     return unless $self->{fh};
2191 root 1.19
2192 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
2193     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
2194 root 1.133
2195 root 1.180 $tls = delete $self->{tls};
2196 root 1.160 $ctx = $self->{tls_ctx};
2197 root 1.131
2198 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
2199    
2200 root 1.131 if ("HASH" eq ref $ctx) {
2201 root 1.137 if ($ctx->{cache}) {
2202     my $key = $ctx+0;
2203     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
2204     } else {
2205     $ctx = new AnyEvent::TLS %$ctx;
2206     }
2207 root 1.131 }
2208 root 1.92
2209 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
2210 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
2211 root 1.19
2212 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
2213     # but the openssl maintainers basically said: "trust us, it just works".
2214     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
2215     # and mismaintained ssleay-module doesn't even offer them).
2216 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2217 root 1.87 #
2218     # in short: this is a mess.
2219     #
2220 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2221 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2222 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2223     # have identity issues in that area.
2224 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
2225     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2226     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2227 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
2228 root 1.21
2229 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2230     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2231 root 1.19
2232 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2233     $self->{rbuf} = "";
2234 root 1.172
2235 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2236 root 1.19
2237 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2238 root 1.143 if $self->{on_starttls};
2239 root 1.142
2240 root 1.93 &_dotls; # need to trigger the initial handshake
2241     $self->start_read; # make sure we actually do read
2242 root 1.19 }
2243    
2244 root 1.25 =item $handle->stoptls
2245    
2246 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2247     sending a close notify to the other side, but since OpenSSL doesn't
2248 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2249 root 1.160 the stream afterwards.
2250 root 1.25
2251 root 1.193 This method may invoke callbacks (and therefore the handle might be
2252     destroyed after it returns).
2253    
2254 root 1.25 =cut
2255    
2256     sub stoptls {
2257     my ($self) = @_;
2258    
2259 root 1.192 if ($self->{tls} && $self->{fh}) {
2260 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2261 root 1.92
2262     &_dotls;
2263    
2264 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2265     # # we, we... have to use openssl :/#d#
2266     # &_freetls;#d#
2267 root 1.92 }
2268     }
2269    
2270     sub _freetls {
2271     my ($self) = @_;
2272    
2273     return unless $self->{tls};
2274 root 1.38
2275 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2276 root 1.171 if $self->{tls} > 0;
2277 root 1.92
2278 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2279 root 1.25 }
2280    
2281 root 1.216 =item $handle->resettls
2282    
2283     This rarely-used method simply resets and TLS state on the handle, usually
2284     causing data loss.
2285    
2286     One case where it may be useful is when you want to skip over the data in
2287     the stream but you are not interested in interpreting it, so data loss is
2288     no concern.
2289    
2290     =cut
2291    
2292     *resettls = \&_freetls;
2293    
2294 root 1.19 sub DESTROY {
2295 root 1.120 my ($self) = @_;
2296 root 1.19
2297 root 1.92 &_freetls;
2298 root 1.62
2299     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2300    
2301 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2302 root 1.62 my $fh = delete $self->{fh};
2303     my $wbuf = delete $self->{wbuf};
2304    
2305     my @linger;
2306    
2307 root 1.175 push @linger, AE::io $fh, 1, sub {
2308 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2309    
2310     if ($len > 0) {
2311     substr $wbuf, 0, $len, "";
2312 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2313 root 1.62 @linger = (); # end
2314     }
2315 root 1.175 };
2316     push @linger, AE::timer $linger, 0, sub {
2317 root 1.62 @linger = ();
2318 root 1.175 };
2319 root 1.62 }
2320 root 1.19 }
2321    
2322 root 1.99 =item $handle->destroy
2323    
2324 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2325 root 1.141 no further callbacks will be invoked and as many resources as possible
2326 root 1.165 will be freed. Any method you will call on the handle object after
2327     destroying it in this way will be silently ignored (and it will return the
2328     empty list).
2329 root 1.99
2330 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2331     object and it will simply shut down. This works in fatal error and EOF
2332     callbacks, as well as code outside. It does I<NOT> work in a read or write
2333     callback, so when you want to destroy the AnyEvent::Handle object from
2334     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2335     that case.
2336    
2337 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2338     will be removed as well, so if those are the only reference holders (as
2339     is common), then one doesn't need to do anything special to break any
2340     reference cycles.
2341    
2342 root 1.99 The handle might still linger in the background and write out remaining
2343     data, as specified by the C<linger> option, however.
2344    
2345     =cut
2346    
2347     sub destroy {
2348     my ($self) = @_;
2349    
2350     $self->DESTROY;
2351     %$self = ();
2352 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2353     }
2354    
2355 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2356     #nop
2357 root 1.99 }
2358    
2359 root 1.192 =item $handle->destroyed
2360    
2361     Returns false as long as the handle hasn't been destroyed by a call to C<<
2362     ->destroy >>, true otherwise.
2363    
2364     Can be useful to decide whether the handle is still valid after some
2365     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2366     C<< ->starttls >> and other methods can call user callbacks, which in turn
2367     can destroy the handle, so work can be avoided by checking sometimes:
2368    
2369     $hdl->starttls ("accept");
2370     return if $hdl->destroyed;
2371     $hdl->push_write (...
2372    
2373     Note that the call to C<push_write> will silently be ignored if the handle
2374     has been destroyed, so often you can just ignore the possibility of the
2375     handle being destroyed.
2376    
2377     =cut
2378    
2379     sub destroyed { 0 }
2380     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2381    
2382 root 1.19 =item AnyEvent::Handle::TLS_CTX
2383    
2384 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2385     for TLS mode.
2386 root 1.19
2387 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2388 root 1.19
2389     =cut
2390    
2391     our $TLS_CTX;
2392    
2393     sub TLS_CTX() {
2394 root 1.131 $TLS_CTX ||= do {
2395     require AnyEvent::TLS;
2396 root 1.19
2397 root 1.131 new AnyEvent::TLS
2398 root 1.19 }
2399     }
2400    
2401 elmex 1.1 =back
2402    
2403 root 1.95
2404     =head1 NONFREQUENTLY ASKED QUESTIONS
2405    
2406     =over 4
2407    
2408 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2409     still get further invocations!
2410    
2411     That's because AnyEvent::Handle keeps a reference to itself when handling
2412     read or write callbacks.
2413    
2414     It is only safe to "forget" the reference inside EOF or error callbacks,
2415     from within all other callbacks, you need to explicitly call the C<<
2416     ->destroy >> method.
2417    
2418 root 1.208 =item Why is my C<on_eof> callback never called?
2419    
2420     Probably because your C<on_error> callback is being called instead: When
2421     you have outstanding requests in your read queue, then an EOF is
2422     considered an error as you clearly expected some data.
2423    
2424     To avoid this, make sure you have an empty read queue whenever your handle
2425 root 1.223 is supposed to be "idle" (i.e. connection closes are O.K.). You can set
2426 root 1.208 an C<on_read> handler that simply pushes the first read requests in the
2427     queue.
2428    
2429     See also the next question, which explains this in a bit more detail.
2430    
2431     =item How can I serve requests in a loop?
2432    
2433     Most protocols consist of some setup phase (authentication for example)
2434     followed by a request handling phase, where the server waits for requests
2435     and handles them, in a loop.
2436    
2437     There are two important variants: The first (traditional, better) variant
2438     handles requests until the server gets some QUIT command, causing it to
2439     close the connection first (highly desirable for a busy TCP server). A
2440     client dropping the connection is an error, which means this variant can
2441     detect an unexpected detection close.
2442    
2443 root 1.235 To handle this case, always make sure you have a non-empty read queue, by
2444 root 1.208 pushing the "read request start" handler on it:
2445    
2446     # we assume a request starts with a single line
2447     my @start_request; @start_request = (line => sub {
2448     my ($hdl, $line) = @_;
2449    
2450     ... handle request
2451    
2452     # push next request read, possibly from a nested callback
2453     $hdl->push_read (@start_request);
2454     });
2455    
2456     # auth done, now go into request handling loop
2457     # now push the first @start_request
2458     $hdl->push_read (@start_request);
2459    
2460     By always having an outstanding C<push_read>, the handle always expects
2461     some data and raises the C<EPIPE> error when the connction is dropped
2462     unexpectedly.
2463    
2464     The second variant is a protocol where the client can drop the connection
2465     at any time. For TCP, this means that the server machine may run out of
2466 root 1.223 sockets easier, and in general, it means you cannot distinguish a protocl
2467 root 1.208 failure/client crash from a normal connection close. Nevertheless, these
2468     kinds of protocols are common (and sometimes even the best solution to the
2469     problem).
2470    
2471     Having an outstanding read request at all times is possible if you ignore
2472     C<EPIPE> errors, but this doesn't help with when the client drops the
2473     connection during a request, which would still be an error.
2474    
2475     A better solution is to push the initial request read in an C<on_read>
2476     callback. This avoids an error, as when the server doesn't expect data
2477     (i.e. is idly waiting for the next request, an EOF will not raise an
2478     error, but simply result in an C<on_eof> callback. It is also a bit slower
2479     and simpler:
2480    
2481     # auth done, now go into request handling loop
2482     $hdl->on_read (sub {
2483     my ($hdl) = @_;
2484    
2485     # called each time we receive data but the read queue is empty
2486     # simply start read the request
2487    
2488     $hdl->push_read (line => sub {
2489     my ($hdl, $line) = @_;
2490    
2491     ... handle request
2492    
2493     # do nothing special when the request has been handled, just
2494     # let the request queue go empty.
2495     });
2496     });
2497    
2498 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2499     reading?
2500    
2501     Unlike, say, TCP, TLS connections do not consist of two independent
2502 root 1.198 communication channels, one for each direction. Or put differently, the
2503 root 1.101 read and write directions are not independent of each other: you cannot
2504     write data unless you are also prepared to read, and vice versa.
2505    
2506 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2507 root 1.101 callback invocations when you are not expecting any read data - the reason
2508     is that AnyEvent::Handle always reads in TLS mode.
2509    
2510     During the connection, you have to make sure that you always have a
2511     non-empty read-queue, or an C<on_read> watcher. At the end of the
2512     connection (or when you no longer want to use it) you can call the
2513     C<destroy> method.
2514    
2515 root 1.95 =item How do I read data until the other side closes the connection?
2516    
2517 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2518     to achieve this is by setting an C<on_read> callback that does nothing,
2519     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2520     will be in C<$_[0]{rbuf}>:
2521 root 1.95
2522     $handle->on_read (sub { });
2523     $handle->on_eof (undef);
2524     $handle->on_error (sub {
2525     my $data = delete $_[0]{rbuf};
2526     });
2527    
2528 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2529     which is not normally allowed by the API. It is expressly permitted in
2530     this case only, as the handle object needs to be destroyed afterwards.
2531    
2532 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2533     and packets loss, might get closed quite violently with an error, when in
2534 root 1.198 fact all data has been received.
2535 root 1.95
2536 root 1.101 It is usually better to use acknowledgements when transferring data,
2537 root 1.95 to make sure the other side hasn't just died and you got the data
2538     intact. This is also one reason why so many internet protocols have an
2539     explicit QUIT command.
2540    
2541 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2542     all data has been written?
2543 root 1.95
2544     After writing your last bits of data, set the C<on_drain> callback
2545     and destroy the handle in there - with the default setting of
2546     C<low_water_mark> this will be called precisely when all data has been
2547     written to the socket:
2548    
2549     $handle->push_write (...);
2550     $handle->on_drain (sub {
2551 root 1.231 AE::log debug => "All data submitted to the kernel.";
2552 root 1.95 undef $handle;
2553     });
2554    
2555 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2556     consider using C<< ->push_shutdown >> instead.
2557    
2558     =item I want to contact a TLS/SSL server, I don't care about security.
2559    
2560     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2561 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2562 root 1.143 parameter:
2563    
2564 root 1.144 tcp_connect $host, $port, sub {
2565     my ($fh) = @_;
2566 root 1.143
2567 root 1.144 my $handle = new AnyEvent::Handle
2568     fh => $fh,
2569     tls => "connect",
2570     on_error => sub { ... };
2571    
2572     $handle->push_write (...);
2573     };
2574 root 1.143
2575     =item I want to contact a TLS/SSL server, I do care about security.
2576    
2577 root 1.144 Then you should additionally enable certificate verification, including
2578     peername verification, if the protocol you use supports it (see
2579     L<AnyEvent::TLS>, C<verify_peername>).
2580    
2581     E.g. for HTTPS:
2582    
2583     tcp_connect $host, $port, sub {
2584     my ($fh) = @_;
2585    
2586     my $handle = new AnyEvent::Handle
2587     fh => $fh,
2588     peername => $host,
2589     tls => "connect",
2590     tls_ctx => { verify => 1, verify_peername => "https" },
2591     ...
2592    
2593     Note that you must specify the hostname you connected to (or whatever
2594     "peername" the protocol needs) as the C<peername> argument, otherwise no
2595     peername verification will be done.
2596    
2597     The above will use the system-dependent default set of trusted CA
2598     certificates. If you want to check against a specific CA, add the
2599     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2600    
2601     tls_ctx => {
2602     verify => 1,
2603     verify_peername => "https",
2604     ca_file => "my-ca-cert.pem",
2605     },
2606    
2607     =item I want to create a TLS/SSL server, how do I do that?
2608    
2609     Well, you first need to get a server certificate and key. You have
2610     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2611     self-signed certificate (cheap. check the search engine of your choice,
2612     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2613     nice program for that purpose).
2614    
2615     Then create a file with your private key (in PEM format, see
2616     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2617     file should then look like this:
2618    
2619     -----BEGIN RSA PRIVATE KEY-----
2620     ...header data
2621     ... lots of base64'y-stuff
2622     -----END RSA PRIVATE KEY-----
2623    
2624     -----BEGIN CERTIFICATE-----
2625     ... lots of base64'y-stuff
2626     -----END CERTIFICATE-----
2627    
2628     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2629     specify this file as C<cert_file>:
2630    
2631     tcp_server undef, $port, sub {
2632     my ($fh) = @_;
2633    
2634     my $handle = new AnyEvent::Handle
2635     fh => $fh,
2636     tls => "accept",
2637     tls_ctx => { cert_file => "my-server-keycert.pem" },
2638     ...
2639 root 1.143
2640 root 1.144 When you have intermediate CA certificates that your clients might not
2641     know about, just append them to the C<cert_file>.
2642 root 1.143
2643 root 1.95 =back
2644    
2645 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2646    
2647     In many cases, you might want to subclass AnyEvent::Handle.
2648    
2649     To make this easier, a given version of AnyEvent::Handle uses these
2650     conventions:
2651    
2652     =over 4
2653    
2654     =item * all constructor arguments become object members.
2655    
2656     At least initially, when you pass a C<tls>-argument to the constructor it
2657 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2658 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2659    
2660     =item * other object member names are prefixed with an C<_>.
2661    
2662     All object members not explicitly documented (internal use) are prefixed
2663     with an underscore character, so the remaining non-C<_>-namespace is free
2664     for use for subclasses.
2665    
2666     =item * all members not documented here and not prefixed with an underscore
2667     are free to use in subclasses.
2668    
2669     Of course, new versions of AnyEvent::Handle may introduce more "public"
2670 root 1.198 member variables, but that's just life. At least it is documented.
2671 root 1.38
2672     =back
2673    
2674 elmex 1.1 =head1 AUTHOR
2675    
2676 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2677 elmex 1.1
2678     =cut
2679    
2680 root 1.230 1
2681